Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC

Size: px
Start display at page:

Download "Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC"

Transcription

1 Stt Comput (27) 27: DOI.7/s Prctcl Byesn model evluton usng leve-one-out cross-vldton nd WAIC Ak Vehtr Andrew Gelmn 2 Jonh Gry 2 Receved: 23 Jnury 26 / Accepted: 22 August 26 / Pulshed onlne: 3 August 26 Sprnger Scence+Busness Med New York 26 Astrct Leve-one-out cross-vldton (LOO) nd the wdely pplcle nformton crteron (WAIC) re methods for estmtng pontwse out-of-smple predcton ccurcy from ftted Byesn model usng the log-lkelhood evluted t the posteror smultons of the prmeter vlues. LOO nd WAIC hve vrous dvntges over smpler estmtes of predctve error such s AIC nd DIC ut re less used n prctce ecuse they nvolve ddtonl computtonl steps. Here we ly out fst nd stle computtons for LOO nd WAIC tht cn e performed usng exstng smulton drws. We ntroduce n effcent computton of LOO usng Preto-smoothed mportnce smplng (PSIS), new procedure for regulrzng mportnce weghts. Although WAIC s symptotclly equl to LOO, we demonstrte tht PSIS-LOO s more roust n the fnte cse wth wek prors or nfluentl oservtons. As yproduct of our clcultons, we lso otn pproxmte stndrd errors for estmted predctve errors nd for comprson of predctve errors etween two models. We mplement the computtons n n R pckge clled loo nd demonstrte usng models ft wth the Byesn nference pckge Stn. B Ak Vehtr k.vehtr@lto.f Andrew Gelmn gelmn@stt.colum.edu Deprtment of Computer Scence, Helsnk Insttute for Informton Technology HIIT, Alto Unversty, Espoo, Fnlnd 2 Deprtment of Sttstcs, Colum Unversty, New York, USA Keywords Byesn computton Leve-one-out crossvldton (LOO) K -fold cross-vldton Wdely pplcle nformton crteron (WAIC) Stn Preto smoothed mportnce smplng (PSIS) Introducton After fttng Byesn model we often wnt to mesure ts predctve ccurcy, for ts own ske or for purposes of model comprson, selecton, or vergng (Gesser nd Eddy 979; Hoetng et l. 999; Vehtr nd Lmpnen 22; Ando nd Tsy 2; Vehtr nd Ojnen 22). Cross-vldton nd nformton crter re two pproches to estmtng out-ofsmple predctve ccurcy usng wthn-smple fts (Akke 973; Stone 977). In ths rtcle we consder computtons usng the log-lkelhood evluted t the usul posteror smultons of the prmeters. Computton tme for the predctve ccurcy mesures should e neglgle compred to the cost of fttng the model nd otnng posteror drws n the frst plce. Exct cross-vldton requres re-fttng the model wth dfferent trnng sets. Approxmte leve-one-out crossvldton (LOO) cn e computed esly usng mportnce smplng (IS; Gelfnd et l. 992; Gelfnd 996) ut the resultng estmte s nosy, s the vrnce of the mportnce weghts cn e lrge or even nfnte (Perugg 997; Epfn et l. 28). Here we propose to use Preto smoothed mportnce smplng (PSIS), new pproch tht provdes more ccurte nd relle estmte y fttng Preto dstruton to the upper tl of the dstruton of the mportnce weghts. PSIS llows us to compute LOO usng mportnce weghts tht would otherwse e unstle. The wdely pplcle or Wtne-Akke nformton crteron (WAIC; Wtne 2) cn e vewed s n

2 44 Stt Comput (27) 27: mprovement on the devnce nformton crteron (DIC) for Byesn models. DIC hs gned populrty n recent yers, n prt through ts mplementton n the grphcl modelng pckge BUGS (Spegelhlter et l. 22; Spegelhlter et l. 994, 23), ut t s known to hve some prolems, whch rse n prt from not eng fully Byesn n tht t s sed on pont estmte (vn der Lnde 25; Plummer 28). For exmple, DIC cn produce negtve estmtes of the effectve numer of prmeters n model nd t s not defned for sngulr models. WAIC s fully Byesn n tht t uses the entre posteror dstruton, nd t s symptotclly equl to Byesn cross-vldton. Unlke DIC, WAIC s nvrnt to prmetrzton nd lso works for sngulr models. Although WAIC s symptotclly equl to LOO, we demonstrte tht PSIS-LOO s more roust n the fnte cse wth wek prors or nfluentl oservtons. We provde dgnostcs for oth PSIS-LOO nd WAIC whch tell when these pproxmtons re lkely to hve lrge errors nd computtonlly more ntensve methods such s K -fold cross-vldton should e used. Fst nd stle computton nd dgnostcs for PSIS-LOO llows sfe use of ths new method n routne sttstcl prctce. As yproduct of our clcultons, we lso otn pproxmte stndrd errors for estmted predctve errors nd for the comprson of predctve errors etween two models. We mplement the computtons n pckge for R (R Core Tem 26) clled loo (Vehtr et l. 26, ) nd demonstrte usng models ft wth the Byesn nference pckge Stn (Stn Development Tem 26, ). All the computtons re fst compred to the typcl tme requred to ft the model n the frst plce. Although the exmples provded n ths pper ll use Stn, the loo pckge s ndependent of Stn nd cn e used wth models estmted y other softwre pckges or custom user-wrtten lgorthms. 2 Estmtng out-of-smple pontwse predctve ccurcy usng posteror smultons Consder dt y,...,y n, modeled s ndependent gven prmeters θ; thus p(y θ) = n = p(y θ). Ths formulton lso encompsses ltent vrle models wth p(y f,θ), where f re ltent vrles. Also suppose we hve pror dstruton p(θ), thus yeldng posteror dstruton p(θ y) nd posteror predctve dstruton p(ỹ y) = p(ỹ θ)p(θ y)dθ. To mntn comprlty wth the gven dtset nd to get eser nterpretton of the dfferences n scle of effectve numer of prmeters, we defne The loo R pckge s vlle from CRAN nd stn-dev/loo. The correspondng code for Mtl, Octve, nd Python s vlle t mesure of predctve ccurcy for the n dt ponts tken one t tme: elpd = expected log pontwse predctve densty for new dtset = p t (ỹ ) log p(ỹ y)d ỹ, () = where p t (ỹ ) s the dstruton representng the true dtgenertng process for ỹ.thep t (ỹ ) s re unknown, nd we wll use cross-vldton or WAIC to pproxmte (). In regresson, these dstrutons re lso mplctly condtoned on ny predctors n the model. See Vehtr nd Ojnen (22) for other pproches to pproxmtng p t (ỹ ) nd dscusson of lterntve predcton tsks. Insted of the log predctve densty log p(ỹ y), other utlty (or cost) functons u(p(ỹ y), ỹ) could e used, such s clssfcton error. Here we tke the log score s the defult for evlutng the predctve densty (Gesser nd Eddy 979; Bernrdo nd Smth 994; Gnetng nd Rftery 27). A helpful quntty n the nlyss s lpd = log pontwse predctve densty = log p(y y) = log p(y θ)p(θ y)dθ. (2) = = The lpd of oserved dt y s n overestmte of the elpd for future dt (). To compute the lpd n prctce, we cn evlute the expectton usng drws from p post (θ), the usul posteror smultons, whch we lel θ s, s =,...,S: lpd = computed log pontwse predctve densty ( ) S = log p(y θ s ). (3) S = s= 2. Leve-one-out cross-vldton The Byesn LOO estmte of out-of-smple predctve ft s elpd loo = log p(y y ), (4) = where p(y y ) = p(y θ)p(θ y )dθ (5) s the leve-one-out predctve densty gven the dt wthout the th dt pont.

3 Stt Comput (27) 27: Rw mportnce smplng As noted y Gelfnd et l. (992), f the n ponts re condtonlly ndependent n the dt model we cn then evlute (5) wth drws θ s from the full posteror p(θ y) usng mportnce rtos r s = p(y θ s ) p(θ s y ) p(θ s y) to get the mportnce smplng leve-one-out (IS-LOO) predctve dstruton, Ss= r s p(ỹ y ) p(ỹ θ s ) Ss= r s. (7) Evlutng ths LOO log predctve densty t the held-out dt pont y, we get p(y y ) S Ss= p(y θ s ) (6). (8) However, the posteror p(θ y) s lkely to hve smller vrnce nd thnner tls thn the leve-one-out dstrutons p(θ y ), nd thus drect use of (8) nduces nstlty ecuse the mportnce rtos cn hve hgh or nfnte vrnce. For smple models the vrnce of the mportnce weghts my e computed nlytclly. The necessry nd suffcent condtons for the vrnce of the cse-deleton mportnce smplng weghts to e fnte for Byesn lner model re gven y Perugg (997). Epfn et l. (28) extend the nlytcl results to generlzed lner models nd nonlner Mchels-Menten models. However, these condtons cn not e computed nlytclly n generl. Koopmn et l. (29) propose to use the mxmum lkelhood ft of the generlzed Preto dstruton to the upper tl of the dstruton of the mportnce rtos nd use the ftted prmeters to form test for whether the vrnce of the mportnce rtos s fnte. If the hypothess test suggests the vrnce s nfnte then they ndon mportnce smplng Truncted mportnce smplng Iondes (28) proposes modfcton of mportnce smplng where the rw mportnce rtos r s re replced y truncted weghts w s = mn(r s, S r), (9) where r = S Ss= r s. Iondes (28) proves tht the vrnce of the truncted mportnce smplng weghts s gurnteed to e fnte, nd provdes theoretcl nd expermentl results showng tht truncton usng the threshold S r gves n mportnce smplng estmte wth men squre error close to n estmte wth cse specfc optml truncton level. The downsde of the truncton s tht t ntroduces s, whch cn e lrge s we demonstrte n our experments Preto smoothed mportnce smplng We cn mprove the LOO estmte usng Preto smoothed mportnce smplng (PSIS; Vehtr nd Gelmn 25), whch pples smoothng procedure to the mportnce weghts. We refly revew the motvton nd steps of PSIS here, efore movng on to focus on the gols of usng nd evlutng predctve nformton crter. As noted ove, the dstruton of the mportnce weghts used n LOO my hve long rght tl. We use the emprcl Byes estmte of Zhng nd Stephens (29) to ft generlzed Preto dstruton to the tl (2 % lrgest mportnce rtos). By exmnng the shpe prmeter k of the ftted Preto dstruton, we re le to otn smple sed estmtes of the exstence of the moments (Koopmn et l. 29). Ths extends the dgnostc pproch of Perugg (997) nd Epfn et l. (28) to e used routnely wth IS-LOO for ny model wth fctorzng lkelhood. Epfn et l. (28) show tht when estmtng the leveone-out predctve densty, the centrl lmt theorem holds f the dstruton of the weghts hs fnte vrnce. These results cn e extended v the generlzed centrl lmt theorem for stle dstrutons. Thus, even f the vrnce of the mportnce weght dstruton s nfnte, f the men exsts then the ccurcy of the estmte mproves s ddtonl posteror drws re otned. When the tl of the weght dstruton s long, drect use of mportnce smplng s senstve to one or few lrgest vlues. By fttng generlzed Preto dstruton to the upper tl of the mportnce weghts, we smooth these vlues. The procedure goes s follows:. Ft the generlzed Preto dstruton to the 2% lrgest mportnce rtos r s s computed n (6). The computton s done seprtely for ech held-out dt pont. In smulton experments wth thousnds nd tens of thousnds of drws, we hve found tht the ft s not senstve to the specfc cutoff vlue (for consstent estmton, the proporton of the smples ove the cutoff should get smller when the numer of drws ncreses). 2. Stlze the mportnce rtos y replcng the M lrgest rtos y the expected vlues of the order sttstcs of the ftted generlzed Preto dstruton ( ) z /2 F, z =,...,M, M

