M, N ::= x λp : A.M MN (M, N) () c A. x : b p x : b

Size: px
Start display at page:

Download "M, N ::= x λp : A.M MN (M, N) () c A. x : b p x : b"

Transcription

1 A PATTERN-MATCHING CALCULUS FOR -AUTONOMOUS CATEGORIES ABSTRACT. This article sums up the details of a linear λ-calculus that can be used as an internal language of -autonomous categories. The coherent isomorphisms associated with the autonomous (= symmetric monoidal) structure are represented by pattern matching, and the inverse to the evident natural transformation η A : A ((A ) ) is represented by a type-indexed family of constant C A : ((A ) ) A. The calculus presented in this article is no great novelty. It is essentially DILL [1] minus additives, plus extended pattern-matching and a type-indexed family of constants C A : ((A ) ) A. It can also be seen as Hasegawa s DCLL [2] minus the additive functions space, plus pattern matching and the multiplicative conjunction. The main purpose of our calculus is the rapid verification of equalities in autonomous and -autonomous categories. To this end, we emphasize pattern matching, which in is very useful in practice, more strongly than in [1] or [2]. (A note to the impatient: the translation of categorical expressions into our calculus is presented in Table 5.) Autonomous category is another word for symmetric monoidal category. -autonomous category is an autonomous category together with an object, such that the evident natural transformation η A : A (A ) has an inverse. We shall present a calculus for autonomous categories, the autonomous calculus, and discuss the equational laws for the family of constants C A : ((A ) ) A which represents the inverse of the natural transformation η : A ((A ) ). The syntax of the autonomous calculus is as follows: Types A, B ::= A B A B b Patterns P, Q ::= x (P, Q) () Terms M, N ::= x λp : A.M MN (M, N) () c A where b ranges over base types and c A over constants of type A. The typing rules for patterns are x : b p x : b x : A B p x : A B Γ p P : A p Q : B if dom(γ) dom( ) = Γ, p (P, Q) : A B p () : (The capital greeks letters Γ, range over non-repetitive sequences x 1 : A 1, x 2 : A 1,..., x n : A n of typed variables, and dom(γ) is the set of variables that occur in Γ.) Note that in a pattern we allow only variables whose type is not of the form or A B. Also, note that for every type A, there a unique pattern P A for which some judgement Γ p P A : A is derivable up to renaming the variables in dom(γ). The typing rules for terms are presented in Table 1. The notation Γ stands for any merging of 1

2 2 A PATTERN-MATCHING CALCULUS FOR -AUTONOMOUS CATEGORIES x : A x : A Γ, M : B p P : A Γ λp : A.M : A B Γ M : A B N : A if dom(γ) dom( ) = Γ MN : B Γ M : A N : B if dom(γ) dom( ) = Γ (M, N) : A B () : TABLE 1. Typing judgments of the autonomous calculus Γ and. For example, we allow Thus, the permutation rule x 1 : A 1, x 2 : A 2 M : A y 1 : B 2, y 2 : B 2 N : B y 1 : B 1, x 1 : A 1, y 2 : B 2, x 2 : A 2 (M, N) : A B Γ M : A if Γ is a permutation of Γ Γ M : A is derivable by induction over typing judgements. The autonomous calculus is linear in the sense that, in a derivable judgement Γ M : A, every variable in Γ has exactly one free occurrence in M. So every judgement Γ M : A has a unique derivation, because in the binary typing rules (application and pairing) it is determined for each free variable whether it comes from the left premise, or from the right. We use let P : A be M in N as syntactic sugar for (λp : A.N)M. The equations of the autonomous calculus are presented in Table 2. A signature Σ consists of a collection of base types b and a collection of constants c A. Definition 1. An autonomous theory over a signature Σ is a set of judgments Γ M N : A, where Γ M : A and Γ N : A are derivable typing judgements over Σ, such that is a congruence that contains all equations described in Table 2. Proposition 0.1. The equations in Table 2 are interderivable with the equations in Table 3. Proposition 0.2. In every autonomous theory, the β-rule let x be M in N N[M/x] holds. Proof. By induction over the derivation of N.

3 A PATTERN-MATCHING CALCULUS FOR -AUTONOMOUS CATEGORIES 3 ASSOC let Q be (let P be L in M) in N let P be L in let Q be M in N if FV(P ) FV(N) = ID let P be M in P M PAT let (P 1, P 2 ) be (M 1, M 2 ) in N let P 1 be M 1 in let P 2 be M 2 in N if FV(P 1 ) FV(M 2 ) = PAT let (P 1, P 2 ) be (M 1, M 2 ) in N let P 2 be M 2 in let P 1 be M 1 in N if FV(P 2 ) FV(M 1 ) = PAT let () be () in N N η λp.mp M if FV(P ) FV(M) = LET λ let Q be M in λp.n λp.let Q be M in N if FV(P ) FV(M) = TABLE 2. Equations of the autonomous calculus ID let P be M in P M PAT let (P 1, P 2 ) be (M 1, M 2 ) in N let P 1 be M 1 in let P 2 be M 2 in N if FV(P 1 ) FV(M 2 ) = PAT let () be () in N N η λp.mp M if FV(P ) FV(M) = LET λ let Q be M in λp.n λp.let Q be M in N if FV(P ) FV(M) = LET app let P be L in MN M(let P be L in N) if FV(P ) FV(M) = LET app let P be L in MN (let P be L in M)N if FV(P ) FV(N) = LET pair let P be L in (M, N) (M, let P be L in N) if FV(P ) FV(M) = LET pair let P be L in (M, N) (let P be L in M, N) if FV(P ) FV(N) = TABLE 3. Alternative equations for the autonomous calculus Now for the semantics of the autonomous calculus. Definition 2. An interpretation of typing judgments over a signature Σ in an autonomous category C sends each type A of T homomorphically to an object A of C, each environment Γ = x 1 : A 1,..., x n : A n to the object A 1 A n (where associates to the left, say, and the empty product is ), and each judgement Γ M : A to a morphism Γ M : A : Γ A according to the rules in Table 4. (Thus, an interpretation is uniquely determined by its effect on base types and constants.) A model of an autonomous theory T is an interpretation such that, for every equation Γ M N : A in T, it holds that Γ M : A = Γ N : A.

