Oversampling for the partition of unity parallel finite element algorithm

Size: px
Start display at page:

Download "Oversampling for the partition of unity parallel finite element algorithm"

Transcription

1 International conference of Computational Mathematics and its application Urumqi, China, July 25-27, 203 Oversampling for the partition of unity parallel finite element algorithm HAIBIAO ZHENG School of Mathematics and Statistics, Xi an Jiaotong University 9

2 Oversampling for the partition of unity parallel finite element algorithm Model Two-grid methods and parallel finite element algorithms The partition of unity parallel finite element algorithm Error Estimate Numerical Simulation Conclusions 2 9

3 Model The elliptic boundary value problem u + b u = f in Ω, u = 0 on Ω. The variational formulation For any f H (Ω), find u V = H0(Ω) such that () 3 9 B(u, v) := ( u, v) + (b u, v) + (cu, v) = (f, v) v V. (2)

4 a(u, v) = ( u, v), N(u, v) = (b u, v) + (cu, v). A sufficient and necessary condition for the well-posedness of (2) is w,ω C sup φ V the variational problem (2) has a unique solution. B(w, φ) B(φ, w), sup w V, (3) φ,ω φ V φ,ω 4 9

5 2 Two-grid methods and parallel algorithms Two-grid methods Low frequency components of a solution could be approximated on a relatively coarse grid and high frequency components are computed on a fine grid. See Marion and Xu 995, Xu 996, Layton et al 998, Li and Hou 200, He 2003 and so on. Parallel finite element algorithms The local behavior of a solution is governed by the high frequency components. Bank and holst 2000,2003, Xu and Zhou 2000, He et al 2006,2008, 200, Shang 20,

6 Two-grid methods for the elliptic problem Find u h = u H + e h with u h Vh 0 = V h V, u H VH 0, eh Vh 0 such that B(u H, v) = (f, v) v V 0 H. (4) a(e h, v) = (f, v) B(u H, v) v V 0 h. (5) Error estimate (u u h ) 0,Ω C(h + H 2 ) u 2,Ω. (6) 6 9

7 3 The partition of unity parallel finite element algorithm The partition of unity and Oversampling Foe the coarse mesh τ H, for each vertex x i τ H, i =, 2,, N, let ω i Ω denote the union of triangles possessing x i, and denote φ i by the continuous, lagrangian basis function such that φ i (x m ) = δ i,m. Let, ω i = φ i Ω. For k N, denote nodal patches of kth order ω i,k about x i τ H by ω i, := ω i = φ i Ω, ω i,k := ω m,, k = 2, 3,. x m ω i,k 7 9

8 ALGORITHM PUPA: Step. Find a global coarse grid solution u H V 0 H such that B(u H, v) = (f, v) v V 0 H. (7) Step 2. Correct the residual on a fine grid in each overlapping sub-domain ω i,km, namely, for each i =,, N, solve e h i,km V H,0 h,i,km by a(e h i,km, v) = (f, v) B(u H, v) v V H,0 h,i,km. (8) Step 3. Update: u i = u H + e h i,km in ω i,km. Step 4. Construct the finite element solution ũ h = N φ i u i. i= 8 9 In Step 3, localized FE spaces Vh H(ω i,mk) := {v V h v Ω\ωi,mk = 0}, V H,0 h,i,mk = V h H(ω i,mk) V.

9 The most interesting features. The partition of unity technique introduces a framework for domain decomposition; 2. A series of local linearized residual problems are solved on these subdomains in parallel, meanwhile require very a little communication; 3. A global continuous finite element solution is constructed by combining all the local solutions together with the partition of unity functions. 9 9

10 4 Error Estimate Cutoff function Definition For x i τ H and d < D N, let η d,d i continuous function such that : Ω [0, ] be a linear and η d,d i ωi,d =, η d,d i Ω\ωi,D = 0, T τ H, η d,d i L (T ) C, T τ H, η d,d i L (T ) C G (D d)h, where some constant C, C G that only depend on the regularity parameter ρ of the mesh τ H but not on H. 0 9

11 Dual result The local residual solution of e h i,k V H,0 h,i,k satisfies a(e h i,k, v) = (f, v) B(u H, v) v V H,0 h,i,k. (9) Lemma x i τ H, d < D k, and corresponding cut-off function η d,d i, for e h i,k V H,0 h,i,k be the solution of (9), there stands that η d,d i e h i,k 0,ωi,D CH (η d,d i e h i,k) 0,ωi,D. (0) 9 Specially, e h i,k 0,ωi,k CH e h i,k 0,ωi,k. ()

12 Truncation error The local residual solution of e h i,km V H,0 h,i,km = V H h (ω i,km) V satisfies a(e h i,km, v) = (f, v) B(u H, v) v V H,0 h,i,km, (2) Lemma 2 For all x i τ H, j, m, k N, let θ j := η (j )m,jm i, j k, as in Definition. For the solution of (2), we have the following estimate e h i,km 2 0,ω i,m C( C m 2)k (θ k e i ) 2 0,ω i,km. (3) holds with constant C, C that only depend on ρ but not on x i, m, k, H. 2 9