4 46 Stt Comput (27) 27: where M s the numer of smulton drws used to ft the Preto (n ths cse, M =.2 S) nd F s the nverse- CDF of the generlzed Preto dstruton. Lel these new weghts s w s where, gn, s ndexes the smulton drws nd ndexes the dt ponts; thus, for ech there s dstnct vector of S weghts. 3. To gurntee fnte vrnce of the estmte, truncte ech vector of weghts t S 3/4 w, where w s the verge of the S smoothed weghts correspondng to the dstruton holdng out dt pont. Fnlly, lel these truncted weghts s w s. The ove steps must e performed for ech dt pont. The result s vector of weghts w s, s =,...,S, for ech, whch n generl should e etter ehved thn the rw mportnce rtos r s from whch they re constructed. The results cn then e comned to compute the desred LOO estmtes. The PSIS estmte of the LOO expected log pontwse predctve densty s êlpd pss loo = ( Ss= w s log p(y ) θ s ) Ss= w s. () = The estmted shpe prmeter ˆk of the generlzed Preto dstruton cn e used to ssess the rellty of the estmte: If k < 2, the vrnce of the rw mportnce rtos s fnte, the centrl lmt theorem holds, nd the estmte converges quckly. If k s etween 2 nd, the vrnce of the rw mportnce rtos s nfnte ut the men exsts, the generlzed centrl lmt theorem for stle dstrutons holds, nd the convergence of the estmte s slower. The vrnce of the PSIS estmte s fnte ut my e lrge. If k >, the vrnce nd the men of the rw rtos dstruton do not exst. The vrnce of the PSIS estmte s fnte ut my e lrge. If the estmted tl shpe prmeter ˆk exceeds.5, the user should e wrned, lthough n prctce we hve oserved good performnce for vlues of ˆk up to.7. Even f the PSIS estmte hs fnte vrnce, when ˆk exceeds.7 the user should consder smplng drectly from p(θ s y ) for the prolemtc,use K -fold cross-vldton (see Sect. 2.3), or use more roust model. The ddtonl computtonl cost of smplng drectly from ech p(θ s y ) s pproxmtely the sme s smplng from the full posteror, ut t s recommended f the numer of prolemtc dt ponts s not too hgh. A more roust model my lso help ecuse mportnce smplng s less lkely to work well f the mrgnl posteror p(θ s y) nd LOO posteror p(θ s y ) re very dfferent. Ths s more lkely to hppen wth non-roust model nd hghly nfluentl oservtons. A roust model my reduce the senstvty to one or severl hghly nfluentl oservtons, s we show n the exmples n Sect WAIC WAIC (Wtne 2) s n lterntve pproch to estmtng the expected log pontwse predctve densty nd s defned s êlpd wc = lpd p wc, () where p wc s the estmted effectve numer of prmeters nd s computed sed on the defnton 2 p wc = vr post (log p(y θ)), (2) = whch we cn clculte usng the posteror vrnce of the log predctve densty for ech dt pont y, tht s, Vs= S log p(y θ s ), where Vs= S represents the smple vrnce, Vs= S s = S Ss= ( s ā) 2. Summng over ll the dt ponts y gves smulton-estmted effectve numer of prmeters, p wc = = Vs= S ( log p(y θ s ) ). (3) For DIC, there s smlr vrnce-sed computton of the numer of prmeters tht s notorously unrelle, ut the WAIC verson s more stle ecuse t computes the vrnce seprtely for ech dt pont nd then tkes the sum; the summng yelds stlty. The effectve numer of prmeters p wc cn e used s mesure of complexty of the model, ut t should not e overnterpreted, s the orgnl gol s to estmte the dfference etween lpd nd elpd. As shown y Gelmn et l. (24) nd demonstrted lso n Sect. 4, n the cse of wek pror, p wc cn severely underestmte the dfference etween lpd nd elpd. For p wc there s no smlr theory s for the moments of the mportnce smplng weght dstruton, ut sed on our smulton experments t seems tht p wc s unrelle f ny of the terms Vs= S log p(y θ s ) exceeds.4. The dfferent ehvor of LOO nd WAIC seen n the experments cn e understood y comprng Tylor seres pproxmtons. By defnng genertng functon of functonl cumulnts, 2 In Gelmn et l. (23), the vrnce-sed p wc defned here s clled p wc 2. There s lso men-sed formul, p wc, whch we do not use here.

5 Stt Comput (27) 27: F(α) = log E post (p(y θ) α ), (4) = nd pplyng Tylor expnson of F(α) round wth α = we otn n expnson of lpd loo elpd loo = F () 2 F () + 6 F(3) () ( ) F () (). (5)! =4 From the defnton of F(α) we get F() = F() = log E post (p(y θ)) F () = F () = = E post (log p(y θ)) = vr post (log p(y θ)). (6) = Furthermore lpd = F() = F () + 2 F () + 6 F(3) () + nd the expnson for WAIC s then WAIC = F() F () = F () 2 F () + 6 F(3) () + =4 =4 F () (),! (7) F () ().! (8) The frst three terms of the expnson of WAIC mtch the expnson of LOO, nd the rest of the terms mtch the expnson of lpd. Wtne (2) rgues tht, symptotclly, the ltter terms hve neglgle contruton nd thus symptotc equvlence wth LOO s otned. However, the error cn e sgnfcnt n the cse of fnte n nd wek pror nformton s shown y Gelmn et l. (24), nd demonstrted lso n Sect. 4. If the hgher order terms re not neglgle, then WAIC s sed towrds lpd. To reduce ths s t s possle to compute ddtonl seres terms, ut computng hgher moments usng fnte posteror smple ncreses the vrnce of the estmte nd, sed on our experments, t s more dffcult to control the s-vrnce trdeoff thn n PSIS-LOO. WAIC s lrger s compred to LOO s lso demonstrted y Vehtr et l. (26, ) n the cse of Gussn processes wth dstrutonl posteror pproxmtons. In the experments we lso demonstrte tht we cn use truncted IS-LOO wth hevy truncton to otn smlr s towrds lpd nd smlr estmte vrnce s n WAIC. 2.3 K-fold cross-vldton In ths pper we focus on leve-one-out cross-vldton nd WAIC, ut, for sttstcl nd computtonl resons, t cn mke sense to cross-vldte usng K n hold-out sets. In some wys, K -fold cross-vldton s smpler thn leveone-out cross-vldton ut n other wys t s not. K -fold cross-vldton requres refttng the model K tmes whch cn e computtonlly expensve wheres pproxmtve LOO methods, such s PSIS-LOO, requre only one evluton of the model. If n PSIS-LOO ˆk >.7 forfew we recommend smplng drectly from ech correspondng p(θ s y ),ut f there re more thn K prolemtc, then we recommend checkng the results usng K -fold cross-vldton. Vehtr nd Lmpnen (22) demonstrte cses where IS-LOO fls (ccordng to effectve smple sze estmtes nsted of the ˆk dgnostc proposed here) for lrge numer of nd K- fold-cv produces more relle results. In Byesn K -fold cross-vldton, the dt re prttoned nto K susets y k,fork =,...,K, nd then the model s ft seprtely to ech trnng set y ( k), thus yeldng posteror dstruton p post( k) (θ) = p(θ y ( k) ).Ifthe numer of prttons s smll ( typcl vlue n the lterture s K = ), t s not so costly to smply re-ft the model seprtely to ech trnng set. To mntn consstency wth LOO nd WAIC, we defne predctve ccurcy for ech dt pont, so tht the log predctve densty for y, f t s n suset k,s log p(y y ( k) ) = log p(y θ)p(θ y ( k) )dθ, k. (9) Assumng the posteror dstruton p(θ y ( k) ) s summrzed y S smulton drws θ k,s, we clculte ts log predctve densty s ( ) S êlpd = log p(y θ k,s ) (2) S s= usng the smultons correspondng to the suset k tht contns dt pont. We then sum to get the estmte êlpd xvl = êlpd. (2) = There remns s s the model s lernng from frcton K less of the dt. Methods for correctng ths s exst ut re rrely used s they cn ncrese the vrnce, nd f K the sze of the s s typclly smll compred to