4 4 A PATTERN-MATCHING CALCULUS FOR -AUTONOMOUS CATEGORIES x : A x : A = id A Γ, M : B = f : Γ, ( B Γ λp : A.M : A B = λ Γ A = Γ, ) f B Γ M : A B = f : Γ A B N : A = g : A Γ MN : B = Γ, = Γ f g ( A B ) A apply B Γ M : A = f : Γ A N : B = g : B Γ (M, N) : A B = Γ, = Γ f g A B () : = id TABLE 4. Semantics of the autonomous calculus Proposition 0.3 (Soundness). For every interpretation of typing judgements over a signature Σ, the well-typed equations Γ M N : A such that Γ M : A = Γ N : A form an autonomous theory. Theorem 0.4 (Completeness). Suppose that Γ M : A and Γ N : A are typing judgments of a theory T. If the equation Γ M N : A holds in every model of T, then it is in T. Proof. We present a term model of T. A categorical language is given by the grammar Types A, B ::= A B A B b Terms f, g ::= id A g f g f α A,B,C λ A ρ A σ A,B λf apply A,B h A B (with the evident typing rules) where b ranges over base types and h ranges over generators of type A B. A reverse interpretation sends every type A of the categorical language to a type A of the autonomous calculus, homomorphically (i.e., it does nothing but exchange base types) every term f : A B of the categorical language to a term f : A B of the autonomous calculus, according to Table 5. It is easy to check that, for every reverse interpretation, the categorical language, modulo the induced equality f g f g, forms an autonomous category. To prove completeness, we start with the categorical language whose base types are those of T, and whose generators are of the form h c : A for every constant c : A of T. Let be the reverse interpretation that sends each base type to itself, and each generator h c : A to

5 A PATTERN-MATCHING CALCULUS FOR -AUTONOMOUS CATEGORIES 5 id A : A A = λp : A.P g f : A C = λp : A. g ( f P ) f 1 f 2 : A 1 A 2 B 1 B 2 = λ(p 1, P 2 ) : A 1 A 2.( f 1 P 1, f 2 P 2 ) α : A (B C) (A B) C = λ(p, (Q, R)) : A ( B C ).((P, Q), R) λ : A A = λ((), P ) : A.P ρ : A A = λ(p, ()) : A.P σ : A B B A = λ(p, Q) : A B.(Q, P ) λf : A (B C) = λp : A.λQ : B. f (P, Q) applya,b : (A B) A B = λ(f, P ) : ( A B ) A.fP TABLE 5. Reverse interpretation (used e.g. in the term-model construction) λ() :.c. Then it is not hard to show that the induced autonomous category forms an initial model of T. Now we make the step from autonomous categories to -autonomous categories. A -autonomous category is an autonomous category together with an object such that, for every object A, the evident map η A : A ((A ) ) has an inverse. In the autonomous calculus, η A is λp : A.λk : A.kP. We represent its inverse by a constant C A : ((A ) ) A. Thus, the categorical equations C A η A = id A η A C A = id (A ) (after simplification) correspond to λp : A.C A (λk : A.kP ) λp : A.P λh : (A ).λk : A.k(C A h) λh : (A ).h in the autonomous calculus. The first equation is interderivable with C A (λk : A.kM) M C-APP where M ranges over terms of type A (with no free occurrence of k), and the second equation is interderivable with K(C A M) MK C-ETA where M ranges over terms of type (A ) and K ranges over terms of type A. (Of course, we must have FV(M) FV(K) =.) Thus we obtain: Theorem 0.5. The autonomous calculus together with a type and a type-indexed family of constants C A : ((A ) ) A satisfying the rules C-APP and C-ETA is sound and complete for - autonomous categories.

6 6 A PATTERN-MATCHING CALCULUS FOR -AUTONOMOUS CATEGORIES The use of the law C-ETA is unpleasantly restricted because K must have type A rather than A B for arbitrary B. This restriction is lifted by the following law: N(C A M) C B (λk : B.M(k N)) To see that this law holds, consider N(C A M) C B (λk.b.k(n(cm))) = C B (λk.b.(k N)(CM)) C B (λk.b.m(k N)) C-NAT C-APP C-ETA (The law C-NAT is called so because it essentially encodes the fact that the type-indexed family C A represents a natural transformation.) REFERENCES [1] A. Barber. Dual intuitionistic linear logic. Technical Report ECS-LFCS , University of Edinburgh, [2] Masahito Hasegawa. Classical linear logic of implications. In Proc. 11th Annual Conference of the European Association for Computer Science Logic (CSL 02), Edinburgh, volume 2471 of LNCS. Springer-Verlag, September 2002.

