Some implications of Chu s 10 ψ 10 extension of Bailey s 6 ψ 6 summation formula

Size: px
Start display at page:

Download "Some implications of Chu s 10 ψ 10 extension of Bailey s 6 ψ 6 summation formula"

Transcription

1 Some implicatios of Chu s 10 ψ 10 extesio of Bailey s 6 ψ 6 summatio fomula James McLaughli Adew V Sills Pete Zimme August Keywods: q-seies Roges-Ramauja Type Idetities Bailey chais False Theta Seies Subject Class: [000]Pimay: 33D15 Secoday:11B65 05A19 Abstact Lucy Slate used Bailey s 6 ψ 6 summatio fomula to deive the Bailey pais she used to costuct he famous list of 130 idetities of the Roges-Ramauja type I the peset pape we apply the same techiques to Chu s 10ψ 10 geealizatio of Bailey s fomula to poduce quite geeal Bailey pais Slate s Bailey pais ae the ecoveed as special limitig cases of these moe geeal pais I e-examiig Slate s wok we fid that he Bailey pais ae fo the most pat special cases of moe geeal Bailey pais cotaiig oe o moe fee paametes Futhe we also fid ew geeal Bailey pais (cotaiig oe o moe fee paametes) which ae also implied by the 6ψ 6 summatio fomula Slate used the Jacobi tiple poduct idetity (sometimes coupled with the quituple poduct idetity) to deive he ifiite poducts Hee we also use othe summatio fomulae (icludig special cases of the 6ψ 6 summatio fomula ad Jackso s 6φ 5 summatio fomula) to deive some of ou ifiite poducts We use the ew Bailey pais ad/o the summatio methods metioed above to give ew poofs of some geeal seies-poduct idetities due to Ramauja Adews ad othes We also deive a ew geeal seies-poduct idetity oe which may be egaded as a pate to oe of the Ramauja idetities We also fid ew tasfomatio fomulae betwee basic hypegeometic seies ew idetities of Roges-Ramauja type ad ew false theta seies idetities Some of these latte ae a kid of hybid i that oe side of the idetity cosists a basic hypegeometic seies while the othe side is fomed fom a theta poduct multiplied by a false theta seies This type of idetity appeas to be ew 1 Itoductio Bailey s 6ψ 6 idetity [5] q a q a b c d e 6ψ 6 q qa a a qa/b qa/c qa/d qa/e bcde (aq aq/bc aq/bd aq/be aq/cd aq/ce aq/de q q/a q) (aq/b aq/c aq/d aq/e q/b q/c q/d q/e qa /bcde q) (11) is pobably the most impotat summatio fomula fo bilateal basic hypegeometic seies ad has may applicatios to umbe theoy ad patitios - see Adews pape [] fo some examples This summatio fomula was also the mai tool used by Slate [16 17] to deive Bailey pais ad fom these he list of 130 idetities of the Roges-Ramauja type Bailey s fomula was exteded by Shukla [14] ad Shukla s fomula was late futhe exteded by Chu [6] Let K : K(a b c d e u v q) uv (σ 3 aσ 1 ) (qσ 3 aσ 1 ) a + ()uv a σ 4 a σ a + σ 4 a + (u + v)(a + uv) (σ 3 aσ 1 ) a qσ 4 a + u + a v + a a σ 4 a qσ 4 { a bcde a bcdeq (1 u)(a u)(1 v)(a v)} 1 (1) whee fo 1 k 4 σ k deotes the k-th elemetay symmetic fuctio i {b c d e} The 1

2 Popositio 11 (Chu [6]) Fo complex umbes a b c d ad e satisfyig a /bcdeq < 1 thee holds the idetity 10ψ 10 q a q a b c d e qu qa/u qv qa/v a q a a qa/b qa/c qa/d qa/e u a/u v a/v qbcde (1 aq )(b c d e uq vq aq/u aq/v q) a (1 a)(aq/b aq/c aq/d aq/e u v a/u a/v q) qbcde + 1 ( /a)(b/a c/a d/a e/a uq/a vq/a q/u q/v q) a (1 1/a)(q/b q/c q/d q/e 1/u 1/v u/a v/a q) qbcde K (aq aq/bc aq/bd aq/be aq/cd aq/ce aq/de q q/a q) (aq/b aq/c aq/d aq/e q/b q/c q/d q/e qa /bcde q) (13) Upo lettig u v we obtai Bailey s fomula (11) while lettig u ecoves Shukla s [14] 8ψ 8 geealizatio of Bailey s fomula Fo most values of the paametes the expessio fo K is quite complicated but we ote i passig that the case b a/c esults i cosideable simplificatio Coollay 1 Fo complex umbes a c d ad e satisfyig a/deq < 1 thee holds the idetity q a q a a/c c d e qu qa/u qv qa/v a 10ψ 10 q a a cq qa/c qa/d qa/e u a/u v a/v qde (1 u/c)(1 cu/a)(1 v/c)(1 cv/a) (1 u/a)(1 u)(1 v/a)(1 v) (aq q cq/d cq/e aq/cd aq/ce aq/de q q/a q) (14) (cq aq/c aq/d aq/e cq/a q/c q/d q/e qa/de q) Sice (11) was used by Slate to deive he Bailey pais it is atual to ask if Chu s geealizatio of Bailey s fomula at (13) ca be used similaly to poduce ay ew iteestig esults The peset pape is i pat a ivestigatio of that questio Oe obsevatio we make is that most of Slate s Bailey pais ae special cases of moe geeal Bailey pais cotaiig oe o moe fee paametes - see Coollaies 8 ad 13 Slate could have deived these moe geeal pais heself but it would seem that she was pimaily iteested i the special cases which would lead to idetities of the Roges-Ramauja type We also ote that Slate used the Jacobi Tiple Poduct idetity to deive he ifiite poducts I the peset pape we use othe summatio fomulae icludig special cases of the 6 ψ 6 - ad 6 φ 5 summatio fomulae to deive some ifiite poducts I the tasfomatio at (5) below Slate essetially employed thee cases (y z ad y ± aq z ) to make the seies cotaiig the α sequeces summable I the peset pape we also exploe additioal cases i the pocess discoveig some iteestig ew idetities (see Sectio 3 below) Ou esults iclude ew poofs of some geeal seies-poduct idetities due to Ramauja Adews ad othes ad also a ew geeal seies-poduct idetity (q/z q) +1 (z q) q + (q q) +1 (zq q/z q 3 q 3 ) (q q) (15) which may be egaded as a pate to a idetity equivalet to oe ecoded by Ramauja i his lost otebook [4 p 99 Ety 531 with a z/q ad q q thoughout]: (q/z q) (z q) q (q q) (zq q /z q 3 q 3 ) (q q) (16) We also fid ew tasfomatio fomulae betwee basic hypegeometic seies ew idetities of Roges-Ramauja type ad ew false theta seies idetities Some of these latte ae a kid of hybid i that oe side of the idetity cosists a basic hypegeometic seies while the othe side is fomed fom a theta poduct multiplied by a false theta seies Fo example P q + q6 + ( 8+4 ) (17) ( +1 )(q q) (q q) This type of idetity appeas to be ew

3 We employ the usual otatios: (a q) : (1 a)(1 aq) (1 aq 1 ) (a 1 a a j q) : (a 1 q) (a q) (a j q) (a q) : (1 a)(1 aq)(1 aq ) ad (a 1 a a j q) : (a 1 q) (a q) (a j q) Fo late use we ecall that a pai of sequeces (α β ) that satisfy α 0 1 ad is temed a Bailey pai elative to a β j0 α j (q q) j(aq q) +j (18) Bailey Pais fom Chu s Extesio of the 6 ψ 6 summatio fomula 1 Geeal Bailey pais We fist coside the case e a ad d q N i Chu s fomula These same substitutios wee made by Slate i (11) ad gave ise to a quite geeal Bailey pai (see below) which i tu led to may ew idetities of Roges-Ramauja type Let K be defied as at (1) Theoem 1 The pai of sequeces (α β ) is a Bailey pai with espect to a whee α : (q a q a a b c qu qa/u qv qa/v q) a ( a q ( 3)/ (1) a qa/b qa/c u a/u v a/v q q) bc (aq/bc q) β : K 1 () (aq/b aq/c q q) whee K 1 () : K(a b c q a u v q) Poof Fist set e a so that all the tems with egative idex i the bilateal sum at (13) become zeo Next fo each o-egative itege set d q so that the sum o the left side of (13) becomes a fiite sum with the summatio idex uig fom 0 to Simplify the esultig poduct o the ight side of (13) ad use the idetity (see [7 (I10) page 351]) (q q) j (q q) q j(j 1)/ (q q) j( q ) j () to modify the seies side The esult the follows fom (18) afte some simple maipulatios otig also that K 1(0) 1 so that the equiemet α 0 β 0 1 is satisfied The expessio fo K 1 () above is geeally quite complicated ad thus so also is the expessio fo the β Howeve as was also the case fo K above if we set b a/c the K 1 () simplifies cosideably Oe ca check pefeably usig a compute algeba system that K(a a/c c q a u v q) >< (c u)(c v)(a cu)(a cv) c (a u)(a v)(1 u)(1 v) (1 c)(c a)(c aq)(1 cq)uv c q(a u)(1 u)(a v)(1 v) 1 (3) >: (c u)(c v)(a cu)(a cv) c (a u)(a v)(1 u)(1 v) > 1 Upo lettig u v i the Bailey pai i Theoem 1 we ecove the followig Bailey pai (with espect to a) due to Slate α (1 aq )(a b c q) (1 a)(aq/b aq/c q q) a q ( +)/ (4) bc 3

