Bose (1942) showed b t r 1 is a necessary condition. PROOF (Murty 1961): Assume t is a multiple of k, i.e. t nk, where n is an integer.

Size: px
Start display at page:

Download "Bose (1942) showed b t r 1 is a necessary condition. PROOF (Murty 1961): Assume t is a multiple of k, i.e. t nk, where n is an integer."

Transcription

1 Resolvable BIBD: An ncomplete bloc desgn n whch each treatment appears r tmes s resolvable f the blocs can be dvded nto r groups such that each group s a complete replcaton of the treatments (.e. each group of blocs contans each treatment exactly once). Bose (194) showed b t r1 s a necessary condton. PROOF (Murty 1961): Assume t s a multple of,.e. t n, where n s an nteger. so. b rt rn b nr We have r t 1 1 r t n r r n1 r rn1 t 1 rnr t 1 br t 1 But So r r t r rn rn br t 1 All parameters are ntegers so rn s an nteger. Also, r so r 0. 1 or br t1 b rt1 NOTE: 1

2 1) If b rt1, the desgn s affne resolvable. ) for a resolvable desgn, SS(blocs gnorng trts)ss(reps)ss(blocs n reps), where the frst term on the rght hand sde has n1 df and the second term on the rght hand sde has r( t 1 df. General BIBD: - blocs need not be of same sze - each trt. need not appear same # of tmes - t treatments, b blocs havng plots n bloc 0, r plots for treatment r 0. - N n ; n # of tmes treatment occurs n bloc - no need to assume t for any or all - T total for treatment - B total for bloc Defntons: If n 0, 1 bnary desgn forall proper desgn r rforall equreplcate desgn Notaton: T T 1 T t, B B 1 B b, N n ncdence matrx of the desgn R txt : dagonal matrx r 1,...,r t ; K bxb : dagonal matrx 1,..., b For all desgns R1 t N1 b ( n r ) ; K1 b N1 ( n ) General model: y m e m ; m1,...,n ; 1,...,t;1,...,b m th observaton on th treatment, th bloc (f bnary desgn, omt m). Least squares: mnmze. y m

3 Normal equatons: 0 G y m N 0 T n r n 0 B n r Impose addtonal restrctons: r 0 G/N; r T n B r T n n B n B n Let Q T t r Q h1 n B n n h h where 1,...,t t Q r h1 n n h h Normal equatons wrtten n matrx form are: 3

4 G T B N 1R 1 b K R1 t R N K1 b N K Multply both sdes on the left by F N t NK 1 0 NR 1 1 b NOTE: R1 t N1 b ; K1 b N1 t We get reduced equatons: G N 1 R /N1 K /N 1 Q TNK 1 B R NK 1 N B NR 1 T KNR 1 N 3 Impose sde condtons: r 1 R 0; 1 K 0. (1) becomes G/N y () Q tx1 A txt (adusted nterbloc equatons; A s sngular) (3) becomes counterparts for estmatng NOTE: A1 0 because r n h n n h Q h h r n h n h r r 0 4

5 KNR 1 N1 0 Confrm our study to ran(a)t-1 and ran (K-N R 1 N)t. Such a desgn s a connected desgn. Under these condtons all contrasts, are estmable. To calculate SS(regresson), get from equatons K1 N K B K 1 B K 1 N 1b Then SSregresson G B T G BK 1 B TBK 1 N G BK 1 B Q Snce A , one egenvalue s zero and the correspondng egenvector s 1. Also A e e where e are egenvectors correspondng to non-zero roots and e 1 0. A 1 1 e e,a 1 1 0, A 1 Q,DQ A. Hence D( A 1 AA 1 V, where V1 0. Analyss of varance for ntrabloc source df SS total N1 y m G /N blocs (gnorng trts) b1 BK 1 B G /N Trts (adusted) t 1 Q error Nbt1 by subtracton If there are some cells wth more than 1 observaton, we can remove from the resdual SS a SS wthn cellsy m y. and attrbute the rest to nteracton between treatments and blocs. For bnary desgns, we assume no nteracton. 5