A Terminating and Confluent Linear Lambda Calculus

A Terminating and Confluent Linear Lambda Calculus A Terminating and Confluent Linear Lambda Calculus Yo Ohta and Masahito Hasegawa Research Institute for Mathematical Sciences, Kyoto University Kyoto 606-8502, Japan Abstract. We present a rewriting system

More information

Towards a Flowchart Diagrammatic Language for Monad-based Semantics

Towards a Flowchart Diagrammatic Language for Monad-based Semantics Towards a Flowchart Diagrammatic Language or Monad-based Semantics Julian Jakob Friedrich-Alexander-Universität Erlangen-Nürnberg julian.jakob@au.de 21.06.2016 Introductory Examples 1 2 + 3 3 9 36 4 while

More information

Parameterizations and Fixed-Point Operators on Control Categories

Parameterizations and Fixed-Point Operators on Control Categories Parameterizations and Fixed-Point Operators on Control Categories oshihiko Kakutani 1 and Masahito Hasegawa 12 1 Research Institute for Mathematical Sciences, Kyoto University {kakutani,hassei}@kurims.kyoto-u.ac.jp

More information

Calculi for Intuitionistic Normal Modal Logic

Calculi for Intuitionistic Normal Modal Logic Calculi for Intuitionistic Normal Modal Logic Yoshihiko Kakutani Department of Information Science, University of Tokyo kakutani@is.s.u-tokyo.ac.jp Abstract This paper provides a call-by-name and a call-by-value

More information

2 M. Hasegawa thus strengthens the claim that Girard translation is the canonical translation from intuitionistic logic to linear logic. This seems to

2 M. Hasegawa thus strengthens the claim that Girard translation is the canonical translation from intuitionistic logic to linear logic. This seems to Under consideration for publication in J. Functional Programming 1 Girard Translation and Logical Predicates Masahito Hasegawa Research Institute for Mathematical Sciences, Kyoto University Kyoto 606-8502

More information

Consequence Relations and Natural Deduction

Consequence Relations and Natural Deduction Consequence Relations and Natural Deduction Joshua D. Guttman Worcester Polytechnic Institute September 9, 2010 Contents 1 Consequence Relations 1 2 A Derivation System for Natural Deduction 3 3 Derivations

More information

Modèles des langages de programmation Domaines, catégories, jeux. Programme de cette seconde séance:

Modèles des langages de programmation Domaines, catégories, jeux. Programme de cette seconde séance: Modèles des langages de programmation Domaines, catégories, jeux Programme de cette seconde séance: Modèle ensembliste du lambda-calcul ; Catégories cartésiennes fermées 1 Synopsis 1 the simply-typed λ-calculus,

More information

Consequence Relations and Natural Deduction

Consequence Relations and Natural Deduction Consequence Relations and Natural Deduction Joshua D Guttman Worcester Polytechnic Institute September 16, 2010 Contents 1 Consequence Relations 1 2 A Derivation System for Natural Deduction 3 3 Derivations

More information

Boolean Algebra and Propositional Logic

Boolean Algebra and Propositional Logic Boolean Algebra and Propositional Logic Takahiro Kato June 23, 2015 This article provides yet another characterization of Boolean algebras and, using this characterization, establishes a more direct connection

More information

Logic for Computational Effects: work in progress

Logic for Computational Effects: work in progress 1 Logic for Computational Effects: work in progress Gordon Plotkin and John Power School of Informatics University of Edinburgh King s Buildings Mayfield Road Edinburgh EH9 3JZ Scotland gdp@inf.ed.ac.uk,

More information

Logical Preliminaries

Logical Preliminaries Logical Preliminaries Johannes C. Flieger Scheme UK March 2003 Abstract Survey of intuitionistic and classical propositional logic; introduction to the computational interpretation of intuitionistic logic

More information

Boolean Algebra and Propositional Logic

Boolean Algebra and Propositional Logic Boolean Algebra and Propositional Logic Takahiro Kato September 10, 2015 ABSTRACT. This article provides yet another characterization of Boolean algebras and, using this characterization, establishes a

More information

Predicate Logic. Xinyu Feng 09/26/2011. University of Science and Technology of China (USTC)

Predicate Logic. Xinyu Feng 09/26/2011. University of Science and Technology of China (USTC) University of Science and Technology of China (USTC) 09/26/2011 Overview Predicate logic over integer expressions: a language of logical assertions, for example x. x + 0 = x Why discuss predicate logic?

More information

A Graph Rewriting Semantics for the Polyadic π-calculus

A Graph Rewriting Semantics for the Polyadic π-calculus A Graph Rewriting Semantics for the Polyadic π-calculus BARBARA KÖNIG Fakultät für Informatik, Technische Universität München Abstract We give a hypergraph rewriting semantics for the polyadic π-calculus,

More information

Predicate Logic. Xinyu Feng 11/20/2013. University of Science and Technology of China (USTC)

Predicate Logic. Xinyu Feng 11/20/2013. University of Science and Technology of China (USTC) University of Science and Technology of China (USTC) 11/20/2013 Overview Predicate logic over integer expressions: a language of logical assertions, for example x. x + 0 = x Why discuss predicate logic?

More information

The Curry-Howard Isomorphism

The Curry-Howard Isomorphism The Curry-Howard Isomorphism Software Formal Verification Maria João Frade Departmento de Informática Universidade do Minho 2008/2009 Maria João Frade (DI-UM) The Curry-Howard Isomorphism MFES 2008/09

More information

The category of open simply-typed lambda terms

The category of open simply-typed lambda terms The category of open simply-typed lambda terms Daniel Murfet based on joint work with William Troiani o Reminder on category theory Every adjunction gives rise to a monad C F / G D C(Fx,y) = D(x, Gy) C(FGx,x)

More information

Partially commutative linear logic: sequent calculus and phase semantics

Partially commutative linear logic: sequent calculus and phase semantics Partially commutative linear logic: sequent calculus and phase semantics Philippe de Groote Projet Calligramme INRIA-Lorraine & CRIN CNRS 615 rue du Jardin Botanique - B.P. 101 F 54602 Villers-lès-Nancy