4 (aq/bc q) β (aq/b aq/c q q) which is implicitly cotaied i Equatio (41) of [16] It would appea that Slate s picipal motivatio was to pove idetities of the Roges-Ramauja type so this Bailey pai ad othe geeal pais metioed below wee ot stated explicitly by he i [16] ad [17] whee she istead listed may special cases of them Howeve they could all have bee easily deived by he usig the same methods she used to deive the special cases We emak i passig that all the Bailey pais i Slate s B F ad H tables as well as pais E(3) E(6) ad E(7) (see [16 page 468]) ae deived fom the Bailey pai at (4) Slate also showed [16 Equatio (13) o page 46] that if (α β ) is a Bailey pai with espect to a the fo o-zeo complex umbes y ad z aq (y z q) β yz (aq/y aq/z q) (aq aq/yz q) (y z q) aq α (5) (aq/y aq/z q) yz A fiite geealizatio of this idetity is of couse implied by Bailey s Lemma (see fo example Theoem 13 i [3]) amely if (α β ) is a Bailey pai with espect to a ad N is a o-egative itege the N N q ( 3)/ α (6) (y z q N q) (yzq N /a q) q β (aq/y aq/z q) N (aq aq/yz q) N (y z q N q) aq N (aq/y aq/z aq 1+N q) yz P P The idetity at (5) is a paticula case of the Bailey Tasfom: if β δ u v + the α γ β δ 0 αu v+ ad γ I the peset pape fo ease of otatio we will efe to (5) as the Bailey Tasfom If we set b a/c i the Bailey pai fom Theoem 1 ad the substitute this pai ito (5) ad (6) we get the followig uusual basic hypegeometic idetities Coollay Let N 1 be a itege The N (c u)(c v)(a cu)(a cv) (y z q N q) 1 + c (a u)(a v)(1 u)(1 v) 1 cq aq q a(c a)(1 c)(1 y)(1 z) N uv c yzq N c(a u)(a v)(1 u)(1 v) (yz aq N ) q a aq y aq z N q N q a q a a a + c c qu qa u qv qa v y z q N q aq aq a aq N yz N q qa a cq c u a u v a v aq y aq (7) z yz aq1+n q q (c u)(c v)(a cu)(a cv) 1 + c (a u)(a v)(1 u)(1 v) 1 aq y aq z q + aq aq yz q (y z q) cq aq c q aq yz a(c a)(1 c)(1 y)(1 z)uv c(a u)(a v)(1 u)(1 v)yz q a q a a a c c qu qa u qv qa v y z q a qa a cq c u a u v a v aq y aq z q q a q ( 1)/ (8) yz Note that settig c a i (7) gives the q-pfaff-saalschütz sum (see [7 page 355 II1]) while settig c u gives the idetity (fo N 0) N q a q a a qv qa v y z q N q a a a v v aq y aq z aq1+n q q aq N yz " 1 + a(1 y)(1 z) N v (a v)(1 v) (yz aq N ) # aq aq yz N q aq y aq (9) z N q 4

5 Mod 3 Bailey pais We cotiue to follow i Slate s footsteps this time makig the same substitutios i Chu s idetity (13) that she did i (11) to poduce the Bailey pais i he A table Let K be as defied at (1) Theoem 3 (i) Let K 0() : K(a q q 1 q a u v q 3 ) The the pai of sequeces (α β ) is a Bailey pai with espect to a a whee α 0 β 0 1 α 3±1 0 ad α 3 1 aq6 1 a a q 3 u q 3 v aq 3 /u aq 3 /v q 3 u v a/u a/v q 3 q 3 q 9 15 ( a) (10) (a q 3 ) β K 0 () (a q) (q q) Let K 0() : K(aq q q 1 q aq u v q 3 ) The (ii) the pai of sequeces (α β ) is a Bailey pai with espect to a a whee α 0 β 0 1 α ad α 3 aq q3 u q 3 v aq 4 /u aq 4 /v q 3 u v aq/u aq/v q 3 q 3 q 9 13 ( a) (11) α 3+1 aq q3 u q 3 v aq 4 /u aq 4 /v q 3 u v aq/u aq/v q 3 q 3 β K 0() (aq q 3 ) (aq q) (q q) q 9 +1 ( a) +1 (iii) the pai of sequeces (α β ) is a Bailey pai with espect to a a whee α 0 β 0 1 α ad α 3 aq q3 u q 3 v aq 4 /u aq 4 /v q 3 u v aq/u aq/v q 3 q 3 q 9 7 ( a) (1) α 3+1 aq q3 u q 3 v aq 4 /u aq 4 /v q 3 u v aq/u aq/v q 3 q 3 q 9 7 ( a) β K 0() (aq q 3 ) q (aq q) (q q) Poof Set e a i (13) so that all the tems of egative idex vaish The eplace q with q 3 set b q c q 1 ad d q The afte some simple maipulatios (13) becomes /3 a q 3 u q 3 v aq 3 /u aq 3 /v q aq 6 1 a (q q) 3 (aq +1 q) 3 u v a/u a/v q 3 q 3 aq 3 6 K0() (a q3 ) (aq q) (a q) Apply () to the (q q) 3 facto divide both sides by (aq q) (q q) to get /3 1 aq 6 ( 1) q (9 15)/ a q 3 u q 3 v aq 3 /u aq 3 /v q 3 1 a (aq q) 0 +3(q q) 3 u v a/u a/v q 3 q 3 a (a q 3 ) K 0() (13) (a q) (q q) ad (10) follows Fo the othe two pais eplace a with aq i (13) ad (11) follows fom the idetity (1 aq 6+1 )q (9 13)/ (aq q) +3+1 (q q) 3 while (1) follows fom the idetity (1 aq 6+1 )q (9 13)/ (aq q) +3+1 (q q) 3 q (9 13)/ (aq q) +3 (q q) 3 q q (9 7)/ (aq q) +3 (q q) 3 a q (9 )/+1 (aq q) +3+1 (q q) 3 1 q q (9 7)/ (aq q) +3+1 (q q) 3 1 Remak 4 K 0 (0) K 0 (1) K 0 () 1 5

6 Theoem 5 Let K () : K(q q q 1 q e u v q 3 ) ad suppose e 1/q The (i) the pai of sequeces (α β ) is a Bailey pai with espect to a 1 whee α 0 β 0 1 ad α 3 ( 1) q 9 11 e q 3 u q 3 v q 4 /u q 4 /v q 3 q 4 /e u v q/u q/v q 3 + q 9 5 e α 3+1 ( 1) +1 q e q3 u q 3 v q 4 /u q 4 /v q 3 q 4 /e u v q/u q/v q 3 e α 3 1 ( 1) +1 q e/q q u q v q 3 /u q 3 /v q 3 q 3 /e u/q v/q 1/u 1/v q 3 e (q /e q 3 ) β K () (q q) (q /e q) e/q q u q v q 3 /u q 3 /v q 3 q 3 /e u/q v/q 1/u 1/v q 3 (14) e (ii) the pai of sequeces (α β ) is a Bailey pai with espect to a 1 whee α 0 β 0 1 ad α 3 ( 1) q 9 5 α 3+1 ( 1) +1 q 9 5 α 3 1 ( 1) +1 q 9 11 (q /e q 3 ) q β K () (q q) (q /e q) e q 3 u q 3 v q 4 /u q 4 /v q 3 q 4 /e u v q/u q/v q 3 + q 9 11 e e q 3 u q 3 v q 4 /u q 4 /v q 3 q 4 /e u v q/u q/v q 3 e e/q q u q v q 3 /u q 3 /v q 3 q 3 /e u/q v/q 1/u 1/v q 3 e e/q q u q v q 3 /u q 3 /v q 3 q 3 /e u/q v/q 1/u 1/v q 3 (15) e (iii) the pai of sequeces (α β ) is a Bailey pai with espect to a q whee α 0 β 0 1 ad α 3 ( 1) 6+1 q 9 11 α α 3 1 ( 1) (q /e q 3 ) β K () (q q) (q /e q) e q 3 u q 3 v q 4 /u q 4 /v q 3 q 4 /e u v q/u q/v q 3 (16) e q e/q q u q v q 3 /u q 3 /v q 3 q 3 /e u/q v/q 1/u 1/v q 3 e Remak 6 The coditio e 1/q is ecessay to esue that β 0 1 Poof Replace q with q 3 i (13) ad the set a q b q c q 1 ad d q Oe easily checks that the ight side simplifies to give K (q () q q) (q /e q 3 ) (q q) (q /e q) O the seies side the choices fo the paametes foce the seies to temiate above ad below ad we get afte some elemetay maipulatios that the seies becomes /3 6+1 (q q) 3 e q 3 u q 3 v q 4 /u q 4 /v q 3 q 3 4 (q + q) 3 q 4 /e u v q/u q/v q 3 e +1 3 (+1)/3 Next we apply () to the (q q) 3 facto above ad eaage tems to get /3 ( 6+1 )( 1) q (9 11)/ e q 3 u q 3 v q 4 /u q 4 /v q 3 (q q) +3+1 (q q) 3 e Notig that fo abitay o-zeo y ad z (y q) (z q) q 4 /e u v q/u q/v q 3 K()(q /e q 3 ) (q q) (q /e q) (q/z q) z (q/y q) y (17) 6