6 11.6 The adusted treatment and bloc totals: Q, the adusted treatment totals, are lnearly dependent Q 1 t Q 0. NOTE: Q 1 t T 1 t B K 1 N 1 t GB K 1 K1 b GG 0 Smlarly, B NR 1 T1 b 0 Calculate CovQ: Recall basc form of Nt 1 s of general lnear hypothess: XY XX wth CovY I, CovXY XI X XX. Thus, for us, the square matrx on the rght n the normal equatons s the covarance matrx of the totals G, T,B (call t XX). The covarances of G/N,Q,B NR 1 T are gven by CovFG,T, B FXXF N R NK 1 N R NK 1 NR 1 N 0 KNR 1 NK 1 N KNR 1 N or Cov Q R NK 1 N A CovB NR 1 T KNR 1 N 11.7 Solvng the Intrabloc equatons ( methods): (reduced ntrabloc equatons Q A ) Method 1: Use H 0 where H s a row vector (e.g. H1 or 1 R) (sde condton: 1H h 0 Construct A A H H 0 B 11 B 1 B 1 B 1 then B 11 Q. 6

7 Then A A 1 I gves (1) AB 11 H B 1 I A R NK 1 N A () AB 1 H B 0 B 11 B 11 (3) H B 11 0 (4) H B 1 1 Notng 1A 0 we get 1AB 11 1H B 1 I or 1HB 1 1. From (), smlarly, 1H B 0. Therefore B 1 1H h,b 0. Tae transpose of (1),.e. B 11 A B 1 H I. Multply on left by : B 11 A B 1 H B 11 Q (snce H 0 NOTE: B 11 generalzed nverse of A.e.B 11 B 11 AB 11 If H 1R,B 1 1 N ; f H 1,B 1 1 t. Multply (1) on the left by B 11, gvng: B 11 AB 11 B 11 HB 1 B 11 B 11 AB 11 B 1 by (3) Smlarly, multply on rght of (1) by A, gvng: AB 11 A HB 1 A A AB 11 A H 1 A AB 11 A A 1 A 0. h A or AB 11 AB 11 AB 11 and B 11 AB 11 A B 11 A (.e. dempotent) Tae transpose of (1) and multply by to get B 11 A B 1 H, notng A and B 11 are symmetrc. But A Q and H 0, or B 11 Q and B 11 s a soluton matrx. (or AB 11 QH B 1 Q Q AB 11 Q Q because B 1 Q 1 Q 0 h (NOTE: Cov( CovB 11 Q B 11 AB 11 B 11 Another method: Let P 1 A HH 1. Then P 1 Q because Q A A H H. Secton 11.8 Connected desgns (due to Bose): A bloc and treatment are assocated f treatment occurs n the bloc. Two treatments are connected f t s possble to pass from one to the other by a chan of 7

8 treatments such that adacent treatments n the chan are n the same bloc (or two treatments A and B are connected f we can form a chan of treatments and blocs begnnng wth A and endng wth B such that every bloc n the chan s assocated wth both treatments adacent to t). A desgn s connected f all pars of treatments are connected. THEOREM: A desgn s connected f and only f all contrasts h are estmable PROOF: Wrte down the sequence and then the expected value of each term. Everythng cancels except h. ex. Bloc 1 A B C D y 11 y 1 y 13 y 14 Bloc B C E Bloc 3 D E Bloc 4 E F G Are A, G connected? ABEG, so yes. A G 1 A 1 B B E 4 E 4 Ey 11 y 1 y 1 y 5 y 45 y 47 A G s estmable (by followng the chan). THEOREM: A desgn s connected f and only f RA t 1. (to verfy ra t 1, ust chec to see f all pars of trts. are connected) ASIDE: An alternatve dervaton of average varance (v) of treatment comparsons n GIBD. (connected) ra t 1, there are t 1 non-zero egenvalues, then one egenvalue s zero. A1 0,1 s the egenvector correspondng to egenvalue 0. Let c 1,..., c t1 be egenvectors correspondng to egenvalues 1,..., t1. 8

9 Spectral decomposton: A t1 1 c c AA A A Generalzed nverse: A 1 t1 1 1 c c trv A 1 tr c c 1 trc c 1 PROOF: a) Suppose all elementary contrasts estmable, tae t 1 t t,...,t t1 t t (lnearly ndep. group) Normal equatons are: or G N r T r r n XY XX B n X X 1 3 Now l m, m 0, l,0 s estmable ff rxx rxx m. Now subtract n XX m. E X X A tmes (3) from () and sum over, whch does not affect ran of XX or because n 0 0 and EXX m A l or ra ra l. Hence f t 1 estmable functons (lnearly ndependent) say L we have ra r A t 1 b) converse: If ra t 1, then l s estmable for every l such that l1 0. PROOF: snce ra t 1, we have c 1,...,c t1 orthogonal normal egenvectors correspondng to 1,..., t1 (nonzero). Then Ec Q c A c or c c Q. 9