More information

Natural Deduction for Propositional Logic

Natural Deduction for Propositional Logic Natural Deduction for Propositional Logic Bow-Yaw Wang Institute of Information Science Academia Sinica, Taiwan September 10, 2018 Bow-Yaw Wang (Academia Sinica) Natural Deduction for Propositional Logic

More information

Complete Partial Orders, PCF, and Control

Complete Partial Orders, PCF, and Control Complete Partial Orders, PCF, and Control Andrew R. Plummer TIE Report Draft January 2010 Abstract We develop the theory of directed complete partial orders and complete partial orders. We review the syntax

More information

Subtyping and Intersection Types Revisited

Subtyping and Intersection Types Revisited Subtyping and Intersection Types Revisited Frank Pfenning Carnegie Mellon University International Conference on Functional Programming (ICFP 07) Freiburg, Germany, October 1-3, 2007 Joint work with Rowan

More information

Second-Order Algebraic Theories

Second-Order Algebraic Theories Second-Order Algebraic Theories (Extended Abstract) Marcelo Fiore and Ola Mahmoud University of Cambridge, Computer Laboratory Abstract. Fiore and Hur [10] recently introduced a conservative extension

More information

ACLT: Algebra, Categories, Logic in Topology - Grothendieck's generalized topological spaces (toposes)

ACLT: Algebra, Categories, Logic in Topology - Grothendieck's generalized topological spaces (toposes) ACLT: Algebra, Categories, Logic in Topology - Grothendieck's generalized topological spaces (toposes) Steve Vickers CS Theory Group Birmingham 2. Theories and models Categorical approach to many-sorted

More information

Locally cartesian closed categories

Locally cartesian closed categories Locally cartesian closed categories Clive Newstead 80-814 Categorical Logic, Carnegie Mellon University Wednesday 1st March 2017 Abstract Cartesian closed categories provide a natural setting for the interpretation

More information

Chapter 2. Assertions. An Introduction to Separation Logic c 2011 John C. Reynolds February 3, 2011

Chapter 2. Assertions. An Introduction to Separation Logic c 2011 John C. Reynolds February 3, 2011 Chapter 2 An Introduction to Separation Logic c 2011 John C. Reynolds February 3, 2011 Assertions In this chapter, we give a more detailed exposition of the assertions of separation logic: their meaning,

More information

Linearly-Used Continuations in the Enriched Effect Calculus

Linearly-Used Continuations in the Enriched Effect Calculus Linearly-Used Continuations in the Enriched Effect Calculus Jeff Egger 1,, Rasmus Ejlers Møgelberg 2,, and Alex Simpson 1, 1 LFCS, School of Informatics, University of Edinburgh, Scotland, UK 2 IT University

More information

A categorical model for a quantum circuit description language

A categorical model for a quantum circuit description language A categorical model for a quantum circuit description language Francisco Rios (joint work with Peter Selinger) Department of Mathematics and Statistics Dalhousie University CT July 16th 22th, 2017 What

More information

Mathematical Synthesis of Equational Deduction Systems. Marcelo Fiore. Computer Laboratory University of Cambridge

Mathematical Synthesis of Equational Deduction Systems. Marcelo Fiore. Computer Laboratory University of Cambridge Mathematical Synthesis of Equational Deduction Systems Marcelo Fiore Computer Laboratory University of Cambridge TLCA 2009 3.VII.2009 Context concrete theories meta-theories Context concrete theories meta-theories

More information

AN ALTERNATIVE NATURAL DEDUCTION FOR THE INTUITIONISTIC PROPOSITIONAL LOGIC

AN ALTERNATIVE NATURAL DEDUCTION FOR THE INTUITIONISTIC PROPOSITIONAL LOGIC Bulletin of the Section of Logic Volume 45/1 (2016), pp 33 51 http://dxdoiorg/1018778/0138-068045103 Mirjana Ilić 1 AN ALTERNATIVE NATURAL DEDUCTION FOR THE INTUITIONISTIC PROPOSITIONAL LOGIC Abstract

More information

The arrow calculus. SAM LINDLEY, PHILIP WADLER and JEREMY YALLOP. Abstract

The arrow calculus. SAM LINDLEY, PHILIP WADLER and JEREMY YALLOP. Abstract JFP 20 (1): 51 69, 2010. c Cambridge University Press 2010 doi:10.1017/s095679680999027x 51 The arrow calculus SAM LINDLEY, PHILIP WADLER and JEREMY YALLOP University of Edinburgh (e-mail: Sam.Lindley@ed.ac.uk,

More information

Candidates for Substitution

Candidates for Substitution Candidates for Substitution Healfdene Goguen hhg@dcs.ed.ac.uk James McKinna jhm@dcs.ed.ac.uk Laboratory for Foundations of Computer Science Department of Computer Science The King s Buildings, University

More information

Bicubical Directed Type Theory

Bicubical Directed Type Theory Bicubical Directed Type Theory Matthew Weaver General Examination May 7th, 2018 Advised by Andrew Appel and Dan Licata Bicubical Directed Type Theory Bicubical directed type theory is a constructive model

More information

Boolean bunched logic: its semantics and completeness

Boolean bunched logic: its semantics and completeness Boolean bunched logic: its semantics and completeness James Brotherston Programming Principles, Logic and Verification Group Dept. of Computer Science University College London, UK J.Brotherston@ucl.ac.uk

More information

A completeness theorem for symmetric product phase spaces

A completeness theorem for symmetric product phase spaces A completeness theorem for symmetric product phase spaces Thomas Ehrhard Fédération de Recherche des Unités de Mathématiques de Marseille CNRS FR 2291 Institut de Mathématiques de Luminy CNRS UPR 9016

More information

Teooriaseminar. TTÜ Küberneetika Instituut. May 10, Categorical Models. for Two Intuitionistic Modal Logics. Wolfgang Jeltsch.

