Searching for variations of fundamental constants using the atomic clocks ensemble at LNE-SYRTE

Size: px
Start display at page:

Download "Searching for variations of fundamental constants using the atomic clocks ensemble at LNE-SYRTE"

Transcription

1 Systèmes de référence Temps-Espace Searching for variations of fundamental constants using the atomic clocks ensemble at LNE-SYRTE Luigi De Sarlo, M Favier, R Tyumenev, R Le Targat, J Lodewyck, P Wolf, J Guéna, S Bize PSAS 2016 Jerusalem, Israel

2 Einstein s equivalence principle Universality of free fall: cannonball and feather fall the same way as do Rb and Cs atoms Local position invariance: coupling constants independent on (space-)time EEP! α Local Lorentz invariance: constants independent on gravitational potential α α

3 Can we test this in the lab? Violation of local position invariance: coupling constants depend on (space-)time Violation of local Lorentz invariance: coupling constants depend on gravitational potential R XY = X Y = f(,m p /m e,m q / 3 ) so do atomic frequencies ratios!

4 Can we test this in the lab? Violation of local position invariance: coupling constants depend on (space-)time Violation of local Lorentz invariance: coupling constants depend on gravitational potential R XY = X Y = f(,m p /m e,m q / 3 ) so do atomic frequencies ratios! Two examples: d ln R Rb/Cs = 0.49 d ln 0.021d ln(m q / 3 ) d ln R Hg/Sr =0.81d ln T.H. Dinh, et al., PRA (2009) E. J. Angstmann, et al., PRA (2004)

5 Comparisons are the key Local oscillator Useful signal: to be compared! Correction Atomic reference t Rabi = 100 ms ω clock E b E a Interrogation Two families of frequency comparisons: local, distant.

6 The clock ensemble at SYRTE GNSS GNSS Telecom GPS LAB 1 LAB 2

7 The clock ensemble at SYRTE GNSS GNSS Telecom GPS LAB 1 LAB 2 Cs beam UTC(OP) H-maser

8 The clock ensemble at SYRTE GNSS GNSS Telecom GPS LAB 1 LAB 2 Cs beam UTC(OP) H-maser FO1 Cs fountain Cryo DRO FO2 dual Rb & Cs fountain FOM transportable Cs fountain Microwave clocks

9 The clock ensemble at SYRTE GNSS GNSS Telecom GPS LAB 1 LAB 2 Cs beam UTC(OP) Optical frequency measurement Optical frequency combs H-maser Spectral hole burning FO1 Cs fountain Cryo DRO FO2 dual Rb & Cs fountain FOM transportable Cs fountain Microwave clocks

10 The clock ensemble at SYRTE GNSS GNSS Telecom Coherent optical fiber links Fiber-based TF dissemination GPS LAB 1 LAB 2 1.5um ultrastable laser Cs beam UTC(OP) Optical frequency measurement Optical frequency combs H-maser Spectral hole burning FO1 Cs fountain Cryo DRO FO2 dual Rb & Cs fountain FOM transportable Cs fountain Microwave clocks

11 The clock ensemble at SYRTE GNSS GNSS Telecom Coherent optical fiber links Fiber-based TF dissemination GPS LAB 1 LAB 2 1.5um ultrastable laser Cs beam UTC(OP) Optical frequency measurement Optical frequency combs H-maser Spectral hole burning FO1 Cs fountain Cryo DRO FO2 dual Rb & Cs fountain FOM transportable Cs fountain Microwave clocks

12 The clock ensemble at SYRTE GNSS GNSS Telecom Coherent optical fiber links GPS Fiber-based TF dissemination 1.5um ultrastable laser LAB 1 LAB 2 UTC(OP) Cs beam Optical frequency measurement Optical frequency combs Spectral hole burning H-maser Optical clocks FO1 Cs fountain 698 nm ultrastable laser Cryo DRO FOM transportable Cs fountain nm ultrastable laser FO2 dual Rb & Cs fountain Microwave clocks Sr optical lattice clocks Hg optical lattice clock

13 Outline 1. Experiments with atomic fountains 1. Variation of fundamental constants 2. Searching for dark matter candidates 2. The mercury optical lattice clock at SYRTE 1. Why mercury 2. Experimental setup 3. Error budget 3. Optical clock comparisons 1. Sr/Cs local comparisons 2. Sr/Sr distant comparisons 3. Hg/Sr local comparison 4. Perspectives

14 Experiment with atomic fountains: testing EEP with clocks

15 Experiments with atomic fountains Cryo Sapphire Ocillator (with UWA) Atomic quality factor: Typical performances: Stability: Cs: 6 x 1s Rb: 4.5 x 1s J Guéna et al., IEEE TUFFC 59, 391 (2012) J Guéna et al., Metrologia 51, 108 (2014) the LNE-SYRTE reference hydrogen maser condary Frequency Standard from October is H-maser 1400XXX in the BIPM clock correspond to interruptions of FO2-Rb for efurbishing the set-up. Fig. 7. Fractional frequency instability characterized in terms of the Allan standard deviation observed with the FO2-Rb Secondary Frequency Standard and the metrology chain of Fig. 5. Red squares: Instability obtained with FO2-Rb operated at high atom number. The first points reflect the dynamics of the digital servo system locking the 6.8 GHz microwave signal to the atomic transition. For > 1000 s, the phase lock loop of the ultra-stable reference to the H-maser is effective. Therefore, data reflects the behavior of the H-maser Uncertainty: Cs: 2.1 x Rb: 3.2 x 10-16

16 Variation of fundamental constants J Guéna et al., Phys. Rev. Lett. 109, (2012) M Abgral et al., C. R. Phys. 16, 461 (2015) d ν ln( ν d dt Rb Cs ν ln( ν Rb Cs ) 17 = ( 10.7 ± 4.9) 10 yr 16 ) = C + (0.8 ± 0.9) 10 cos[ Ω ( t t 1 perihelion )] c² d du ν ln( ν Rb Cs ) = ( 4.7 ± 5.3) 10 7

17 Variation of fundamental constants J Guéna et al., Phys. Rev. Lett. 109, (2012) M Abgral et al., C. R. Phys. 16, 461 (2015) d ν ln( ν d dt Rb Cs ν ln( ν Rb Cs ) 17 = ( 10.7 ± 4.9) 10 yr 16 ) = C + (0.8 ± 0.9) 10 cos[ Ω ( t t 1 perihelion )] c² d du ν ln( ν Rb Cs ) = ( 4.7 ± 5.3) 10 7

18 Variation of fundamental constants J Guéna et al., Phys. Rev. Lett. 109, (2012) M Abgral et al., C. R. Phys. 16, 461 (2015) d ν ln( ν d dt Rb Cs ν ln( ν Rb Cs ) 17 = ( 10.7 ± 4.9) 10 yr 16 ) = C + (0.8 ± 0.9) 10 cos[ Ω ( t t 1 perihelion )] c² d du ν ln( ν Rb Cs ) = ( 4.7 ± 5.3) 10 7 Differential redshift test β ( 87 Rb) β ( 133 Cs) = ( 4.7 ± 5.3) 10 7 Variation of constants with gravity d dt ln( α 0.49 ( m q / Λ QCD ) ) = ( 4.7 ± 5.3) yr 1

19 Searching for Dark matter candidates using hyperfine freq. comparisons arxiv: Simplest version of post-gr model (scalar tensor theory) : c 2 V ( )=2 m 2 2 L int = d e F 2 ~ 4µ 0 self-interaction coupling to EM Non-zero mass implies oscillation at Compton frequency: +3H +! 2 = 4 G c 2 L int! = m c 2 /~ and no pressure (candidate for DM). We can fix φ0 DM.