10 Snce c s orthogonal to 1 (egenvector correspondng to 0) and l also orthogonal to 1 we have l 1 t1 c, l c E 1 t1 c Q t1 c A 1 1 t1 c l or l s estmable or desgn s connected. BIB model y ; 1,...,; 1,...,b t Q where Q T n B, Q 0 Var h t (balanced but not orthogonal) Secton 11.9: Recovery of Interbloc Informaton (nterbloc estmates): Yates (1940) assumed blocs were random. He wanted to use bloc totals..e. and ndep. of ~N0, e y, ~N0, b I Restrct ourselves to proper desgns. NOTE: The s we got above for the fxed effect model are stll unbased estmates for s under ths model (snce they were condtonally unbased, therefore uncondtonally based). Yates used lnear model theory to get another unbased estmator for s, usng bloc totals. Interbloc analyss: Consder bloc totals B n y n e Thus Ef 0 and Vf b e b e f 10

11 Covf, f 0 for all so apply least squares estmaton. Mnmze b 1 B n Normal equatons: 1) wth respect to : n r and N b ) wth respect to : ( s s ) G N r B n B r s n s s n 0 n r r s s s n s s r r We get estmates: so G/N y.. n B r r because T B G tr, we have 0 h T T h r (these are alternatve estmators for h. We had h Q Q h t To show these two estmators (ntrabloc and nterbloc) are ndependent, we need only show B,Q are ndependent for all and ( cov 0 normal. b Q T s1 n s B s f treatment s not n bloc, then Q and B are ndependent. 11

12 If treatment s n bloc, CovB,Q CovB, T 1 VarB Vary 1 VarB T n B, VarB f b e e b Vary Var e b VarB Var n y Secton 11.10: combnng ntrabloc and nterbloc estmators: We have ndependent estmators of h : (1) OLD: (ths s a condtonal varance) h Q,Q h t V Z h t e (uner fxed model and hence under ths one V EV Z h t e () NEW: h T T h r 1

13 VT f CovT,T h f n r f ; n n h f V h 1 r r f f r f Usng and we construct a new estmator w 1 1 V w 1 V t e r e b w 1w w 1 w w w 1 r t e f r e b w 1 w 1 w t e w w 1 w 1 1 w r t1 b e 1 w 1 1 w 1 the above depends only on b, generally unnown varances. e w V 1 w 1 w w 1 w w 1 w 1 w 1 w w 1 V w V V,V (unformly better than ether of the earler estmators) But we are guessng!! [If we ndeed had a random model, we would have to use MLE s for the s]. The solutons are not easy. We ve shown (condtonal) E h h E h b h (uncondtonal) In general 13

14 c c T r, c 0 V V c f r V c c t rc c c h h f r c (condtonally unbased) combned estmator s where w 1w w 1 w w 1 t, w r f V c w 1 w We need to estmate weghts w 1 and w. s unbased usng estmated w 1 and w weghts. To get these estmates, get ANOVA tables for blocs (adusted for treatments). l l w 1 w 1 w w w 1 w l l ( w w 1 w an even functon of observatons) or E l l E l l E l l so unbased. Use w 1w w 1 w S bad Nt 1 MSE b1 Nt 14

15 We need estmators for b and e : 1) We get e estmate from MSE n Intrabloc analyss ANOVA (blocs elmnatng treatments (nterbloc analyss)) Source df SS E(MS) trts. (gnorng blocs) t 1 T r G N t 1 e r t b blocs (adusted for trts.) b1 R 1 R 0 e bt b1 b error (ntrabloc analyss) Nbt1 Q t s y B e total N1 y G N SSBl unad SStr ad SST unad SSbl ad Assgnment #4: 1) Show S blad. for trts. S bad B Q t T ) Also, f we defne y y, show Ey 0,y S bad y S bad y. r s R 1 R 0 for testng blocs. ~N0, e b and 3) Show ES bad b b t e b1 and hence b S badms eb1 Nt Interbloc: y n, where n s 1 f treatment occurs n bloc, and 0 otherwse. s are fxed, s are random ndependent N0, b, s are random ndependent N0, e ). where y. n n f n n, n ~N0, f 15

