Predicate Logic. Xinyu Feng 09/26/2011. University of Science and Technology of China (USTC)

Size: px
Start display at page:

Download "Predicate Logic. Xinyu Feng 09/26/2011. University of Science and Technology of China (USTC)"

Transcription

1 University of Science and Technology of China (USTC) 09/26/2011

2 Overview Predicate logic over integer expressions: a language of logical assertions, for example x. x + 0 = x Why discuss predicate logic? It is an example of a simple language It has simple denotational semantics We will use it later in program specifications

3 Abstract Syntax (intexp) e ::= x e e+e e-e... (assert) p, q ::= true false e=e e < e e < e... p p p p p p p p p x. p x. p

4 Resolving Notational Ambiguity Using parentheses: ( x.(((x + 0)+0) = x)) Using precedence and associativity: x. x = x arithmetic operators ( /...) with the usual precedence relational operators(= <...) The body of a quantified term extends to a delimiter.

5 Carriers and Constructors Carriers (or Syntactic Categories): sets of abstract phrases (e.g. intexp, assert) Constructors: specify abstract grammar productions (intexp)e::= 0 c 0 intexp (intexp)e::= x c var var intexp (intexp)e::= e+e c + intexp intexp intexp Note: Independent of the concrete pattern of the production: (intexp)e::= plus(e, e ) c + intexp intexp intexp Constructors must be injective and have disjoint ranges Carriers must be either predefined or their elements must be constructable in finitely many constructor applications

6 Inductive Structure of Carrier Sets With these properties of constructors and carriers, carriers can be defined inductively: intexp (0) def = {} intexp (j+1) def = {c 0 } {c + (e 0, e 1 ) e 0, e 1 intexp j } {...} assert (0) def = {} assert (j+1) def = {c true, c false } def = {c = (e 0, e 1 ) e 0, e 1 intexp} def = {c p p assert (j) } def = {c (p, q) p, q assert (j) } intexp def = assert j=0 def = j=0 intexp (j) assert (j)

7 Denotational Semantics The meaning of a term e intexp is e intexp, i.e. the function intexp maps intexp objects to their meanings. What is the set of meanings? The meaning of 5+37 intexp of the term 5+37 (i.e. c + (c 5, c 37 ) is the integer 42. However, the term x + 37 contains the free variable x, so the meaning of an intexp e in general cannot be an integer...

8 Environments or States To give meanings to x + 37, we need an environment (also called variable assignment or state): σ Σ def = var Z which gives meanings to free variables. The meaning of a term (intexp or assert) is a function from the states to Z or B. intexp intexp Σ Z assert assert Σ B If σ = {(x, 3),(y, 4)}, then x + 5 intexp σ = 8, z. x < z z < y assert σ = false

9 Direct Semantics Equations for 0 intexp σ def = 0 x σ def = σ x e 0 +e 1 intexp σ def = ( e 0 intexp σ)+( e 1 intexp σ) true assert σ def = true e 0 =e 1 assert σ def = ( e 0 intexp σ)=( e 1 intexp σ) p assert σ def = ( p assert σ) p q assert σ def = ( p assert σ) ( q assert σ) x. p assert σ def = n Z. p assert (σ{x n})

10 Example: The Meaning of a Term x. x+0=x assert σ

11 Properties of the Semantics Equations They are Syntax Directed (Homomorphic): exactly one equation for each constructor results expressed using semantics (meanings) of subterms (arguments of constructors) only. they have exactly one solutions (proof by induction on the structure of terms) They define compositional semantic functions (depending only on the meanings of subterms) equivalent terms can be substituted.

12 Validity of Assertions p holds/is true in σ p assert σ = true σ satisfies p p is valid p is unsatisfiable p is stronger than q σ Σ. p holds in σ σ Σ. p assert σ = false p is valid σ Σ. q holds in σ if p holds in σ p q is valid p and q are equivalent p is stronger than q and q is stronger than p

13 Inference Rules Axioms and Rules p p 0, p 1, p n 1 p They are all schemas. Judgments p We also use p to mean there exists a proof or derivation of p following the axioms and rules.

14 Inference Rules Examples x + 0 = x (xpluszero) e 0 = e 1 e 1 = e 0 (SymmObjEq) p p q q (ModusPonens) p x. p (Generalization)

15 Formal Proofs A set of inference rules define a Logical Theory. A Formal Proof in a logical theory: a sequence of instantiations of axioms and inference rules, where a premise of each rule occur as conclusions of another rule earlier in the sequence. Example: 1. x + 0 = x (xpluszero) 2. x + 0 = x x = x + 0 (SymmObjEq) 3. x = x + 0 (ModusPonens, 1, 2) 4. x. x = x + 0 (Generalization, 3)

16 Tree Representation (Derivation Trees) x + 0 = x (xpz) x + 0 = x x = x + 0 (Symm) (MP) x = x + 0 x. x = x + 0 (Gen)

17 Soundness of a Logical Theory An inference rule is sound if in every instance of the rule the conclusion is valid if all the premises are. A logical theory is sound if all the inference rules in it are sound. If is sound and there is a formal proof of p, then p is valid. Object vs. Meta implication: p x. p p x. p unsound sound.