20 Searching for Dark matter candidates using hyperfine freq. comparisons arxiv: Simplest version of post-gr model (scalar tensor theory) : c 2 V ( )=2 m 2 2 L int = d e F 2 ~ 4µ 0 self-interaction coupling to EM Non-zero mass implies oscillation at Compton frequency: +3H +! 2 = 4 G c 2 L int! = m c 2 /~ and no pressure (candidate for DM). We can fix φ0 DM. Coupling to EM implies violation of EEP at the frequency of φ: ( )= (1 + d e ) T. Damour and J. F. Donoghue, Phys. Rev. D 82, (2010)

21 Analysing 6 years of Cs vs. Rb arxiv: We look for oscillation in the Cs/Rb frequency ratio: Log(P) Fit to data (LS + Bayes MC): A + S sin(! t)+c cos(! t) Compute power and its variance: P = N(C 2 + S 2 )/(4 2 ) Log(ω/rad s -1 )

22 Analysing 6 years of Cs vs. Rb arxiv: We look for oscillation in the Cs/Rb frequency ratio: Log(P) Fit to data (LS + Bayes MC): A + S sin(! t)+c cos(! t) Compute power and its variance: P = N(C 2 + S 2 )/(4 2 ) Log(ω/rad s -1 ) No detection, but limit to coupling as a function of mass: Log(d e (d m -d g )) Log(m ϕ c 2 /ev) - Plot with full coupling. - Complementary to WEP violation - When limited to EM coupling this is the most stringent test. K. Van Tilburg, et al., PRL 115, (2015) A. Arvanitaki,et al. PRL 116, (2016)

23 t Rabi = 260 ms FWHM: 3.4 Hz Beyond atomic fountains: Optical lattice clocks

24 The mercury optical lattice clock - Fermionic isotope 199 Hg has I=1/2 - Weak sensitivity to black body radiation shift (Sr/30, Yb/15) - Clock transition frequency sensitive to time variation of α - Excellent prospects for reproducibility at room T H. Katori et al., Phys. Rev. Lett. 91, (2003) Hachisu et al., Phys. Rev. Lett. 100, (2008) L. Yi et al., Phys. Rev. Lett (2011) A. Ludlow et al., Rev. Mod. Phys. 87, 637 (2015)

25 The mercury optical lattice clock - Fermionic isotope 199 Hg has I=1/2 - Weak sensitivity to black body radiation shift (Sr/30, Yb/15) - Clock transition frequency sensitive to time variation of α - Excellent prospects for reproducibility at room T t Rabi = 260 ms FWHM: 3.4 Hz Rabi Spectroscopy : FWMH nm Q at H. Katori et al., Phys. Rev. Lett. 91, (2003) Hachisu et al., Phys. Rev. Lett. 100, (2008) L. Yi et al., Phys. Rev. Lett (2011) A. Ludlow et al., Rev. Mod. Phys. 87, 637 (2015)

26 Experimental setup: UV challenge 1. Cooling 2. Trapping 3. Selection 4. Interrogation 5. detection PC DAQ 3D MOT Pumping Hg reservoir

27 Experimental setup: UV challenge 1. Cooling 2. Trapping 3. Selection 4. Interrogation 5. detection PC DAQ 3D MOT Pumping Hg reservoir Sat absorption Enh SHG BBO 254 nm Seed ECDL 1015 nm Simple SHG ppln 507 nm Fiber ampli 15 W

28 Experimental setup: UV challenge 1. Cooling 2. Trapping 3. Selection 4. Interrogation 5. detection PC Enh SHG LBO 326 nm Ti:Sa laser 725 nm Wavemeter unc. 10 MHz DAQ 3D MOT Pumping Hg reservoir Sat absorption Enh SHG BBO 254 nm Seed ECDL 1015 nm Simple SHG ppln 507 nm Fiber ampli 15 W

29 Experimental setup: UV challenge 1. Cooling 2. Trapping 3. Selection 4. Interrogation 5. detection PC Enh SHG LBO 326 nm Ti:Sa laser 725 nm Wavemeter unc. 10 MHz DAQ Lattice build-up cavity 3D MOT Pumping Hg reservoir Sat absorption Enh SHG BBO 254 nm Seed ECDL 1015 nm Simple SHG ppln 507 nm Fiber ampli 15 W

30 Experimental setup: UV challenge 1. Cooling 2. Trapping 3. Selection 4. Interrogation 5. detection PC Enh SHG LBO 326 nm Ti:Sa laser 725 nm Wavemeter unc. 10 MHz DAQ USC 3 x flicker Lattice build-up cavity 3D MOT Pumping Hg reservoir PDH Fiber laser nm Sat absorption Enh SHG BBO 254 nm Seed ECDL 1015 nm Simple SHG ppln 507 nm Fiber ampli 15 W

31 Experimental setup: UV challenge 1. Cooling 2. Trapping 3. Selection 4. Interrogation 5. detection PC Enh SHG LBO 326 nm Ti:Sa laser 725 nm Wavemeter unc. 10 MHz DAQ USC 3 x flicker Lattice build-up cavity 3D MOT Pumping Hg reservoir PDH Fiber laser nm FIBER COMB (for comparison) Enh SHG BBO 266 nm Enh SHG ppslt 531nm Sat absorption Enh SHG BBO 254 nm Seed ECDL 1015 nm Simple SHG ppln 507 nm Fiber ampli 15 W

32 Experimental setup: UV challenge 1. Cooling 2. Trapping 3. Selection 4. Interrogation 5. detection PC Enh SHG LBO 326 nm Ti:Sa laser 725 nm Wavemeter unc. 10 MHz DAQ USC 3 x flicker Lattice build-up cavity 3D MOT Pumping Hg reservoir PDH Fiber laser nm FIBER COMB (for comparison) Enh SHG BBO 266 nm Enh SHG ppslt 531nm Sat absorption Enh SHG BBO 254 nm Seed ECDL 1015 nm Simple SHG ppln 507 nm Fiber ampli 15 W

33 Experimental setup: UV challenge 1. Cooling 2. Trapping 3. Selection 4. Interrogation 5. detection PC Enh SHG LBO 326 nm Ti:Sa laser 725 nm Wavemeter unc. 10 MHz DAQ USC 3 x flicker EM CCD Lattice build-up cavity 3D MOT Pumping Hg reservoir PDH Fiber laser nm FIBER COMB (for comparison) Enh SHG BBO 266 nm Enh SHG ppslt 531nm Sat absorption Enh SHG BBO 254 nm Seed ECDL 1015 nm Simple SHG ppln 507 nm Fiber ampli 15 W

34 Experimental setup: UV challenge 1. Cooling 2. Trapping 3. Selection 4. Interrogation 5. detection PC Enh SHG LBO 326 nm Ti:Sa laser 725 nm Wavemeter unc. 10 MHz DAQ USC 3 x flicker EM CCD Lattice build-up cavity 3D MOT Pumping Hg reservoir PDH Fiber laser nm FIBER COMB (for comparison) Enh SHG BBO 266 nm Enh SHG ppslt 531nm Sat absorption Enh SHG BBO 254 nm Seed ECDL 1015 nm Simple SHG ppln 507 nm Fiber ampli 15 W