Teooriaseminar. TTÜ Küberneetika Instituut. May 10, Categorical Models. for Two Intuitionistic Modal Logics. Wolfgang Jeltsch. TTÜ Küberneetika Instituut Teooriaseminar May 10, 2012 1 2 3 4 1 2 3 4 Modal logics used to deal with things like possibility, belief, and time in this talk only time two new operators and : ϕ now and

More information

Intersection Synchronous Logic

Intersection Synchronous Logic UnB 2007 p. 1/2 Intersection Synchronous Logic Elaine Gouvêa Pimentel Simona Ronchi della Rocca Luca Roversi UFMG/UNITO, 2007 UnB 2007 p. 2/2 Outline Motivation UnB 2007 p. 2/2 Outline Motivation Intuitionistic

More information

Encoding Graph Transformation in Linear Logic

Encoding Graph Transformation in Linear Logic Encoding Graph Transformation in Linear Logic Paolo Torrini joint work with Reiko Heckel pt95@mcs.le.ac.uk University of Leicester GTLL p. 1 Graph Transformation Graph Transformation Systems (GTS) high-level

More information

Sequent Combinators: A Hilbert System for the Lambda Calculus

Sequent Combinators: A Hilbert System for the Lambda Calculus Sequent Combinators: A Hilbert System for the Lambda Calculus Healfdene Goguen Department of Computer Science, University of Edinburgh The King s Buildings, Edinburgh, EH9 3JZ, United Kingdom Fax: (+44)

More information

hal , version 1-21 Oct 2009

hal , version 1-21 Oct 2009 ON SKOLEMISING ZERMELO S SET THEORY ALEXANDRE MIQUEL Abstract. We give a Skolemised presentation of Zermelo s set theory (with notations for comprehension, powerset, etc.) and show that this presentation

More information

Quantum groupoids and logical dualities

Quantum groupoids and logical dualities Quantum groupoids and logical dualities (work in progress) Paul-André Melliès CNS, Université Paris Denis Diderot Categories, ogic and Foundations of Physics ondon 14 May 2008 1 Proof-knots Aim: formulate

More information

Lambek calculus is NP-complete

Lambek calculus is NP-complete Lambek calculus is NP-complete Mati Pentus May 12, 2003 Abstract We prove that for both the Lambek calculus L and the Lambek calculus allowing empty premises L the derivability problem is NP-complete.

More information

Propositional Language - Semantics

Propositional Language - Semantics Propositional Language - Semantics Lila Kari University of Waterloo Propositional Language - Semantics CS245, Logic and Computation 1 / 41 Syntax and semantics Syntax Semantics analyzes Form analyzes Meaning

More information

A Linear/Producer/Consumer Model of Classical Linear Logic

A Linear/Producer/Consumer Model of Classical Linear Logic A Linear/Producer/Consumer Model of Classical Linear Logic Jennifer Paykin Steve Zdancewic University of Pennsylvania Philadelphia, USA jpaykin@seas.upenn.edu stevez@cis.upenn.edu This paper defines a

More information

Relating Reasoning Methodologies in Linear Logic and Process Algebra

Relating Reasoning Methodologies in Linear Logic and Process Algebra Relating Reasoning Methodologies in Linear Logic and Process Algebra Yuxin Deng Robert J. Simmons Iliano Cervesato December 2011 CMU-CS-11-145 CMU-CS-QTR-111 School of Computer Science Carnegie Mellon

More information

Two-dimensional models of type theory

Two-dimensional models of type theory Two-dimensional models of type theory Richard Garner Uppsala University Logic Colloquium 2008, Bern 1/33 Outline Motivation Two-dimensional type theory: syntax Two-dimensional type theory: semantics Further

More information

A Linear/Producer/Consumer model of Classical Linear Logic

A Linear/Producer/Consumer model of Classical Linear Logic A Linear/Producer/Consumer model of Classical Linear Logic Jennifer Paykin Steve Zdancewic February 14, 2014 Abstract This paper defines a new proof- and category-theoretic framework for classical linear

More information

Equational Logic. Chapter Syntax Terms and Term Algebras

Equational Logic. Chapter Syntax Terms and Term Algebras Chapter 2 Equational Logic 2.1 Syntax 2.1.1 Terms and Term Algebras The natural logic of algebra is equational logic, whose propositions are universally quantified identities between terms built up from

More information

CS522 - Programming Language Semantics

CS522 - Programming Language Semantics 1 CS522 - Programming Language Semantics Simply Typed Lambda Calculus Grigore Roşu Department of Computer Science University of Illinois at Urbana-Champaign 2 We now discuss a non-trivial extension of

More information

Programming Languages in String Diagrams. [ one ] String Diagrams. Paul-André Melliès. Oregon Summer School in Programming Languages June 2011

Programming Languages in String Diagrams. [ one ] String Diagrams. Paul-André Melliès. Oregon Summer School in Programming Languages June 2011 Programming Languages in String Diagrams [ one ] String Diagrams Paul-ndré Melliès Oregon Summer School in Programming Languages June 2011 String diagrams diagrammatic account o logic and programming 2

More information

An Overview of Residuated Kleene Algebras and Lattices Peter Jipsen Chapman University, California. 2. Background: Semirings and Kleene algebras