18 Completeness of a Logical Theory A logical theory is complete if for every valid assertion p there is a formal proof of p. A logical theory is axiomatizable if there exist a finite set of inference rules from which formal proofs of assertions in can be constructed. No first-order theory of arithmetic is axiomatizable and complete (Gödel s incompleteness theorem).

19 Variable Binding x. y. x < y x. x > y Binder and scope Bound and free occurrences of variables α-renaming and substitution similar to λ-calculus

20 Only Assignment of Free Variables Matters Coincidence Theorem: If σ x = σ x for all x fv(p), then p θ σ = p θ σ (θ {intexp, assert} and p θ). Proof: By induction over the structure of p. Induction Hypothesis: The statement of the theorem holds over all phrases of depth less than that of p. Base cases: p = 0: p intexp σ = 0 = p intexp σ. p = x: p intexp σ = σ x = σ x = p intexp σ, since fv(x) = {x}.

21 Proof of Coincidence Theorem (cont d) Coincidence Theorem: If σ x = σ x for all x fv(p), then p θ σ = p θ σ Inductive cases: p = e 0 + e 1 : By IH, e i intexp σ = e i intexp σ for i {0, 1}. So e intexp σ = e 0 intexp σ + e 1 intexp σ = e 0 intexp σ + e 1 intexp σ = e intexp σ p = x. q: σ z = σ z, for all z fv(p) = fv(q) {x} So σ{x n} z = σ {x n} z, for all n Z and z fv(q). By IH, q assert σ{x n} = q assert σ {x n}, for all n Z. Therefore ( n Z. q assert σ{x n}) = ( n Z. q assert σ {x n}) That is p assert σ = p assert σ.

22 Substitution /δ intexp intexp /δ assert assert } where δ var intexp 0/δ = 0 (-e)/δ = -(e/δ) (e 0 +e 1 )/δ = (e 0 /δ)+(e 1 /δ)... x/δ = δ x (p q)/δ = (p/δ) (q/δ) ( x. p)/δ = x.(p/δ{x x }) where x fv(δ z) z fv( x. p) i.e. x is fresh in δ. Examples: (x < 0 x. x y)/{(x, y + 1)} = y + 1 < 0 x. x y (x < 0 x. x y)/{(y, x + 1)} = x < 0 z. z x + 1

23 Substitution Theorems Substitution Theorem: If σ = intexp σ δ, then ( σ) e = ( σ /δ) e Finite Substitution Theorem: Let δ = c var {x 0 e 0,..., x n 1 e n 1 }, and σ = σ{x 0 e 0 σ,...,x n 1 e n 1 σ}, then e/δ σ = e σ. Renaming: If z fv(p) {x}, then for all σ, x. p assert σ = z. p/{(x, z)} assert σ

24 Acknowledgments Slides follow Chapter 1 of Reynolds, and are taken from Zhong Shao s lecture notes on Formal Semantics.

Predicate Logic. Xinyu Feng 11/20/2013. University of Science and Technology of China (USTC)

Predicate Logic. Xinyu Feng 11/20/2013. University of Science and Technology of China (USTC) University of Science and Technology of China (USTC) 11/20/2013 Overview Predicate logic over integer expressions: a language of logical assertions, for example x. x + 0 = x Why discuss predicate logic?

More information

Predicate Logic. x. x + 0 = x. Predicate logic over integer expressions: a language of logical assertions, for example. Why discuss predicate logic?

Predicate Logic. x. x + 0 = x. Predicate logic over integer expressions: a language of logical assertions, for example. Why discuss predicate logic? Predicate Logic Predicate logic over integer expressions: a language of logical assertions, for example x. x + 0 = x Why discuss predicate logic? It is an example of a simple language It has simple denotational

More information

CS 430/530 Formal Semantics

CS 430/530 Formal Semantics CS 430/530 Formal Semantics Zhong Shao Yale University Department of Computer Science Course Overview August 31, 2011 Today s Lecture Why you should study formal semantics. How I intend to teach this course.

More information

10 Emerging Technologies 2011, In: Technology Review, 2011(6), MIT Press http://www.technologyreview.com/tr10/ Certifying a computing host? Formal proofs for resilience, extensibility, security? Need

More information

Chapter 2. Assertions. An Introduction to Separation Logic c 2011 John C. Reynolds February 3, 2011

Chapter 2. Assertions. An Introduction to Separation Logic c 2011 John C. Reynolds February 3, 2011 Chapter 2 An Introduction to Separation Logic c 2011 John C. Reynolds February 3, 2011 Assertions In this chapter, we give a more detailed exposition of the assertions of separation logic: their meaning,

More information

Lecture 2: Axiomatic semantics

Lecture 2: Axiomatic semantics Chair of Software Engineering Trusted Components Prof. Dr. Bertrand Meyer Lecture 2: Axiomatic semantics Reading assignment for next week Ariane paper and response (see course page) Axiomatic semantics

More information

Přednáška 12. Důkazové kalkuly Kalkul Hilbertova typu. 11/29/2006 Hilbertův kalkul 1

Přednáška 12. Důkazové kalkuly Kalkul Hilbertova typu. 11/29/2006 Hilbertův kalkul 1 Přednáška 12 Důkazové kalkuly Kalkul Hilbertova typu 11/29/2006 Hilbertův kalkul 1 Formal systems, Proof calculi A proof calculus (of a theory) is given by: A. a language B. a set of axioms C. a set of