35 Experimental setup: UV challenge 1. Cooling 2. Trapping 3. Selection 4. Interrogation 5. detection PC Enh SHG LBO 326 nm Ti:Sa laser 725 nm Wavemeter unc. 10 MHz DAQ USC 3 x flicker EM CCD Lattice build-up cavity 3D MOT Pumping Hg reservoir PDH Fiber laser nm FIBER COMB (for comparison) Enh SHG BBO 266 nm Enh SHG ppslt 531nm Sat absorption Enh SHG BBO 254 nm Seed ECDL 1015 nm Simple SHG ppln 507 nm Fiber ampli 15 W

36 Mercury clock: uncertainty budget Corr. (10-17 ) Unc. (10-17 ) Second order Zeeman Cold collisions Background gas Lattice light shift linear Lattice light shift non BBR Probe light shift AOM chirp TOTAL

37 Mercury clock: uncertainty budget Corr. (10-17 ) Unc. (10-17 ) Second order Zeeman Cold collisions Background gas Lattice light shift linear Lattice light shift non BBR Probe light shift AOM chirp y/yold 1 (10 15 ) TOTAL

38 Mercury clock: uncertainty budget Corr. (10-17 ) Unc. (10-17 ) Second order Zeeman Cold collisions Background gas Lattice light shift linear Lattice light shift non BBR Probe light shift AOM chirp y/yold 1 (10 15 ) TOTAL Most accurate: 3.6 x 10-16

39 Mercury clock: uncertainty budget Corr. (10-17 ) Unc. (10-17 ) Second order Zeeman Cold collisions Background gas Lattice light shift linear Lattice light shift non BBR Probe light shift AOM chirp y/yold 1 (10 15 ) TOTAL Most accurate: 3.6 x Light shift is dominant -Some systematics are limited by statistics -For a few effects only theoretical estimation available -Best clocks in the : room for improvement!

40 Main systematic: lattice light shift - Differential Measurement Uref = 56 ER 362nm) U 1 from 56 to 25 E R LLS = 1/2[ + (U L ) + (U REF )+ + (U L ) (U REF )] - Magic wavelength determination ν magic = (21) MHz Good agreement with RIKEN group Yamanaka et al., PRL 114, (2015) - Correction at operating point of the clock (56 E R ) (4 ± 13.8) x from linear term (-6 ± 3.6) x from computed unresolved non linear contributions Katori et al., PRA 91, (2015)

41 Absolute frequency of the Sr clock transition ν Sr /Hz MJD The future of clock-based tests: Optical to optical clock comparisons

42 Clock comparisons at SYRTE CSO + H-maser + Fountains USC 1550 nm Fiber comb f 0 mixed-out AOM AOM Hg USC 1062 nm Sr USC 698 nm

43 International measurements of Sr/Cs Latest measurement at SYRTE: arxiv: ν Sr /Hz MJD SYRTE PTB JILA Univ. Tokyo NICT NMIJ NIM

44 International measurements of Sr/Cs Latest measurement at SYRTE: arxiv: ν Sr /Hz MJD SYRTE PTB JILA Univ. Tokyo NICT NMIJ NIM - Excellent level of reproducibility at the international level - Agreement between the two best measurements at a few Large level arm (> 10 years) for testing EEP (mid /year) - Optical/Microwave ratio limited by the accuracy of atomic fountains

45 All-optical remote clock comparison SYRTE, LPL, PTB collaboration 1E-15 total Allan deviation σ y (τ) 1E-16 1E averaging time τ (s) C Lisdat et al., arxiv: (2015)

46 All-optical remote clock comparison SYRTE, LPL, PTB collaboration 1E-15 total Allan deviation σ y (τ) 1E-16 1E averaging time τ (s) - First long distance or international clock comparison with a fibre link - 10 times more resolution, and orders of magnitude faster than satellite comparison ( resolution after a few 1000 s) - record agreement between distant clocks (4±5) first link of a future backbone of fibre links in France/Europe C Lisdat et al., arxiv: (2015)

47 Mercury vs Sr: arxiv: Comparison stability (10-15 ): Best run: 1s Avg over 10 days: 1s Fract. Unc. (units of ) Sr clock 4.1 Hg clock 16.7 Optical-to-optical frequency ratio Link + Comb 1 U B (syst. total) 18 Fractional uncertainty: 1.8x10-16 U A (stat.) 5.0

48 Mercury vs Sr: arxiv: Comparison stability (10-15 ): Best run: 1s Avg over 10 days: 1s Fract. Unc. (units of ) Sr clock 4.1 Hg clock 16.7 Optical-to-optical frequency ratio Link + Comb 1 U B (syst. total) 18 Fractional uncertainty: 1.8x10-16 U A (stat.) Frequency ratio very sensitive to α variations - Uncertainty below the realisation of SI second

49 v Hg /v Sr : best reproduced physical quantity? Tuymenev et al., arxiv: (2016) 2015 Yamanaka et al., PRL 114, (2015) - Completely independent measurement - Beyond (slightly) current SI second 2016

50 v Hg /v Sr : best reproduced physical quantity? Tuymenev et al., arxiv: (2016) 2015 Yamanaka et al., PRL 114, (2015) - Completely independent measurement - Beyond (slightly) current SI second Great reproducibility at level: - similar to Sr/Cs - better than Yb/Sr - Can and will be used for testing GR

51 Summary & Perspectives

52 Perspectives - Fountains have >10 more years of data taking for TAI - Redefinition of the SI second - Exploiting optical clocks for fundamental physics tests - Towards accuracy Hg remains an excellent candidate for a reproducible room temperature frequency standard Measurement of non-linear lattice shifts (limitation?) - Valuable Hg/ frequency ratios Local Plenty of yet unmeasured frequency ratios are now available via optical fiber link networks in Europe (Hg/Yb + (E2), Hg/Yb + (E3), Hg/Sr + ) ACES

53 People & bibliography - Atomic fountains: M Abgrall, J Guéna, S Bize J Guéna et al., IEEE TUFFC 59, 391 (2012) J Guéna et al., Metrologia 51, 108 (2014) - Theory and GR tests: P Wolf, P Delva A Hees et al., arxiv: (2016) J Guéna et al., Phys. Rev. Lett. 109, (2012) M Abgral et al., C. R. Phys. 16, 461 (2015) - Optical to optical comparisons: Combs: Y Le Coq, R Le Targat Strontium: J Lodewyck, R Le Targat Mercury: L De Sarlo, S Bize C Lisdat et al., arxiv: (2015) R Tyumenev et al., arxiv: (2016)

54 Thank you for your attention!

Clock tests of space-time variation of fundamental constants

Clock tests of space-time variation of fundamental constants 1 Systèmes de Référence Temps-Espace Clock tests of space-time variation of fundamental constants J. Guéna, S. Bize, M. Abgrall, L. De Sarlo, Ph. Laurent, Y. Le Coq, R. Le Targat, J. Lodewyck, P. Rosenbusch,