6 48 Stt Comput (27) 27: the vrnce of the estmte (Vehtr nd Lmpnen 22). In our experments, exct LOO s the sme s K -fold-cv wth K = N nd we lso nlyze the effect of ths s nd s correcton n Sect For K -fold cross-vldton, f the sujects re exchngele, tht s, the order does not contn nformton, then there s no need for rndom selecton. If the order does contn nformton, e.g. n survvl studes the lter ptents hve shorter follow-ups, then rndomzton s often useful. In most cses we recommend prttonng the dt nto susets y rndomly permutng the oservtons nd then systemclly dvdng them nto K sugroups. If the sujects re exchngele, tht s, the order does not contn nformton, then there s no need for rndom selecton, ut f the order does contn nformton, e.g. n survvl studes the lter ptents hve shorter follow-ups, then rndomzton s useful. In some cses t my e useful to strtfy to otn etter lnce mong groups. See Vehtr nd Lmpnen (22), Arolot nd Celsse (2), nd Vehtr nd Ojnen (22) for further dscusson of these ponts. As the dt cn e dvded n mny wys nto K groups t ntroduces ddtonl vrnce n the estmtes, whch s lso evdent from our experments. Ths vrnce cn e reduced y repetng K -fold-cv severl tmes wth dfferent permuttons n the dt dvson, ut ths wll further ncrese the computtonl cost. 2.4 Dt dvson The purpose of usng LOO or WAIC s to estmte the ccurcy of the predctve dstruton p(ỹ y). Computton of PSIS-LOO nd WAIC (nd AIC nd DIC) s sed on computng terms log p(y y) = log p(y θ)p(θ y) ssumng some greed-upon dvson of the dt y nto ndvdul dt ponts y. Although often y wll denote sngle sclr oservton, n the cse of herrchcl dt, t my denote group of oservtons. For exmple, n cogntve or medcl studes we my e nterested n predcton for new suject (or ptent), nd thus t s nturl n cross-vldton to consder n pproch where y would denote ll oservtons for sngle suject nd y would denote the oservtons for ll the other sujects. In theory, we cn use PSIS-LOO nd WAIC n ths cse, too, ut s the numer of oservtons per suject ncreses t s more lkely tht they wll not work s well. The fct tht mportnce smplng s dffcult n hgher dmensons s well known nd s demonstrted for IS-LOO y Vehtr nd Lmpnen (22) nd for PSIS y Vehtr nd Gelmn (25). The sme prolem cn lso e shown to hold for WAIC. If dgnostcs wrn out the rellty of PSIS-LOO (or WAIC), then K -fold cross-vldton cn e used y tkng nto ccount the herrchcl structure n the dt when dong the dt dvson s demonstrted, for exmple, y Vehtr nd Lmpnen (22). 3 Implementton n Stn We hve set up code to mplement LOO, WAIC, nd K -fold cross-vldton n R nd Stn so tht users wll hve quck nd convenent wy to ssess nd compre model fts. Implementton s not utomtc, though, ecuse of the need to compute the seprte fctors p(y θ) n the lkelhood. Stn works wth the jont densty nd n ts usul computtons does not know whch prts come from the pror nd whch from the lkelhood. Nor does Stn n generl mke use of ny fctorzton of the lkelhood nto peces correspondng to ech dt pont. Thus, to compute these mesures of predctve ft n Stn, the user needs to explctly code the fctors of the lkelhood (ctully, the terms of the log-lkelhood) s vector. We cn then pull prt the seprte terms nd compute cross-vldton nd WAIC t the end, fter ll smultons hve een collected. Smple code for crryng out ths procedure usng Stn nd the loo R pckge s provded n Appendx. Ths code cn e dpted to pply our procedure n other computng lnguges. Although the mplementton s not utomtc when wrtng custom Stn progrms, we cn crete mplementtons tht re utomtc for users of our new rstnrm R pckge (Gry nd Goodrch 26). rstnrm provdes hghlevel nterfce to Stn tht enles the user to specfy mny of the most common ppled Byesn regresson models usng stndrd R modelng syntx (e.g. lke tht of glm). The models re then estmted usng Stn s lgorthms nd the results re returned to the user n form smlr to the ftted model ojects to whch R users re ccustomed. For the models mplemented n rstnrm, we hve preprogrmmed mny tsks, ncludng computng nd svng the pontwse predctve mesures nd mportnce rtos whch we use to compute WAIC nd PSIS-LOO. The loo method for rstnrm models requres no ddtonl progrmmng from the user fter fttng model, s we cn compute ll of the needed qunttes nternlly from the contents of the ftted model oject nd then pss them to the functons n the loo pckge. Exmples of usng loo wth rstnrm cn e found n the rstnrm vgnettes, nd we lso provde n exmple n Appendx 3 of ths pper. 4 Exmples We llustrte wth sx smple exmples: two exmples from our erler reserch n computng the effectve numer of prmeters n herrchcl model, three exmples tht were used y Epfn et l. (28) to llustrte the estmton of the vrnce of the weght dstruton, nd one exmple of multlevel regresson from our erler ppled reserch. For ech exmple we used the Stn defult of 4 chns run for wrmup nd post-wrmup tertons, yeldng

7 Stt Comput (27) 27: totl of 4 sved smulton drws. Wth Gs smplng or rndom-wlk Metropols, 4 s not lrge numer of smulton drws. The lgorthm used y Stn s Hmltonn Monte Crlo wth No-U-Turn-Smplng (Hoffmn nd Gelmn 24), whch s much more effcent, nd s lredy more thn suffcent n mny rel-world settngs. In these exmples we followed stndrd prctce nd montored convergence nd effectve smple szes s recommended y Gelmn et l. (23). We performed ndependent replctons of ll experments to otn estmtes of vrton. For the exct LOO results nd convergence plots we run longer chns to otn totl of, drws (except for the rdon exmple whch s much slower to run). 4. Exmple: Scled 8 schools For our frst exmple we tke n nlyss of n educton experment used y Gelmn et l. (24) to demonstrte the use of nformton crter for herrchcl Byesn models. The gol of the study ws to mesure the effects of test preprton progrm conducted n eght dfferent hgh schools n New Jersey. A seprte rndomzed experment ws conducted n ech school, nd the dmnstrtors of ech school mplemented the progrm n ther own wy. Run (98) performed Byesn met-nlyss, prtlly poolng the eght estmtes towrd common men. The model hs the form, y N(θ,σ 2) nd θ N(μ, τ 2 ),for =,...,n = 8, wth unform pror dstruton on (μ, τ). The mesurements y nd uncertntes σ re the estmtes nd stndrd errors from seprte regressons performed for ech school, s shown n Tle. The test scores for the ndvdul students re no longer vlle. Ths model hs eght prmeters ut they re constrned through ther herrchcl dstruton nd re not estmted Tle In controlled study, ndependent rndomzed experments were conducted n 8 dfferent hgh schools to estmte the effect of specl preprton for college dmsson tests School Estmted effect, y j Stndrd error of estmte, σ j A 28 5 B 8 C 3 6 D 7 E 9 F G 8 H 2 8 Ech row of the tle gves n estmte nd stndrd error from one of the schools. A herrchcl Byesn model ws ft to perform metnlyss nd use prtl poolng to get more ccurte estmtes of the 8 effects. From Run (98) ndependently; thus we would ntcpte the effectve numer of prmeters should e some numer etween nd 8. To etter llustrte the ehvor of LOO nd WAIC, we repet the nlyss, resclng the dt ponts y y fctor rngng from. to 4 whle keepng the stndrd errors σ unchnged. Wth smll dt sclng fctor the herrchcl model ners complete poolng nd wth lrge dt sclng fctor the model pproches seprte fts to the dt for ech school. Fgure shows êlpd for the vrous LOO pproxmton methods s functon of the sclng fctor, sed on 4 smulton drws t ech grd pont. When the dt sclng fctor s smll (here, less thn.5), ll mesures lrgely gree. As the dt sclng fctor ncreses nd the model pproches no poolng, the populton pror for θ gets flt nd p wc p 2. Ths s correct ehvor, s dscussed y Gelmn et l. (24). In the cse of exct LOO, lpd êlpd loo cn e lrger thn p. As the pror for θ pproches fltness, the log predctve densty p post( ) (y ). At the sme tme, the full posteror ecomes n ndequte pproxmton to p post( ) nd ll pproxmtons ecome poor pproxmtons to the ctul out-of-smple predcton error under the model. WAIC strts to fl when one of the posteror vrnces of the log predctve denstes exceeds.4. LOO pproxmtons work well even f the tl shpe k of the generlzed Preto dstruton s etween 2 nd, nd the vrnce of the rw mportnce rtos s nfnte. The error of LOO pproxmtons ncreses wth k, wth clerer dfference etween the methods when k > Exmple: Smulted 8 schools In the prevous exmple, we used exct LOO s the gold stndrd. In ths secton, we generte smulted dt from the sme sttstcl model nd compre predctve performnce on ndependent test dt. Even when the numer of oservtons n s fxed, s the scle of the populton dstruton ncreses we oserve the effect of wek pror nformton n herrchcl models dscussed n the prevous secton nd y Gelmn et l. (24). Comprng the error, s nd vrnce of the vrous pproxmtons, we fnd tht PSIS-LOO offers the est lnce. For =,...,n = 8, we smulte θ, N(μ,τ 2 ) nd y N(θ,,σ 2, ), where we set σ, =,μ =, nd τ {, 2,...,3}. The smulted dt s smlr to the rel 8 schools dt, for whch the emprcl estmte s ˆτ. For ech vlue of τ we generte trnng sets of sze 8 nd one test dt set of sze. Posteror nference s sed on 4 drws for ech constructed model. Fgure 2 shows the root men squre error (RMSE) for the vrous LOO pproxmton methods s functon of τ, the scle of the populton dstruton. When τ s lrge ll of the pproxmtons eventully hve ever ncresng