16 Treat bloc totals as observatons and get estmates of s,.e. s. Mnmze y. n 1 r n B r Here we loo at bloc totals; n ntrabloc we loo at observatons. SS error B B T Trt T A B C D E B t 5, r 6,b 10, 3, 3 (5 detergents for dshwashng, 3 sns, observatons are # of plates washed beforee all suds dsappear from each sn. T n B Q T n B Q A B C D E Q Q Intrabloc analyss: 16

17 source df SS MS E(MS) F total 9 y G /N blocs (gnorng trts) 9 B G /N trts (elmnatng blocs) 4 t Q e r t 36.54/ Error 16 by subtracton e SS(Blocs ngnorng trts)ss(trts adustng for blocs)ss(trts. gnorng blocs)ss(blocs ad. for trts) SS(error)TSS-SS(col. gnorng rows)-ss(rows elmnatng columns) TSS-SS(rows gnorng columns)-ss(columns elmnatng rows) TSS-SS(fttng parameters and t Q ; V t VQ t r 1 r 1 tt t 1 tt t 1 t If bloc dfferences are large, you get a sgnfcant amount of addtonal nformaton from nterbloc (for RCB, t,b r and nterbloc dsappears). If blocng s useful, consder Var 1 Var Var 1 Var, whch wll have varance consderably less than Var and Var. Why both analyses? Degrees of freedom for error s small wth BIBD, and we need a better estmate of varance. 17

Number of cases Number of factors Number of covariates Number of levels of factor i. Value of the dependent variable for case k

Number of cases Number of factors Number of covariates Number of levels of factor i. Value of the dependent variable for case k ANOVA Model and Matrx Computatons Notaton The followng notaton s used throughout ths chapter unless otherwse stated: N F CN Y Z j w W Number of cases Number of factors Number of covarates Number of levels

More information

Analysis of Variance and Design of Experiments-II

Analysis of Variance and Design of Experiments-II Analyss of Varance and Desgn of Experments-II MODULE - III LECTURE - 8 PARTIALLY BALANCED INCOMPLETE BLOCK DESIGN (PBIBD) Dr Shalah Department of Mathematcs & Statstcs Indan Insttute of Technology Kanpur

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values Fall 007 Soluton to Mdterm Examnaton STAT 7 Dr. Goel. [0 ponts] For the general lnear model = X + ε, wth uncorrelated errors havng mean zero and varance σ, suppose that the desgn matrx X s not necessarly

More information

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of Chapter 7 Generalzed and Weghted Least Squares Estmaton The usual lnear regresson model assumes that all the random error components are dentcally and ndependently dstrbuted wth constant varance. When

More information

Chapter 7 Partially Balanced Incomplete Block Design (PBIBD)

Chapter 7 Partially Balanced Incomplete Block Design (PBIBD) Chapter 7 Partally Balanced Incomplete Block Desgn (PBIBD) The balanced ncomplete block desgns hae seeral adantages. They are connected desgns as well as the block szes are also equal. A restrcton on usng

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

Chapter 12 Analysis of Covariance

Chapter 12 Analysis of Covariance Chapter Analyss of Covarance Any scentfc experment s performed to know somethng that s unknown about a group of treatments and to test certan hypothess about the correspondng treatment effect When varablty

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS

PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS V.K. Sharma I.A.S.R.I., Lbrary Avenue, New Delh-00. Introducton Balanced ncomplete block desgns, though have many optmal propertes, do not ft well to many expermental

More information

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X).