7 we get that (q /e q 3 ) K () (q q) (q /e q) /3 0 /3 0 + ( 6+1 )( 1) q (9 11)/ (q q) +3+1 (q q) 3 e ( 6+1 )( 1) q (9 5)/ (q q) 3+1(q q) +3e q (9 11)/ (q q) +3(q q) 3 (+1) 3 1 q (9 5)/ (q q) 3 (q q) +3 whee the last equality follows fom the idetities e q 3 u q 3 v q 4 /u q 4 /v q 3 q 4 /e u v q/u q/v q 3 e/q q u q v q 3 /u q 3 /v q 3! q (9 +)/+1 (q q) +3+1(q q) 3 1 q 3 /e u/q v/q 1/u 1/v q 3! q (9 17)/+1 (q q) 3+1 (q q) +3 1 ( 1) e q3 u q 3 v q 4 /u q 4 /v q 3 q 4 /e u v q/u q/v q 3 ( 1) e/q q u q v q 3 /u q 3 /v q 3 q 3 /e u/q v/q 1/u 1/v q 3 ( 6+1 )q 9 11 q 9 11 ( +3+1 ) q ( 3 ) (18) ( 6+1 )q 9 5 q 9 5 ( 3+1 ) q ( +3 ) That (14) gives a Bailey pai ow follows fom the defiitio of a Bailey pai at (18) also otig that K (0) K (1) 1 If istead of usig the idetities at (18) we use the idetities ( 6+1 )q 9 11 q 9 5 (( +3+1 ) ( 3 )) (19) ( 6+1 )q 9 5 q 9 11 (( 3+1 ) ( +3 )) we get that the pai at (15) is a Bailey pai The poof of (16) follows fom the ight side of the fist equality followig (17) upo settig (q q) +3+1 (q q) 3 ()(q q) +3 (q q) 3 i the fist sum ad (q q) 3+1 (q q) +3 ()(q q) 3+1 (q q) +3 1 i the secod sum If we begi by settig a q istead of a q but keep the same choices b q c q 1 ad d q i (13) the we get Theoems 7 followig Theoem 7 Let K 3 () : K(q q q 1 q e u v q 3 ) The (i) the pai of sequeces (α β ) is a Bailey pai with espect to a q whee α 0 β 0 1 ad α 3 ( 1) q 9 7 e q 3 u q 3 v q 5 /u q 5 /v q 3 q 5 /e u v q /u q /v q 3 (0) e α 3+1 ( 1) +1 q e q 3 u q 3 v q 5 /u q 5 /v q 3 q 5 /e u v q /u q /v q 3 + ( 1) q e α 3 1 ( 1) q 9 7 (q 4 /e q 3 ) β K 3() (q q) (q 3 /e q) e/q qu qv q 3 /u q 3 /v q 3 q 3 /e u/q v/q 1/u 1/v q 3 e 9 3 e/q qu qv q 3 /u q 3 /v q 3 +1 q 3 /e u/q v/q 1/u 1/v q 3 +1 e+1 (ii) the pai of sequeces (α β ) is a Bailey pai with espect to a q whee α 0 β 0 1 ad α 3 ( 1) q 9 α 3+1 ( 1) +1 q 9 e q 3 u q 3 v q 5 /u q 5 /v q 3 q 5 /e u v q /u q /v q 3 (1) e e q 3 u q 3 v q 5 /u q 5 /v q 3 q 5 /e u v q /u q /v q 3 + ( 1) q e 9 +5 e/q qu qv q 3 /u q 3 /v q 3 +1 q 3 /e u/q v/q 1/u 1/v q 3 +1 e+1 7

8 α 3 1 ( 1) q 9 13 (q 4 /e q 3 ) q β K 3() (q q) (q 3 /e q) e/q qu qv q 3 /u q 3 /v q 3 q 3 /e u/q v/q 1/u 1/v q 3 (iii) the pai of sequeces (α β ) is a Bailey pai with espect to a q whee α 0 β 0 1 ad α 3 ( 1) 6+ q 9 7 α 3+1 ( 1) 6+4 q 9 α (q 4 /e q 3 ) β K 3 () (q q) (q 3 /e q) e e q 3 u q 3 v q 5 /u q 5 /v q 3 q 5 /e u v q /u q /v q 3 () e e/q qu qv q 3 /u q 3 /v q 3 +1 q 3 /e u/q v/q 1/u 1/v q 3 +1 e+1 Poof The poof paallels that of Theoem 5 except that afte aivig at the idetity ( 6+ )( 1) q (9 7)/ (q q) +3+1 (q q) 3 e e q 3 u q 3 v q 5 /u q 5 /v q 3 q 5 /e u v q /u q /v q 3 K3()(q4 /e q 3 ) (q q) (q 3 /e q) (3) ad the sepaatig the sum ito two sums ( 0 ad < 0) as peviously we istead employ the idetities ( 6+ )q 9 7 q 9 7 ( +3+ ) q ( 3 ) (4) ( 6+ )q 9 7 q 9 7 ( 3+ ) q ( +3 ) to get (0) The esult follows as i Theoem 5 except that it is ecessay to e-idex oe of the fou sums (by eplacig with + 1) Fo (1) we istead use the idetities ( 6+ )q 9 7 q 9 (( +3+ ) ( 3 )) (5) ( 6+ )q 9 7 q 9 13 (( 3+ ) ( +3 )) The poof of () is like the poof of (16) i Theoem 5 except that afte sepaatig the sum at (3) ito two sums accodig to 0 o < 0 ad the eplacig with fo the sum with < 0 we use the idetities (q q) +3+1 (q q) 3 ( )(q 3 q) +3 (q q) 3 ad (q q) 3+1 (q q) 3 ( )(q q) 3+ (q 3 q) +3 ad fially e-idex i the latte case by eplacig with + 1 The ie Bailey pais i the ext coollay deive espectively fom the pais i Theoems 3-7 by lettig u v i each case Coollay 8 The sequeces (α β ) below ae Bailey pais with espect to the stated values of a whee α 3 1 aq6 1 a α 3±1 0 β (a q 3 ) q 9 3 (q 3 q 3 ( a) (6) ) (a q 3 ) (a q) (q q) with espect to a a α 3 aq q3 q 3 q 3 q 9 ( a) (7) α 3+1 aq q3 q 3 q 3 α q ( a) +1 8

9 (aq q 3 ) β with espect to a a (aq q) (q q) α 3 aq q3 q 3 q 3 q 9 +5 ( a) (8) α 3+1 aq q3 q 3 q 3 q 9 +5 ( a) α β α 3 ( 1) (aq q3 ) q (aq q) (q q) with espect to a a q 9 /+/ (e q 3 ) /+7/! + q9 (e/q q 3 ) (9) (q 4 /e q 3 ) e (q 3 /e q 3 ) e α 3+1 ( 1)+1 q 9 /+13/+1 (e q 3 ) (q 4 /e q 3 ) e α 3 1 ( 1)+1 q 9 / 5/+1 (e/q q 3 ) (q 3 /e q 3 ) e β α 3 ( 1) (q /e q 3 ) (q q) (q /e q) with espect to a 1 q 9 /+7/ (e q 3 ) /+/! + q9 (e/q q 3 ) (30) (q 4 /e q 3 ) e (q 3 /e q 3 ) e α 3+1 ( 1)+1 q 9 /+7/ (e q 3 ) (q 4 /e q 3 ) e α 3 1 ( 1)+1 q 9 /+/ (e/q q 3 ) (q 3 /e q 3 ) e β q (q /e q 3 ) (q q) (q /e q) with espect to a 1 α 3 ( 1) 6+1 q 9 + α α 3 1 ( 1) β e q 3 q 4 /e q 3 (31) e q e/q q 3 q 3 /e q 3 e (q /e q 3 ) (q q) (q /e q) with espect to a q α 3 ( 1) q 9 /+5/ (e q 3 ) (3) (q 5 /e q 3 ) e α 3+1 ( 1) q 9 /+11/+3 (e/q q 3 ) +1 + ( 1)+1 q 9 /+17/+ (e q 3 ) (q 3 /e q 3 ) +1 e +1 (q 5 /e q 3 ) e α 3 1 ( 1) q 9 /+5/ (e/q q 3 ) (q 3 /e q 3 ) e β (q 4 /e q 3 ) (q q) (q 3 /e q) with espect to a q 9