An Overview of Residuated Kleene Algebras and Lattices Peter Jipsen Chapman University, California. 2. Background: Semirings and Kleene algebras An Overview of Residuated Kleene Algebras and Lattices Peter Jipsen Chapman University, California 1. Residuated Lattices with iteration 2. Background: Semirings and Kleene algebras 3. A Gentzen system

More information

Wolfgang Jeltsch. Seminar talk at the Institute of Cybernetics Tallinn, Estonia

Wolfgang Jeltsch. Seminar talk at the Institute of Cybernetics Tallinn, Estonia in in Brandenburgische Technische Universität Cottbus Cottbus, Germany Seminar talk at the Institute of Cybernetics Tallinn, Estonia February 10, 2011 in in in trueness of a proposition depends on time

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://repository.ubn.ru.nl/handle/2066/127959

More information

Syntactic Characterisations in Model Theory

Syntactic Characterisations in Model Theory Department of Mathematics Bachelor Thesis (7.5 ECTS) Syntactic Characterisations in Model Theory Author: Dionijs van Tuijl Supervisor: Dr. Jaap van Oosten June 15, 2016 Contents 1 Introduction 2 2 Preliminaries

More information

Realizability Semantics of Parametric Polymorphism, General References, and Recursive Types

Realizability Semantics of Parametric Polymorphism, General References, and Recursive Types Realizability Semantics of Parametric Polymorphism, General References, and Recursive Types Lars Birkedal IT University of Copenhagen Joint work with Kristian Støvring and Jacob Thamsborg Oct, 2008 Lars

More information

The Lambek-Grishin calculus for unary connectives

The Lambek-Grishin calculus for unary connectives The Lambek-Grishin calculus for unary connectives Anna Chernilovskaya Utrecht Institute of Linguistics OTS, Utrecht University, the Netherlands anna.chernilovskaya@let.uu.nl Introduction In traditional

More information

Denotational semantics: proofs

Denotational semantics: proofs APPENDIX A Denotational semantics: proofs We show that every closed term M has a computable functional [[M ] as its denotation. A.1. Unification We show that for any two constructor terms one can decide

More information

Binding in Nominal Equational Logic

Binding in Nominal Equational Logic MFPS 2010 Binding in Nominal Equational Logic Ranald Clouston 1,2 Computer Laboratory, University of Cambridge, Cambridge CB3 0DF, United Kingdom Abstract Many formal systems, particularly in computer

More information

Kleene realizability and negative translations

Kleene realizability and negative translations Q E I U G I C Kleene realizability and negative translations Alexandre Miquel O P. D E. L Ō A U D E L A R April 21th, IMERL Plan 1 Kleene realizability 2 Gödel-Gentzen negative translation 3 Lafont-Reus-Streicher

More information

Mary Southern and Gopalan Nadathur. This work was funded by NSF grant CCF

Mary Southern and Gopalan Nadathur. This work was funded by NSF grant CCF A Translation-Based Animation of Dependently-Typed Specifications From LF to hohh(and back again) Mary Southern and Gopalan Nadathur Department of Computer Science and Engineering University of Minnesota

More information

AN INTRODUCTION TO SEPARATION LOGIC. 2. Assertions

AN INTRODUCTION TO SEPARATION LOGIC. 2. Assertions AN INTRODUCTION TO SEPARATION LOGIC 2. Assertions John C. Reynolds Carnegie Mellon University January 7, 2011 c 2011 John C. Reynolds Pure Assertions An assertion p is pure iff, for all stores s and all

More information

Henk Barendregt and Freek Wiedijk assisted by Andrew Polonsky. Radboud University Nijmegen. March 5, 2012

Henk Barendregt and Freek Wiedijk assisted by Andrew Polonsky. Radboud University Nijmegen. March 5, 2012 1 λ Henk Barendregt and Freek Wiedijk assisted by Andrew Polonsky Radboud University Nijmegen March 5, 2012 2 reading Femke van Raamsdonk Logical Verification Course Notes Herman Geuvers Introduction to

More information

Propositional Calculus - Hilbert system H Moonzoo Kim CS Division of EECS Dept. KAIST

Propositional Calculus - Hilbert system H Moonzoo Kim CS Division of EECS Dept. KAIST Propositional Calculus - Hilbert system H Moonzoo Kim CS Division of EECS Dept. KAIST moonzoo@cs.kaist.ac.kr http://pswlab.kaist.ac.kr/courses/cs402-07 1 Review Goal of logic To check whether given a formula

More information

Quasi-Boolean Encodings and Conditionals in Algebraic Specification

Quasi-Boolean Encodings and Conditionals in Algebraic Specification Quasi-Boolean Encodings and Conditionals in Algebraic Specification Răzvan Diaconescu Institute of Mathematics Simion Stoilow of the Romanian Academy Abstract We develop a general study of the algebraic

More information

Propositional Logic Language

Propositional Logic Language Propositional Logic Language A logic consists of: an alphabet A, a language L, i.e., a set of formulas, and a binary relation = between a set of formulas and a formula. An alphabet A consists of a finite

More information

Theoretical Computer Science. Representing model theory in a type-theoretical logical framework

Theoretical Computer Science. Representing model theory in a type-theoretical logical framework Theoretical Computer Science 412 (2011) 4919 4945 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Representing model theory in a type-theoretical

More information

Linear Logic Pages. Yves Lafont (last correction in 2017)

Linear Logic Pages. Yves Lafont (last correction in 2017) Linear Logic Pages Yves Lafont 1999 (last correction in 2017) http://iml.univ-mrs.fr/~lafont/linear/ Sequent calculus Proofs Formulas - Sequents and rules - Basic equivalences and second order definability