More information

AN INTRODUCTION TO SEPARATION LOGIC. 2. Assertions

AN INTRODUCTION TO SEPARATION LOGIC. 2. Assertions AN INTRODUCTION TO SEPARATION LOGIC 2. Assertions John C. Reynolds Carnegie Mellon University January 7, 2011 c 2011 John C. Reynolds Pure Assertions An assertion p is pure iff, for all stores s and all

More information

Applied Logic. Lecture 1 - Propositional logic. Marcin Szczuka. Institute of Informatics, The University of Warsaw

Applied Logic. Lecture 1 - Propositional logic. Marcin Szczuka. Institute of Informatics, The University of Warsaw Applied Logic Lecture 1 - Propositional logic Marcin Szczuka Institute of Informatics, The University of Warsaw Monographic lecture, Spring semester 2017/2018 Marcin Szczuka (MIMUW) Applied Logic 2018

More information

03 Review of First-Order Logic

03 Review of First-Order Logic CAS 734 Winter 2014 03 Review of First-Order Logic William M. Farmer Department of Computing and Software McMaster University 18 January 2014 What is First-Order Logic? First-order logic is the study of

More information

First Order Logic (FOL) 1 znj/dm2017

First Order Logic (FOL) 1   znj/dm2017 First Order Logic (FOL) 1 http://lcs.ios.ac.cn/ znj/dm2017 Naijun Zhan March 19, 2017 1 Special thanks to Profs Hanpin Wang (PKU) and Lijun Zhang (ISCAS) for their courtesy of the slides on this course.

More information

Part 2: First-Order Logic

Part 2: First-Order Logic Part 2: First-Order Logic First-order logic formalizes fundamental mathematical concepts is expressive (Turing-complete) is not too expressive (e. g. not axiomatizable: natural numbers, uncountable sets)

More information

Learning Goals of CS245 Logic and Computation

Learning Goals of CS245 Logic and Computation Learning Goals of CS245 Logic and Computation Alice Gao April 27, 2018 Contents 1 Propositional Logic 2 2 Predicate Logic 4 3 Program Verification 6 4 Undecidability 7 1 1 Propositional Logic Introduction

More information

Axiomatic Semantics. Lecture 9 CS 565 2/12/08

Axiomatic Semantics. Lecture 9 CS 565 2/12/08 Axiomatic Semantics Lecture 9 CS 565 2/12/08 Axiomatic Semantics Operational semantics describes the meaning of programs in terms of the execution steps taken by an abstract machine Denotational semantics

More information

Peano Arithmetic. CSC 438F/2404F Notes (S. Cook) Fall, Goals Now

Peano Arithmetic. CSC 438F/2404F Notes (S. Cook) Fall, Goals Now CSC 438F/2404F Notes (S. Cook) Fall, 2008 Peano Arithmetic Goals Now 1) We will introduce a standard set of axioms for the language L A. The theory generated by these axioms is denoted PA and called Peano

More information

Mathematics 114L Spring 2018 D.A. Martin. Mathematical Logic

Mathematics 114L Spring 2018 D.A. Martin. Mathematical Logic Mathematics 114L Spring 2018 D.A. Martin Mathematical Logic 1 First-Order Languages. Symbols. All first-order languages we consider will have the following symbols: (i) variables v 1, v 2, v 3,... ; (ii)

More information

Advanced Topics in LP and FP

Advanced Topics in LP and FP Lecture 1: Prolog and Summary of this lecture 1 Introduction to Prolog 2 3 Truth value evaluation 4 Prolog Logic programming language Introduction to Prolog Introduced in the 1970s Program = collection

More information

First-Order Logic. 1 Syntax. Domain of Discourse. FO Vocabulary. Terms

First-Order Logic. 1 Syntax. Domain of Discourse. FO Vocabulary. Terms First-Order Logic 1 Syntax Domain of Discourse The domain of discourse for first order logic is FO structures or models. A FO structure contains Relations Functions Constants (functions of arity 0) FO

More information

185.A09 Advanced Mathematical Logic

185.A09 Advanced Mathematical Logic 185.A09 Advanced Mathematical Logic www.volny.cz/behounek/logic/teaching/mathlog13 Libor Běhounek, behounek@cs.cas.cz Lecture #1, October 15, 2013 Organizational matters Study materials will be posted

More information

First-Order Logic First-Order Theories. Roopsha Samanta. Partly based on slides by Aaron Bradley and Isil Dillig

First-Order Logic First-Order Theories. Roopsha Samanta. Partly based on slides by Aaron Bradley and Isil Dillig First-Order Logic First-Order Theories Roopsha Samanta Partly based on slides by Aaron Bradley and Isil Dillig Roadmap Review: propositional logic Syntax and semantics of first-order logic (FOL) Semantic

More information

Computational Logic. Recall of First-Order Logic. Damiano Zanardini

Computational Logic. Recall of First-Order Logic. Damiano Zanardini Computational Logic Recall of First-Order Logic Damiano Zanardini UPM European Master in Computational Logic (EMCL) School of Computer Science Technical University of Madrid damiano@fi.upm.es Academic

More information

Propositional Calculus - Hilbert system H Moonzoo Kim CS Division of EECS Dept. KAIST