13 Convergence analysis Theorem For ALGORITHM, by selections of τ H and τ h such that V H V h, h H 2 and the oversampling parameter k O(log H ), and under the assumption u H 2 (Ω), we have the following results (u h ũ h ) 0,Ω CH 2 u 2,Ω, (4) (u ũ h ) 0,Ω C(h + H 2 ) u 2,Ω. (5) 3 9

14 5 Numerical Simulation Convergence rate In our example, the domain is the unit square domain Ω = [0, ] [0, ]. we take b = (.0,.0) T, the true solution u(x, y) = 00(x 2 2x 3 + x 4 )(y 3y 2 + 2y 3 ). Then we can get f(x, y) in (). 4 9

15 H error for PUPA without oversampling. H h k (u ũ h ) 0,Ω Order H error for PUPA with oversampling k 2 log(/h) H h k (u ũ h ) 0,Ω Order

16 0.5 H=/4 H=/24 log( e 0 ) k Let e = u ũ h, set h = H 2, we give the errors for PUPA at H = /4, /24 with different number of layers oversampling. It shows that for H = /4, /24, both log( e 0 ) decrease almost linearly respect to k, except k =. 6 9

17 6 Conclusions Construct the partition of unity parallel finite element algorithm; On a uniform coarse mesh τ H, patches of diameter H log(/h) are sufficient to preserve the optimal convergence order; The error of this algorithm decays exponentially with respect to the number of layers oversampling. 7 9

18 Thank you 8 9

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

A posteriori error estimation for elliptic problems

A posteriori error estimation for elliptic problems A posteriori error estimation for elliptic problems Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in

More information

A posteriori error estimation in the FEM

A posteriori error estimation in the FEM A posteriori error estimation in the FEM Plan 1. Introduction 2. Goal-oriented error estimates 3. Residual error estimates 3.1 Explicit 3.2 Subdomain error estimate 3.3 Self-equilibrated residuals 3.4

More information

Schwarz Preconditioner for the Stochastic Finite Element Method

Schwarz Preconditioner for the Stochastic Finite Element Method Schwarz Preconditioner for the Stochastic Finite Element Method Waad Subber 1 and Sébastien Loisel 2 Preprint submitted to DD22 conference 1 Introduction The intrusive polynomial chaos approach for uncertainty

More information

Optimal multilevel preconditioning of strongly anisotropic problems.part II: non-conforming FEM. p. 1/36

Optimal multilevel preconditioning of strongly anisotropic problems.part II: non-conforming FEM. p. 1/36 Optimal multilevel preconditioning of strongly anisotropic problems. Part II: non-conforming FEM. Svetozar Margenov margenov@parallel.bas.bg Institute for Parallel Processing, Bulgarian Academy of Sciences,

More information

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS PARTITION OF UNITY FOR THE STOES PROBLEM ON NONMATCHING GRIDS CONSTANTIN BACUTA AND JINCHAO XU Abstract. We consider the Stokes Problem on a plane polygonal domain Ω R 2. We propose a finite element method

More information

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions Ernst P. Stephan 1, Matthias Maischak 2, and Thanh Tran 3 1 Institut für Angewandte Mathematik, Leibniz

More information

Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems

Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems Atle Loneland 1, Leszek Marcinkowski 2, and Talal Rahman 3 1 Introduction In this paper

More information

GENERALIZED GREEN S FUNCTIONS AND THE EFFECTIVE DOMAIN OF INFLUENCE

GENERALIZED GREEN S FUNCTIONS AND THE EFFECTIVE DOMAIN OF INFLUENCE GENERALIZED GREEN S FUNCTIONS AND THE EFFECTIVE DOMAIN OF INFLUENCE DONALD ESTEP, MICHAEL HOLST, AND MATS LARSON Abstract. One well-known approach to a posteriori analysis of finite element solutions of

More information

A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem

A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem Larisa Beilina Michael V. Klibanov December 18, 29 Abstract

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Residual and Error of Finite Element Solutions Mixed BVP of Poisson Equation

More information

Multigrid Method ZHONG-CI SHI. Institute of Computational Mathematics Chinese Academy of Sciences, Beijing, China. Joint work: Xuejun Xu

Multigrid Method ZHONG-CI SHI. Institute of Computational Mathematics Chinese Academy of Sciences, Beijing, China. Joint work: Xuejun Xu Multigrid Method ZHONG-CI SHI Institute of Computational Mathematics Chinese Academy of Sciences, Beijing, China Joint work: Xuejun Xu Outline Introduction Standard Cascadic Multigrid method(cmg) Economical

More information

An Iterative Substructuring Method for Mortar Nonconforming Discretization of a Fourth-Order Elliptic Problem in two dimensions

An Iterative Substructuring Method for Mortar Nonconforming Discretization of a Fourth-Order Elliptic Problem in two dimensions An Iterative Substructuring Method for Mortar Nonconforming Discretization of a Fourth-Order Elliptic Problem in two dimensions Leszek Marcinkowski Department of Mathematics, Warsaw University, Banacha

More information

MULTISCALE FINITE ELEMENT METHODS FOR NONLINEAR PROBLEMS AND THEIR APPLICATIONS

MULTISCALE FINITE ELEMENT METHODS FOR NONLINEAR PROBLEMS AND THEIR APPLICATIONS MULTISCALE FINITE ELEMENT METHODS FOR NONLINEAR PROBLEMS AND THEIR APPLICATIONS Y. EFENDIEV, T. HOU, AND V. GINTING Abstract. In this paper we propose a generalization of multiscale finite element methods

More information

Local pointwise a posteriori gradient error bounds for the Stokes equations. Stig Larsson. Heraklion, September 19, 2011 Joint work with A.