8 42 Stt Comput (27) 27: elppd WAIC TIS-LOO 4 IS-LOO 42 PSIS-LOO LOO Dt sclng fctor lppd elppd Dt sclng fctor c.2 d.6 Tl shpe k V s= S log p(y θ s ) Dt sclng fctor Dt sclng fctor Fg. 8 Schools exmple: WAIC, Truncted Importnce Smplng LOO, Importnce Smplng LOO, Preto Smoothed Importnce Smplng LOO, nd exct LOO (whch n ths cse corresponds to eghtfold-cv); estmted effectve numer of prmeters for ech of these mesures; c tl shpe ˆk for the mportnce weghts; nd d the posteror vrnces of the log predctve denstes, for scled versons of the 8 schools dt (the orgnl oservtons y hve een multpled y common fctor). We consder sclng fctors rngng from. (correspondng to ner-zero vrton of the underlyng prmeters mong the schools) to 4 (mplyng tht the true effects n the schools vry y much more thn ther stndrd errors of mesurement). As the sclng ncreses, eventully LOO pproxmtons nd WAIC fl to pproxmte exct LOO s the leve-one-out posterors re not close to the full posteror. When the estmted tl shpe ˆk exceeds, the mportnceweghted LOO pproxmtons strt to fl. When posteror vrnces of the log predctve denstes exceeds.4, WAIC strts to fl. PSIS-LOO performs the est mong the pproxmtons consdered here RMSE, whle exct LOO hs n upper lmt. For medum scles the pproxmtons hve smller RMSE thn exct LOO. As dscussed lter, ths s explned y the dfference n the vrnce of the estmtes. For smll scles WAIC hs slghtly smller RMSE thn the other methods (ncludng exct LOO). Wtne (2) shows tht WAIC gves n symptotclly unsed estmte of the out-of-smple predcton error ths does not hold for herrchcl models wth wek pror nformton s shown y Gelmn et l. (24) ut exct LOO s slghtly sed s the LOO posterors use only n oservtons. WAIC s dfferent ehvor cn e understood through the truncted Tylor seres correcton to the lpd, tht s, not usng the entre seres wll s t towrds lpd (see Sect. 2.2). The s n LOO s neglgle when n s lrge, ut wth smll n t cn e e lrger. Fgure 2 shows RMSE for the s corrected LOO pproxmtons usng the frst order correcton of Burmn (989). For smll scles the error of s corrected LOOs s smller thn WAIC. When the scle ncreses the RMSEs re close to the non-corrected versons. Although the s correcton s esy to compute, the dfference n ccurcy s neglgle for most pplctons. We shll dscuss Fg. 2c n moment, ut frst consder Fg. 3, whch shows the RMSE of the pproxmton methods nd the lpd of oserved dt decomposed nto s nd stndrd devton. All methods (except the lpd of oserved dt) hve smll ses nd vrnces wth smll populton dstruton scles. Bs corrected exct LOO hs prctclly zero s for ll scle vlues ut the hghest vrnce. When the scle ncreses the LOO pproxmtons eventully fl nd s ncreses. As the pproxmtons strt to fl, there s certn regon where mplct shrnkge towrds the lpd of oserved dt decelertes the ncrese n RMSE s the vrnce s reduced, even f the s contnues to grow. If the gol were to mnmze the RMSE for smller nd medum scles, we could lso shrnk exct LOO nd ncrese

9 Stt Comput (27) 27: WAIC WAIC c TIS-LOO BC-PSIS-LOO IS-LOO BC-LOO 4 PSIS-LOO 4 LOO RMSE 2 RMSE 2 RMSE WAIC TIS(/4)-LOO PSIS-LOO BC-LOO Shrunk LOO Populton dstruton scle τ Populton dstruton scle τ Populton dstruton scle τ Fg. 2 Smulted 8 schools exmple: Root men squre error of WAIC, Truncted Importnce Smplng LOO, Importnce Smplng LOO, Preto Smoothed Importnce Smplng LOO, nd exct LOO wth the true predctve performnce computed usng ndependently smulted test dt; the error for ll the methods ncreses, ut the RMSE of exct LOO hs n upper lmt. Eventully the LOO pproxmtons nd WAIC fl to return exct LOO, s the leve-one-out posterors re not close to the full posteror. When the estmted tl shpe k exceeds, the mportnce-weghted LOO pproxmtons strt to fl. Among the pproxmtons IS-LOO hs the smllest RMSE s t hs the smllest s, nd s the tl shpe k s mostly elow, t does not fl dly. Root men squre error of WAIC, s corrected Preto Smoothed Importnce Smplng LOO, nd s corrected exct LOO wth the true predctve performnce computed usng ndependently smulted test dt. The s correcton lso reduces RMSE, hvng the clerest mpct wth smller populton dstruton scles, ut overll the reducton n RMSE s neglgle. c Root men squre error of WAIC, Truncted Importnce Smplng LOO wth hevy truncton ( 4 S r), Preto Smoothed Importnce Smplng LOO, s corrected exct LOO, nd shrunk exct LOO wth the true predctve performnce computed usng ndependently smulted test dt. Truncted Importnce Smplng LOO wth hevy truncton mtches WAIC ccurtely. Shrnkng exct LOO towrds the lpd of oserved dt reduces the RMSE for some scle vlues wth smll ncrese n error for lrger scle vlues shrnkge n pproxmtons. Fgure 2c shows the RMSE of the LOO pproxmtons wth two new choces. Truncted Importnce Smplng LOO wth very hevy truncton (to 4 S r) closely mtches the performnce of WAIC. In the experments not ncluded here, we lso oserved tht ddng more correct Tylor seres terms to WAIC wll mke t ehve smlr to Truncted Importnce Smplng wth less truncton (see dscusson of Tylor seres expnson n Sect. 2.2). Shrunk exct LOO (α elpd loo + ( α) lpd, wth α =.85 chosen y hnd for llustrtve purposes only) hs smller RMSE for smll nd medum scle vlues s the vrnce s reduced, ut the prce s ncresed s t lrger scle vlues. If the gol s roust estmton of predctve performnce, then exct LOO s the est generl choce ecuse the error s lmted even n the cse of wek prors. Of the pproxmtons, PSIS-LOO offers the est lnce s well s dgnostcs for dentfyng when t s lkely flng. 4.3 Exmple: Lner regresson for stck loss dt To check the performnce of the proposed dgnostc for our second exmple we nlyze the stck loss dt used y Perugg (997) whch s known to hve nlytclly proven nfnte vrnce of one of the mportnce weght dstrutons. The dt consst of n = 2 dly oservtons on one outcome nd three predctors pertnng to plnt for the oxdton of mmon to ntrc cd. The outcome y s n nverse mesure of the effcency of the plnt nd the three predctors x, x 2, nd x 3 mesure rte of operton, temperture of coolng wter, nd ( trnsformton of the) concentrton of crcultng cd. Perugg (997) shows tht the mportnce weghts for leve-one-out cross-vldton for the dt pont y 2 hve nfnte vrnce. Fgure 4 shows the dstruton of the estmted tl shpes ˆk nd estmton errors compred to LOO n ndependent Stn runs. 3 The estmtes of the tl shpe ˆk for = 2 suggest tht the vrnce of the rw mportnce rtos s nfnte, however the generlzed centrl lmt theorem for stle dstrutons holds nd we cn stll otn n ccurte estmte of the component of LOO for ths dt pont usng PSIS. Fgure 5 shows tht f we contnue smplng, the estmtes for oth the tl shpe ˆk nd êlpd do converge (lthough slowly s ˆk s close to ). As the convergence s slow t would e more effcent to smple drectly from p(θ s y ) for the prolemtc. Hgh estmtes of the tl shpe prmeter ˆk ndcte tht the full posteror s not good mportnce smplng pproxmton to the desred leve-one-out posteror, nd thus the oservton s surprsng ccordng to the model. It s nturl to consder n lterntve model. We tred replcng the norml oservton model wth Student-t to mke the model 3 Smoothed densty estmtes were mde usng logstc Gussn process (Vehtr nd Rhmäk 24).

10 422 Stt Comput (27) 27: WAIC PSIS-LOO BC-LOO LPD WAIC PSIS-LOO BC-LOO LPD Bs 2 Std Populton dstruton scle τ Populton dstruton scle τ Fg. 3 Smulted 8 schools exmple: Asolute s of WAIC, Preto Smoothed Importnce Smplng LOO, s corrected exct LOO, nd the lpd (log predctve densty) of oserved dt wth the true predctve performnce computed usng ndependently smulted test dt; stndrd devton for ech of these mesures; All methods except the lpd of oserved dt hve smll ses nd vrnces wth smll populton dstruton scles. When the scle ncreses the s of WAIC ncreses fster thn the s of the other methods (except the lpd of oserved dt). Bs corrected exct LOO hs prctclly zero s for ll scle vlues. WAIC nd Preto Smoothed Importnce Smplng LOO hve lower vrnce thn exct LOO, s they re shrunk towrds the lpd of oserved dt, whch hs the smllest vrnce wth ll scles ˆk LOO PSIS-LOO Fg. 4 Stck loss exmple wth norml errors: Dstrutons of tl shpe estmtes nd PSIS-LOO estmton errors compred to LOO, from ndependent Stn runs. The pontwse clculton of the terms n PSIS-LOO revels tht much of the uncertnty comes from sngle dt pont, nd t could mke sense to smply re-ft the model to the suset nd compute LOO drectly for tht pont Shpe prmeter k for = Numer of posteror drws 5 elppd for = WAIC TIS-LOO IS-LOO PSIS-LOO LOO Numer of posteror drws 5 Fg. 5 Stck loss exmple wth norml errors: Tl shpe estmte nd LOO pproxmtons for the dffcult pont, = 2. When more drws re otned, the estmtes converge (slowly) followng the generlzed centrl lmt theorem more roust for the possle outler. Fgure 6 shows the dstruton of the estmted tl shpes ˆk nd estmton errors for PSIS-LOO compred to LOO n ndependent Stn runs for the Student-t lner regresson model. The estmted tl shpes nd the errors n computng ths component of LOO re smller thn wth Gussn model.