Propositional Calculus - Hilbert system H Moonzoo Kim CS Division of EECS Dept. KAIST Propositional Calculus - Hilbert system H Moonzoo Kim CS Division of EECS Dept. KAIST moonzoo@cs.kaist.ac.kr http://pswlab.kaist.ac.kr/courses/cs402-07 1 Review Goal of logic To check whether given a formula

More information

Informal Statement Calculus

Informal Statement Calculus FOUNDATIONS OF MATHEMATICS Branches of Logic 1. Theory of Computations (i.e. Recursion Theory). 2. Proof Theory. 3. Model Theory. 4. Set Theory. Informal Statement Calculus STATEMENTS AND CONNECTIVES Example

More information

Propositional and Predicate Logic. jean/gbooks/logic.html

Propositional and Predicate Logic.   jean/gbooks/logic.html CMSC 630 February 10, 2009 1 Propositional and Predicate Logic Sources J. Gallier. Logic for Computer Science, John Wiley and Sons, Hoboken NJ, 1986. 2003 revised edition available on line at http://www.cis.upenn.edu/

More information

Inductive Definitions with Inference Rules 1 / 27

Inductive Definitions with Inference Rules 1 / 27 Inductive Definitions with Inference Rules 1 / 27 Outline Introduction Specifying inductive definitions Inference rules in action Judgments, axioms, and rules Reasoning about inductive definitions Direct

More information

CSC 7101: Programming Language Structures 1. Axiomatic Semantics. Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11.

CSC 7101: Programming Language Structures 1. Axiomatic Semantics. Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11. Axiomatic Semantics Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11 1 Overview We ll develop proof rules, such as: { I b } S { I } { I } while b do S end { I b } That allow us to verify

More information

First Order Logic vs Propositional Logic CS477 Formal Software Dev Methods

First Order Logic vs Propositional Logic CS477 Formal Software Dev Methods First Order Logic vs Propositional Logic CS477 Formal Software Dev Methods Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs477 Slides based in part on previous lectures

More information

Beyond First-Order Logic

Beyond First-Order Logic Beyond First-Order Logic Software Formal Verification Maria João Frade Departmento de Informática Universidade do Minho 2008/2009 Maria João Frade (DI-UM) Beyond First-Order Logic MFES 2008/09 1 / 37 FOL

More information

Herbrand Theorem, Equality, and Compactness

Herbrand Theorem, Equality, and Compactness CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2014 Herbrand Theorem, Equality, and Compactness The Herbrand Theorem We now consider a complete method for proving the unsatisfiability of sets of first-order

More information

CSCE 222 Discrete Structures for Computing. Propositional Logic. Dr. Hyunyoung Lee. !!!!!! Based on slides by Andreas Klappenecker

CSCE 222 Discrete Structures for Computing. Propositional Logic. Dr. Hyunyoung Lee. !!!!!! Based on slides by Andreas Klappenecker CSCE 222 Discrete Structures for Computing Propositional Logic Dr. Hyunyoung Lee Based on slides by Andreas Klappenecker 1 Propositions A proposition is a declarative sentence that is either true or false

More information

Axiomatic Semantics. Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11 CSE

Axiomatic Semantics. Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11 CSE Axiomatic Semantics Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11 CSE 6341 1 Outline Introduction What are axiomatic semantics? First-order logic & assertions about states Results (triples)

More information

Syntax. Notation Throughout, and when not otherwise said, we assume a vocabulary V = C F P.

Syntax. Notation Throughout, and when not otherwise said, we assume a vocabulary V = C F P. First-Order Logic Syntax The alphabet of a first-order language is organised into the following categories. Logical connectives:,,,,, and. Auxiliary symbols:.,,, ( and ). Variables: we assume a countable

More information

MAI0203 Lecture 7: Inference and Predicate Calculus

MAI0203 Lecture 7: Inference and Predicate Calculus MAI0203 Lecture 7: Inference and Predicate Calculus Methods of Artificial Intelligence WS 2002/2003 Part II: Inference and Knowledge Representation II.7 Inference and Predicate Calculus MAI0203 Lecture

More information

Supplementary Notes on Inductive Definitions

Supplementary Notes on Inductive Definitions Supplementary Notes on Inductive Definitions 15-312: Foundations of Programming Languages Frank Pfenning Lecture 2 August 29, 2002 These supplementary notes review the notion of an inductive definition

More information

Automated Reasoning Lecture 5: First-Order Logic

Automated Reasoning Lecture 5: First-Order Logic Automated Reasoning Lecture 5: First-Order Logic Jacques Fleuriot jdf@inf.ac.uk Recap Over the last three lectures, we have looked at: Propositional logic, semantics and proof systems Doing propositional

More information

Natural Deduction for Propositional Logic

Natural Deduction for Propositional Logic Natural Deduction for Propositional Logic Bow-Yaw Wang Institute of Information Science Academia Sinica, Taiwan September 10, 2018 Bow-Yaw Wang (Academia Sinica) Natural Deduction for Propositional Logic

More information

Consequence Relations and Natural Deduction

Consequence Relations and Natural Deduction Consequence Relations and Natural Deduction Joshua D. Guttman Worcester Polytechnic Institute September 9, 2010 Contents 1 Consequence Relations 1 2 A Derivation System for Natural Deduction 3 3 Derivations

More information

Lecture 1: Logical Foundations

Lecture 1: Logical Foundations Lecture 1: Logical Foundations Zak Kincaid January 13, 2016 Logics have two components: syntax and semantics Syntax: defines the well-formed phrases of the language. given by a formal grammar. Typically

More information

Section 2.2 Set Operations. Propositional calculus and set theory are both instances of an algebraic system called a. Boolean Algebra.