Local pointwise a posteriori gradient error bounds for the Stokes equations. Stig Larsson. Heraklion, September 19, 2011 Joint work with A. Local pointwise a posteriori gradient error bounds for the Stokes equations Stig Larsson Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Heraklion, September

More information

MULTISCALE FINITE ELEMENT METHODS FOR NONLINEAR PROBLEMS AND THEIR APPLICATIONS

MULTISCALE FINITE ELEMENT METHODS FOR NONLINEAR PROBLEMS AND THEIR APPLICATIONS COMM. MATH. SCI. Vol. 2, No. 4, pp. 553 589 c 2004 International Press MULTISCALE FINITE ELEMENT METHODS FOR NONLINEAR PROBLEMS AND THEIR APPLICATIONS Y. EFENDIEV, T. HOU, AND V. GINTING Abstract. In this

More information

On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption

On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption Ivan Graham and Euan Spence (Bath, UK) Collaborations with: Paul Childs (Emerson Roxar,

More information

A Finite Element Method Using Singular Functions for Poisson Equations: Mixed Boundary Conditions

A Finite Element Method Using Singular Functions for Poisson Equations: Mixed Boundary Conditions A Finite Element Method Using Singular Functions for Poisson Equations: Mixed Boundary Conditions Zhiqiang Cai Seokchan Kim Sangdong Kim Sooryun Kong Abstract In [7], we proposed a new finite element method

More information

Finite difference method for elliptic problems: I

Finite difference method for elliptic problems: I Finite difference method for elliptic problems: I Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

More information

Maximum norm estimates for energy-corrected finite element method

Maximum norm estimates for energy-corrected finite element method Maximum norm estimates for energy-corrected finite element method Piotr Swierczynski 1 and Barbara Wohlmuth 1 Technical University of Munich, Institute for Numerical Mathematics, piotr.swierczynski@ma.tum.de,

More information

Nonparametric density estimation for elliptic problems with random perturbations

Nonparametric density estimation for elliptic problems with random perturbations Nonparametric density estimation for elliptic problems with random perturbations, DqF Workshop, Stockholm, Sweden, 28--2 p. /2 Nonparametric density estimation for elliptic problems with random perturbations

More information

Approximation of fluid-structure interaction problems with Lagrange multiplier

Approximation of fluid-structure interaction problems with Lagrange multiplier Approximation of fluid-structure interaction problems with Lagrange multiplier Daniele Boffi Dipartimento di Matematica F. Casorati, Università di Pavia http://www-dimat.unipv.it/boffi May 30, 2016 Outline

More information

NUMERICAL HOMOGENIZATION FOR INDEFINITE H(CURL)-PROBLEMS

NUMERICAL HOMOGENIZATION FOR INDEFINITE H(CURL)-PROBLEMS Proceedings of EQUADIFF 2017 pp. 137 146 NUMERICAL HOMOGENIZATION FOR INDEFINITE H(CURL)-PROBLEMS BARBARA VERFÜRTH Abstract. In this paper, we present a numerical homogenization scheme for indefinite,

More information

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM Finite Elements February 22, 2019 In the previous sections, we introduced the concept of finite element spaces, which contain certain functions defined on a domain. Finite element spaces are examples of

More information

Numerical Solution I

Numerical Solution I Numerical Solution I Stationary Flow R. Kornhuber (FU Berlin) Summerschool Modelling of mass and energy transport in porous media with practical applications October 8-12, 2018 Schedule Classical Solutions

More information

Interpolation in h-version finite element spaces

Interpolation in h-version finite element spaces Interpolation in h-version finite element spaces Thomas Apel Institut für Mathematik und Bauinformatik Fakultät für Bauingenieur- und Vermessungswesen Universität der Bundeswehr München Chemnitzer Seminar

More information

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T 2 R.H. NOCHETTO 2. Lecture 2. Adaptivity I: Design and Convergence of AFEM tarting with a conforming mesh T H, the adaptive procedure AFEM consists of loops of the form OLVE ETIMATE MARK REFINE to produce

More information

arxiv: v1 [math.na] 9 Sep 2015

arxiv: v1 [math.na] 9 Sep 2015 arxiv:509.02595v [mat.na] 9 Sep 205 An Expandable Local and Parallel Two-Grid Finite Element Sceme Yanren ou, GuangZi Du Abstract An expandable local and parallel two-grid finite element sceme based on