10 α 3 ( 1) q 9 /+11/ (e q 3 ) (33) (q 5 /e q 3 ) e α 3+1 ( 1) q 9 /+17/+4 (e/q q 3 ) +1 + ( 1)+1 q 9 /+11/ (e q 3 ) (q 3 /e q 3 ) +1e +1 (q 5 /e q 3 ) e α 3 1 ( 1) q 9 / / (e/q q 3 ) (q 3 /e q 3 ) e β q (q 4 /e q 3 ) (q q) (q 3 /e q) with espect to a q α 3 ( 1) 6+ q 9 +5 α 3+1 ( 1) 6+4 q 9 α β e q 3 q 5 /e q 3 (34) e e/q q 3 +1 q 3 /e q 3 +1 e+1 (q 4 /e q 3 ) (q q) (q 3 /e q) with espect to a q All eight pais i Slate s A table ([16 page 463]) ad all six o he J list ([17 pp ]) ae deived fom the five Bailey pais (6) (9) (30) (3) (33) above fo paticula values of e Slate did ot wite dow these geeal pais above explicitly but she could easily have deived them by the same methods she used to deive the special cases Noe of Slate s pais aise as special cases of (7) (8) (31) o (34) although the special case e q of (31) was give i [9] Howeve specializig the paametes give Bailey pais which the give ise to some of the seies-poduct idetities o Slate s list showig that diffeet Bailey pais may lead the same idetity of Roges-Ramauja type Each of the ie Bailey pais above also gives ise to a tasfomatio betwee basic hypegeometic seies upo substitutig the pai ito (5) The pai at (6) fo example gives the followig idetity Coollay 9 (y z q) (a q 3 ) (a q) (q q) 3 Mod Bailey Pais aq (aq/y aq/z q) yz (aq aq/yz q) (1 aq 6 )(y z q) 3 (a q 3 ) a 4 q 9 /+3/ 1 3 (35) (1 a)(aq/y aq/z q) 3(q 3 q 3 ) yz We ext coside how Slate poduced the Bailey pais i the G- C- ad I tables of [16 17] Theoem 10 Let K 4 () : K(a q q 1 d a u v q ) The (i) the pai of sequeces (α β ) is a Bailey pai with espect to a a whee α 0 β 0 1 ad α 1 aq4 1 a α 1 0 a d q u q v aq /u aq /v q q 4 a aq /d u v a/u a/v q q d (36) (aq/d q ) β K 4() (aq q ) (aq/d q q) Let K 4() : K(aq q q 1 d aq u v q ) The (ii) the pai of sequeces (α β ) is a Bailey pai with espect to a a whee α 0 β 0 1 ad α aq d q u q v aq 3 /u aq 3 /v q 3 q a aq 3 /d u v aq/u aq/v q q (37) d α +1 aq d q u q v aq 3 /u aq 3 /v q ++1 q a +1 aq 3 /d u v aq/u aq/v q q β K 4 () (aq /d q ) (aq q ) (aq /d q q) d 10

11 (iii) the pai of sequeces (α β ) is a Bailey pai with espect to a a whee α 0 β 0 1 ad α aq d q u q v aq 3 /u aq 3 /v q q a aq 3 /d u v aq/u aq/v q q (38) d α +1 aq d q u q v aq 3 /u aq 3 /v q q a aq 3 /d u v aq/u aq/v q q β K 4 () (aq /d q ) q (aq q ) (aq /d q q) d Poof The poof is quite simila to the poof of Theoem 3 As i the poof of that theoem set e a i (13) so that all the tems of egative idex vaish The eplace q with q set b q ad d q 1 Afte some simple maipulatios (13) becomes / a d q u q v aq /u aq /v q aq aq 4 1 a (q q) (aq +1 q) aq /du v a/u a/v q q d K 4() (aq/d q ) (aq q) (aq q ) (aq/d q) Apply () to the (q q) facto divide both sides by (aq q) (q q) to get / 1 aq 4 q 4 a d q u q v aq /u aq /v q a (aq/d q ) K4() 1 a (aq q) 0 +(q q) aq /du v a/u a/v q q (39) d (aq q ) (aq/d q q) ad the poof fo the pai at (36) follows Fo (37) ad (38) eplace a with aq i (39) ad use espectively the idetities (1 aq 4+1 )q 3 q 3 (1 aq ++1 ) aq ++1 ( ) (1 aq 4+1 )q 3 q q ((1 aq ++1 ) ( )) Theoem 11 Let K 5() : K(q q q 1 d e u v q ) The (i) the pai of sequeces (α β ) is a Bailey pai with espect to a q whee α 0 β 0 1 ad α 4+1 α d e q u q v q 3 /u q 3 /v q q q 3 /d q 3 /e u v q/u q/v q (40) (d e) d/q e/q qu qv q /u q /v q 4+1 q q /d q /e u/q v/q 1/u 1/v q (de) (q 3 /de q ) β K 5 () (q q ) (q /d q /e q) (ii) The pai of sequeces (α β ) is a Bailey pai with espect to a 1 whee α 0 β 0 1 ad α d e q u q v q 3 /u q 3 /v q q d/q e/q qu qv q /u q /v q q 3 /d q 3 /e u v q/u q/v q (d + q e) q /d q /e u/q v/q 1/u 1/v q (41) (de) α 1 d e q u q v q 3 /u q 3 /v q +1 1 q q 3 /d q 3 /e u v q/u q/v q (d d/q e/q qu qv q /u q /v q 4+1 q e) 1 q /d q /e u/q v/q 1/u 1/v q 1 (de) (q 3 /de q ) β K 5 () (q q ) (q /d q /e q) (iii) The pai of sequeces (α β ) is a Bailey pai with espect to a 1 whee α 0 β 0 1 ad α d e q u q v q 3 /u q 3 /v q q d/q e/q qu qv q /u q /v q q 3 /d q 3 /e u v q/u q/v q + q (d e) q /d q /e u/q v/q 1/u 1/v q (4) (de) α 1 d e q u q v q 3 /u q 3 /v q 4+ 1 q q 3 /d q 3 /e u v q/u q/v q (d d/q e/q qu qv q /u q /v q q e) 1 q /d q /e u/q v/q 1/u 1/v q 1 (de) β K 5 () q (q 3 /de q ) (q q ) (q /d q /e q) 11

12 Poof The poof is vey simila to the poof of Theoem 5 This time eplace q with q i (13) ad the set a q b q c q 1 The ight side simplifies to give K 5 () (q q q) (q 3 /de q ) (q q ) (q /d q /e q) Afte some elemetay maipulatios the seies becomes / (+1)/ 4+1 (q q) d e q u q v q 3 /u q 3 /v q (q + q) q 3 /d q 3 /e u v q/u q/v q We apply () to the (q q) facto above ad eaage tems to get / +1 ( 4+1 )q d e q u q v q 3 /u q 3 /v q ()(q q) + (q q) d e q 3 /d q 3 /e u v q/u q/v q Afte applyig (17) to the tems of egative idex i the sum above we get that (q 3 /de q ) K 5 () (q q ) (q /d q /e q) / 0 q 1 de ( 4+1 )q d e q u q v q 3 /u q 3 /v q ()(q q) +(q q) d e q 3 /d q 3 /e u v q/u q/v q +1 1 The pai at (40) ow follows afte some simple maipulatios otig that K 5()(q 3 /de q 3 ) (q q ) (q /d q /e q) ( 4 1 )q 4+1 d/q e/q qu qv q /u q /v q ()(q q) (q q) + d e q /d q /e u/q v/q 1/u 1/v q (43) (q q) (q q) + (q q) +1 (q q) + 1 The pai at (41) follows fom (43) upo absobig the facto i the deomiatos thee employig the idetities ( 4+1 )q q ( ++1 ) q ++1 ( ) (44) ( 4 1 )q 4+1 q 4+1 ( + ) q ( +1 ) i the way simila to the way that the pai of idetities at (18) was used i the poof of Theoem 5 ad fially e-idexig oe of the esultig sums (by eplacig with 1) The poof fo the pai at (4) is simila to the poof fo the pai at (41) except we employ the idetities ( 4+1 )q q (( ++1 ) ( )) (45) ( 4 1 )q 4+1 q (( + ) ( +1 )) As with K 0 - K 3 K 4 ad K 5 ae i geeal quite complicated but simplify cosideably fo paticula values of the paametes leadig (as was the case i Coollay ) to tasfomatios of basic hypegeometic seies We give oe example Coollay 1 If a y z q C such that q < 1 ad oe of the deomiatos below vaish the (y z q) ( 1/q q ) aq (aq/y aq/z q) 1 aq 4 (q q ) (aq q ) yz (aq aq/yz q) 1 a (y z q) (a aq 4 q 4 ) a q (aq/y aq/z q) ( a q 4 q 4 ) y z Poof I the Bailey pai at (36) set d a/q u q ad v i a so that K 4 () takes the value K a q q 1 a q a q i a q q 1 (q + 1) q q (q + 1) (q 1 + 1) (q ) (46) Substitute the esultig Bailey pai ito (5) ad the esult follows afte some elemetay q-poduct maipulatios 1