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X). 11.4.1 Estmaton of Multple Regresson Coeffcents In multple lnear regresson, we essentally solve n equatons for the p unnown parameters. hus n must e equal to or greater than p and n practce n should e

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

17 Nested and Higher Order Designs

17 Nested and Higher Order Designs 54 17 Nested and Hgher Order Desgns 17.1 Two-Way Analyss of Varance Consder an experment n whch the treatments are combnatons of two or more nfluences on the response. The ndvdual nfluences wll be called

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experments- MODULE LECTURE - 6 EXPERMENTAL DESGN MODELS Dr. Shalabh Department of Mathematcs and Statstcs ndan nsttute of Technology Kanpur Two-way classfcaton wth nteractons

More information

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra MEM 255 Introducton to Control Systems Revew: Bascs of Lnear Algebra Harry G. Kwatny Department of Mechancal Engneerng & Mechancs Drexel Unversty Outlne Vectors Matrces MATLAB Advanced Topcs Vectors A

More information

Lecture 3 Specification

Lecture 3 Specification Lecture 3 Specfcaton 1 OLS Estmaton - Assumptons CLM Assumptons (A1) DGP: y = X + s correctly specfed. (A) E[ X] = 0 (A3) Var[ X] = σ I T (A4) X has full column rank rank(x)=k-, where T k. Q: What happens

More information

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Norms, Condition Numbers, Eigenvalues and Eigenvectors Norms, Condton Numbers, Egenvalues and Egenvectors 1 Norms A norm s a measure of the sze of a matrx or a vector For vectors the common norms are: N a 2 = ( x 2 1/2 the Eucldean Norm (1a b 1 = =1 N x (1b

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours UNIVERSITY OF TORONTO Faculty of Arts and Scence December 005 Examnatons STA47HF/STA005HF Duraton - hours AIDS ALLOWED: (to be suppled by the student) Non-programmable calculator One handwrtten 8.5'' x

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

x i1 =1 for all i (the constant ).

x i1 =1 for all i (the constant ). Chapter 5 The Multple Regresson Model Consder an economc model where the dependent varable s a functon of K explanatory varables. The economc model has the form: y = f ( x,x,..., ) xk Approxmate ths by

More information

Introduction to Dummy Variable Regressors. 1. An Example of Dummy Variable Regressors

Introduction to Dummy Variable Regressors. 1. An Example of Dummy Variable Regressors ECONOMICS 5* -- Introducton to Dummy Varable Regressors ECON 5* -- Introducton to NOTE Introducton to Dummy Varable Regressors. An Example of Dummy Varable Regressors A model of North Amercan car prces

More information

F statistic = s2 1 s 2 ( F for Fisher )

F statistic = s2 1 s 2 ( F for Fisher ) Stat 4 ANOVA Analyss of Varance /6/04 Comparng Two varances: F dstrbuton Typcal Data Sets One way analyss of varance : example Notaton for one way ANOVA Comparng Two varances: F dstrbuton We saw that the

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information

Lecture 6 More on Complete Randomized Block Design (RBD)

Lecture 6 More on Complete Randomized Block Design (RBD) Lecture 6 More on Complete Randomzed Block Desgn (RBD) Multple test Multple test The multple comparsons or multple testng problem occurs when one consders a set of statstcal nferences smultaneously. For

More information

Topic 23 - Randomized Complete Block Designs (RCBD)

Topic 23 - Randomized Complete Block Designs (RCBD) Topc 3 ANOVA (III) 3-1 Topc 3 - Randomzed Complete Block Desgns (RCBD) Defn: A Randomzed Complete Block Desgn s a varant of the completely randomzed desgn (CRD) that we recently learned. In ths desgn,

More information

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction ECONOMICS 35* -- NOTE 7 ECON 35* -- NOTE 7 Interval Estmaton n the Classcal Normal Lnear Regresson Model Ths note outlnes the basc elements of nterval estmaton n the Classcal Normal Lnear Regresson Model

More information

Lecture 4: Universal Hash Functions/Streaming Cont d

Lecture 4: Universal Hash Functions/Streaming Cont d CSE 5: Desgn and Analyss of Algorthms I Sprng 06 Lecture 4: Unversal Hash Functons/Streamng Cont d Lecturer: Shayan Oves Gharan Aprl 6th Scrbe: Jacob Schreber Dsclamer: These notes have not been subjected

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

Two-factor model. Statistical Models. Least Squares estimation in LM two-factor model. Rats

Two-factor model. Statistical Models. Least Squares estimation in LM two-factor model. Rats tatstcal Models Lecture nalyss of Varance wo-factor model Overall mean Man effect of factor at level Man effect of factor at level Y µ + α + β + γ + ε Eε f (, ( l, Cov( ε, ε ) lmr f (, nteracton effect