More information

Finite difference method for heat equation

Finite difference method for heat equation Finite difference method for heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

More information

Finite Element Methods for Maxwell Equations

Finite Element Methods for Maxwell Equations CHAPTER 8 Finite Element Methods for Maxwell Equations The Maxwell equations comprise four first-order partial differential equations linking the fundamental electromagnetic quantities, the electric field

More information

Two new enriched multiscale coarse spaces for the Additive Average Schwarz method

Two new enriched multiscale coarse spaces for the Additive Average Schwarz method 346 Two new enriched multiscale coarse spaces for the Additive Average Schwarz method Leszek Marcinkowski 1 and Talal Rahman 2 1 Introduction We propose additive Schwarz methods with spectrally enriched

More information

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50 A SIMPLE FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU AND XIU YE Abstract. The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in

More information

MORTAR MULTISCALE FINITE ELEMENT METHODS FOR STOKES-DARCY FLOWS

MORTAR MULTISCALE FINITE ELEMENT METHODS FOR STOKES-DARCY FLOWS MORTAR MULTISCALE FINITE ELEMENT METHODS FOR STOKES-DARCY FLOWS VIVETTE GIRAULT, DANAIL VASSILEV, AND IVAN YOTOV Abstract. We investigate mortar multiscale numerical methods for coupled Stokes and Darcy

More information

On the relationship of local projection stabilization to other stabilized methods for one-dimensional advection-diffusion equations

On the relationship of local projection stabilization to other stabilized methods for one-dimensional advection-diffusion equations On the relationship of local projection stabilization to other stabilized methods for one-dimensional advection-diffusion equations Lutz Tobiska Institut für Analysis und Numerik Otto-von-Guericke-Universität

More information

Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains

Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains Martin J. Gander and Felix Kwok Section de mathématiques, Université de Genève, Geneva CH-1211, Switzerland, Martin.Gander@unige.ch;

More information

Stochastic multiscale modeling of subsurface and surface flows. Part III: Multiscale mortar finite elements for coupled Stokes-Darcy flows

Stochastic multiscale modeling of subsurface and surface flows. Part III: Multiscale mortar finite elements for coupled Stokes-Darcy flows Stochastic multiscale modeling of subsurface and surface flows. Part III: Multiscale mortar finite elements for coupled Stokes-Darcy flows Ivan otov Department of Mathematics, University of Pittsburgh

More information

A Posteriori Error Estimation Techniques for Finite Element Methods. Zhiqiang Cai Purdue University

A Posteriori Error Estimation Techniques for Finite Element Methods. Zhiqiang Cai Purdue University A Posteriori Error Estimation Techniques for Finite Element Methods Zhiqiang Cai Purdue University Department of Mathematics, Purdue University Slide 1, March 16, 2017 Books Ainsworth & Oden, A posteriori

More information

A Two-Grid Stabilization Method for Solving the Steady-State Navier-Stokes Equations

A Two-Grid Stabilization Method for Solving the Steady-State Navier-Stokes Equations A Two-Grid Stabilization Method for Solving the Steady-State Navier-Stokes Equations Songul Kaya and Béatrice Rivière Abstract We formulate a subgrid eddy viscosity method for solving the steady-state

More information

Multiscale method and pseudospectral simulations for linear viscoelastic incompressible flows

Multiscale method and pseudospectral simulations for linear viscoelastic incompressible flows Interaction and Multiscale Mechanics, Vol. 5, No. 1 (2012) 27-40 27 Multiscale method and pseudospectral simulations for linear viscoelastic incompressible flows Ling Zhang and Jie Ouyang* Department of

More information

Multigrid Methods for Elliptic Obstacle Problems on 2D Bisection Grids

Multigrid Methods for Elliptic Obstacle Problems on 2D Bisection Grids Multigrid Methods for Elliptic Obstacle Problems on 2D Bisection Grids Long Chen 1, Ricardo H. Nochetto 2, and Chen-Song Zhang 3 1 Department of Mathematics, University of California at Irvine. chenlong@math.uci.edu

More information

Online basis construction for goal-oriented adaptivity in the Generalized Multiscale Finite Element Method

Online basis construction for goal-oriented adaptivity in the Generalized Multiscale Finite Element Method Online basis construction for goal-oriented adaptivity in the Generalized Multiscale Finite Element Method Eric Chung, Sara Pollock, Sai-Mang Pun arxiv:1812.02290v1 [math.na] 6 Dec 2018 December 7, 2018

More information

EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC SCHRÖDINGER EQUATIONS

EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC SCHRÖDINGER EQUATIONS Electronic Journal of Differential Equations, Vol. 017 (017), No. 15, pp. 1 7. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC

More information

Kasetsart University Workshop. Multigrid methods: An introduction

Kasetsart University Workshop. Multigrid methods: An introduction Kasetsart University Workshop Multigrid methods: An introduction Dr. Anand Pardhanani Mathematics Department Earlham College Richmond, Indiana USA pardhan@earlham.edu A copy of these slides is available