More information

Optical clocks and fibre links. Je ro me Lodewyck

Optical clocks and fibre links. Je ro me Lodewyck Optical clocks and fibre links Je ro me Lodewyck J. Lodewyck Optical clocks and fibre links GRAM, Juin 2016 1/34 Content 1 Atomic clocks 2 Optical lattice clocks 3 Clock comparisons 4 Comparison of optical

More information

Optical Lattice Clock with Neutral Mercury

Optical Lattice Clock with Neutral Mercury Optical Lattice Clock with Neutral Mercury R. Tyumenev, Z. Xu, J.J. McFerran, Y. Le Coq and S. Bize SYRTE, Observatoire de Paris 61 avenue de l Observatoire, 75014 Paris, France rinat.tyumenev@obspm.fr

More information

Journées Systèmes de Référence Spatio-Temporels 2011 September 19 th 2011 Vienna, Austria

Journées Systèmes de Référence Spatio-Temporels 2011 September 19 th 2011 Vienna, Austria Highly precise clocks to test fundamental physics M. Abgrall, S. Bize, A. Clairon, J. Guéna, M. Gurov, P. Laurent, Y. Le Coq, P. Lemonde, J. Lodewyck, L. Lorini, S. Mejri, J. Millo, J.J. McFerran, P. Rosenbusch,

More information

Transportable optical clocks: Towards gravimetry based on the gravitational redshift

Transportable optical clocks: Towards gravimetry based on the gravitational redshift Transportable optical clocks: Towards gravimetry based on the gravitational redshift A.A. Görlitz, P. Lemonde, C. Salomon, B.S. Schiller, U. Sterr and G. Tino C.Towards a Roadmap for Future Satellite Gravity

More information

Stationary 87 Sr optical lattice clock at PTB ( Accuracy, Instability, and Applications)

Stationary 87 Sr optical lattice clock at PTB ( Accuracy, Instability, and Applications) Stationary 87 Sr optical lattice clock at PTB ( Accuracy, Instability, and Applications) Ali Al-Masoudi, Sören Dörscher, Roman Schwarz, Sebastian Häfner, Uwe Sterr, and Christian Lisdat Outline Introduction

More information

Atom-based Frequency Metrology: Real World Applications

Atom-based Frequency Metrology: Real World Applications Atom-based Frequency Metrology: Real World Applications Anne Curtis National Physical Laboratory Teddington, UK Outline Introduction to atom-based frequency metrology Practical Uses - Tests of fundamental

More information

National Physical Laboratory, UK

National Physical Laboratory, UK Patrick Gill Geoff Barwood, Hugh Klein, Kazu Hosaka, Guilong Huang, Stephen Lea, Helen Margolis, Krzysztof Szymaniec, Stephen Webster, Adrian Stannard & Barney Walton National Physical Laboratory, UK Advances

More information

Comparison with an uncertainty of between two primary frequency standards

Comparison with an uncertainty of between two primary frequency standards Comparison with an uncertainty of 2 10-16 between two primary frequency standards Cipriana Mandache, C. Vian, P. Rosenbusch, H. Marion, Ph. Laurent, G. Santarelli, S. Bize and A. Clairon LNE-SYRTE, Observatoire

More information

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms. Nathan D. Lemke

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms. Nathan D. Lemke Optical Lattice Clock with Spin-1/2 Ytterbium Atoms Nathan D. Lemke number of seconds to gain/lose one second Clocks, past & present 10 18 10 15 one second per billion years one second per million years

More information

High Accuracy Strontium Ion Optical Clock

High Accuracy Strontium Ion Optical Clock High Accuracy Strontium Ion Optical Clock Helen Margolis, Geoff Barwood, Hugh Klein, Guilong Huang, Stephen Lea, Krzysztof Szymaniec and Patrick Gill T&F Club 15 th April 2005 Outline Optical frequency

More information

Overview of Frequency Metrology at NMIJ

Overview of Frequency Metrology at NMIJ Overview of Frequency Metrology at NMIJ Kazumoto Hosaka Time and Frequency Division (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST) APMP TCTF 2014 Daejeon, KOREA 20 th -

More information

Quantum Metrology Optical Atomic Clocks & Many-Body Physics

Quantum Metrology Optical Atomic Clocks & Many-Body Physics Quantum Metrology Optical Atomic Clocks & Many-Body Physics Jun Ye JILA, National Institute of Standards & Technology and University of Colorado APS 4CS Fall 2011 meeting, Tucson, Oct. 22, 2011 Many-body

More information

La Mesure du Temps et Tests Fondamentaux

La Mesure du Temps et Tests Fondamentaux La Mesure du Temps et Tests Fondamentaux Université de Toulouse 20 mai 2010 C. Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris http://www.lkb.ens.fr/recherche/atfroids/welcome http://www.lkb.ens.fr/%7esalomon/

More information

Demonstration of a Dual Alkali Rb/Cs Atomic Fountain Clock

Demonstration of a Dual Alkali Rb/Cs Atomic Fountain Clock 1 Demonstration of a Dual Alkali Rb/Cs Atomic Fountain Clock J. Guéna, P. Rosenbusch, Ph. Laurent, M. Abgrall, D. Rovera, M. Lours, G. Santarelli, M.E. Tobar, S. Bize and A. Clairon arxiv:1301.0483v1 [physics.atom-ph]

More information

Development of a compact Yb optical lattice clock

Development of a compact Yb optical lattice clock Development of a compact Yb optical lattice clock A. A. Görlitz, C. Abou-Jaoudeh, C. Bruni, B. I. Ernsting, A. Nevsky, S. Schiller C. ESA Workshop on Optical Atomic Clocks D. Frascati, 14 th 16 th of October

More information

Overview of Frequency Metrology at NMIJ

Overview of Frequency Metrology at NMIJ Overview of Frequency Metrology at NMIJ Tomonari SUZUYAMA (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST) APMP TCTF 2015 Beijing, CHINA 2 nd - 3 rd November 2015 Outline

More information

arxiv:physics/ v1 [physics.atom-ph] 7 Nov 2006

arxiv:physics/ v1 [physics.atom-ph] 7 Nov 2006 87 Sr lattice clock with inaccuracy below 5 Martin M. Boyd, Andrew D. Ludlow, Sebastian Blatt, Seth M. Foreman, Tetsuya Ido, Tanya Zelevinsky, and Jun Ye JILA, National Institute of Standards and Technology

More information

T&F Activities in NMIJ, AIST

T&F Activities in NMIJ, AIST November 15, 2010 T&F Activities in NMIJ, AIST APMP/TCTF meeting 2010 in Thailand National Metrology Institute of Japan (NMIJ) Contents 1. Structure of T&F division of NMIJ/AIST 2. UTC(NMIJ) generation

More information

Status Report on Time and Frequency Activities at NMIJ, AIST

Status Report on Time and Frequency Activities at NMIJ, AIST November 26, 2012 APMP TCTF meeting Status Report on Time and Frequency Activities at NMIJ, AIST Takeshi Ikegami Time and Frequency Division, National Metrology Institute of Japan, AIST Director Deputy-Directors

More information

Absolute frequency measurement at level based on the international atomic time

Absolute frequency measurement at level based on the international atomic time Journal of Physics: Conference Series PAPER OPEN ACCESS Absolute frequency measurement at 10-16 level based on the international atomic time To cite this article: H Hachisu et al 2016 J. Phys.: Conf. Ser.