More information

INTRODUCTION TO LOGIC. Propositional Logic. Examples of syntactic claims

INTRODUCTION TO LOGIC. Propositional Logic. Examples of syntactic claims Introduction INTRODUCTION TO LOGIC 2 Syntax and Semantics of Propositional Logic Volker Halbach In what follows I look at some formal languages that are much simpler than English and define validity of

More information

185.A09 Advanced Mathematical Logic

185.A09 Advanced Mathematical Logic 185.A09 Advanced Mathematical Logic www.volny.cz/behounek/logic/teaching/mathlog13 Libor Běhounek, behounek@cs.cas.cz Lecture #1, October 15, 2013 Organizational matters Study materials will be posted

More information

Lazy Strong Normalization

Lazy Strong Normalization Lazy Strong Normalization Luca Paolini 1,2 Dipartimento di Informatica Università di Torino (ITALIA) Elaine Pimentel 1,2 Departamento de Matemática Universidade Federal de Minas Gerais (BRASIL) Dipartimento

More information

Most General Unifiers in Generalized Nominal Unification

Most General Unifiers in Generalized Nominal Unification Most General Unifiers in Generalized Nominal Unification Yunus D K Kutz 1 and Manfred Schmidt-Schauß 2 1 Goethe-University Frankfurt am Main, Germany, kutz@kiinformatikuni-frankfurtde 2 Goethe-University

More information

An Algorithmic Interpretation of a Deep Inference System

An Algorithmic Interpretation of a Deep Inference System n lgorithmic Interpretation of a eep Inference System Kai rünnler and ichard McKinley Institut für angewandte Mathematik und Informatik Neubrückstr 10, H 3012 ern, Switzerland bstract We set out to find

More information

Introduction to Kleene Algebra Lecture 14 CS786 Spring 2004 March 15, 2004

Introduction to Kleene Algebra Lecture 14 CS786 Spring 2004 March 15, 2004 Introduction to Kleene Algebra Lecture 14 CS786 Spring 2004 March 15, 2004 KAT and Hoare Logic In this lecture and the next we show that KAT subsumes propositional Hoare logic (PHL). Thus the specialized

More information

On the Complexity of the Reflected Logic of Proofs

On the Complexity of the Reflected Logic of Proofs On the Complexity of the Reflected Logic of Proofs Nikolai V. Krupski Department of Math. Logic and the Theory of Algorithms, Faculty of Mechanics and Mathematics, Moscow State University, Moscow 119899,

More information

On the Standardization Theorem for λβη-calculus

On the Standardization Theorem for λβη-calculus On the Standardization Theorem for λβη-calculus Ryo Kashima Department of Mathematical and Computing Sciences Tokyo Institute of Technology Ookayama, Meguro, Tokyo 152-8552, Japan. e-mail: kashima@is.titech.ac.jp

More information

The Lambda-Calculus Reduction System

The Lambda-Calculus Reduction System 2 The Lambda-Calculus Reduction System 2.1 Reduction Systems In this section we present basic notions on reduction systems. For a more detailed study see [Klop, 1992, Dershowitz and Jouannaud, 1990]. Definition

More information

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Lecture 17 Tuesday, April 2, 2013 1 There is a strong connection between types in programming languages and propositions

More information

Note on models of polarised intuitionistic logic

Note on models of polarised intuitionistic logic Note on models of polarised intuitionistic logic Guillaume Munch-Maccagnoni Team Gallinette, Inria Bretagne Atlantique, Univ. Nantes, LS2N, Nantes, France Guillaume.Munch-Maccagnoni@Inria.fr 3rd June 2017

More information

First-Order Logic First-Order Theories. Roopsha Samanta. Partly based on slides by Aaron Bradley and Isil Dillig

First-Order Logic First-Order Theories. Roopsha Samanta. Partly based on slides by Aaron Bradley and Isil Dillig First-Order Logic First-Order Theories Roopsha Samanta Partly based on slides by Aaron Bradley and Isil Dillig Roadmap Review: propositional logic Syntax and semantics of first-order logic (FOL) Semantic

More information

On the Semantics of Parsing Actions

On the Semantics of Parsing Actions On the Semantics of Parsing Actions Hayo Thielecke School of Computer Science University of Birmingham Birmingham B15 2TT, United Kingdom Abstract Parsers, whether constructed by hand or automatically

More information

University of Oxford, Michaelis November 16, Categorical Semantics and Topos Theory Homotopy type theor

University of Oxford, Michaelis November 16, Categorical Semantics and Topos Theory Homotopy type theor Categorical Semantics and Topos Theory Homotopy type theory Seminar University of Oxford, Michaelis 2011 November 16, 2011 References Johnstone, P.T.: Sketches of an Elephant. A Topos-Theory Compendium.

More information

Justifying Algorithms for βη-conversion

Justifying Algorithms for βη-conversion Justifying Algorithms for βη-conversion Healfdene Goguen AT&T Labs, 180 Park Ave., Florham Park NJ 07932 USA hhg@att.com. Abstract. Deciding the typing judgement of type theories with dependent types such

More information

Order Sorted Algebra. Japan Advanced Institute of Science and Technology. March 8, 2008

Order Sorted Algebra. Japan Advanced Institute of Science and Technology. March 8, 2008 Order Sorted Algebra Daniel Găină Japan Advanced Institute of Science and Technology March 8, 2008 Introduction There are many examples where all items of one sort are necessarily also items of some other

More information

Automated Synthesis of Tableau Calculi

Automated Synthesis of Tableau Calculi Automated Synthesis of Tableau Calculi Renate A. Schmidt 1 and Dmitry Tishkovsky 1 School of Computer Science, The University of Manchester Abstract This paper presents a method for synthesising sound

More information

CS 4110 Programming Languages & Logics. Lecture 16 Programming in the λ-calculus

CS 4110 Programming Languages & Logics. Lecture 16 Programming in the λ-calculus CS 4110 Programming Languages & Logics Lecture 16 Programming in the λ-calculus 30 September 2016 Review: Church Booleans 2 We can encode TRUE, FALSE, and IF, as: TRUE λx. λy. x FALSE λx. λy. y IF λb.