More information

INTRODUCTION TO MULTIGRID METHODS

INTRODUCTION TO MULTIGRID METHODS INTRODUCTION TO MULTIGRID METHODS LONG CHEN 1. ALGEBRAIC EQUATION OF TWO POINT BOUNDARY VALUE PROBLEM We consider the discretization of Poisson equation in one dimension: (1) u = f, x (0, 1) u(0) = u(1)

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

Course and Wavelets and Filter Banks

Course and Wavelets and Filter Banks Course 18.327 and 1.130 Wavelets and Filter Banks Refinement Equation: Iterative and Recursive Solution Techniques; Infinite Product Formula; Filter Bank Approach for Computing Scaling Functions and Wavelets

More information

Enhancing eigenvalue approximation by gradient recovery on adaptive meshes

Enhancing eigenvalue approximation by gradient recovery on adaptive meshes IMA Journal of Numerical Analysis Advance Access published October 29, 2008 IMA Journal of Numerical Analysis Page 1 of 15 doi:10.1093/imanum/drn050 Enhancing eigenvalue approximation by gradient recovery

More information

weak Galerkin, finite element methods, interior estimates, second-order elliptic

weak Galerkin, finite element methods, interior estimates, second-order elliptic INERIOR ENERGY ERROR ESIMAES FOR HE WEAK GALERKIN FINIE ELEMEN MEHOD HENGGUANG LI, LIN MU, AND XIU YE Abstract Consider the Poisson equation in a polytopal domain Ω R d (d = 2, 3) as the model problem

More information

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations Fourteenth International Conference on Domain Decomposition Methods Editors: Ismael Herrera, David E. Keyes, Olof B. Widlund, Robert Yates c 23 DDM.org 2. A Dual-Primal FEI Method for solving Stokes/Navier-Stokes

More information

Discrete Maximum Principle for a 1D Problem with Piecewise-Constant Coefficients Solved by hp-fem

Discrete Maximum Principle for a 1D Problem with Piecewise-Constant Coefficients Solved by hp-fem The University of Texas at El Paso Department of Mathematical Sciences Research Reports Series El Paso, Texas Research Report No. 2006-10 Discrete Maximum Principle for a 1D Problem with Piecewise-Constant

More information

1. Introduction. In this paper, we shall design and analyze finite element approximations. q i δ i in R d,d=2, 3,

1. Introduction. In this paper, we shall design and analyze finite element approximations. q i δ i in R d,d=2, 3, SIAM J. NUMER. ANAL. Vol. 45, No. 6, pp. 2298 2320 c 2007 Society for Industrial and Applied Mathematics THE FINITE ELEMENT APPROXIMATION OF THE NONLINEAR POISSON BOLTZMANN EQUATION LONG CHEN, MICHAEL

More information

u = f in Ω, u = q on Γ. (1.2)

u = f in Ω, u = q on Γ. (1.2) ERROR ANALYSIS FOR A FINITE ELEMENT APPROXIMATION OF ELLIPTIC DIRICHLET BOUNDARY CONTROL PROBLEMS S. MAY, R. RANNACHER, AND B. VEXLER Abstract. We consider the Galerkin finite element approximation of

More information

Multiscale methods for time-harmonic acoustic and elastic wave propagation

Multiscale methods for time-harmonic acoustic and elastic wave propagation Multiscale methods for time-harmonic acoustic and elastic wave propagation Dietmar Gallistl (joint work with D. Brown and D. Peterseim) Institut für Angewandte und Numerische Mathematik Karlsruher Institut

More information

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements W I S S E N T E C H N I K L E I D E N S C H A F T A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements Matthias Gsell and Olaf Steinbach Institute of Computational Mathematics

More information

DOMAIN DECOMPOSITION FOR LESS REGULAR SUBDOMAINS: OVERLAPPING SCHWARZ IN TWO DIMENSIONS TR

DOMAIN DECOMPOSITION FOR LESS REGULAR SUBDOMAINS: OVERLAPPING SCHWARZ IN TWO DIMENSIONS TR DOMAIN DECOMPOSITION FOR LESS REGULAR SUBDOMAINS: OVERLAPPING SCHWARZ IN TWO DIMENSIONS TR2007-888 CLARK R. DOHRMANN, AXEL KLAWONN, AND OLOF B. WIDLUND Abstract. In the theory of domain decomposition methods,

More information

Optimal Left and Right Additive Schwarz Preconditioning for Minimal Residual Methods with Euclidean and Energy Norms

Optimal Left and Right Additive Schwarz Preconditioning for Minimal Residual Methods with Euclidean and Energy Norms Optimal Left and Right Additive Schwarz Preconditioning for Minimal Residual Methods with Euclidean and Energy Norms Marcus Sarkis Worcester Polytechnic Inst., Mass. and IMPA, Rio de Janeiro and Daniel

More information

Nonlinear Control Lecture # 14 Input-Output Stability. Nonlinear Control

Nonlinear Control Lecture # 14 Input-Output Stability. Nonlinear Control Nonlinear Control Lecture # 14 Input-Output Stability L Stability Input-Output Models: y = Hu u(t) is a piecewise continuous function of t and belongs to a linear space of signals The space of bounded

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions Juan Gabriel Calvo Preprint No. 25-2017 PRAHA 2017 A VIRTUAL

More information

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation A local-structure-preserving local discontinuous Galerkin method for the Laplace equation Fengyan Li 1 and Chi-Wang Shu 2 Abstract In this paper, we present a local-structure-preserving local discontinuous

More information

Induced Cycles of Fixed Length

Induced Cycles of Fixed Length Induced Cycles of Fixed Length Terry McKee Wright State University Dayton, Ohio USA terry.mckee@wright.edu Cycles in Graphs Vanderbilt University 31 May 2012 Overview 1. Investigating the fine structure

More information

Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable?

Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable? Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable? Thomas Apel, Hans-G. Roos 22.7.2008 Abstract In the first part of the paper we discuss minimal

More information

AN ADAPTIVE HOMOTOPY APPROACH FOR NON-SELFADJOINT EIGENVALUE PROBLEMS

AN ADAPTIVE HOMOTOPY APPROACH FOR NON-SELFADJOINT EIGENVALUE PROBLEMS AN ADAPTIVE HOMOTOPY APPROACH FOR NON-SELFADJOINT EIGENVALUE PROBLEMS C. CARSTENSEN, J. GEDICKE, V. MEHRMANN, AND A. MIEDLAR Abstract. This paper presents three different adaptive algorithms for eigenvalue

More information

An additive average Schwarz method for the plate bending problem

An additive average Schwarz method for the plate bending problem J. Numer. Math., Vol. 10, No. 2, pp. 109 125 (2002) c VSP 2002 Prepared using jnm.sty [Version: 02.02.2002 v1.2] An additive average Schwarz method for the plate bending problem X. Feng and T. Rahman Abstract

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

ME FINITE ELEMENT ANALYSIS FORMULAS

ME FINITE ELEMENT ANALYSIS FORMULAS ME 2353 - FINITE ELEMENT ANALYSIS FORMULAS UNIT I FINITE ELEMENT FORMULATION OF BOUNDARY VALUE PROBLEMS 01. Global Equation for Force Vector, {F} = [K] {u} {F} = Global Force Vector [K] = Global Stiffness

More information

EXPLORING THE LOCALLY LOW DIMENSIONAL STRUCTURE IN SOLVING RANDOM ELLIPTIC PDES

EXPLORING THE LOCALLY LOW DIMENSIONAL STRUCTURE IN SOLVING RANDOM ELLIPTIC PDES MULTISCALE MODEL. SIMUL. Vol. 5, No. 2, pp. 66 695 c 27 Society for Industrial and Applied Mathematics EXPLORING THE LOCALLY LOW DIMENSIONAL STRUCTURE IN SOLVING RANDOM ELLIPTIC PDES THOMAS Y. HOU, QIN

More information

CIMPA Summer School on Current Research in Finite Element Methods

CIMPA Summer School on Current Research in Finite Element Methods CIMPA Summer School on Current Research in Finite Element Methods Local zooming techniques for the finite element method Alexei Lozinski Laboratoire de mathématiques de Besançon Université de Franche-Comté,

More information

Parallel Galerkin Domain Decomposition Procedures for Parabolic Equation on General Domain

Parallel Galerkin Domain Decomposition Procedures for Parabolic Equation on General Domain Parallel Galerkin Domain Decomposition Procedures for Parabolic Equation on General Domain Keying Ma, 1 Tongjun Sun, 1 Danping Yang 1 School of Mathematics, Shandong University, Jinan 50100, People s Republic

More information

Exponential stability of abstract evolution equations with time delay feedback

Exponential stability of abstract evolution equations with time delay feedback Exponential stability of abstract evolution equations with time delay feedback Cristina Pignotti University of L Aquila Cortona, June 22, 2016 Cristina Pignotti (L Aquila) Abstract evolutions equations

More information

Shifted Laplace and related preconditioning for the Helmholtz equation

Shifted Laplace and related preconditioning for the Helmholtz equation Shifted Laplace and related preconditioning for the Helmholtz equation Ivan Graham and Euan Spence (Bath, UK) Collaborations with: Paul Childs (Schlumberger Gould Research), Martin Gander (Geneva) Douglas

More information

Finite Element Error Estimates in Non-Energy Norms for the Two-Dimensional Scalar Signorini Problem

Finite Element Error Estimates in Non-Energy Norms for the Two-Dimensional Scalar Signorini Problem Journal manuscript No. (will be inserted by the editor Finite Element Error Estimates in Non-Energy Norms for the Two-Dimensional Scalar Signorini Problem Constantin Christof Christof Haubner Received:

More information

Optimized Schwarz methods with overlap for the Helmholtz equation

Optimized Schwarz methods with overlap for the Helmholtz equation Optimized Schwarz methods with overlap for the Helmholtz equation Martin J. Gander and Hui Zhang Introduction For the Helmholtz equation, simple absorbing conditions of the form n iω were proposed as transmission