More information

Status of the ACES/PHARAO mission

Status of the ACES/PHARAO mission XLII nd Rencontres de Moriond,, March 2007 «Gravitational Waves and Experimental Gravity» Status of the ACES/PHARAO mission Noël DIMARCQ, SYRTE, Paris Observatory What is ACES : payload, science objectives,

More information

An accurate optical lattice clock with 87Sr atoms

An accurate optical lattice clock with 87Sr atoms An accurate optical lattice clock with 87Sr atoms Rodolphe Le Targat, Xavier Baillard, Mathilde Fouché, Anders Brusch, Olivier Tcherbakoff, Giovanni D. Rovera, Pierre Lemonde To cite this version: Rodolphe

More information

When should we change the definition of the second?

When should we change the definition of the second? When should we change the definition of the second? Patrick Gill The new SI: units of measurement based on fundamental constants Discussion meeting, The Royal Society, London, 24-25 January 2011 Outline

More information

Titelmasterformat durch About atomic (optical) clocks Klicken bearbeiten

Titelmasterformat durch About atomic (optical) clocks Klicken bearbeiten Titelmasterformat durch About atomic (optical) clocks Klicken bearbeiten Christian Lisdat Goslar 12.02.2013 Gesetz über die Einheiten im Messwesen und die Zeitbestimmung Why clocks? 6 Physikalisch-Technische

More information

Applications of interferometers and clocks I. Christian Lisdat

Applications of interferometers and clocks I. Christian Lisdat Applications of interferometers and clocks I Christian Lisdat Outline: Keeping time Comparing clocks via the SI, satellites, fibres Interpreting clock comparisons geodesy, temporal variations of fundamental

More information

ATOMIC CLOCK ENSEMBLE IN SPACE Mission status

ATOMIC CLOCK ENSEMBLE IN SPACE Mission status ATOMIC CLOCK ENSEMBLE IN SPACE Mission status Luigi Cacciapuoti on behalf of the ACES team 30/03/2017 Rencontres de Moriond 2017 - Gravitation, La Thuile ACES Luigi Cacciapuoti 30/03/2017 Slide 2 The Columbus

More information

Frequency ratios of optical lattice clocks at the 17th decimal place

Frequency ratios of optical lattice clocks at the 17th decimal place LEAP 2016, 12th International Conference on Low Energy Antiproton Physics March 6-11, 2016, Kanazawa, Japan Frequency ratios of optical lattice clocks at the 17th decimal place Hidetoshi Katori ERATO Innovative

More information

Cold Atom Clocks on Earth and in Space Fundamental Tests and Applications. C. Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris

Cold Atom Clocks on Earth and in Space Fundamental Tests and Applications. C. Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris Cold Atom Clocks on Earth and in Space Fundamental Tests and Applications C. Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris http://www.lkb.ens.fr/recherche/atfroids/welcome Varenna

More information

Optical clocks as secondary frequency standards and re-definition of the second

Optical clocks as secondary frequency standards and re-definition of the second Optical clocks as secondary frequency standards and re-definition of the second Gérard Petit BIPM Time Department ISSI Workshop Spacetime metrology, clocks and relativistic geodesy 19-23 March 2018 ISSI

More information

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks Microwave and optical spectroscopy in r.f. traps Application to atomic clocks Microwave spectroscopy for hyperfine structure t measurements Energy of a hyperfine state Hyperfine coupling constants: A:

More information

Test of special relativity using a fiber network of optical clocks

Test of special relativity using a fiber network of optical clocks Test of special relativity using a fiber network of optical clocks P. DELVA SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, LNE Journée GPhys 2017

More information

The Yb lattice clock (and others!) at NIST for space-based applications

The Yb lattice clock (and others!) at NIST for space-based applications The Yb lattice clock (and others!) at NIST for space-based applications Andrew Ludlow, Jeff Sherman, Nathan Hinkley, Nate Phillips, Kyle Beloy, Nathan Lemke, and Chris Oates National Institute of Standards

More information

Dr. Jean Lautier-Gaud October, 14 th 2016

Dr. Jean Lautier-Gaud October, 14 th 2016 New generation of operational atomic clock: what perspectives for radio-astronomy & VLBI? Dr. Jean Lautier-Gaud October, 14 th 2016 Courtesy of Noel Dimarcq, SYRTE Content 1. Why is Muquans here? 2. What

More information

Towards a redefinition of the SI second by optical clocks: Achievements and challenges

Towards a redefinition of the SI second by optical clocks: Achievements and challenges Towards a redefinition of the SI second by optical clocks: Achievements and challenges Status of Optical Atomic Clocks Single Ion Clocks (Yb + Octupole Transition Clock) Neutral Atom Clocks (Sr Lattice

More information

Optical frequency comb and precision spectroscopy. Fundamental constants. Are fundamental constants constant? Precision spectroscopy

Optical frequency comb and precision spectroscopy. Fundamental constants. Are fundamental constants constant? Precision spectroscopy 27.01.2015 Optical frequency comb and precision spectroscopy Fundamental constants Are fundamental constants constant? Precision spectroscopy Frequency comb Drift of fine structure constant Fundamental

More information

Galileo gravitational Redshift test with Eccentric satellites (GREAT)

Galileo gravitational Redshift test with Eccentric satellites (GREAT) Galileo gravitational Redshift test with Eccentric satellites (GREAT) P. DELVA and N. PUCHADES SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, LNE

More information

Optical clock measurements beyond the geodetic limit

Optical clock measurements beyond the geodetic limit Optical clock measurements beyond the geodetic limit Andrew D. Ludlow Optical Frequency Measurements Group National Institute of Standards and Technology Boulder, CO USA Talk outline Atomic clock figures

More information

Overview of Frequency Metrology at NMIJ

Overview of Frequency Metrology at NMIJ Overview of Frequency Metrology at NMIJ Tomonari SUZUYAMA National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST) APMP2018 TCTF meeting RESORTS

More information

Cold Atom Clocks and Fundamental Tests. C. Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris

Cold Atom Clocks and Fundamental Tests. C. Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris Cold Atom Clocks and Fundamental Tests C. Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris http://www.lkb.ens.fr/recherche/atfroids/welcome TAM, Bled, Slovenia, August 2007 Participants

More information

SR OPTICAL CLOCK WITH HIGH STABILITY AND ACCURACY *

SR OPTICAL CLOCK WITH HIGH STABILITY AND ACCURACY * SR OPTICAL CLOCK WITH HIGH STABILITY AND ACCURACY * A. LUDLOW, S. BLATT, M. BOYD, G. CAMPBELL, S. FOREMAN, M. MARTIN, M. H. G. DE MIRANDA, T. ZELEVINSKY, AND J. YE JILA, National Institute of Standards

More information

THE SPACE OPTICAL CLOCKS PROJECT

THE SPACE OPTICAL CLOCKS PROJECT THE SPACE OPTICAL CLOCKS PROJECT S. Schiller (1), G. M. Tino (2), P. Lemonde (3), U. Sterr (4), A. Görlitz (1), N. Poli (2), A. Nevsky (1), C. Salomon (5) and the SOC team (1,2,3,4) (1) Heinrich-Heine-Universität

More information

BNM-SYRTE. Systèmes de Référence Temps-Espace. Me Félicitas Arias Pierre Uhrich Franck Pereira Do Santos. Gérard Petit David Valat Harold Marion