11 Stt Comput (27) 27: ˆk LOO PSIS-LOO Fg. 6 Stck loss exmple wth Student-t errors: Dstrutons of tl shpe estmtes nd PSIS-LOO estmton errors compred to LOO, from ndependent Stn runs. The computtons re more stle thn wth norml errors (compre to Fg. 4).4 Shpe prmeter k LOO PSIS-LOO Fg. 7 Puromycn exmple: Dstrutons of tl shpe estmtes nd PSIS-LOO estmton errors compred to LOO, from ndependent Stn runs. In n ppled exmple we would only perform these clcultons once, ut here we replcte tmes to gve sense of the Monte Crlo error of our procedure 4.4 Exmple: Nonlner regresson for Puromycn recton dt As nonlner regresson exmple, we use the Puromycn ochemcl recton dt lso nlyzed y Epfn et l. (28). For group of cells not treted wth the drug Puromycn, there re n = mesurements of the ntl velocty of recton, V, otned when the concentrton of the sustrte ws set t gven postve vlue, c. Velocty on concentrton s gven y the Mchels-Menten relton, V N(mc /(κ + c ), σ 2 ). Epfn et l. (28) show tht the rw mportnce rtos for oservton = hve nfnte vrnce. Fgure 7 shows the dstruton of the estmted tl shpes k nd estmton errors compred to LOO n ndependent Stn runs. The estmtes of the tl shpe k for = suggest tht the vrnce of the rw mportnce rtos s nfnte. However, the generlzed centrl lmt theorem for stle dstrutons stll holds nd we cn get n ccurte estmte of the correspondng term n LOO. We could otn more drws to reduce the Monte Crlo error, or gn consder more roust model. 4.5 Exmple: Logstc regresson for leukem survvl Our next exmple uses logstc regresson model to predct survvl of leukem ptents pst 5 weeks from dgnoss. These dt were lso nlyzed y Epfn et l. (28). Explntory vrles re whte lood cell count t dgnoss nd whether Auer rods nd/or sgnfcnt grnulture of the leukemc cells n the one mrrow t dgnoss were present. Epfn et l. (28) show tht the rw mportnce rtos for dt pont = 5 hve nfnte vrnce. Fgure 8 shows the dstruton of the estmted tl shpes k nd estmton errors compred to LOO n ndependent Stn runs. The estmtes of the tl shpe k for = 5 suggest tht the men nd vrnce of the rw mportnce rtos do not exst. Thus the generlzed centrl lmt theorem does not hold. Fgure 9 shows tht f we contnue smplng, the tl shpe estmte stys ove nd êlpd wll not converge. Lrge estmtes for the tl shpe prmeter ndcte tht the full posteror s not good mportnce smplng pproxmton for the desred leve-one-out posteror, nd thus the oservton s surprsng. The orgnl model used the whte lood cell count drectly s predctor, nd t would e nturl

12 424 Stt Comput (27) 27: Shpe prmeter k LOO PSIS-LOO Fg. 8 Leukem exmple: Dstrutons of tl shpe estmtes nd PSIS-LOO estmton errors compred to LOO, from ndependent Stn runs. The pontwse clculton of the terms n PSIS-LOO revels tht much of the uncertnty comes from sngle dt pont, nd t could mke sense to smply re-ft the model to the suset nd compute LOO drectly for tht pont Shpe prmeter k for = Numer of posteror drws 5 elppd for = WAIC TIS-LOO IS-LOO PSIS-LOO LOO Numer of posteror drws 5 Fg. 9 Leukem exmple: Dstrutons of tl shpe estmte nd LOO pproxmtons for = 5. If we contnue smplng, the tl shpe estmte stys ove nd êlpd wll not converge Shpe prmeter k LOO PSIS-LOO Fg. Leukem exmple wth log-trnsformed predctor: Dstrutons of tl shpe estmtes for ech dt pont nd PSIS-LOO estmton errors compred to LOO, from ndependent Stn runs. Computtons re more stle compred to the model ft on the orgnl scle nd dsplyed n Fg. 8 to use ts logrthm nsted. Fgure shows the dstruton of the estmted tl shpes k nd estmton errors compred to LOO n ndependent Stn runs for ths modfed model. Both the tl shpe vlues nd errors re now smller. 4.6 Exmple: Multlevel regresson for rdon contmnton Gelmn nd Hll (27) descre study conducted y the Unted Sttes Envronmentl Protecton Agency desgned to

13 Stt Comput (27) 27: Shpe prmeter k LOO PSIS-LOO Fg. Rdon exmple: Tl shpe estmtes for ech pont s contruton to LOO, nd error n PSIS-LOO ccurcy for ech dt pont, ll sed on sngle ft of the model n Stn mesure levels of the crcnogen rdon n houses throughout the Unted Sttes. In hgh concentrtons rdon s known to cuse lung cncer nd s estmted to e responsle for severl thousnds of deths every yer n the Unted Sttes. Here we focus on the smple of 99 houses n the stte of Mnnesot, whch re dstruted (unevenly) throughout 85 countes. We ft the followng multlevel lner model to the rdon dt ( α j β j ( y N ) N α j[] + β j[] x,σ 2), =,...,99 (( γ α + γ αu ) ( j σ 2 )), α ρσ α σ β, γ β + γ β u j j =,...,85, ρσ α σ β where y s the logrthm of the rdon mesurement n the th house, x = for mesurement mde n the sement nd x = f on the frst floor (t s known tht rdon enters more esly when house s ult nto the ground), nd the county-level predctor u j s the logrthm of the sol urnum level n the county. The resdul stndrd devton σ nd ll hyperprmeters re gven wekly nformtve prors. Code for fttng ths model s provded n Appendx 3. The smple sze n ths exmple (n = 99) s not huge ut s lrge enough tht t s mportnt to hve computtonl method for LOO tht s fst for ech dt pont. Although the MCMC for the full posteror nference (usng four prllel chns) fnshed n only 93 s, the computtons for exct rute force LOO requre fttng the model 99 tmes nd took more thn 2 h to complete (Mcook Pro, 2.6 GHz Intel Core 7). Wth the sme hrdwre the PSIS-LOO computtons took less thn 5 s. Fgure shows the results for the rdon exmple nd ndeed the estmted shpe prmeters k re smll nd ll of the tested methods re ccurte. For two oservtons the σ 2 β estmte of k s slghtly hgher thn the preferred threshold of.7, ut we cn esly compute the elpd contrutons for these ponts drectly nd then comne wth the PSIS-LOO estmtes for the remnng oservtons. 4 Ths s the procedure we refer to s PSIS-LOO+ n Sect. 4.7 elow. 4.7 Summry of exmples Tle 2 compres the performnce of Preto smoothed mportnce smplng, rw mportnce smplng, truncted mportnce smplng, nd WAIC for estmtng expected out-of-smple predcton ccurcy for ech of the exmples n Sects Models were ft n Stn to otn 4 smulton drws. In ech cse, the dstrutons come from ndependent smultons of the entre fttng process, nd the root men squred error s evluted y comprng to exct LOO, whch ws computed y seprtely fttng the model to ech leve-one-out dtset for ech exmple. The lst three lnes of Tle 2 show ddtonlly the performnce of PSIS-LOO comned wth drect smplng for the prolemtc wth ˆk >.7 (PSIS-LOO+), -fold-cv, nd tmes repeted -fold-cv. 5 For the Stcks-N, Puromycn, nd Leukem exmples, there ws one wth ˆk >.7, nd thus the mprovement hs the sme computtonl cost s the full posteror nference. -fold-cv hs hgher RMSE thn LOO pproxmtons except n the Leukem cse. The hgher RMSE of -fold-cv s due to ddtonl vrnce from the dt dvson. The repeted -fold-cv hs smller RMSE thn sc -fold-cv, ut now the cost of computton s lredy tmes the orgnl full posteror nference. 4 As expected, the two slghtly hgh estmtes for k correspond to prtculrly nfluentl oservtons, n ths cse houses wth extremely low rdon mesurements. 5 -fold-cv results were not computed for dt sets wth n, nd tmes repeted -fold-cv ws not fesle for the rdon exmple due to the computton tme requred.