More information

arxiv: v3 [cs.pl] 15 May 2011

arxiv: v3 [cs.pl] 15 May 2011 A Step-indexed Semantic Model of Types for the Call-by-Name Lambda Calculus arxiv:1105.1985v3 [cs.pl] 15 May 2011 Abstract Step-indexed semantic models of types were proposed as an alternative to purely

More information

Stratifications and complexity in linear logic. Daniel Murfet

Stratifications and complexity in linear logic. Daniel Murfet Stratifications and complexity in linear logic Daniel Murfet Curry-Howard correspondence logic programming categories formula type objects sequent input/output spec proof program morphisms cut-elimination

More information

Midterm Exam Types and Programming Languages Frank Pfenning. October 18, 2018

Midterm Exam Types and Programming Languages Frank Pfenning. October 18, 2018 Midterm Exam 15-814 Types and Programming Languages Frank Pfenning October 18, 2018 Name: Andrew ID: Instructions This exam is closed-book, closed-notes. You have 80 minutes to complete the exam. There

More information

Categories, Proofs and Programs

Categories, Proofs and Programs Categories, Proofs and Programs Samson Abramsky and Nikos Tzevelekos Lecture 4: Curry-Howard Correspondence and Cartesian Closed Categories In A Nutshell Logic Computation 555555555555555555 5 Categories

More information

Semantics and Verification

Semantics and Verification Semantics and Verification Lecture 2 informal introduction to CCS syntax of CCS semantics of CCS 1 / 12 Sequential Fragment Parallelism and Renaming CCS Basics (Sequential Fragment) Nil (or 0) process

More information

Topos Theory. Lectures 17-20: The interpretation of logic in categories. Olivia Caramello. Topos Theory. Olivia Caramello.

Topos Theory. Lectures 17-20: The interpretation of logic in categories. Olivia Caramello. Topos Theory. Olivia Caramello. logic s Lectures 17-20: logic in 2 / 40 logic s Interpreting first-order logic in In Logic, first-order s are a wide class of formal s used for talking about structures of any kind (where the restriction

More information

Foundations of Mathematics

Foundations of Mathematics Foundations of Mathematics Andrew Monnot 1 Construction of the Language Loop We must yield to a cyclic approach in the foundations of mathematics. In this respect we begin with some assumptions of language

More information

An Introduction to Modal Logic III

An Introduction to Modal Logic III An Introduction to Modal Logic III Soundness of Normal Modal Logics Marco Cerami Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic Olomouc, October 24 th 2013 Marco Cerami

More information

Towards a general framework for metareasoning on HOAS encodings

Towards a general framework for metareasoning on HOAS encodings Towards a general framework for metareasoning on HOAS encodings 1 Project TOSCA TASK HOAS LF Slide 1 Towards a general framework for metareasoning on HOAS encodings Anna Bucalo, Martin Hofmann, Furio Honsell,

More information

Conservation of Information

Conservation of Information Conservation of Information Amr Sabry (in collaboration with Roshan P. James) School of Informatics and Computing Indiana University May 8, 2012 Amr Sabry (in collaboration with Roshan P. James) (IU SOIC)

More information

Normalisation by evaluation

Normalisation by evaluation Normalisation by evaluation Sam Lindley Laboratory for Foundations of Computer Science The University of Edinburgh Sam.Lindley@ed.ac.uk August 11th, 2016 Normalisation and embedded domain specific languages

More information

Adjoint Logic and Its Concurrent Semantics

Adjoint Logic and Its Concurrent Semantics Adjoint Logic and Its Concurrent Semantics Frank Pfenning ABCD Meeting, Edinburgh, December 18-19, 2017 Joint work with Klaas Pruiksma and William Chargin Outline Proofs as programs Linear sequent proofs

More information

Type Systems Winter Semester 2006

Type Systems Winter Semester 2006 Type Systems Winter Semester 2006 Week 7 November 29 November 29, 2006 - version 1.0 Plan PREVIOUSLY: 1. type safety as progress and preservation 2. typed arithmetic expressions 3. simply typed lambda

More information

TOPOSES ARE SYMMETRIC MONOIDAL CLOSED CATEGORIES

TOPOSES ARE SYMMETRIC MONOIDAL CLOSED CATEGORIES Please cite this article as: Viliam Slodičák, Toposes are symmetric monoidal closed categories, Scientific Research of the Institute of Mathematics and Computer Science, 2012, Volume 11, Issue 1, pages

More information

ideas underlying this development are well-known, there seems to be no general theory available which, as a particular case, applies to action calculi

ideas underlying this development are well-known, there seems to be no general theory available which, as a particular case, applies to action calculi From Action Calculi to Linear Logic Andrew Barber 1, Philippa Gardner 2, Masahito Hasegawa 3 and Gordon Plotkin 1 1 Dept. Computer Science, University of Edinburgh, Edinburgh EH9 3JZ, Scotland 2 Computing

More information

Extended Abstract: Reconsidering Intuitionistic Duality

Extended Abstract: Reconsidering Intuitionistic Duality Extended Abstract: Reconsidering Intuitionistic Duality Aaron Stump, Harley Eades III, Ryan McCleeary Computer Science The University of Iowa 1 Introduction This paper proposes a new syntax and proof system

More information