Section 2.2 Set Operations. Propositional calculus and set theory are both instances of an algebraic system called a. Boolean Algebra. Section 2.2 Set Operations Propositional calculus and set theory are both instances of an algebraic system called a Boolean Algebra. The operators in set theory are defined in terms of the corresponding

More information

Propositional Logic: Part II - Syntax & Proofs 0-0

Propositional Logic: Part II - Syntax & Proofs 0-0 Propositional Logic: Part II - Syntax & Proofs 0-0 Outline Syntax of Propositional Formulas Motivating Proofs Syntactic Entailment and Proofs Proof Rules for Natural Deduction Axioms, theories and theorems

More information

Classical Propositional Logic

Classical Propositional Logic The Language of A Henkin-style Proof for Natural Deduction January 16, 2013 The Language of A Henkin-style Proof for Natural Deduction Logic Logic is the science of inference. Given a body of information,

More information

Intelligent Agents. First Order Logic. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 19.

Intelligent Agents. First Order Logic. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 19. Intelligent Agents First Order Logic Ute Schmid Cognitive Systems, Applied Computer Science, Bamberg University last change: 19. Mai 2015 U. Schmid (CogSys) Intelligent Agents last change: 19. Mai 2015

More information

First Order Logic (FOL)

First Order Logic (FOL) First Order Logic (FOL) Testing, Quality Assurance, and Maintenance Winter 2018 Prof. Arie Gurfinkel based on slides by Prof. Ruzica Piskac, Nikolaj Bjorner, and others References Chpater 2 of Logic for

More information

CVO103: Programming Languages. Lecture 2 Inductive Definitions (2)

CVO103: Programming Languages. Lecture 2 Inductive Definitions (2) CVO103: Programming Languages Lecture 2 Inductive Definitions (2) Hakjoo Oh 2018 Spring Hakjoo Oh CVO103 2018 Spring, Lecture 2 March 13, 2018 1 / 20 Contents More examples of inductive definitions natural

More information

3.2 Reduction 29. Truth. The constructor just forms the unit element,. Since there is no destructor, there is no reduction rule.

3.2 Reduction 29. Truth. The constructor just forms the unit element,. Since there is no destructor, there is no reduction rule. 32 Reduction 29 32 Reduction In the preceding section, we have introduced the assignment of proof terms to natural deductions If proofs are programs then we need to explain how proofs are to be executed,

More information

Inductive Definitions

Inductive Definitions University of Science and Technology of China (USTC) 09/26/2011 Judgments A judgment states that one or more syntactic objects have a property or stand in some relation to one another. The property or

More information

A Logic Primer. Stavros Tripakis University of California, Berkeley

A Logic Primer. Stavros Tripakis University of California, Berkeley EE 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2015 A Logic Primer Stavros Tripakis University of California, Berkeley Stavros Tripakis (UC Berkeley) EE 144/244,

More information

Propositional Logic: Syntax

Propositional Logic: Syntax Logic Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about time (and programs) epistemic

More information

The non-logical symbols determine a specific F OL language and consists of the following sets. Σ = {Σ n } n<ω

The non-logical symbols determine a specific F OL language and consists of the following sets. Σ = {Σ n } n<ω 1 Preliminaries In this chapter we first give a summary of the basic notations, terminology and results which will be used in this thesis. The treatment here is reduced to a list of definitions. For the

More information

First Order Logic (1A) Young W. Lim 11/18/13

First Order Logic (1A) Young W. Lim 11/18/13 Copyright (c) 2013. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software

More information

Propositional Logic: Deductive Proof & Natural Deduction Part 1

Propositional Logic: Deductive Proof & Natural Deduction Part 1 Propositional Logic: Deductive Proof & Natural Deduction Part 1 CS402, Spring 2016 Shin Yoo Deductive Proof In propositional logic, a valid formula is a tautology. So far, we could show the validity of

More information

On the Complexity of the Reflected Logic of Proofs

On the Complexity of the Reflected Logic of Proofs On the Complexity of the Reflected Logic of Proofs Nikolai V. Krupski Department of Math. Logic and the Theory of Algorithms, Faculty of Mechanics and Mathematics, Moscow State University, Moscow 119899,

More information

COMP 3161/9161 Week 2

COMP 3161/9161 Week 2 Concepts of Programming Languages Judgements, Inference Rules & Proofs Lecturer: Gabriele Keller Tutor: Liam O Connor University of New South Wales School of Computer Sciences & Engineering Sydney, Australia

More information

Automated Reasoning Lecture 2: Propositional Logic and Natural Deduction

Automated Reasoning Lecture 2: Propositional Logic and Natural Deduction Automated Reasoning Lecture 2: Propositional Logic and Natural Deduction Jacques Fleuriot jdf@inf.ed.ac.uk Logic Puzzles 1. Tomorrow will be sunny or rainy. Tomorrow will not be sunny. What will the weather

More information

Logic, Human Logic, and Propositional Logic. Human Logic. Fragments of Information. Conclusions. Foundations of Semantics LING 130 James Pustejovsky

Logic, Human Logic, and Propositional Logic. Human Logic. Fragments of Information. Conclusions. Foundations of Semantics LING 130 James Pustejovsky Logic, Human Logic, and Propositional Logic Foundations of Semantics LING 3 James Pustejovsky Human Logic Thanks to Michael Genesereth of Stanford for use of some slides Fragments of Information Conclusions

More information

Overview. I Review of natural deduction. I Soundness and completeness. I Semantics of propositional formulas. I Soundness proof. I Completeness proof.