BNM-SYRTE. Systèmes de Référence Temps-Espace. Me Félicitas Arias Pierre Uhrich Franck Pereira Do Santos. Gérard Petit David Valat Harold Marion BNMSYRTE Systèmes de Référence TempsEspace Contributions of BNMSYRTE : Team implied in Frequency measurements Contributions of BIPM : André Clairon Team implied in Time measurements Emeric De Clercq Joseph

More information

Doppler-free spectroscopy of the 'ANTPOT. 1 S IND.0-''ANTPOT.3 P IND.0' optical clock transition in laser-cooled fermionic isotopes of neutral mercury

Doppler-free spectroscopy of the 'ANTPOT. 1 S IND.0-''ANTPOT.3 P IND.0' optical clock transition in laser-cooled fermionic isotopes of neutral mercury Universidade de São Paulo Biblioteca Digital da Produção Intelectual - BDPI Departamento de Física e Ciências Materiais - IFSC/FCM Artigos e Materiais de Revistas Científicas - IFSC/FCM 2008-10 Doppler-free

More information

BLACKBODY RADIATION SHIFTS AND MAGIC WAVELENGTHS FOR ATOMIC CLOCK RESEARCH

BLACKBODY RADIATION SHIFTS AND MAGIC WAVELENGTHS FOR ATOMIC CLOCK RESEARCH IEEE-IFCS IFCS 2010, Newport Beach, CA June 2, 2010 BLACKBODY RADIATION SHIFTS AND MAGIC WAVELENGTHS FOR ATOMIC CLOCK RESEARCH Marianna Safronova 1, M.G. Kozlov 1,2 Dansha Jiang 1, and U.I. Safronova 3

More information

Lecture 3 Applications of Ultra-stable Clocks

Lecture 3 Applications of Ultra-stable Clocks Lecture 3 Applications of Ultra-stable Clocks C. Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris BIPM Summer school, July 25, 2003 Outline 1) Cesium versus Rubidium fountain clocks

More information

The ACES Mission. Fundamental Physics Tests with Cold Atom Clocks in Space. L. Cacciapuoti European Space Agency

The ACES Mission. Fundamental Physics Tests with Cold Atom Clocks in Space. L. Cacciapuoti European Space Agency The ACES Mission Fundamental Physics Tests with Cold Atom Clocks in Space L. Cacciapuoti European Space Agency La Thuile, 20-27 March 2011 Gravitational Waves and Experimental Gravity 1 ACES Mission Concept

More information

Search for temporal variations of fundamental constants

Search for temporal variations of fundamental constants Schladming School 2010: Masses and Constants Lecture II Search for temporal variations of fundamental constants Ekkehard Peik Physikalisch-Technische Bundesanstalt Time and Frequency Department Braunschweig,

More information

Opportunities for space-based experiments using optical clock and comb technology Patrick Gill National Physical Laboratory, UK

Opportunities for space-based experiments using optical clock and comb technology Patrick Gill National Physical Laboratory, UK Opportunities for space-based experiments using optical clock and comb technology Patrick Gill National Physical Laboratory, UK Quantum to Cosmos, Virginia, 9 th July 2008 Outline Background to ESA studies

More information

Mission I-SOC: An optical clock on the ISS

Mission I-SOC: An optical clock on the ISS Mission I-SOC: An optical clock on the ISS Coordinator: S. Schiller (Univ. Düsseldorf) U. Sterr Ch. Lisdat R. Le Targat J. Lodewyck Y. Singh K. Bongs N. Poli G.M. Tino F. Levi I. Prochazka When ACES was

More information

ATOMIC CLOCK ENSEMBLE IN SPACE

ATOMIC CLOCK ENSEMBLE IN SPACE ATOMIC CLOCK ENSEMBLE IN SPACE L. Cacciapuoti a, P. Laurent b, C. Salomon c a European Space Agency, Keplerlaan 1, 2200 AG Noordwijk ZH - The Netherlands Luigi.Cacciapuoti@esa.int b SYRTE, CNRS UMR 8630,

More information

Gravitational tests using simultaneous atom interferometers

Gravitational tests using simultaneous atom interferometers Gravitational tests using simultaneous atom interferometers Gabriele Rosi Quantum gases, fundamental interactions and cosmology conference 5-7 October 017, Pisa Outline Introduction to atom interferometry

More information

Optical Clocks at PTB

Optical Clocks at PTB Optical Clocks at PTB Outline Introduction to optical clocks An optical frequency standard with Ca atoms Improved reference cavity Yb + Ion Clock Sr optical lattice clock Optical frequency measurements

More information

Introduction to reference time scales. Gérard Petit Bureau International des Poids et Mesures Sèvres Cedex, France

Introduction to reference time scales. Gérard Petit Bureau International des Poids et Mesures Sèvres Cedex, France Introduction to reference time scales Gérard Petit Bureau International des Poids et Mesures 92312 Sèvres Cedex, France gpetit@bipm.org 1 Résumé Timescales: definitions and realizations BIPM atomic time

More information

Titelmasterformat durch Klicken bearbeiten

Titelmasterformat durch Klicken bearbeiten Towards a Space Optical Clock with 88 Sr Titelmasterformat durch Klicken bearbeiten Influence of Collisions on a Lattice Clock U. Sterr Ch. Lisdat J. Vellore Winfred T. Middelmann S. Falke F. Riehle ESA

More information

Report from TCTF/TCL JWG on Optical Frequency Metrology

Report from TCTF/TCL JWG on Optical Frequency Metrology Report from TCTF/TCL JWG on Optical Frequency Metrology Masami Yasuda 1 and Tetsuya Ido 2 1 Time Standards Group, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial

More information

STE-QUEST (Space-Time Explorer and Quantum Test of the Equivalence Principle): the mission concept test of gravitational time dilation

STE-QUEST (Space-Time Explorer and Quantum Test of the Equivalence Principle): the mission concept test of gravitational time dilation 13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications Como, 3. -7. 10. 2011 STE-QUEST (Space-Time Explorer and Quantum Test of the Equivalence Principle):

More information

Optical Atomic Clock & Absolute-Zero Chemistry Probing Quantum Matter with Precision Light

Optical Atomic Clock & Absolute-Zero Chemistry Probing Quantum Matter with Precision Light Optical Atomic Clock & Absolute-Zero Chemistry Probing Quantum Matter with Precision Light Jun Ye JILA, NIST & University of Colorado MURI 25 th Birthday, Washington DC, Nov. 9, 2011 Many-body quantum

More information

The ACES/PHARAO Space Mission Fundamental Physics Tests with Space Clocks

The ACES/PHARAO Space Mission Fundamental Physics Tests with Space Clocks The ACES/PHARAO Space Mission Fundamental Physics Tests with Space Clocks Peter Wolf and C. Salomon LNE-SYRTE and Laboratoire Kastler Brossel, Paris Workshop «Atomes Froids et Applications Embarquées»

More information

RECOMMENDATION 1 (CI-2002): Revision of the practical realization of the definition of the metre

RECOMMENDATION 1 (CI-2002): Revision of the practical realization of the definition of the metre 194 91st Meeting of the CIPM RECOMMENDATION 1 (CI-2002): Revision of the practical realization of the definition of the metre The International Committee for Weights and Measures, recalling that in 1983