More information

Recovery-Based A Posteriori Error Estimation

Recovery-Based A Posteriori Error Estimation Recovery-Based A Posteriori Error Estimation Zhiqiang Cai Purdue University Department of Mathematics, Purdue University Slide 1, March 2, 2011 Outline Introduction Diffusion Problems Higher Order Elements

More information

Introduction to Aspects of Multiscale Modeling as Applied to Porous Media

Introduction to Aspects of Multiscale Modeling as Applied to Porous Media Introduction to Aspects of Multiscale Modeling as Applied to Porous Media Part IV Todd Arbogast Department of Mathematics and Center for Subsurface Modeling, Institute for Computational Engineering and

More information

A FETI-DP Method for Mortar Finite Element Discretization of a Fourth Order Problem

A FETI-DP Method for Mortar Finite Element Discretization of a Fourth Order Problem A FETI-DP Method for Mortar Finite Element Discretization of a Fourth Order Problem Leszek Marcinkowski 1 and Nina Dokeva 2 1 Department of Mathematics, Warsaw University, Banacha 2, 02 097 Warszawa, Poland,

More information

Applied/Numerical Analysis Qualifying Exam

Applied/Numerical Analysis Qualifying Exam Applied/Numerical Analysis Qualifying Exam August 9, 212 Cover Sheet Applied Analysis Part Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless,

More information

Multigrid Methods for Maxwell s Equations

Multigrid Methods for Maxwell s Equations Multigrid Methods for Maxwell s Equations Jintao Cui Institute for Mathematics and Its Applications University of Minnesota Outline Nonconforming Finite Element Methods for a Two Dimensional Curl-Curl

More information

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS CARLO LOVADINA AND ROLF STENBERG Abstract The paper deals with the a-posteriori error analysis of mixed finite element methods

More information

Algebraic flux correction and its application to convection-dominated flow. Matthias Möller

Algebraic flux correction and its application to convection-dominated flow. Matthias Möller Algebraic flux correction and its application to convection-dominated flow Matthias Möller matthias.moeller@math.uni-dortmund.de Institute of Applied Mathematics (LS III) University of Dortmund, Germany

More information

Bath Institute For Complex Systems

Bath Institute For Complex Systems BICS Bath Institute for Complex Systems Energy Minimizing Coarse Spaces for Two-level Schwarz Methods for Multiscale PDEs J. Van lent, R. Scheichl and I.G. Graham Bath Institute For Complex Systems Preprint

More information

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms www.oeaw.ac.at Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms Y. Efendiev, J. Galvis, R. Lazarov, J. Willems RICAM-Report 2011-05 www.ricam.oeaw.ac.at

More information

High order, finite volume method, flux conservation, finite element method

High order, finite volume method, flux conservation, finite element method FLUX-CONSERVING FINITE ELEMENT METHODS SHANGYOU ZHANG, ZHIMIN ZHANG, AND QINGSONG ZOU Abstract. We analyze the flux conservation property of the finite element method. It is shown that the finite element

More information

Local Mesh Refinement with the PCD Method

Local Mesh Refinement with the PCD Method Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 8, Number 1, pp. 125 136 (2013) http://campus.mst.edu/adsa Local Mesh Refinement with the PCD Method Ahmed Tahiri Université Med Premier

More information

The hp-version of the boundary element method with quasi-uniform meshes in three dimensions

The hp-version of the boundary element method with quasi-uniform meshes in three dimensions The hp-version of the boundary element method with quasi-uniform meshes in three dimensions Alexei Bespalov Norbert Heuer Dedicated to Professor Ernst P. Stephan on the occasion of his 60th birthday. Abstract

More information

Preconditioning in H(div) and Applications

Preconditioning in H(div) and Applications 1 Preconditioning in H(div) and Applications Douglas N. Arnold 1, Ricard S. Falk 2 and Ragnar Winter 3 4 Abstract. Summarizing te work of [AFW97], we sow ow to construct preconditioners using domain decomposition

More information

On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities

On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities Heiko Berninger, Ralf Kornhuber, and Oliver Sander FU Berlin, FB Mathematik und Informatik (http://www.math.fu-berlin.de/rd/we-02/numerik/)

More information

Supraconvergence of a Non-Uniform Discretisation for an Elliptic Third-Kind Boundary-Value Problem with Mixed Derivatives

Supraconvergence of a Non-Uniform Discretisation for an Elliptic Third-Kind Boundary-Value Problem with Mixed Derivatives Supraconvergence of a Non-Uniform Discretisation for an Elliptic Third-Kind Boundary-Value Problem with Mixed Derivatives Etienne Emmrich Technische Universität Berlin, Institut für Mathematik, Straße

More information

Computer simulation of multiscale problems

Computer simulation of multiscale problems Progress in the SSF project CutFEM, Geometry, and Optimal design Computer simulation of multiscale problems Axel Målqvist and Daniel Elfverson University of Gothenburg and Uppsala University Umeå 2015-05-20