13 The Bailey pais i Slate s G- C- ad I tables as well as pais E(1) E() E(4) ad E(5) (see [16 pages 469 ad 470]) ae deived fom the ext six Bailey pais These i tu ae deived fom the pais i Theoems 10 ad 11 by lettig u v Coollay 13 The sequeces (α β ) below ae Bailey pais with espect to the stated values of a whee α 0 β 0 1 ad α 1 aq4 a d q a q 1 a aq /d q q (47) d α 1 0 β (aq/d q ) (aq q ) (aq/d q q) with espect to a a α aq d q + q a aq 3 /d q q (48) d α +1 aq d q +5+1 q a +1 aq 3 /d q q β d (aq /d q ) (aq q ) (aq /d q q) with espect to a a α aq d q +3 q a aq 3 /d q q (49) d α +1 aq d q +3 q a aq 3 /d q q β d (aq /d q ) q (aq q ) (aq /d q q) with espect to a a α (4+1 )q + (d q ) (e q ) ()(q 3 /d q ) (q 3 /e q ) d e (50) α 1 (4 1 )q +1 (d/q q ) (e/q q ) ()(q /d q ) (q /e q ) d e β (q 3 /de q ) (q q ) (q /d q) (q /e q) with espect to a q +4 α q (d/q q ) (e/q q ) + (q /d q ) (q /e q ) d e + q (d q ) (e q ) (q 3 /d q ) (q 3 /e q ) d e (51) +4+3 α +1 q (d/q q ) +1 (e/q q ) +1 (q /d q ) +1 (q /e q ) +1 d +1 e β +1 q (q 3 /de q ) (q q ) (q /d q) (q /e q) with espect to a (d q ) (e q ) (q 3 /d q ) (q 3 /e q ) d e + α q (d/q q ) (e/q q ) +4 (q /d q ) (q /e q ) d e + q (d q ) (e q ) (q 3 /d q ) (q 3 /e q ) d e (5) +6+4 α +1 q (d/q q ) +1 (e/q q ) +1 (q /d q ) +1 (q /e q ) +1 d +1 e β +1 q q (q 3 /de q ) (q q ) (q /d q) (q /e q) with espect to a 1 +4 (d q ) (e q ) (q 3 /d q ) (q 3 /e q ) d e 13

14 4 Mod 4 Bailey Pais We cotiue to follow i Slate s path [16] ext cosideig how she poduced the Bailey pais i he K table Theoem 14 Let K 6() : K(q q q 1 q q 3 u v q 4 ) fo 3 ad K 6(0) K 6(1) K 6() 1 The (i) the pai of sequeces (α β ) is a Bailey pai with espect to a 1 whee α 0 β 0 1 α 4+ 0 ad α 4 q4 u q 4 v q 5 /u q 5 /v q 4 u v q/u q/v q 4 q q3 u q 3 v q 4 /u q 4 /v q 4 u/q v/q 1/u 1/v q 4 q 8 6 (53) α 4+1 q4 u q 4 v q 5 /u q 5 /v q 4 u v q/u q/v q 4 q 8 +1 α 4 1 q3 u q 3 v q 4 /u q 4 /v q 4 u/q v/q 1/u 1/v q 4 q β K 6 () ( q q ) 1 (q q) (ii) the pai of sequeces (α β ) is a Bailey pai with espect to a 1 whee α 0 β 0 1 α 4+ 0 ad α 4 q4 u q 4 v q 5 /u q 5 /v q 4 u v q/u q/v q 4 q q3 u q 3 v q 4 /u q 4 /v q 4 u/q v/q 1/u 1/v q 4 q 8 10 (54) α 4+1 q4 u q 4 v q 5 /u q 5 /v q 4 u v q/u q/v q 4 q 8 6 α 4 1 q3 u q 3 v q 4 /u q 4 /v q 4 u/q v/q 1/u 1/v q 4 q 8 10 β K 6() q ( q q ) 1 (q q) Poof The poof is iitially simila to the poof of Theoem 3 except we eplace q with q 4 ad set b q c q 1 d q ad e q 3 Istead of (13) we aive at q 4 u q 4 v aq 4 /u aq 4 /v q 4 Z 1 aq 8 1 a a q 8 1 (aq q) +4(q q) 4 u v a/u a/v q 4 K(a q q 1 q q 3 u v q 4 ) (q4 /a a/q a aq q 4 ) (q q q 3 a /q q 4 ) ( a/q q ) (a q) (55) Next sepaate the sum ito tems of positive ad egative idex e-idex the latte sum by eplacig with (ad also usig (17)) to get q 4 u q 4 v aq 4 /u aq 4 /v q aq 8 1 a a q 8 1 (aq q) +4(q q) aq 8 1 a u v a/u a/v q 4 a q 8 4 (aq q) 4 (q q) +4 q 4 /u q 4 /v uq 4 /a vq 4 /a q 4 1/u 1/v u/a v/a q 4 K(a q q 1 q q 3 u v q 4 ) (q4 /a a/q a aq q 4 ) (q q q 3 a /q q 4 ) ( a/q q ) (a q) (56) The poof fo the Bailey pai at (53) the follows upo settig a q simplifyig the poduct side ad usig the idetities ( 8+1 )q 8 10 q 8 10 ( +4+1 ) q 8 +1 ( 4 ) ( 8+1 )q 8 6 q 8 6 ( 4+1 ) q ( +4 ) The poof fo the Bailey pai at (54) is simila except we use the idetities ( 8+1 )q 8 10 q q 8 6 (( +4+1 ) ( 4 )) ( 8+1 )q 8 6 q q 8 10 (( 4+1 ) ( +4 )) 14

15 Theoem 15 Let K 7 () : K(q q q 1 q q 3 u v q 4 ) fo 0 The (i) the pai of sequeces (α β ) is a Bailey pai with espect to a q whee α 0 β 0 1 ad α 4 q4 u q 4 v q 6 /u q 6 /v q 4 u v q /u q /v q 4 q 8 8 (57) α 4+1 q4 u q 4 v q 6 /u q 6 /v q 4 u v q /u q /v q 4 q 8 + α 4 1 q u q v q 4 /u q 4 /v q 4 u/q v/q 1/u 1/v q 4 q 8 8 α 4 q u q v q 4 /u q 4 /v q 4 u/q v/q 1/u 1/v q 4 q β K 7() ( q q ) (q q) (ii) the pai of sequeces (α β ) is a Bailey pai with espect to a q whee α 0 β 0 1 ad α 4 q4 u q 4 v q 6 /u q 6 /v q 4 u v q /u q /v q 4 q 8 4 (58) α 4+1 q4 u q 4 v q 6 /u q 6 /v q 4 u v q /u q /v q 4 q 8 4 α 4 1 q u q v q 4 /u q 4 /v q 4 u/q v/q 1/u 1/v q 4 q 8 1 α 4 q u q v q 4 /u q 4 /v q 4 u/q v/q 1/u 1/v q 4 q 8 1 β K 7 () q ( q q ) (q q) Poof Set a q i (56) simplify the poduct side ad absob the tems o the sum side ito what wee peviously the (aq q) +4 ad (aq q) 4 factos The pai at (57) follows afte usig the idetities ( 8+ )q 8 8 q 8 8 ( +4+ ) q 8 + ( 4 ) ( 8+ )q 8 8 q 8 8 ( 4+ ) q ( +4 ) The pai at (58) follows similaly afte employig the idetities ( 8+ )q 8 8 q q 8 4 (( +4+ ) ( 4 )) ( 8+ )q 8 8 q q 8 1 (( 4+ ) ( +4 )) Theoem 16 Let K 8 (0) 1 K 8 (1) (q u) q u (q v) q v (q 3 u) (u 1) (q 3 v) (v 1) (q 1)4 (q + 1) q + q + 1 uv q (q 3 u) (u 1) (q 3 v) (v 1) ad K 8 () : K(q 3 q q 1 q q 3 u v q 4 ) fo The (i) the pai of sequeces (α β ) is a Bailey pai with espect to a q whee α 0 β 0 1 ad α 4 q4 u q 4 v q 7 /u q 7 /v q 4 u v q 3 /u q 3 /v q 4 q 8 6 (59) α 4+1 q4 u q 4 v q 7 /u q 7 /v q 4 u v q 3 /u q 3 /v q 4 α q q4 /u q 4 /v qu qv q /u 1/v u/q 3 v/q 3 q 4 q

16 α 4 q4 /u q 4 /v qu qv q 4 1/u 1/v u/q 3 v/q 3 q 4 q 8 10 β K 8() ( q q ) (q 3 q) (ii) the pai of sequeces (α β ) is a Bailey pai with espect to a q whee α 0 β 0 1 ad α 4 q4 u q 4 v q 7 /u q 7 /v q 4 u v q 3 /u q 3 /v q 4 q 8 (60) α 4+1 q4 u q 4 v q 7 /u q 7 /v q 4 u v q 3 /u q 3 /v q 4 α α 4 q4 /u q 4 /v qu qv q 4 1/u 1/v u/q 3 v/q 3 q 4 q 8 14 β K 8 ()q ( q q ) (q 3 q) q 8 q4 /u q 4 /v qu qv q /u 1/v u/q 3 v/q 3 q 4 q Remak 17 The easo K 8(1) does ot fit ito the fomula fo K 8() fo > 1 is that it is ecessay to be caeful with the ode i which (afte eplacig q with q 4 ) we set a q 3 b 1/q c 1 d q ad e q i ode to get the seies at (13) to covege It is easy to see that makig those substitutios simultaeously gives a /q 4 bcde 1 cotadictig the equiemet that a /q 4 bcde < 1 i the seies Oe way aoud this is to fist set c 1 ad b a/q 4 causig the seies to temiate above ad below afte which the othe eplacemets ca be made Note also that with the stated choices fo the paametes the a bcdeq 4 facto i the deomiato of the expessio fo K at (1) vaishes ad i fact these choices also cause the umeato of K to vaish It is cacellig these zeo factos that make the expessio fo K 8 (1) diffeet The ode of substitutios descibed above causes K(q 3 q 1 1 q q u v q 4 ) to have the value assiged to K 8(1) wheeas fo > 1 K(q 3 q q 1 q q 3 u v q 4 ) is idepedet of the ode of substitutios We also ote that a simila situatio occus i some of the othe theoems above Poof The poof is simila to the poof of Theoem 15 except we set a q 3 i (56) The pai at (59) follows afte usig the idetities ( 8+3 )q 8 6 q 8 6 ( +4+3 ) q ( 4 ) ( 8+3 )q 8 10 q 8 10 ( 4+3 ) q ( +4 ) ad the eplacig with +1 i the sum coespodig to the secod tem i the secod idetity above (so that this sum implicitly defies pat of α 4+1 istead of α 4 3) The pai at (60) follows similaly afte usig the idetities ( 8+3 )q 8 6 q q 8 (( +4+3 ) ( 4 )) ( 8+3 )q 8 10 q q 8 14 (( 4+3 ) ( +4 )) The six Bailey pais i Slate s K table [16 page 471] follow fom the thee theoems i this sectio upo lettig u v Coollay 18 The followig pais of sequeces (α β ) with α 0 β 0 1 ae Bailey pais with espect to the stated value of a α 4 q 8 + q 8 + α 4+1 q α 4 1 q α 4 0 (61) 16