14 426 Stt Comput (27) 27: Tle 2 Root men squre error for dfferent computtons of LOO s determned from smulton study, n ech cse sed on runnng Stn to otn 4 posteror drws nd repetng tmes Method 8 schools Stcks-N Stcks-t Puromycn Leukem Leukem-log Rdon PSIS-LOO IS-LOO TIS-LOO WAIC PSIS-LOO fold-cv fold-cv Methods compred re Preto smoothed mportnce smplng (PSIS), PSIS wth drect smplng f ˆk >.7 (PSIS-LOO+), rw mportnce smplng (IS), truncted mportnce smplng (TIS), WAIC, -fold-cv, nd tmes repeted -fold-cv for the dfferent exmples consdered n Sects : the herrchcl model for the 8 schools, the stck loss regresson (wth norml nd t models), nonlner regresson for Puromycn, logstc regresson for leukem (n orgnl nd log scle), nd herrchcl lner regresson for rdon. See text for explntons. PSIS-LOO nd PSIS-LOO+ gve the smllest error n ll exmples except the 8 schools, where t gves the second smllest error. In ech cse, we compred the estmtes to the correct vlue of LOO y the rute-force procedure of fttng the model seprtely to ech of the n possle trnng sets for ech exmple Tle 3 Prtl replcton of Tle 2 usng 6, posteror drws n ech cse Method 8 schools Stcks-N Stcks-t Puromycn Leukem Leukem-log Rdon PSIS-LOO IS-LOO TIS-LOO WAIC Monte Crlo errors re slghtly lower. The errors for WAIC do not smply scle wth / S ecuse most of ts errors come from s not vrnce These results show tht K -fold-cv s needed only f LOO pproxmtons fl dly (see lso the results n Vehtr nd Lmpnen 22). As mesured y root men squred error, PSIS consstently performs well. In generl, when IS-LOO hs prolems t s ecuse of the hgh vrnce of the rw mportnce weghts, whle TIS-LOO nd WAIC hve prolems ecuse of s. Tle 3 shows replcton usng 6, Stn drws for ech exmple. The results re smlr results nd PSIS- LOO s le to mprove the most gven ddtonl drws. 5 Stndrd errors nd model comprson We next consder some pproches for ssessng the uncertnty of cross-vldton nd WAIC estmtes of predcton error. We present these methods n seprte secton rther thn n our mn development ecuse, s dscussed elow, the dgnostcs cn e dffcult to nterpret when the smple sze s smll. 5. Stndrd errors The computed estmtes êlpd loo nd êlpd wc re ech defned s the sum of n ndependent components so t s trvl to compute ther stndrd errors y computng the stndrd devton of the n components nd multplyng y n.for exmple, defne êlpd loo, = log p(y y ), (22) so tht êlpd loo n (4)sthesumofthesen ndependent terms. Then se (êlpd loo ) = nv =êlpd n loo,, (23) nd smlrly for WAIC nd K -fold cross-vldton. The effectve numers of prmeters, p loo nd p wc, re lso sums of ndependent terms so we cn compute ther stndrd errors n the sme wy. These stndrd errors come from consderng the n dt ponts s smple from lrger populton or, equvlently, s ndependent relztons of n error model. One cn lso compute Monte Crlo stndrd errors rsng from the fnte numer of smulton drws usng the formul from Gelmn et l. (23) whch uses oth etween nd wthn-chn nformton nd s mplemented n Stn. In prctce we expect Monte Crlo stndrd errors to not e so nterestng ecuse we would hope to hve enough smultons tht the computtons re stle, ut t could mke sense to look t them just

15 Stt Comput (27) 27: to check tht they re low enough to e neglgle compred to smplng error (whch scles lke /n rther thn /S). The stndrd error (23) nd the correspondng formul for se (êlpd wc ) hve two dffcultes when the smple sze s low. Frst, the n terms re not strctly ndependent ecuse they re ll computed from the sme set of posteror smultons θ s. Ths s generc ssue when evlutng the stndrd error of ny cross-vldted estmte. Second, the terms n ny of these expressons cn come from hghly skewed dstrutons, so the second moment mght not gve good summry of uncertnty. Both of these prolems should susde s n ecomes lrge. For smll n, one could nsted compute nonprmetrc error estmtes usng Byesn ootstrp on the computed log-lkelhood vlues correspondng to the n dt ponts (Vehtr nd Lmpnen 22). 5.2 Model comprson When comprng two ftted models, we cn estmte the dfference n ther expected predctve ccurcy y the dfference n êlpd loo or êlpd wc (multpled y 2, f desred, to e on the devnce scle). To compute the stndrd error of ths dfference we cn use pred estmte to tke dvntge of the fct tht the sme set of n dt ponts s eng used to ft oth models. For exmple, suppose we re comprng models A nd B, wth correspondng ft mesures êlpd A loo = n = êlpd A loo, nd êlpd B loo = n = êlpd B loo,. The stndrd error of ther dfference s smply, se (êlpd A loo êlpdb loo ) = nv n = (êlpd A loo, êlpdb loo, ), (24) nd smlrly for WAIC nd K -fold cross-vldton. Alterntvely the non-prmetrc Byesn ootstrp pproch cn e used (Vehtr nd Lmpnen 22). As efore, these clcultons should e most useful when n s lrge, ecuse then non-normlty of the dstruton s not such n ssue when estmtng the uncertnty of these sums. In ny cse, we suspect tht these stndrd error formuls, for ll ther flws, should gve etter sense of uncertnty thn wht s otned usng the current stndrd pproch for comprng dfferences of devnces to χ 2 dstruton, prctce tht s derved for Gussn lner models or symptotclly nd, n ny cse, only pples to nested models. Further reserch needs to e done to evlute the performnce n model comprson of (24) nd the correspondng stndrd error formul for LOO. Cross-vldton nd WAIC should not e used to select sngle model mong lrge numer of models due to selecton nduced s s demonstrted, for exmple, y Pronen nd Vehtr (26). We demonstrte the prctcl use of LOO n model comprson usng the rdon exmple from Sect Model A s the multlevel lner model dscussed n Sect. 4.6 nd Model B s the sme model ut wthout the county-level urnum predctor. Tht s, t the county-level Model B hs ( ) α j N β j (( μα μ β ), ( σ 2 α ρσ α σ β ρσ α σ β σ 2 β )), j =,...,85. Comprng the models on PSIS-LOO revels n estmted dfference n elpd of.2 (wth stndrd error of 5.) n fvor of Model A. 5.3 Model comprson usng pontwse predcton errors We cn lso compre models n ther leve-one-out errors, pont y pont. We llustrte wth n nlyss of survey of resdents from smll re n Bngldesh tht ws ffected y rsenc n drnkng wter. Respondents wth elevted rsenc levels n ther wells were sked f they were nterested n gettng wter from neghor s well, nd seres of models were ft to predct ths nry response gven vrous nformton out the households (Gelmn nd Hll 27). Here we strt wth logstc regresson for the wellswtchng response gven two predctors: the rsenc level of the wter n the resdent s home, nd the dstnce of the house from the nerest sfe well. We compre ths to n lterntve logstc regresson wth the rsenc predctor on the logrthmc scle. The two models hve the sme numer of prmeters ut gve dfferent predctons. Fgure 2 shows the pontwse results for the rsenc exmple. The scttered lue dots on the left sde of Fg. 2 nd on the lower rght of Fg. 2 correspond to dt ponts whch Model A fts prtculrly poorly tht s, lrge negtve contrutons to the expected log predctve densty. We cn lso sum these n terms to yeld n estmted dfference n elpd loo of 6.4 wth stndrd error of 4.4. Ths stndrd error derves from the fnte smple sze nd s scled y the vrton n the dfferences dsplyed n Fg. 2; t s not Monte Crlo error nd does not declne to s the numer of Stn smulton drws ncreses. 6 Dscusson Ths pper hs focused on the prctcltes of mplementng LOO, WAIC, nd K -fold cross-vldton wthn Byesn smulton envronment, n prtculr the codng of the loglkelhood n the model, the computtons of the nformton

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk Chpter 5 Supplementl Text Mterl 5-. Expected Men Squres n the Two-fctor Fctorl Consder the two-fctor fxed effects model y = µ + τ + β + ( τβ) + ε k R S T =,,, =,,, k =,,, n gven s Equton (5-) n the textook.

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

Quiz: Experimental Physics Lab-I

Quiz: Experimental Physics Lab-I Mxmum Mrks: 18 Totl tme llowed: 35 mn Quz: Expermentl Physcs Lb-I Nme: Roll no: Attempt ll questons. 1. In n experment, bll of mss 100 g s dropped from heght of 65 cm nto the snd contner, the mpct s clled

More information

CIS587 - Artificial Intelligence. Uncertainty CIS587 - AI. KB for medical diagnosis. Example.

CIS587 - Artificial Intelligence. Uncertainty CIS587 - AI. KB for medical diagnosis. Example. CIS587 - rtfcl Intellgence Uncertnty K for medcl dgnoss. Exmple. We wnt to uld K system for the dgnoss of pneumon. rolem descrpton: Dsese: pneumon tent symptoms fndngs, l tests: Fever, Cough, leness, WC

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

Statistics 423 Midterm Examination Winter 2009

Statistics 423 Midterm Examination Winter 2009 Sttstcs 43 Mdterm Exmnton Wnter 009 Nme: e-ml: 1. Plese prnt your nme nd e-ml ddress n the bove spces.. Do not turn ths pge untl nstructed to do so. 3. Ths s closed book exmnton. You my hve your hnd clcultor

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus:

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus: More on χ nd errors : uppose tht we re fttng for sngle -prmeter, mnmzng: If we epnd The vlue χ ( ( ( ; ( wth respect to. χ n Tlor seres n the vcnt of ts mnmum vlue χ ( mn χ χ χ χ + + + mn mnmzes χ, nd

More information

CALIBRATION OF SMALL AREA ESTIMATES IN BUSINESS SURVEYS

CALIBRATION OF SMALL AREA ESTIMATES IN BUSINESS SURVEYS CALIBRATION OF SMALL AREA ESTIMATES IN BUSINESS SURVES Rodolphe Prm, Ntle Shlomo Southmpton Sttstcl Scences Reserch Insttute Unverst of Southmpton Unted Kngdom SAE, August 20 The BLUE-ETS Project s fnnced

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

CHAPTER - 7. Firefly Algorithm based Strategic Bidding to Maximize Profit of IPPs in Competitive Electricity Market

CHAPTER - 7. Firefly Algorithm based Strategic Bidding to Maximize Profit of IPPs in Competitive Electricity Market CHAPTER - 7 Frefly Algorthm sed Strtegc Bddng to Mxmze Proft of IPPs n Compettve Electrcty Mrket 7. Introducton The renovton of electrc power systems plys mjor role on economc nd relle operton of power

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potentl nd the Grnd Prtton Functon ome Mth Fcts (see ppendx E for detls) If F() s n nlytc functon of stte vrles nd such tht df d pd then t follows: F F p lso snce F p F we cn conclude: p In other

More information

Definition of Tracking

Definition of Tracking Trckng Defnton of Trckng Trckng: Generte some conclusons bout the moton of the scene, objects, or the cmer, gven sequence of mges. Knowng ths moton, predct where thngs re gong to project n the net mge,

More information

Pyramid Algorithms for Barycentric Rational Interpolation

Pyramid Algorithms for Barycentric Rational Interpolation Pyrmd Algorthms for Brycentrc Rtonl Interpolton K Hormnn Scott Schefer Astrct We present new perspectve on the Floter Hormnn nterpolnt. Ths nterpolnt s rtonl of degree (n, d), reproduces polynomls of degree