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrcs of Panel Data Jakub Mućk Meetng # 8 Jakub Mućk Econometrcs of Panel Data Meetng # 8 1 / 17 Outlne 1 Heterogenety n the slope coeffcents 2 Seemngly Unrelated Regresson (SUR) 3 Swamy s random

More information

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor Prncpal Component Transform Multvarate Random Sgnals A real tme sgnal x(t can be consdered as a random process and ts samples x m (m =0; ;N, 1 a random vector: The mean vector of X s X =[x0; ;x N,1] T

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede Fall 0 Analyss of Expermental easurements B. Esensten/rev. S. Errede We now reformulate the lnear Least Squares ethod n more general terms, sutable for (eventually extendng to the non-lnear case, and also

More information

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis Resource Allocaton and Decson Analss (ECON 800) Sprng 04 Foundatons of Regresson Analss Readng: Regresson Analss (ECON 800 Coursepak, Page 3) Defntons and Concepts: Regresson Analss statstcal technques

More information

LECTURE 9 CANONICAL CORRELATION ANALYSIS

LECTURE 9 CANONICAL CORRELATION ANALYSIS LECURE 9 CANONICAL CORRELAION ANALYSIS Introducton he concept of canoncal correlaton arses when we want to quantfy the assocatons between two sets of varables. For example, suppose that the frst set of

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

a. (All your answers should be in the letter!

a. (All your answers should be in the letter! Econ 301 Blkent Unversty Taskn Econometrcs Department of Economcs Md Term Exam I November 8, 015 Name For each hypothess testng n the exam complete the followng steps: Indcate the test statstc, ts crtcal

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

[ ] λ λ λ. Multicollinearity. multicollinearity Ragnar Frisch (1934) perfect exact. collinearity. multicollinearity. exact

[ ] λ λ λ. Multicollinearity. multicollinearity Ragnar Frisch (1934) perfect exact. collinearity. multicollinearity. exact Multcollnearty multcollnearty Ragnar Frsch (934 perfect exact collnearty multcollnearty K exact λ λ λ K K x+ x+ + x 0 0.. λ, λ, λk 0 0.. x perfect ntercorrelated λ λ λ x+ x+ + KxK + v 0 0.. v 3 y β + β

More information

ANOVA. The Observations y ij

ANOVA. The Observations y ij ANOVA Stands for ANalyss Of VArance But t s a test of dfferences n means The dea: The Observatons y j Treatment group = 1 = 2 = k y 11 y 21 y k,1 y 12 y 22 y k,2 y 1, n1 y 2, n2 y k, nk means: m 1 m 2

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Now we relax this assumption and allow that the error variance depends on the independent variables, i.e., heteroskedasticity

Now we relax this assumption and allow that the error variance depends on the independent variables, i.e., heteroskedasticity ECON 48 / WH Hong Heteroskedastcty. Consequences of Heteroskedastcty for OLS Assumpton MLR. 5: Homoskedastcty var ( u x ) = σ Now we relax ths assumpton and allow that the error varance depends on the

More information

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1. 7636S ADVANCED QUANTUM MECHANICS Soluton Set 1 Sprng 013 1 Warm-up Show that the egenvalues of a Hermtan operator  are real and that the egenkets correspondng to dfferent egenvalues are orthogonal (b)

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980 MT07: Multvarate Statstcal Methods Mke Tso: emal mke.tso@manchester.ac.uk Webpage for notes: http://www.maths.manchester.ac.uk/~mkt/new_teachng.htm. Introducton to multvarate data. Books Chat eld, C. and

More information

CSCE 790S Background Results

CSCE 790S Background Results CSCE 790S Background Results Stephen A. Fenner September 8, 011 Abstract These results are background to the course CSCE 790S/CSCE 790B, Quantum Computaton and Informaton (Sprng 007 and Fall 011). Each

More information

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics ECOOMICS 35*-A Md-Term Exam -- Fall Term 000 Page of 3 pages QUEE'S UIVERSITY AT KIGSTO Department of Economcs ECOOMICS 35* - Secton A Introductory Econometrcs Fall Term 000 MID-TERM EAM ASWERS MG Abbott

More information

Chapter 6. Supplemental Text Material

Chapter 6. Supplemental Text Material Chapter 6. Supplemental Text Materal S6-. actor Effect Estmates are Least Squares Estmates We have gven heurstc or ntutve explanatons of how the estmates of the factor effects are obtaned n the textboo.