17 β ( q q ) 1 (q q) with espect to a 1 α 4 q q 8 α 4+1 q 8 + α 4 1 q 8 α 4 0 (6) β q ( q q ) 1 (q q) with espect to a 1 α 4 q 8 (63) α 4+1 q α 4 1 q 8 α 4 q 8 8+ β ( q q ) (q q) with espect to a q α 4 q 8 +4 α 4+1 q 8 +4 α 4 1 q 8 4 α 4 q 8 4 (64) β q ( q q ) (q q) with espect to a q α 4 q 8 + α 4+1 q q α α 4 q 8 (65) β ( q q ) (q 3 q) with espect to a q α 4 q 8 +6 α 4+1 q 8 +6 q α α 4 q 8 6 (66) β q ( q q ) (q 3 q) with espect to a q 3 Idetities of the Roges-Ramauja-Slate type ad False Theta Seies Idetities We use the Bailey pais foud i the pevious sectio to deive seveal ew seies-poduct idetities ad also to give ew poofs of some geeal idetities due to Ramauja Adews ad othes We also emak that we sometimes use a moe geeal case of the 6ψ 6 tha the Jacobi Tiple Poduct Idetity i cotast to how Slate deived he poducts 17

18 31 Geeal idetities cotaiig oe o moe fee paametes We fist give ew poofs fo two quite geeal idetities of Ramauja ([1 page 33] see also R1 ad R o page 8 of [10]) Oe easo these two idetities ae of iteest is that each leads to ifiitely may idetities of Roges- Ramauja type (set z ±q a/b whee a ad b > 0 ae iteges ad the eplace q with q b ) Theoem 31 Fo q < 1 ad z C \ {0} (q/z q) (z q) q (q q) (qz q /z q 3 q 3 ) (q q) (31) Poof Let e 0 i the Bailey pai at (31) ad the iset the esultig pai ito (5) afte settig y q/z This leads to the idetities q q (z qz qz q q)q z 6+1 q z q z 3 q (q/z z q) 3 1 q 3 (q q) qz qz q (qz q /z q) 3 1 qz qz q (q q q) 0 qz qz q 6+1 (q q q) 0 q z z q q3 3 z q4z q3 q /q 3 1 (1/z z/q q 3 ) q 3 (q z q 3 /z q 3 ) (q 4 q 3 q 3 q q 3 ) (q q q) (q 4 /z zq 3 q 3 /z q z q 3 ) The secod equality above follows afte some elemetay q-poduct maipulatios ad the last equality follows fom the fact that the two seies i the pevious equality combie to give a special case of Bailey s 6ψ 6 summatio at (11) (eplace q with q 3 let d e set a q b q/z ad c z) The esult ow follows afte some futhe elemetay maipulatios Theoem 3 Fo q < 1 ad z C \ {0} (q /z q ) (z q ) q (q q ) (q 4 q 4 ) ( q q ) (q q ) (qz q 3 /z q 4 q 4 ) (3) Poof The poof is simila to that of the theoem above Let e 0 ad set d q 3/ i the Bailey pai at (50) ad the iset the esultig pai ito (5) afte settig y q/z This leads to the idetities q q (z q) z q / (q 1/ q) (q q ) qz qz q (q q q) 0 qz qz q (q q q) 0 qz qz q q z z q q +/ qz q z q ( 1) 1 q z z q ( 1) q +/ + q z q3z q /q (q/z z q) 1q / ( 1) (qz q /z q) 1 (1/z z/q q ) ( 1) q / (qz q /z q ) (q 3 q zq 1/ q 3/ /z q q q ) (q q q) (q 3 /z zq q 3/ q /z qz q 1/ q ) The secod equality above oce agai follows afte some elemetay q-poduct maipulatios ad oce agai the two seies o the ight side i the secod equality combie to give a special case of Bailey s 6ψ 6 summatio at (11) (eplace q with q let e set a q b q/z c z ad d q 3/ ) The esult ow follows afte eplacig q with q followed by some futhe elemetay maipulatios Diffeet poofs of the esults i the two theoems above wee also give i [4] (Eties 531 ad 535) ad i [11] We ow pove a ew geeal seies-poduct idetity oe which may be egaded as a pate to Ramauja s esult i Theoem 31 18

19 Theoem 33 Fo q < 1 ad z C \ {0} (q/z q) +1(z q) q + (q q) +1 (q z q/z q 3 q 3 ) (q q) (33) Poof Let e 0 i the Bailey pai at (34) ad the iset the esultig pai ito (5) afte settig y q /z This leads to the idetities q q (z q) z q + (q q) qz q3z q q 6+ z 3 z q (q 3 q q) 0 qz q3z q 3 qz q3z q q 6+ z z q3 (q 3 q q) 0 q 3 z q5z q3 qz q3z q (q 5 q 3 q 3 q q 3 ) (q 3 q q) (q 5 /z zq 3 q 3 /z qz q 3 ) q 3 + q (q /z z q) 3+1q 3 (qz q 3 /z q) (1/z z/q q 3 ) q 3 1 1/q (qz q 3 /z q 3 ) +4+1 The secod equality above follows afte some elemetay q-poduct maipulatios ad e-idexig the secod seies (eplacig with 1) The last equality follows fom the fact that the two seies i the pevious equality combie to give aothe special case of Bailey s 6 ψ 6 summatio (11) (eplace q with q 3 let d e set a q b q /z ad c z) The esult oce agai follows afte some futhe elemetay maipulatios Remak 34 Seveal idetities o Slate s list [17] follow as special cases of (33) followig table We summaize these i the Replace q by set z to to obtai Slate s idetity q q () q q (7) (87) q iq (8) q 3 q (40) q 3 q (41) q 4 q 3 (55) (57) q e πi/3 q (9) We ext give ew poofs of Adews q-aalog of Gauss s F 1 (1/) sum ad a special case (b ) of Heie s [8] q-aalog of Gauss s sum: (a b q) c (c/a c/b q) (34) (c q q) ab (c c/ab q) We fist ecall Jackso s summatio fomula fo a vey-well-poised 6 φ 5 seies [7 p 356 Eq (II 0)] (which follows upo settig e a i (11)): Theoem 35 (a q a q a b c d q) q a a aq b aq c aq d q (a b q) q (+1)/ (q q) (abq q ) (a q) q ( 1)/ ( c) (c q q) a Poof Let d 0 i the Bailey pai at (47) to get the pai aq (aq aq/bc aq/bd aq/cd q) (35) bcd (aq/b aq/c aq/d aq/bcd q) (aq bq q ) (q abq q ) (Adews [1]) (36) (c/a q) (c q) (Heie [8]) (37) α 1 aq4 1 a a q ( 1) q q q (38) 19

20 α 1 0 β Substitute this pai ito (5) afte settig y a/z to get (a/z z q) q (+1)/ (aq q ) (q q) q ( 1)/ (aq q ) (q q) with espect to a a (zq aq/z q) (aq q q) (zq aq/z q) (aq q q) 0 (zq aq/z q ) (aq q q ) 1 aq 4 1 a (aq q q ) (q z aq /z q ) (a a/z z q ) ( 1) q + (zq aq /z q q ) The ext-to-last equality follows fom (35) (eplace q with q let d set b a/z ad c z) ad (36) follows upo eplacig a with ab ad z with b Next substitute the pai at (38) oce agai ito (5) this time settig y aq This gives ( aq aq/z q) (z q) q ( 1)/ aq ( aq q) (q q) z (aq aq/z q) 0 1 aq 4 1 a ( aq aq/z q) (aq (aq aq/z q ) aq/z q) (aq /z aq/z q ) ( aq/z q) ( aq q) (a z zq q ) q + (aq /z aq 3 /z q q ) a z q The ext-to-last equality follows oce agai fom (35) (eplace q with q let d set b z ad c zq) ad (37) follows upo eplacig aq with c ad z with a 3 A paticula case of the Bailey Tasfom I If we set y aq ad z aq i (5) the followig idetity esults povidig both seies covege: (aq q ) ( 1) 1 β (aq q ) ( 1 q) ( 1) α (39) This paticula case was ot used by Slate [17] ad may possibly be egaded as beig of lesse impotace fo two easos Fistly it is cetaily the case the both seies above will ot covege fo all Bailey pais (α β ) ad secodly eve if a seies-poduct idetity does esult the powe of q o the seies side may ot be quadatic i the expoet (ad may do ot coside such idetities as beig of Roges-Ramauja-Slate type) o else the esultig idetity is a easy cosequece of a moe geeal idetity Howeve we believe such idetities ae sufficietly iteestig to iclude some examples Coollay ( q q ) 1 q (q q ) ( q q ) (q q ) ( q 6 q 10 q 16 q 16 ) (310) 1 (q q ) q ( q q ) q 8 (q 4 q 4 ) (311) ( q q ) q (q q ) +1 ( q q ) (q q ) ( q q 14 q 16 q 16 ) (31) (q 3 q 3 ) ( q) (q q ) +1(q q) (q q ) (q q ) (q 18 q 18 ) (q 9 q 18 ) (313) Poof Fo the fist thee idetities above iset the Bailey pais at (6) (64) ad (66) espectively ito (39) (otig that a 1 q q espectively) ad i each case the esult follows afte some elemetay maipulatio of the esultig idetity Fo (313) substitute the Bailey pai at (8) ito (39) set a q ad simplify the esultig idetity 0