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

3/6/00. Reading Assignments. Outline. Hidden Markov Models: Explanation and Model Learning

3/6/00. Reading Assignments. Outline. Hidden Markov Models: Explanation and Model Learning 3/6/ Hdden Mrkov Models: Explnton nd Model Lernng Brn C. Wllms 6.4/6.43 Sesson 2 9/3/ courtesy of JPL copyrght Brn Wllms, 2 Brn C. Wllms, copyrght 2 Redng Assgnments AIMA (Russell nd Norvg) Ch 5.-.3, 2.3

More information

Zbus 1.0 Introduction The Zbus is the inverse of the Ybus, i.e., (1) Since we know that

Zbus 1.0 Introduction The Zbus is the inverse of the Ybus, i.e., (1) Since we know that us. Introducton he us s the nverse of the us,.e., () Snce we now tht nd therefore then I V () V I () V I (4) So us reltes the nodl current njectons to the nodl voltges, s seen n (4). In developng the power

More information

Many-Body Calculations of the Isotope Shift

Many-Body Calculations of the Isotope Shift Mny-Body Clcultons of the Isotope Shft W. R. Johnson Mrch 11, 1 1 Introducton Atomc energy levels re commonly evluted ssumng tht the nucler mss s nfnte. In ths report, we consder correctons to tomc levels

More information

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members Onlne Appendx to Mndtng Behvorl Conformty n Socl Groups wth Conformst Members Peter Grzl Andrze Bnk (Correspondng uthor) Deprtment of Economcs, The Wllms School, Wshngton nd Lee Unversty, Lexngton, 4450

More information

Section 6: Area, Volume, and Average Value

Section 6: Area, Volume, and Average Value Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9 CS434/541: Pttern Recognton Prof. Olg Veksler Lecture 9 Announcements Fnl project proposl due Nov. 1 1-2 prgrph descrpton Lte Penlt: s 1 pont off for ech d lte Assgnment 3 due November 10 Dt for fnl project

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Exploiting Structure in Probability Distributions Irit Gat-Viks

Exploiting Structure in Probability Distributions Irit Gat-Viks Explotng Structure n rolty Dstrutons Irt Gt-Vks Bsed on presentton nd lecture notes of Nr Fredmn, Herew Unversty Generl References: D. Koller nd N. Fredmn, prolstc grphcl models erl, rolstc Resonng n Intellgent

More information

523 P a g e. is measured through p. should be slower for lesser values of p and faster for greater values of p. If we set p*

523 P a g e. is measured through p. should be slower for lesser values of p and faster for greater values of p. If we set p* R. Smpth Kumr, R. Kruthk, R. Rdhkrshnn / Interntonl Journl of Engneerng Reserch nd Applctons (IJERA) ISSN: 48-96 www.jer.com Vol., Issue 4, July-August 0, pp.5-58 Constructon Of Mxed Smplng Plns Indexed

More information

PLEASE SCROLL DOWN FOR ARTICLE

PLEASE SCROLL DOWN FOR ARTICLE Ths rtcle ws downloded by:ntonl Cheng Kung Unversty] On: 1 September 7 Access Detls: subscrpton number 7765748] Publsher: Tylor & Frncs Inform Ltd Regstered n Englnd nd Wles Regstered Number: 17954 Regstered

More information

ICS 252 Introduction to Computer Design

ICS 252 Introduction to Computer Design ICS 252 Introducton to Computer Desgn Prttonng El Bozorgzdeh Computer Scence Deprtment-UCI Prttonng Decomposton of complex system nto smller susystems Done herrchclly Prttonng done untl ech susystem hs

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

SVMs for regression Non-parametric/instance based classification method

SVMs for regression Non-parametric/instance based classification method S 75 Mchne ernng ecture Mos Huskrecht mos@cs.ptt.edu 539 Sennott Squre SVMs for regresson Non-prmetrc/nstnce sed cssfcton method S 75 Mchne ernng Soft-mrgn SVM Aos some fet on crossng the seprtng hperpne

More information

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data Deprtment of Mechncl Engneerng, Unversty of Bth Mthemtcs ME10305 Prolem sheet 11 Lest Squres Fttng of dt NOTE: If you re gettng just lttle t concerned y the length of these questons, then do hve look t

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

Statistics and Probability Letters

Statistics and Probability Letters Sttstcs nd Probblty Letters 79 (2009) 105 111 Contents lsts vlble t ScenceDrect Sttstcs nd Probblty Letters journl homepge: www.elsever.com/locte/stpro Lmtng behvour of movng verge processes under ϕ-mxng

More information

Genetic Programming. Outline. Evolutionary Strategies. Evolutionary strategies Genetic programming Summary

Genetic Programming. Outline. Evolutionary Strategies. Evolutionary strategies Genetic programming Summary Outline Genetic Progrmming Evolutionry strtegies Genetic progrmming Summry Bsed on the mteril provided y Professor Michel Negnevitsky Evolutionry Strtegies An pproch simulting nturl evolution ws proposed

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Updte Rules for Weghted Non-negtve FH*G Fctorzton Peter Peers Phlp Dutré Report CW 440, Aprl 006 Ktholeke Unverstet Leuven Deprtment of Computer Scence Celestjnenln 00A B-3001 Heverlee (Belgum) Updte Rules

More information

Systematic Construction of examples for cycling in the simplex method

Systematic Construction of examples for cycling in the simplex method Systemtc Constructon of emples for cyclng n the smple method Prof. r. Peter Zörng Prof. Assocdo Unversdde de Brsíl UnB eprtmento de Esttístc e-ml: peter@un.r ) Lner progrmmng prolem cnoncl form: stndrd

More information

Model Fitting and Robust Regression Methods

Model Fitting and Robust Regression Methods Dertment o Comuter Engneerng Unverst o Clorn t Snt Cruz Model Fttng nd Robust Regresson Methods CMPE 64: Imge Anlss nd Comuter Vson H o Fttng lnes nd ellses to mge dt Dertment o Comuter Engneerng Unverst

More information

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus ESI 34 tmospherc Dnmcs I Lesson 1 Vectors nd Vector lculus Reference: Schum s Outlne Seres: Mthemtcl Hndbook of Formuls nd Tbles Suggested Redng: Mrtn Secton 1 OORDINTE SYSTEMS n orthonorml coordnte sstem

More information

Frequency scaling simulation of Chua s circuit by automatic determination and control of step-size

Frequency scaling simulation of Chua s circuit by automatic determination and control of step-size Avlle onlne t www.scencedrect.com Appled Mthemtcs nd Computton 94 (7) 486 49 www.elsever.com/locte/mc Frequency sclng smulton of Chu s crcut y utomtc determnton nd control of step-sze E. Tlelo-Cuutle *,

More information

Bi-level models for OD matrix estimation

Bi-level models for OD matrix estimation TNK084 Trffc Theory seres Vol.4, number. My 2008 B-level models for OD mtrx estmton Hn Zhng, Quyng Meng Abstrct- Ths pper ntroduces two types of O/D mtrx estmton model: ME2 nd Grdent. ME2 s mxmum-entropy

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

Support vector machines for regression

Support vector machines for regression S 75 Mchne ernng ecture 5 Support vector mchnes for regresson Mos Huskrecht mos@cs.ptt.edu 539 Sennott Squre S 75 Mchne ernng he decson oundr: ˆ he decson: Support vector mchnes ˆ α SV ˆ sgn αˆ SV!!: Decson

More information

The Study of Lawson Criterion in Fusion Systems for the

The Study of Lawson Criterion in Fusion Systems for the Interntonl Archve of Appled Scences nd Technology Int. Arch. App. Sc. Technol; Vol 6 [] Mrch : -6 Socety of ducton, Ind [ISO9: 8 ertfed Orgnzton] www.soeg.co/st.html OD: IAASA IAAST OLI ISS - 6 PRIT ISS

More information

18.7 Artificial Neural Networks

18.7 Artificial Neural Networks 310 18.7 Artfcl Neurl Networks Neuroscence hs hypotheszed tht mentl ctvty conssts prmrly of electrochemcl ctvty n networks of brn cells clled neurons Ths led McCulloch nd Ptts to devse ther mthemtcl model

More information

We consider a finite-state, finite-action, infinite-horizon, discounted reward Markov decision process and

We consider a finite-state, finite-action, infinite-horizon, discounted reward Markov decision process and MANAGEMENT SCIENCE Vol. 53, No. 2, Februry 2007, pp. 308 322 ssn 0025-1909 essn 1526-5501 07 5302 0308 nforms do 10.1287/mnsc.1060.0614 2007 INFORMS Bs nd Vrnce Approxmton n Vlue Functon Estmtes She Mnnor

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Nme: SID: Dscusson Sesson: hemcl Engneerng hermodynmcs -- Fll 008 uesdy, Octoer, 008 Merm I - 70 mnutes 00 onts otl losed Book nd Notes (5 ponts). onsder n del gs wth constnt het cpctes. Indcte whether

More information

COMPLEX NUMBERS INDEX

COMPLEX NUMBERS INDEX COMPLEX NUMBERS INDEX. The hstory of the complex numers;. The mgnry unt I ;. The Algerc form;. The Guss plne; 5. The trgonometrc form;. The exponentl form; 7. The pplctons of the complex numers. School

More information

A Regression-Based Approach for Scaling-Up Personalized Recommender Systems in E-Commerce

A Regression-Based Approach for Scaling-Up Personalized Recommender Systems in E-Commerce A Regresson-Bsed Approch for Sclng-Up Personlzed Recommender Systems n E-Commerce Slobodn Vucetc 1 nd Zorn Obrdovc 1, svucetc@eecs.wsu.edu, zorn@cs.temple.edu 1 Electrcl Engneerng nd Computer Scence, Wshngton