Overview. I Review of natural deduction. I Soundness and completeness. I Semantics of propositional formulas. I Soundness proof. I Completeness proof. Overview I Review of natural deduction. I Soundness and completeness. I Semantics of propositional formulas. I Soundness proof. I Completeness proof. Propositional formulas Grammar: ::= p j (:) j ( ^ )

More information

Logic. Propositional Logic: Syntax. Wffs

Logic. Propositional Logic: Syntax. Wffs Logic Propositional Logic: Syntax Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about

More information

A Logic Primer. Stavros Tripakis University of California, Berkeley. Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2014 A Logic Primer 1 / 35

A Logic Primer. Stavros Tripakis University of California, Berkeley. Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2014 A Logic Primer 1 / 35 EE 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2014 A Logic Primer Stavros Tripakis University of California, Berkeley Stavros Tripakis (UC Berkeley) EE 144/244,

More information

Lecture Notes on Inductive Definitions

Lecture Notes on Inductive Definitions Lecture Notes on Inductive Definitions 15-312: Foundations of Programming Languages Frank Pfenning Lecture 2 August 28, 2003 These supplementary notes review the notion of an inductive definition and give

More information

A Uniform Substitution Calculus for Differential Dynamic Logic

A Uniform Substitution Calculus for Differential Dynamic Logic A Uniform Substitution Calculus for Differential Dynamic Logic arxiv:1503.01981v2 [cs.lo] 25 Mar 2015 André Platzer December 28, 2018 Abstract This paper introduces a new proof calculus for differential

More information

Mathematical Logic. Reasoning in First Order Logic. Chiara Ghidini. FBK-IRST, Trento, Italy

Mathematical Logic. Reasoning in First Order Logic. Chiara Ghidini. FBK-IRST, Trento, Italy Reasoning in First Order Logic FBK-IRST, Trento, Italy April 12, 2013 Reasoning tasks in FOL Model checking Question: Is φ true in the interpretation I with the assignment a? Answer: Yes if I = φ[a]. No

More information

Introduction to first-order logic:

Introduction to first-order logic: Introduction to first-order logic: First-order structures and languages. Terms and formulae in first-order logic. Interpretations, truth, validity, and satisfaction. Valentin Goranko DTU Informatics September

More information

Logic Background (1A) Young W. Lim 12/14/15

Logic Background (1A) Young W. Lim 12/14/15 Young W. Lim 12/14/15 Copyright (c) 2014-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

More information

Lecture 14 Rosser s Theorem, the length of proofs, Robinson s Arithmetic, and Church s theorem. Michael Beeson

Lecture 14 Rosser s Theorem, the length of proofs, Robinson s Arithmetic, and Church s theorem. Michael Beeson Lecture 14 Rosser s Theorem, the length of proofs, Robinson s Arithmetic, and Church s theorem Michael Beeson The hypotheses needed to prove incompleteness The question immediate arises whether the incompleteness

More information

Programming Languages and Types

Programming Languages and Types Programming Languages and Types Klaus Ostermann based on slides by Benjamin C. Pierce Where we re going Type Systems... Type systems are one of the most fascinating and powerful aspects of programming

More information

COMP219: Artificial Intelligence. Lecture 19: Logic for KR

COMP219: Artificial Intelligence. Lecture 19: Logic for KR COMP219: Artificial Intelligence Lecture 19: Logic for KR 1 Overview Last time Expert Systems and Ontologies Today Logic as a knowledge representation scheme Propositional Logic Syntax Semantics Proof

More information

Chapter 3: Propositional Calculus: Deductive Systems. September 19, 2008

Chapter 3: Propositional Calculus: Deductive Systems. September 19, 2008 Chapter 3: Propositional Calculus: Deductive Systems September 19, 2008 Outline 1 3.1 Deductive (Proof) System 2 3.2 Gentzen System G 3 3.3 Hilbert System H 4 3.4 Soundness and Completeness; Consistency

More information

COMP219: Artificial Intelligence. Lecture 19: Logic for KR

COMP219: Artificial Intelligence. Lecture 19: Logic for KR COMP219: Artificial Intelligence Lecture 19: Logic for KR 1 Overview Last time Expert Systems and Ontologies Today Logic as a knowledge representation scheme Propositional Logic Syntax Semantics Proof

More information

Review for Midterm 1. Andreas Klappenecker

Review for Midterm 1. Andreas Klappenecker Review for Midterm 1 Andreas Klappenecker Topics Chapter 1: Propositional Logic, Predicate Logic, and Inferences Rules Chapter 2: Sets, Functions (Sequences), Sums Chapter 3: Asymptotic Notations and Complexity

More information

Hoare Examples & Proof Theory. COS 441 Slides 11

Hoare Examples & Proof Theory. COS 441 Slides 11 Hoare Examples & Proof Theory COS 441 Slides 11 The last several lectures: Agenda Denotational semantics of formulae in Haskell Reasoning using Hoare Logic This lecture: Exercises A further introduction