21 33 A paticula case of the Bailey Tasfom II If we set y q a ad let z i (5) the followig idetity esults: (q a q) a q ( 1)/ β (q a q) (aq q) (1 aq ) a q ( 1)/ α (314) This tasfomatio also gives ise to a umbe of iteestig false theta seies idetities ad we give seveal examples below See 35 below fo a explaatio of false theta seies Coollay 37 ( +1 )(q 3 q 3 ) ( 1) q (+1)/ (q q) + ( 1) q + ( q q) 0 (q q) +1( q q ) ( 1) q ( +)/ (q q) + 0 q 9 +3 ( 1+6 ) + q 10 + ( 18+9 ) q ( 4+1 ) 0 ( q q) q (+1)/ ( 1) (q q ) +1 0 q ( 16+8 ) + 0 q ( 6 3 ) (315) q ( 1 ) (316) 0 q ( 8+4 ) (317) ( 1) q + (318) Poof Let a q i the Bailey pai at (7) substitute the esultig pai ito (314) (with a q ) ad (315) follows afte simplifyig the left side ad e-idexig two of the esultig seies o the ight side Fo (316) let e ad set d q 3/ i the Bailey pai at (5) substitute the esultig pai (Slate s pai I(4)) ito (314) (with a 1) eplace q with q ad simplify Fo (317) substitute pai (61) ito (314) (with a 1) ad eaage To get (318) let a 1 ad set c q 1/ ad b q 1/ i Slate s geeal Bailey pai at (4) substitute the esultig pai (Slate s pai H(1) coected) ito (314) (agai with a 1) ad eaage the esultig idetity Remak 38 The tasfomatio at (314) does lead to idetities of Roges-Ramauja type but those we foud wee eithe ot ew o wee simple liea combiatios of existig idetities 34 Miscellaeous Idetities of the Roges-Ramauja-Slate type Fially we exhibit some idetities that follow fom Bailey pais ot listed by Slate pais that do follow howeve fom specializig the paametes i ou geeal Bailey pais We use two cases of the tasfomatio at (5) which wee used by Slate Fistly let y z to get a 1 q β (a q) (aq q) Secodly let z set y aq ad the eplace a with a ad q with q to get Coollay ( aq q ) a q β (a q ) ( aq q ) (a q q ) a q α (a q) (319) a q α (a q ) (30) q ( 1) (1 + q 1 )( 1 q) 1(q q) 1 + (q4 q 4 ) ( 1 q) (31) (q q ) q ( 1) (+1)/ ( 4 )( 1 q ) 1( q q ) (q q3 q 4 ) ( 1 q q 4 ) 1 + ( q 4 q 1 q 16 q 16 ) (3) 1

22 q ( +)/ ( 1) ( +1 )(q q) ( q 3 q 5 q 8 q 8 ) (33) q ( +3)/ ( 1) ( +1 )(q q) ( q q 7 q 8 q 8 ) (34) 1 + q 3 ()( ) q +3 ( q q ) 1 1 (q q) + (q q) ( q 18 q 30 q 48 q 48 ) + q 3 ( q 10 q 38 q 48 q 48 ) q 6 ( q q 46 q 48 q 48 ) q 3 ( q 6 q 4 q 48 q 48 ) (35) Poof Let d q ad a 1 i the Bailey pai at (47) The idetity at (31) follows upo substitutig the esultig pai ito (319) ad simplifyig Fo (3) set d q ad a i i the pai at (47) substitute the esultig pai ito (30) eplace q with iq ad eaage If we set a q ad d q i the pai at (48) we get (33) whe this pai is iseted i (30) afte eplacig q with q 1/ The idetity at (34) follows upo isetig the pai fomed by settig a q ad d q i the Bailey pai at (49) ito (30) ad the oce agai eplacig q with q 1/ Let v ad set u iq 3/ i the Bailey pai at (59) This gives the Bailey pai (with espect to a q ) α 0 β 0 1 α q8+3 q q 3 α q8+3 q q8+5 q q q 3 α α q8 3 q q 3 β q (1 + q)(1 + q )( q q ) 1 (1 + q 3 )(q 3 q) Note that the expessio fo β follows fom the fact that with the stated values fo u ad v K 8() (1 + q) 1 + q q (1 + q 3 ) (1 + q ) The idetity at (35) follows upo isetig this Bailey pai i (319) ad usig the Jacobi Tiple Poduct idetity to sum pais of seies 35 Theta-False Theta hybid idetities Roges [13] efeed to a seies of the fom (±1) q +s (±1) q +s + 1 (±1) q s (36) as a theta seies of ode whee Q + ad s Q Due to the Jacobi tiple poduct idetity the seies (36) may be expessed as the ifiite poduct q s q s q q Roges also took iteest i seies of the fom (±1) q +s 1 (±1) q s (±1) q +s ( ( s)+( s) ) (37)

23 which he called a theta seies of ode False theta seies ae ot epesetable as ifiite poducts but oetheless may have epesetatios as Roges-Ramauja type q-seies ad Roges gave a umbe of examples of idetities of false theta seies See [10 5 p 35 ff] fo futhe discussio ad umeous examples of false theta seies idetities Hee we give seveal examples of idetities whee oe side is a basic hypegeometic seies ad the othe side compises a theta poduct multiplied by a false theta seies We believe this type of idetity is ew Coollay 310 ( q q ) q ( +1 )(q q q ) ( q q ) (q q ) q ( 8+4 )! (38) P q + 0 q6 + ( 8+4 ) (39) ( +1 )(q q q) (q q) q + ( +1 )(q q q) ( q q) q ( +)/ ( +1 )(q q q) ( q q) (q q) ( q q) q ( +3)/ ( +1 )(q q q) ( q q) (q q) P 0 q6 +4 ( 4+ ) (q q) (330) 0 0 q 4 + ( 6+3 ) (331) q 4 +3 ( +1 ) (33) q + ( q q ) ( +1 )(q q ( 1) q 6 +4 ( 4+ ) (333) ) 0 " ( q q ) +1q ( q q ) # 1 + q + q + q 3 + q (q q ) (334) (q q ) (q q ) +1 (q q ) 0 Poof The idetity at (38) follows upo settig d q ad a q i the pai at (48) substitutig the esultig pai (Slate s pai I(10)) ito (314) (with a q) eplacig q with q ad fially q with q The idetity at (39) follows fom settig d q ad a q i the Bailey pai at (48) ad substitutig the esultig pai ito (319) while the idetity at (331) follows fom substitutig the same pai i (30) ad eplacig q with q 1/ Likewise the idetity at (330) follows as a cosequece settig d q ad a q i the Bailey pai at (49) ad substitutig the esultig pai ito (319) while fo (333) we poceed similaly afte ceatig a Bailey pai by istead settig a q (ad keepig d q ) The idetity at (33) follows upo isetig the pai used i the poof of (330) ito (30) afte eplacig q with q 1/ Fo (334) iset Slate s pai H(1) (a q c q ad b 0 i (4)) ito (314) (with a q) eplace q with q ad eaage 4 Cocludig Remaks I a pape by the secod autho [15] it was show that moe tha half of Slate s idetities could be deived fom just thee geeal Bailey pais togethe with seveal limitig cases of Bailey s lemma ad a associated family of q-diffeece equatios Hee we attempt to put Slate s wok i a boade cotext via geeal Bailey pais but without the use of q-diffeece equatios Both appoaches have thei meits ad both yield ew idetities It may well be woth exploig the combiatoial cosequeces of the ew idetities peseted hee We also ote that we have give just a sample of the idetities that may be poduced by the methods used i Coollaies ad that it is likely that may simila idetities may be poduced by employig othe Bailey pais 3