More information

Atomic clocks. Clocks

Atomic clocks. Clocks Atomic clocks Clocks 1 Ingredients for a clock 1. Need a system with periodic behavior: it cycles occur at constant frequency 2. Count the cycles to produce time interval 3. Agree on the origin of time

More information

Recent advances in precision spectroscopy of ultracold atoms and ions

Recent advances in precision spectroscopy of ultracold atoms and ions Journal of Physics: Conference Series PAPER OPEN ACCESS Recent advances in precision spectroscopy of ultracold atoms and ions o cite this article: A V aichenachev et al 17 J. Phys.: Conf. Ser. 793 17 View

More information

Fundamental Constants and Units

Fundamental Constants and Units Schladming Winter School 2010: Masses and Constants Lecture I Fundamental Constants and Units Ekkehard Peik Physikalisch-Technische Bundesanstalt Time and Frequency Department Braunschweig, Germany Physikalisch-Technische

More information

Precisely Engineered Interactions between Light and Ultracold Matter

Precisely Engineered Interactions between Light and Ultracold Matter IL NUOVO CIMENTO Vol.?, N.?? Precisely Engineered Interactions between Light and Ultracold Matter M. M. Boyd, A. D. Ludlow, S. Blatt, G. K. Campbell, T. Zelevinsky, S. M. Foreman, and J. Ye JILA, National

More information

Atomic Clocks. Ekkehard Peik. Physikalisch Technische Bundesanstalt Time and Frequency Department Braunschweig, Germany

Atomic Clocks. Ekkehard Peik. Physikalisch Technische Bundesanstalt Time and Frequency Department Braunschweig, Germany CAMAM Spring School, 16-21 March 2015, Carthage, Tunisia Atomic Clocks Ekkehard Peik Ekkehard.Peik@ptb.de Physikalisch Technische Bundesanstalt Time and Frequency Department Braunschweig, Germany Clock

More information

Optical Clocks and Tests of Fundamental Principles

Optical Clocks and Tests of Fundamental Principles Les Houches, Ultracold Atoms and Precision Measurements 2014 Optical Clocks and Tests of Fundamental Principles Ekkehard Peik Physikalisch-Technische Bundesanstalt Time and Frequency Department Braunschweig,

More information

Ytterbium quantum gases in Florence

Ytterbium quantum gases in Florence Ytterbium quantum gases in Florence Leonardo Fallani University of Florence & LENS Credits Marco Mancini Giacomo Cappellini Guido Pagano Florian Schäfer Jacopo Catani Leonardo Fallani Massimo Inguscio

More information

Improved Absolute Frequency Measurement of the 171 Yb Optical

Improved Absolute Frequency Measurement of the 171 Yb Optical Improved Absolute Frequency Measurement of the 171 Yb Optical Lattice Clock at KRISS Relative to the SI Second Huidong Kim 1, Myoung-Sun Heo 1 *, Won-Kyu Lee 1,2, Chang Yong Park 1,2, Hyun-Gue Hong 1,

More information

arxiv: v1 [physics.atom-ph] 25 Jan 2013

arxiv: v1 [physics.atom-ph] 25 Jan 2013 Tests of Local Position Invariance using Continuously Running Atomic Clocks Steven Peil, 1, Scott Crane, 1, James L. Hanssen, 1 arxiv:1301.6145v1 [physics.atom-ph] 25 Jan 2013 Thomas B. Swanson, 1 and

More information

Towards compact transportable atom-interferometric inertial sensors

Towards compact transportable atom-interferometric inertial sensors Towards compact transportable atom-interferometric inertial sensors G. Stern (SYRTE/LCFIO) Increasing the interrogation time T is often the limiting parameter for the sensitivity. Different solutions:

More information

RACE: Rubidium Atomic Clock Experiment

RACE: Rubidium Atomic Clock Experiment RACE RACE: Rubidium Atomic Clock Experiment Cold collision frequency shift & 87 clocks Juggling clocks Precision short range atomic force measurements Penn State Russ Hart Ruoxin Li Chad Fertig Ron Legere

More information

1. Introduction. 2. New approaches

1. Introduction. 2. New approaches New Approaches To An Indium Ion Optical Frequency Standard Kazuhiro HAYASAKA National Institute of Information and Communications Technology(NICT) e-mail:hayasaka@nict.go.jp ECTI200 . Introduction Outline

More information

CESIUM ATOMIC FOUNTAIN CLOCKS AT NMIJ

CESIUM ATOMIC FOUNTAIN CLOCKS AT NMIJ CESIUM ATOMIC FOUNTAIN CLOCKS AT NMIJ A. Takamizawa 1, S. Yanagimachi 1, Y. Shirakawa 2, K. Watabe 1, K. Hagimoto 1, and T. Ikegami 1 1 National Metrology Institute of Japan (NMIJ), AIST 2 Tokyo University

More information

CW-Lyman- Source for Laser Cooling of Antihydrogen in a Magnetic Trap

CW-Lyman- Source for Laser Cooling of Antihydrogen in a Magnetic Trap CW-Lyman- Source for Laser Cooling of Antihydrogen in a Magnetic Trap F. Markert, M. Scheid, D. Kolbe, A. Müllers, T. Weber, V. Neises, R. Steinborn and J. Walz Institut für Physik, Johannes Gutenberg-Universität

More information

Ion traps for clocks and other metrological applications

Ion traps for clocks and other metrological applications Ion traps for clocks and other metrological applications Single ion clocks vs. neutral atom lattice clocks Storage of electrically charged particles in a rf trap Two dimensional trap Paul trap in 3d Penning

More information

A NEW REALIZATION OF TERRESTRIAL TIME

A NEW REALIZATION OF TERRESTRIAL TIME CCTF/04-17 A NEW REALIZATION OF TERRESTRIAL TIME G. Petit BIPM, Pavillon de Breteuil, 92312 Sèvres Cedex France- e-mail: gpetit@bipm.org ABSTRACT Terrestrial Time TT is a time coordinate in a geocentric

More information

Cold atom Clocks and Applications

Cold atom Clocks and Applications arxiv:physics/0502117v1 [physics.atom-ph] 22 Feb 2005 Cold atom Clocks and Applications S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert C. Vian, F. Pereira dos Santos,

More information

Experimental tests of QED in bound and isolated systems

Experimental tests of QED in bound and isolated systems QED & Quantum Vaccum, Low Energy Frontier, 03001 (2012) DOI: 10.1051/iesc/2012qed03001 Owned by the authors, published by EDP Sciences, 2012 Experimental tests of QED in bound and isolated systems Lucile

More information

Optical Clocks for ESA Deep Space Ground Stations

Optical Clocks for ESA Deep Space Ground Stations Optical Clocks for ESA Deep Space Ground Stations Hugh Klein National Physical Laboratory, NPL, UK hugh.klein@npl.co.uk with Location and Timing KTN U.K. NPL led study for Started July 2006 Feasibility

More information

Spectroscopy of lithium ions at 34% of the speed of light with sub-doppler linewidth

Spectroscopy of lithium ions at 34% of the speed of light with sub-doppler linewidth Towards a test of time dilation: Spectroscopy of lithium ions at 34% of the speed of light with sub-doppler linewidth.07.008 /3 Outline Introduction: test theories for SRT Tools for modern test of time