More information

Substitution Matrices and Alignment Statistics. Substitution Matrices

Substitution Matrices and Alignment Statistics. Substitution Matrices Susttuton Mtrces nd Algnment Sttstcs BMI/CS 776 www.ostt.wsc.edu/~crven/776.html Mrk Crven crven@ostt.wsc.edu Ferur 2002 Susttuton Mtrces two oulr sets of mtrces for roten seuences PAM mtrces [Dhoff et

More information

In this Chapter. Chap. 3 Markov chains and hidden Markov models. Probabilistic Models. Example: CpG Islands

In this Chapter. Chap. 3 Markov chains and hidden Markov models. Probabilistic Models. Example: CpG Islands In ths Chpter Chp. 3 Mrov chns nd hdden Mrov models Bontellgence bortory School of Computer Sc. & Eng. Seoul Ntonl Unversty Seoul 5-74, Kore The probblstc model for sequence nlyss HMM (hdden Mrov model)

More information

Electrochemical Thermodynamics. Interfaces and Energy Conversion

Electrochemical Thermodynamics. Interfaces and Energy Conversion CHE465/865, 2006-3, Lecture 6, 18 th Sep., 2006 Electrochemcl Thermodynmcs Interfces nd Energy Converson Where does the energy contrbuton F zϕ dn come from? Frst lw of thermodynmcs (conservton of energy):

More information

1B40 Practical Skills

1B40 Practical Skills B40 Prcticl Skills Comining uncertinties from severl quntities error propgtion We usully encounter situtions where the result of n experiment is given in terms of two (or more) quntities. We then need

More information

Sequences of Intuitionistic Fuzzy Soft G-Modules

Sequences of Intuitionistic Fuzzy Soft G-Modules Interntonl Mthemtcl Forum, Vol 13, 2018, no 12, 537-546 HIKARI Ltd, wwwm-hkrcom https://doorg/1012988/mf201881058 Sequences of Intutonstc Fuzzy Soft G-Modules Velyev Kemle nd Huseynov Afq Bku Stte Unversty,

More information

Haddow s Experiment:

Haddow s Experiment: schemtc drwng of Hddow's expermentl set-up movng pston non-contctng moton sensor bems of sprng steel poston vres to djust frequences blocks of sold steel shker Hddow s Experment: terr frm Theoretcl nd

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

2.12 Pull Back, Push Forward and Lie Time Derivatives

2.12 Pull Back, Push Forward and Lie Time Derivatives Secton 2.2 2.2 Pull Bck Push Forwrd nd e me Dertes hs secton s n the mn concerned wth the follown ssue: n oserer ttched to fxed sy Crtesn coordnte system wll see mterl moe nd deform oer tme nd wll osere

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

x yi In chapter 14, we want to perform inference (i.e. calculate confidence intervals and perform tests of significance) in this setting.

x yi In chapter 14, we want to perform inference (i.e. calculate confidence intervals and perform tests of significance) in this setting. The Practce of Statstcs, nd ed. Chapter 14 Inference for Regresson Introducton In chapter 3 we used a least-squares regresson lne (LSRL) to represent a lnear relatonshp etween two quanttatve explanator

More information

Course Review Introduction to Computer Methods

Course Review Introduction to Computer Methods Course Revew Wht you hopefully hve lerned:. How to nvgte nsde MIT computer system: Athen, UNIX, emcs etc. (GCR). Generl des bout progrmmng (GCR): formultng the problem, codng n Englsh trnslton nto computer

More information

Machine Learning Support Vector Machines SVM

Machine Learning Support Vector Machines SVM Mchne Lernng Support Vector Mchnes SVM Lesson 6 Dt Clssfcton problem rnng set:, D,,, : nput dt smple {,, K}: clss or lbel of nput rget: Construct functon f : X Y f, D Predcton of clss for n unknon nput

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s geometrcl concept rsng from prllel forces. Tus, onl prllel forces possess centrod. Centrod s tougt of s te pont were te wole wegt of pscl od or sstem of prtcles s lumped.

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede Fll Anlss of Epermentl Mesurements B. Esensten/rev. S. Errede Monte Crlo Methods/Technques: These re mong the most powerful tools for dt nlss nd smulton of eperments. The growth of ther mportnce s closel

More information

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus 7.1 Integrl s Net Chnge nd 7. Ares in the Plne Clculus 7.1 INTEGRAL AS NET CHANGE Notecrds from 7.1: Displcement vs Totl Distnce, Integrl s Net Chnge We hve lredy seen how the position of n oject cn e

More information

CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM

CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM PRANESH KUMAR AND INDER JEET TANEJA Abstrct The mnmum dcrmnton nformton prncple for the Kullbck-Lebler cross-entropy well known n the lterture In th pper

More information

Parse trees, ambiguity, and Chomsky normal form

Parse trees, ambiguity, and Chomsky normal form Prse trees, miguity, nd Chomsky norml form In this lecture we will discuss few importnt notions connected with contextfree grmmrs, including prse trees, miguity, nd specil form for context-free grmmrs

More information

Multiple view geometry

Multiple view geometry EECS 442 Computer vson Multple vew geometry Perspectve Structure from Moton - Perspectve structure from moton prolem - mgutes - lgerc methods - Fctorzton methods - Bundle djustment - Self-clrton Redng:

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

Monte Carlo method in solving numerical integration and differential equation

Monte Carlo method in solving numerical integration and differential equation Monte Crlo method in solving numericl integrtion nd differentil eqution Ye Jin Chemistry Deprtment Duke University yj66@duke.edu Abstrct: Monte Crlo method is commonly used in rel physics problem. The

More information

Least squares. Václav Hlaváč. Czech Technical University in Prague

Least squares. Václav Hlaváč. Czech Technical University in Prague Lest squres Václv Hlváč Czech echncl Unversty n Prgue hlvc@fel.cvut.cz http://cmp.felk.cvut.cz/~hlvc Courtesy: Fred Pghn nd J.P. Lews, SIGGRAPH 2007 Course; Outlne 2 Lner regresson Geometry of lest-squres

More information

Stratified Extreme Ranked Set Sample With Application To Ratio Estimators

Stratified Extreme Ranked Set Sample With Application To Ratio Estimators Journl of Modern Appled Sttstcl Metods Volume 3 Issue Artcle 5--004 Strtfed Extreme Rned Set Smple Wt Applcton To Rto Estmtors Hn M. Smw Sultn Qboos Unversty, smw@squ.edu.om t J. Sed Sultn Qboos Unversty

More information

Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom

Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom Lerning Gols Continuous Rndom Vriles Clss 5, 8.05 Jeremy Orloff nd Jonthn Bloom. Know the definition of continuous rndom vrile. 2. Know the definition of the proility density function (pdf) nd cumultive

More information

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245. Trgonometry Trgonometry Solutons Currulum Redy CMMG:, 4, 4 www.mthlets.om Trgonometry Solutons Bss Pge questons. Identfy f the followng trngles re rght ngled or not. Trngles,, d, e re rght ngled ndted

More information

Lecture 5 Single factor design and analysis

Lecture 5 Single factor design and analysis Lectue 5 Sngle fcto desgn nd nlss Completel ndomzed desgn (CRD Completel ndomzed desgn In the desgn of expements, completel ndomzed desgns e fo studng the effects of one pm fcto wthout the need to tke

More information

Advanced Machine Learning. An Ising model on 2-D image

Advanced Machine Learning. An Ising model on 2-D image Advnced Mchne Lernng Vrtonl Inference Erc ng Lecture 12, August 12, 2009 Redng: Erc ng Erc ng @ CMU, 2006-2009 1 An Isng model on 2-D mge odes encode hdden nformton ptchdentty. They receve locl nformton

More information

8Similarity UNCORRECTED PAGE PROOFS. 8.1 Kick off with CAS 8.2 Similar objects 8.3 Linear scale factors. 8.4 Area and volume scale factors 8.

8Similarity UNCORRECTED PAGE PROOFS. 8.1 Kick off with CAS 8.2 Similar objects 8.3 Linear scale factors. 8.4 Area and volume scale factors 8. 8.1 Kick off with S 8. Similr ojects 8. Liner scle fctors 8Similrity 8. re nd volume scle fctors 8. Review U N O R R E TE D P G E PR O O FS 8.1 Kick off with S Plese refer to the Resources t in the Prelims

More information

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER Yn, S.-P.: Locl Frctonl Lplce Seres Expnson Method for Dffuson THERMAL SCIENCE, Yer 25, Vol. 9, Suppl., pp. S3-S35 S3 LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 17

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 17 EECS 70 Discrete Mthemtics nd Proility Theory Spring 2013 Annt Shi Lecture 17 I.I.D. Rndom Vriles Estimting the is of coin Question: We wnt to estimte the proportion p of Democrts in the US popultion,

More information

Computing a complete histogram of an image in Log(n) steps and minimum expected memory requirements using hypercubes

Computing a complete histogram of an image in Log(n) steps and minimum expected memory requirements using hypercubes Computng complete hstogrm of n mge n Log(n) steps nd mnmum expected memory requrements usng hypercubes TAREK M. SOBH School of Engneerng, Unversty of Brdgeport, Connectcut, USA. Abstrct Ths work frst revews

More information

Physics for Scientists and Engineers I

Physics for Scientists and Engineers I Phscs for Scentsts nd Engneers I PHY 48, Secton 4 Dr. Betr Roldán Cuen Unverst of Centrl Flord, Phscs Deprtment, Orlndo, FL Chpter - Introducton I. Generl II. Interntonl Sstem of Unts III. Converson of

More information

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4 Intermedite Mth Circles Wednesdy, Novemer 14, 2018 Finite Automt II Nickols Rollick nrollick@uwterloo.c Regulr Lnguges Lst time, we were introduced to the ide of DFA (deterministic finite utomton), one

More information

Linear and Nonlinear Optimization

Linear and Nonlinear Optimization Lner nd Nonlner Optmzton Ynyu Ye Deprtment of Mngement Scence nd Engneerng Stnford Unversty Stnford, CA 9430, U.S.A. http://www.stnford.edu/~yyye http://www.stnford.edu/clss/msnde/ Ynyu Ye, Stnford, MS&E

More information