More information

Lecture 2: Syntax. January 24, 2018

Lecture 2: Syntax. January 24, 2018 Lecture 2: Syntax January 24, 2018 We now review the basic definitions of first-order logic in more detail. Recall that a language consists of a collection of symbols {P i }, each of which has some specified

More information

Fundamentals of Software Engineering

Fundamentals of Software Engineering Fundamentals of Software Engineering First-Order Logic Ina Schaefer Institute for Software Systems Engineering TU Braunschweig, Germany Slides by Wolfgang Ahrendt, Richard Bubel, Reiner Hähnle (Chalmers

More information

Kleene realizability and negative translations

Kleene realizability and negative translations Q E I U G I C Kleene realizability and negative translations Alexandre Miquel O P. D E. L Ō A U D E L A R April 21th, IMERL Plan 1 Kleene realizability 2 Gödel-Gentzen negative translation 3 Lafont-Reus-Streicher

More information

CSCE 222 Discrete Structures for Computing. Proofs. Dr. Hyunyoung Lee. !!!!! Based on slides by Andreas Klappenecker

CSCE 222 Discrete Structures for Computing. Proofs. Dr. Hyunyoung Lee. !!!!! Based on slides by Andreas Klappenecker CSCE 222 Discrete Structures for Computing Proofs Dr. Hyunyoung Lee Based on slides by Andreas Klappenecker 1 What is a Proof? A proof is a sequence of statements, each of which is either assumed, or follows

More information

Handout: Proof of the completeness theorem

Handout: Proof of the completeness theorem MATH 457 Introduction to Mathematical Logic Spring 2016 Dr. Jason Rute Handout: Proof of the completeness theorem Gödel s Compactness Theorem 1930. For a set Γ of wffs and a wff ϕ, we have the following.

More information

Software Engineering using Formal Methods

Software Engineering using Formal Methods Software Engineering using Formal Methods First-Order Logic Wolfgang Ahrendt 26th September 2013 SEFM: First-Order Logic 130926 1 / 53 Install the KeY-Tool... KeY used in Friday s exercise Requires: Java

More information

Propositional Logic: Models and Proofs

Propositional Logic: Models and Proofs Propositional Logic: Models and Proofs C. R. Ramakrishnan CSE 505 1 Syntax 2 Model Theory 3 Proof Theory and Resolution Compiled at 11:51 on 2016/11/02 Computing with Logic Propositional Logic CSE 505

More information

The Curry-Howard Isomorphism

The Curry-Howard Isomorphism The Curry-Howard Isomorphism Software Formal Verification Maria João Frade Departmento de Informática Universidade do Minho 2008/2009 Maria João Frade (DI-UM) The Curry-Howard Isomorphism MFES 2008/09

More information

Notes for the Proof Theory Course

Notes for the Proof Theory Course Notes for the Proof Theory Course Master 1 Informatique, Univ. Paris 13 Damiano Mazza Contents 1 Propositional Classical Logic 5 1.1 Formulas and truth semantics.................... 5 1.2 Atomic negation...........................

More information

07 Equational Logic and Algebraic Reasoning

07 Equational Logic and Algebraic Reasoning CAS 701 Fall 2004 07 Equational Logic and Algebraic Reasoning Instructor: W. M. Farmer Revised: 17 November 2004 1 What is Equational Logic? Equational logic is first-order logic restricted to languages

More information

Warm-Up Problem. Is the following true or false? 1/35

Warm-Up Problem. Is the following true or false? 1/35 Warm-Up Problem Is the following true or false? 1/35 Propositional Logic: Resolution Carmen Bruni Lecture 6 Based on work by J Buss, A Gao, L Kari, A Lubiw, B Bonakdarpour, D Maftuleac, C Roberts, R Trefler,

More information

A MODAL EXTENSION OF FIRST ORDER CLASSICAL LOGIC Part I

A MODAL EXTENSION OF FIRST ORDER CLASSICAL LOGIC Part I Bulletin of the Section of Logic Volume 32/4 (2003), pp. 165 177 George Tourlakis 1 Francisco Kibedi A MODAL EXTENSION OF FIRST ORDER CLASSICAL LOGIC Part I Abstract We formalize a fragment of the metatheory

More information

3. Only sequences that were formed by using finitely many applications of rules 1 and 2, are propositional formulas.

3. Only sequences that were formed by using finitely many applications of rules 1 and 2, are propositional formulas. 1 Chapter 1 Propositional Logic Mathematical logic studies correct thinking, correct deductions of statements from other statements. Let us make it more precise. A fundamental property of a statement is

More information

The Importance of Being Formal. Martin Henz. February 5, Propositional Logic

The Importance of Being Formal. Martin Henz. February 5, Propositional Logic The Importance of Being Formal Martin Henz February 5, 2014 Propositional Logic 1 Motivation In traditional logic, terms represent sets, and therefore, propositions are limited to stating facts on sets

More information

AAA615: Formal Methods. Lecture 2 First-Order Logic

AAA615: Formal Methods. Lecture 2 First-Order Logic AAA615: Formal Methods Lecture 2 First-Order Logic Hakjoo Oh 2017 Fall Hakjoo Oh AAA615 2017 Fall, Lecture 2 September 24, 2017 1 / 29 First-Order Logic An extension of propositional logic with predicates,