More information

Status Report of Time and Frequency Activities at NPL- India

Status Report of Time and Frequency Activities at NPL- India Status Report of Time and Frequency Activities at NPL- India (TCTF 2017) Team: V. N. Ojha, Ashish Agarwal, P. Arora, S. Panja, P. Thorat, T. Bharadwaj, S. De, S. Yadav, P. Kandpal, M. P. Olaniya and D

More information

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe A. Yoshimi RIKEN K. Asahi, S. Emori, M. Tsukui, RIKEN, Tokyo Institute of Technology Nuclear

More information

Atomic Quantum Sensors and Fundamental Tests

Atomic Quantum Sensors and Fundamental Tests Atomic Quantum Sensors and Fundamental Tests C. Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris ESA- ESTEC-FPRAT, January 21th, 2010 Fundamental Questions 1) Missing mass in the Universe

More information

Microwave clocks and fountains

Microwave clocks and fountains Microwave clocks and fountains Filippo Levi - INRIM "METROLOGY AND PHYSICAL CONSTANTS" Varenna 24 July 2012 Lecture outline Microwave clocks Physical principle Various type of clocks Cell clocks Cs beam

More information

Atomic Quantum Sensors and Fundamental Tests

Atomic Quantum Sensors and Fundamental Tests Atomic Quantum Sensors and Fundamental Tests C. Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris Pre Doc school Les Houches, September 16th, 2014 1989: N. Ramsey, W. Paul, H. Dehmelt

More information

Mission I-SOC: an optical clock on the ISS. S. Schiller (Heinrich-Heine-Universität Düsseldorf) and the I-SOC science team

Mission I-SOC: an optical clock on the ISS. S. Schiller (Heinrich-Heine-Universität Düsseldorf) and the I-SOC science team Mission I-SOC: an optical clock on the ISS S. Schiller (Heinrich-Heine-Universität Düsseldorf) and the I-SOC science team Contents Introduction: quantum sensors ISOC mission: goals and methods ISOC: elegant

More information

Laser Cooling of Thulium Atoms

Laser Cooling of Thulium Atoms Laser Cooling of Thulium Atoms N. Kolachevsky P.N. Lebedev Physical Institute Moscow Institute of Physics and Technology Russian Quantum Center D. Sukachev E. Kalganova G.Vishnyakova A. Sokolov A. Akimov

More information

Determining α from Helium Fine Structure

Determining α from Helium Fine Structure Determining α from Helium Fine Structure How to Measure Helium Energy Levels REALLY Well Lepton Moments 2006 June 18, 2006 Daniel Farkas and Gerald Gabrielse Harvard University Physics Dept Funding provided

More information

The physics of cold atoms from fundamental problems to time measurement and quantum technologies. Michèle Leduc

The physics of cold atoms from fundamental problems to time measurement and quantum technologies. Michèle Leduc The physics of cold atoms from fundamental problems to time measurement and quantum technologies Michèle Leduc Lima, 20 October 2016 10 5 Kelvin 10 4 Kelvin Surface of the sun 10 3 Kelvin 10 2 Kelvin earth

More information

Systematic Effects in Atomic Fountain Clocks

Systematic Effects in Atomic Fountain Clocks Journal of Physics: Conference Series PAPER OPEN ACCESS Systematic Effects in Atomic Fountain Clocks To cite this article: Kurt Gibble 016 J. Phys.: Conf. Ser. 73 0100 View the article online for updates

More information

optical evaluation with a Ca clock

optical evaluation with a Ca clock 1 Sr lattice clock at 1x10-16 fractional uncertainty by remote optical evaluation with a Ca clock A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J.

More information

An Ensemble of Atomic Fountains

An Ensemble of Atomic Fountains An Ensemble of Atomic Fountains Steven Peil, Scott Crane, James Hanssen, Thomas B. Swanson and Christopher R. Ekstrom Clock Development Division United States Naval Observatory Washington, DC 39 Abstract

More information

spectroscopy of cold molecular ions

spectroscopy of cold molecular ions Workshop on an Optical Clock Mission in ESA s Cosmic Vision Program Düsseldorf 8. - 9. 3. 2007 High-resolution spectroscopy of cold molecular ions B. Roth, J. Koelemeij, I. Ernsting, A. Wicht, S. Schiller

More information

Primary Frequency Standards at NIST. S.R. Jefferts NIST Time and Frequency Division

Primary Frequency Standards at NIST. S.R. Jefferts NIST Time and Frequency Division Primary Frequency Standards at NIST S.R. Jefferts NIST Time and Frequency Division Outline Atomic Clocks - general Primary Frequency Standard Beam Standards Laser-Cooled Primary Standards Systematic Frequency

More information

The absolute frequency of the 87 Sr optical clock transition

The absolute frequency of the 87 Sr optical clock transition IOP PUBLISHING Metrologia 45 (28) 539 548 METROLOGIA doi:1.188/26-1394/45/5/8 The absolute frequency of the 87 Sr optical clock transition Gretchen K Campbell 1, Andrew D Ludlow 1, Sebastian Blatt 1, Jan

More information

Cryogenic sapphire oscillator with exceptionally high long-term frequency stability. J.G. Hartnett, C.R. Locke, E.N. Ivanov, M.E. Tobar, P.L.

Cryogenic sapphire oscillator with exceptionally high long-term frequency stability. J.G. Hartnett, C.R. Locke, E.N. Ivanov, M.E. Tobar, P.L. Cryogenic sapphire oscillator with exceptionally high long-term frequency stability J.G. Hartnett, C.R. Locke, E.N. Ivanov, M.E. Tobar, P.L. Stanwix Abstract: A new sapphire cryogenic microwave resonator

More information

Stability Transfer between Two Clock Lasers Operating at Different Wavelengths for Absolute Frequency Measurement of Clock Transition in

Stability Transfer between Two Clock Lasers Operating at Different Wavelengths for Absolute Frequency Measurement of Clock Transition in Stability Transfer between Two Clock Lasers Operating at Different Wavelengths for Absolute Frequency Measurement of Clock Transition in 87 Sr Atsushi Yamaguchi 1,2, Nobuyasu Shiga 3,1, Shigeo Nagano 1,

More information

A NEW REALIZATION OF TERRESTRIAL TIME

A NEW REALIZATION OF TERRESTRIAL TIME A NEW REALIZATION OF TERRESTRIAL TIME G. Petit BIPM, Pavillon de Breteuil, 92312 Sèvres Cedex, France E-mail: gpetit@bipm.org Abstract Terrestrial Time TT is a time coordinate in a geocentric reference

More information

Optical Clocks. Tanja E. Mehlstäubler. Physikalisch-Technische Bundesanstalt & Center for Quantum Engineering and Space Time Research

Optical Clocks. Tanja E. Mehlstäubler. Physikalisch-Technische Bundesanstalt & Center for Quantum Engineering and Space Time Research Optical Clocks Physikalisch-Technische Bundesanstalt & Center for Quantum Engineering and Space Time Research QUEST at PTB Experimental Quantum Metrology Head of Group: Piet O. Schmidt Quantum Sensors

More information

3-3 A Strontium Optical Lattice Clock

3-3 A Strontium Optical Lattice Clock 3-3 A Strontium Optical Lattice Clock YAMAGUCHI Atsushi, SHIGA Nobuyasu, NAGANO Shigeo, ISHIJIMA Hiroshi, KOYAMA Yasuhiro, HOSOKAWA Mizuhiko, and IDO Tetsuya Atomic frequency standards project started

More information