More information

Feb 14: Spatial analysis of data fields

Feb 14: Spatial analysis of data fields Feb 4: Spatal analyss of data felds Mappng rregularly sampled data onto a regular grd Many analyss technques for geophyscal data requre the data be located at regular ntervals n space and/or tme. hs s

More information

STAT 511 FINAL EXAM NAME Spring 2001

STAT 511 FINAL EXAM NAME Spring 2001 STAT 5 FINAL EXAM NAME Sprng Instructons: Ths s a closed book exam. No notes or books are allowed. ou may use a calculator but you are not allowed to store notes or formulas n the calculator. Please wrte

More information

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique Outlne and Readng Dynamc Programmng The General Technque ( 5.3.2) -1 Knapsac Problem ( 5.3.3) Matrx Chan-Product ( 5.3.1) Dynamc Programmng verson 1.4 1 Dynamc Programmng verson 1.4 2 Dynamc Programmng

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

Lecture 6: Introduction to Linear Regression

Lecture 6: Introduction to Linear Regression Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6

More information

MATH Homework #2

MATH Homework #2 MATH609-601 Homework #2 September 27, 2012 1. Problems Ths contans a set of possble solutons to all problems of HW-2. Be vglant snce typos are possble (and nevtable). (1) Problem 1 (20 pts) For a matrx

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

Primer on High-Order Moment Estimators

Primer on High-Order Moment Estimators Prmer on Hgh-Order Moment Estmators Ton M. Whted July 2007 The Errors-n-Varables Model We wll start wth the classcal EIV for one msmeasured regressor. The general case s n Erckson and Whted Econometrc

More information

Radar Trackers. Study Guide. All chapters, problems, examples and page numbers refer to Applied Optimal Estimation, A. Gelb, Ed.

Radar Trackers. Study Guide. All chapters, problems, examples and page numbers refer to Applied Optimal Estimation, A. Gelb, Ed. Radar rackers Study Gude All chapters, problems, examples and page numbers refer to Appled Optmal Estmaton, A. Gelb, Ed. Chapter Example.0- Problem Statement wo sensors Each has a sngle nose measurement

More information

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis A Appendx for Causal Interacton n Factoral Experments: Applcaton to Conjont Analyss Mathematcal Appendx: Proofs of Theorems A. Lemmas Below, we descrbe all the lemmas, whch are used to prove the man theorems

More information

MD. LUTFOR RAHMAN 1 AND KALIPADA SEN 2 Abstract

MD. LUTFOR RAHMAN 1 AND KALIPADA SEN 2 Abstract ISSN 058-71 Bangladesh J. Agrl. Res. 34(3) : 395-401, September 009 PROBLEMS OF USUAL EIGHTED ANALYSIS OF VARIANCE (ANOVA) IN RANDOMIZED BLOCK DESIGN (RBD) ITH MORE THAN ONE OBSERVATIONS PER CELL HEN ERROR

More information

Topic- 11 The Analysis of Variance

Topic- 11 The Analysis of Variance Topc- 11 The Analyss of Varance Expermental Desgn The samplng plan or expermental desgn determnes the way that a sample s selected. In an observatonal study, the expermenter observes data that already

More information

Systems of Equations (SUR, GMM, and 3SLS)

Systems of Equations (SUR, GMM, and 3SLS) Lecture otes on Advanced Econometrcs Takash Yamano Fall Semester 4 Lecture 4: Sstems of Equatons (SUR, MM, and 3SLS) Seemngl Unrelated Regresson (SUR) Model Consder a set of lnear equatons: $ + ɛ $ + ɛ

More information

Chapter 13 Analysis of Variance and Experimental Design

Chapter 13 Analysis of Variance and Experimental Design Chapter 3 Analyss of Varance and Expermental Desgn Learnng Obectves. Understand how the analyss of varance procedure can be used to determne f the means of more than two populatons are equal.. Know the

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Statistical pattern recognition

Statistical pattern recognition Statstcal pattern recognton Bayes theorem Problem: decdng f a patent has a partcular condton based on a partcular test However, the test s mperfect Someone wth the condton may go undetected (false negatve

More information

What would be a reasonable choice of the quantization step Δ?

What would be a reasonable choice of the quantization step Δ? CE 108 HOMEWORK 4 EXERCISE 1. Suppose you are samplng the output of a sensor at 10 KHz and quantze t wth a unform quantzer at 10 ts per sample. Assume that the margnal pdf of the sgnal s Gaussan wth mean

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)?