More information

Fundamentals of Software Engineering

Fundamentals of Software Engineering Fundamentals of Software Engineering First-Order Logic Ina Schaefer Institute for Software Systems Engineering TU Braunschweig, Germany Slides by Wolfgang Ahrendt, Richard Bubel, Reiner Hähnle (Chalmers

More information

First Order Logic: Syntax and Semantics

First Order Logic: Syntax and Semantics CS1081 First Order Logic: Syntax and Semantics COMP30412 Sean Bechhofer sean.bechhofer@manchester.ac.uk Problems Propositional logic isn t very expressive As an example, consider p = Scotland won on Saturday

More information

Examples: P: it is not the case that P. P Q: P or Q P Q: P implies Q (if P then Q) Typical formula:

Examples: P: it is not the case that P. P Q: P or Q P Q: P implies Q (if P then Q) Typical formula: Logic: The Big Picture Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about time (and

More information

Consequence Relations and Natural Deduction

Consequence Relations and Natural Deduction Consequence Relations and Natural Deduction Joshua D Guttman Worcester Polytechnic Institute September 16, 2010 Contents 1 Consequence Relations 1 2 A Derivation System for Natural Deduction 3 3 Derivations

More information

Logic: Propositional Logic (Part I)

Logic: Propositional Logic (Part I) Logic: Propositional Logic (Part I) Alessandro Artale Free University of Bozen-Bolzano Faculty of Computer Science http://www.inf.unibz.it/ artale Descrete Mathematics and Logic BSc course Thanks to Prof.

More information

A Complete Uniform Substitution Calculus for Differential Dynamic Logic

A Complete Uniform Substitution Calculus for Differential Dynamic Logic J Autom Reasoning (2017) 59:219-265 DOI 10.1007/s10817-016-9385-1 A Complete Uniform Substitution Calculus for Differential Dynamic Logic André Platzer Received: 23 December 2015 / Accepted: 29 July 2016

More information

Relations to first order logic

Relations to first order logic An Introduction to Description Logic IV Relations to first order logic Marco Cerami Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic Olomouc, November 6 th 2014 Marco

More information

Reasoning with Higher-Order Abstract Syntax and Contexts: A Comparison

Reasoning with Higher-Order Abstract Syntax and Contexts: A Comparison 1 Reasoning with Higher-Order Abstract Syntax and Contexts: A Comparison Amy Felty University of Ottawa July 13, 2010 Joint work with Brigitte Pientka, McGill University 2 Comparing Systems We focus on

More information

Logic for Computer Science - Week 4 Natural Deduction

Logic for Computer Science - Week 4 Natural Deduction Logic for Computer Science - Week 4 Natural Deduction 1 Introduction In the previous lecture we have discussed some important notions about the semantics of propositional logic. 1. the truth value of a

More information

Overview. Knowledge-Based Agents. Introduction. COMP219: Artificial Intelligence. Lecture 19: Logic for KR

Overview. Knowledge-Based Agents. Introduction. COMP219: Artificial Intelligence. Lecture 19: Logic for KR COMP219: Artificial Intelligence Lecture 19: Logic for KR Last time Expert Systems and Ontologies oday Logic as a knowledge representation scheme Propositional Logic Syntax Semantics Proof theory Natural

More information

Outline. Overview. Syntax Semantics. Introduction Hilbert Calculus Natural Deduction. 1 Introduction. 2 Language: Syntax and Semantics

Outline. Overview. Syntax Semantics. Introduction Hilbert Calculus Natural Deduction. 1 Introduction. 2 Language: Syntax and Semantics Introduction Arnd Poetzsch-Heffter Software Technology Group Fachbereich Informatik Technische Universität Kaiserslautern Sommersemester 2010 Arnd Poetzsch-Heffter ( Software Technology Group Fachbereich

More information

Dynamic Semantics. Dynamic Semantics. Operational Semantics Axiomatic Semantics Denotational Semantic. Operational Semantics

Dynamic Semantics. Dynamic Semantics. Operational Semantics Axiomatic Semantics Denotational Semantic. Operational Semantics Dynamic Semantics Operational Semantics Denotational Semantic Dynamic Semantics Operational Semantics Operational Semantics Describe meaning by executing program on machine Machine can be actual or simulated

More information

Review 1. Andreas Klappenecker

Review 1. Andreas Klappenecker Review 1 Andreas Klappenecker Summary Propositional Logic, Chapter 1 Predicate Logic, Chapter 1 Proofs, Chapter 1 Sets, Chapter 2 Functions, Chapter 2 Sequences and Sums, Chapter 2 Asymptotic Notations,

More information

06 From Propositional to Predicate Logic

06 From Propositional to Predicate Logic Martin Henz February 19, 2014 Generated on Wednesday 19 th February, 2014, 09:48 1 Syntax of Predicate Logic 2 3 4 5 6 Need for Richer Language Predicates Variables Functions 1 Syntax of Predicate Logic

More information

Cogito ergo sum non machina!

Cogito ergo sum non machina! Cogito ergo sum non machina! About Gödel s First Incompleteness Theorem and Turing machines. Ricardo Pereira Tassinari 1 Philosophy Department of State University of São Paulo - UNESP - Campus Marília

More information