More information

arxiv: v1 [math.na] 4 Jun 2014

arxiv: v1 [math.na] 4 Jun 2014 MIXE GENERALIZE MULTISCALE FINITE ELEMENT METHOS AN APPLICATIONS ERIC T. CHUNG, YALCHIN EFENIEV, AN CHA SHING LEE arxiv:1406.0950v1 [math.na] 4 Jun 2014 Abstract. In this paper, we present a mixed Generalized

More information

arxiv: v1 [math.na] 29 Feb 2016

arxiv: v1 [math.na] 29 Feb 2016 EFFECTIVE IMPLEMENTATION OF THE WEAK GALERKIN FINITE ELEMENT METHODS FOR THE BIHARMONIC EQUATION LIN MU, JUNPING WANG, AND XIU YE Abstract. arxiv:1602.08817v1 [math.na] 29 Feb 2016 The weak Galerkin (WG)

More information

Radial basis function partition of unity methods for PDEs

Radial basis function partition of unity methods for PDEs Radial basis function partition of unity methods for PDEs Elisabeth Larsson, Scientific Computing, Uppsala University Credit goes to a number of collaborators Alfa Ali Alison Lina Victor Igor Heryudono

More information

Spectral element agglomerate AMGe

Spectral element agglomerate AMGe Spectral element agglomerate AMGe T. Chartier 1, R. Falgout 2, V. E. Henson 2, J. E. Jones 4, T. A. Manteuffel 3, S. F. McCormick 3, J. W. Ruge 3, and P. S. Vassilevski 2 1 Department of Mathematics, Davidson

More information

Convergence and optimality of an adaptive FEM for controlling L 2 errors

Convergence and optimality of an adaptive FEM for controlling L 2 errors Convergence and optimality of an adaptive FEM for controlling L 2 errors Alan Demlow (University of Kentucky) joint work with Rob Stevenson (University of Amsterdam) Partially supported by NSF DMS-0713770.

More information

A NEW COLLOCATION METHOD FOR SOLVING CERTAIN HADAMARD FINITE-PART INTEGRAL EQUATION

A NEW COLLOCATION METHOD FOR SOLVING CERTAIN HADAMARD FINITE-PART INTEGRAL EQUATION INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 6, Number, Pages 4 54 c 9 Institute for Scientific Computing and Information A NEW COLLOCATION METHOD FOR SOLVING CERTAIN HADAMARD FINITE-PART

More information

arxiv: v1 [math.na] 16 Dec 2015

arxiv: v1 [math.na] 16 Dec 2015 ANALYSIS OF A NEW HARMONICALLY ENRICHED MULTISCALE COARSE SPACE FOR DOMAIN DECOMPOSITION METHODS MARTIN J. GANDER, ATLE LONELAND, AND TALAL RAHMAN arxiv:52.05285v [math.na] 6 Dec 205 Abstract. We propose

More information

REGULARITY AND MULTIGRID ANALYSIS FOR LAPLACE-TYPE AXISYMMETRIC EQUATIONS. Hengguang Li. IMA Preprint Series #2417.

REGULARITY AND MULTIGRID ANALYSIS FOR LAPLACE-TYPE AXISYMMETRIC EQUATIONS. Hengguang Li. IMA Preprint Series #2417. REGULARITY AND MULTIGRID ANALYSIS FOR LAPLACE-TYPE AXISYMMETRIC EQUATIONS By Hengguang Li IMA Preprint Series #417 February 013) INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS UNIVERSITY OF MINNESOTA 400

More information

OVERLAPPING SCHWARZ ALGORITHMS FOR ALMOST INCOMPRESSIBLE LINEAR ELASTICITY TR

OVERLAPPING SCHWARZ ALGORITHMS FOR ALMOST INCOMPRESSIBLE LINEAR ELASTICITY TR OVERLAPPING SCHWARZ ALGORITHMS FOR ALMOST INCOMPRESSIBLE LINEAR ELASTICITY MINGCHAO CAI, LUCA F. PAVARINO, AND OLOF B. WIDLUND TR2014-969 Abstract. Low order finite element discretizations of the linear

More information

Nonoverlapping Domain Decomposition Methods with Simplified Coarse Spaces for Solving Three-dimensional Elliptic Problems

Nonoverlapping Domain Decomposition Methods with Simplified Coarse Spaces for Solving Three-dimensional Elliptic Problems Nonoverlapping Domain Decomposition Methods with Simplified Coarse Spaces for Solving Three-dimensional Elliptic Problems Qiya Hu 1, Shi Shu 2 and Junxian Wang 3 Abstract In this paper we propose a substructuring

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES On the approximation of a virtual coarse space for domain decomposition methods in two dimensions Juan Gabriel Calvo Preprint No. 31-2017 PRAHA 2017

More information

ITERATIVE METHODS FOR NONLINEAR ELLIPTIC EQUATIONS

ITERATIVE METHODS FOR NONLINEAR ELLIPTIC EQUATIONS ITERATIVE METHODS FOR NONLINEAR ELLIPTIC EQUATIONS LONG CHEN In this chapter we discuss iterative methods for solving the finite element discretization of semi-linear elliptic equations of the form: find

More information