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)? Homework 8 solutons. Problem 16.1. Whch of the followng defne homomomorphsms from C\{0} to C\{0}? Answer. a) f 1 : z z Yes, f 1 s a homomorphsm. We have that z s the complex conjugate of z. If z 1,z 2

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

Estimation: Part 2. Chapter GREG estimation

Estimation: Part 2. Chapter GREG estimation Chapter 9 Estmaton: Part 2 9. GREG estmaton In Chapter 8, we have seen that the regresson estmator s an effcent estmator when there s a lnear relatonshp between y and x. In ths chapter, we generalzed the

More information

Solutions Homework 4 March 5, 2018

Solutions Homework 4 March 5, 2018 1 Solutons Homework 4 March 5, 018 Soluton to Exercse 5.1.8: Let a IR be a translaton and c > 0 be a re-scalng. ˆb1 (cx + a) cx n + a (cx 1 + a) c x n x 1 cˆb 1 (x), whch shows ˆb 1 s locaton nvarant and

More information

Tests of Single Linear Coefficient Restrictions: t-tests and F-tests. 1. Basic Rules. 2. Testing Single Linear Coefficient Restrictions

Tests of Single Linear Coefficient Restrictions: t-tests and F-tests. 1. Basic Rules. 2. Testing Single Linear Coefficient Restrictions ECONOMICS 35* -- NOTE ECON 35* -- NOTE Tests of Sngle Lnear Coeffcent Restrctons: t-tests and -tests Basc Rules Tests of a sngle lnear coeffcent restrcton can be performed usng ether a two-taled t-test

More information

Exercise 1 The General Linear Model : Answers

Exercise 1 The General Linear Model : Answers Eercse The General Lnear Model Answers. Gven the followng nformaton on 67 pars of values on and -.6 - - - 9 a fnd the OLS coeffcent estmate from a regresson of on. Usng b 9 So. 9 b Suppose that now also

More information

Section 3.6 Complex Zeros

Section 3.6 Complex Zeros 04 Chapter Secton 6 Comple Zeros When fndng the zeros of polynomals, at some pont you're faced wth the problem Whle there are clearly no real numbers that are solutons to ths equaton, leavng thngs there

More information

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD Matrx Approxmaton va Samplng, Subspace Embeddng Lecturer: Anup Rao Scrbe: Rashth Sharma, Peng Zhang 0/01/016 1 Solvng Lnear Systems Usng SVD Two applcatons of SVD have been covered so far. Today we loo

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

Lecture 4 Hypothesis Testing

Lecture 4 Hypothesis Testing Lecture 4 Hypothess Testng We may wsh to test pror hypotheses about the coeffcents we estmate. We can use the estmates to test whether the data rejects our hypothess. An example mght be that we wsh to

More information

Chapter 8 Indicator Variables

Chapter 8 Indicator Variables Chapter 8 Indcator Varables In general, e explanatory varables n any regresson analyss are assumed to be quanttatve n nature. For example, e varables lke temperature, dstance, age etc. are quanttatve n

More information

Learning Theory: Lecture Notes

Learning Theory: Lecture Notes Learnng Theory: Lecture Notes Lecturer: Kamalka Chaudhur Scrbe: Qush Wang October 27, 2012 1 The Agnostc PAC Model Recall that one of the constrants of the PAC model s that the data dstrbuton has to be

More information

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization DISCRIMINANTS AND RAMIFIED PRIMES KEITH CONRAD 1. Introducton A prme number p s sad to be ramfed n a number feld K f the prme deal factorzaton (1.1) (p) = po K = p e 1 1 peg g has some e greater than 1.

More information

7. Products and matrix elements

7. Products and matrix elements 7. Products and matrx elements 1 7. Products and matrx elements Based on the propertes of group representatons, a number of useful results can be derved. Consder a vector space V wth an nner product ψ

More information

STAT 3008 Applied Regression Analysis

STAT 3008 Applied Regression Analysis STAT 3008 Appled Regresson Analyss Tutoral : Smple Lnear Regresson LAI Chun He Department of Statstcs, The Chnese Unversty of Hong Kong 1 Model Assumpton To quantfy the relatonshp between two factors,

More information