24 Refeeces [1] G E Adews O the q-aalog of Kumme s theoem ad applicatios Duke Math J 40 (1973) [] G E Adews Applicatios of basic hypegeometic fuctios SIAM Rev 16 (1974) [3] G E Adews R Askey ad R Roy Special fuctios Ecyclopedia of Mathematics ad its Applicatios 71 Cambidge Uivesity Pess Cambidge 1999 xvi+664 pp [4] G E Adews ad B C Bedt Ramauja s lost otebook Pat II Spige New Yok 009 xii+418 pp [5] W N Bailey Seies of hypegeometic type which ae ifiite i both diectios Quat JMath7 (1936) [6] W Chu Bailey s vey well-poised 6ψ 6-seies idetity J Combi Theoy Se A 113 (006) [7] G Gaspe ad M Rahma Basic hypegeometic seies d editio Ecyclopedia of Mathematics ad its Applicatios vol 96 Cambidge Uivesity Pess Cambidge 004 xxvi+48 pp [8] E Heie Utesuchuge übe die Reihe 1 + (α )( β ) ()( γ ) x + (α )( α+1 )( β )( β+1 ) x + ()( )( γ )( γ+1 ) J Reie Agew Math 34 (1847) [9] J McLaughli ad A V Sills Ramauja-Slate type idetities elated to the moduli 18 ad 4 J Math Aal Appl 344 (008) [10] J McLaughli A V Sills ad P Zimme Roges-Ramauja-Slate Type Idetities Electoic J Combiatoics 15 (008) #DS15 59 pp [11] Padmavathamma Some Studies i Patitio Theoy ad q-seies PhD thesis Uivesity of Mysoe Mysoe 1988 [1] S Ramauja The Lost Notebook ad Othe Upublished Papes Naosa New Delhi 1988 [13] L J Roges O two theoems of combiatoy aalysis ad some allied idetities Poc Lodo Math Soc 16 (1917) [14] H S Shukla A ote o the sums of cetai bilateal hypegeometic seies Poc Cambidge Philos Soc 55 (1959) 6 66 [15] A V Sills Idetities of the Roges-Ramauja-Slate type It J Numbe Theoy 3 (007) [16] L J Slate A ew poof of Roges s tasfomatios of ifiite seies Poc Lodo Math Soc () 53 (1951) [17] L J Slate Futhe idetities of the Roges-Ramauja type Poc Lodo MathSoc () 54 (195)

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES #A17 INTEGERS 9 2009), 181-190 SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES Deick M. Keiste Depatmet of Mathematics, Pe State Uivesity, Uivesity Pak, PA 16802 dmk5075@psu.edu James A. Selles Depatmet

More information

SHIFTED HARMONIC SUMS OF ORDER TWO

SHIFTED HARMONIC SUMS OF ORDER TWO Commu Koea Math Soc 9 0, No, pp 39 55 http://dxdoiog/03/ckms0939 SHIFTED HARMONIC SUMS OF ORDER TWO Athoy Sofo Abstact We develop a set of idetities fo Eule type sums I paticula we ivestigate poducts of

More information

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method CHAPTER 5 : SERIES 5.1 Seies 5. The Sum of a Seies 5..1 Sum of Powe of Positive Iteges 5.. Sum of Seies of Patial Factio 5..3 Diffeece Method 5.3 Test of covegece 5.3.1 Divegece Test 5.3. Itegal Test 5.3.3

More information

International Journal of Mathematical Archive-3(5), 2012, Available online through ISSN

International Journal of Mathematical Archive-3(5), 2012, Available online through   ISSN Iteatioal Joual of Matheatical Achive-3(5,, 8-8 Available olie though www.ija.ifo ISSN 9 546 CERTAIN NEW CONTINUED FRACTIONS FOR THE RATIO OF TWO 3 ψ 3 SERIES Maheshwa Pathak* & Pakaj Sivastava** *Depatet

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

Using Difference Equations to Generalize Results for Periodic Nested Radicals

Using Difference Equations to Generalize Results for Periodic Nested Radicals Usig Diffeece Equatios to Geealize Results fo Peiodic Nested Radicals Chis Lyd Uivesity of Rhode Islad, Depatmet of Mathematics South Kigsto, Rhode Islad 2 2 2 2 2 2 2 π = + + +... Vieta (593) 2 2 2 =

More information

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler Fiite -idetities elated to well-ow theoems of Eule ad Gauss Joha Cigle Faultät fü Mathemati Uivesität Wie A-9 Wie, Nodbegstaße 5 email: oha.cigle@uivie.ac.at Abstact We give geealizatios of a fiite vesio

More information

EVALUATION OF SUMS INVOLVING GAUSSIAN q-binomial COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS

EVALUATION OF SUMS INVOLVING GAUSSIAN q-binomial COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS EVALUATION OF SUMS INVOLVING GAUSSIAN -BINOMIAL COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS EMRAH KILIÇ AND HELMUT PRODINGER Abstact We coside sums of the Gaussia -biomial coefficiets with a paametic atioal

More information

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n!

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n! 0 Combiatoial Aalysis Copyight by Deiz Kalı 4 Combiatios Questio 4 What is the diffeece betwee the followig questio i How may 3-lette wods ca you wite usig the lettes A, B, C, D, E ii How may 3-elemet

More information

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD MIXED -STIRLING NUMERS OF THE SEOND KIND DANIEL YAQUI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD Abstact The Stilig umbe of the secod id { } couts the umbe of ways to patitio a set of labeled balls ito

More information

Multivector Functions

Multivector Functions I: J. Math. Aal. ad Appl., ol. 24, No. 3, c Academic Pess (968) 467 473. Multivecto Fuctios David Hestees I a pevious pape [], the fudametals of diffeetial ad itegal calculus o Euclidea -space wee expessed

More information

Counting Functions and Subsets

Counting Functions and Subsets CHAPTER 1 Coutig Fuctios ad Subsets This chapte of the otes is based o Chapte 12 of PJE See PJE p144 Hee ad below, the efeeces to the PJEccles book ae give as PJE The goal of this shot chapte is to itoduce

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

On a Problem of Littlewood

On a Problem of Littlewood Ž. JOURAL OF MATHEMATICAL AALYSIS AD APPLICATIOS 199, 403 408 1996 ARTICLE O. 0149 O a Poblem of Littlewood Host Alze Mosbache Stasse 10, 51545 Waldbol, Gemay Submitted by J. L. Bee Received May 19, 1995

More information

On Some Fractional Integral Operators Involving Generalized Gauss Hypergeometric Functions

On Some Fractional Integral Operators Involving Generalized Gauss Hypergeometric Functions Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Vol. 5, Issue (Decembe ), pp. 3 33 (Peviously, Vol. 5, Issue, pp. 48 47) Applicatios ad Applied Mathematics: A Iteatioal Joual (AAM) O

More information

THE ANALYTIC LARGE SIEVE

THE ANALYTIC LARGE SIEVE THE ANALYTIC LAGE SIEVE 1. The aalytic lage sieve I the last lectue we saw how to apply the aalytic lage sieve to deive a aithmetic fomulatio of the lage sieve, which we applied to the poblem of boudig

More information

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a BINOMIAL THEOREM hapte 8 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4 5y, etc., ae all biomial epessios. 8.. Biomial theoem If

More information

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version equeces ad eies Auchmuty High chool Mathematics Depatmet equeces & eies Notes Teache Vesio A sequece takes the fom,,7,0,, while 7 0 is a seies. Thee ae two types of sequece/seies aithmetic ad geometic.

More information

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4, etc., ae all biomial 5y epessios. 8.. Biomial theoem BINOMIAL THEOREM If a ad b ae

More information

Sums of Involving the Harmonic Numbers and the Binomial Coefficients

Sums of Involving the Harmonic Numbers and the Binomial Coefficients Ameica Joual of Computatioal Mathematics 5 5 96-5 Published Olie Jue 5 i SciRes. http://www.scip.og/oual/acm http://dx.doi.og/.46/acm.5.58 Sums of Ivolvig the amoic Numbes ad the Biomial Coefficiets Wuyugaowa

More information

IDENTITIES FOR THE NUMBER OF STANDARD YOUNG TABLEAUX IN SOME (k, l)-hooks

IDENTITIES FOR THE NUMBER OF STANDARD YOUNG TABLEAUX IN SOME (k, l)-hooks Sémiaie Lothaigie de Combiatoie 63 (010), Aticle B63c IDENTITIES FOR THE NUMBER OF STANDARD YOUNG TABLEAUX IN SOME (k, l)-hooks A. REGEV Abstact. Closed fomulas ae kow fo S(k,0;), the umbe of stadad Youg

More information

Lecture 6: October 16, 2017

Lecture 6: October 16, 2017 Ifomatio ad Codig Theoy Autum 207 Lectue: Madhu Tulsiai Lectue 6: Octobe 6, 207 The Method of Types Fo this lectue, we will take U to be a fiite uivese U, ad use x (x, x 2,..., x to deote a sequece of

More information

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES IJRRAS 6 () July 0 www.apapess.com/volumes/vol6issue/ijrras_6.pdf FIXED POINT AND HYERS-UAM-RASSIAS STABIITY OF A QUADRATIC FUNCTIONA EQUATION IN BANACH SPACES E. Movahedia Behbaha Khatam Al-Abia Uivesity

More information

KEY. Math 334 Midterm II Fall 2007 section 004 Instructor: Scott Glasgow

KEY. Math 334 Midterm II Fall 2007 section 004 Instructor: Scott Glasgow KEY Math 334 Midtem II Fall 7 sectio 4 Istucto: Scott Glasgow Please do NOT wite o this exam. No cedit will be give fo such wok. Rathe wite i a blue book, o o you ow pape, pefeably egieeig pape. Wite you

More information

Some Integral Mean Estimates for Polynomials

Some Integral Mean Estimates for Polynomials Iteatioal Mathematical Foum, Vol. 8, 23, o., 5-5 HIKARI Ltd, www.m-hikai.com Some Itegal Mea Estimates fo Polyomials Abdullah Mi, Bilal Ahmad Da ad Q. M. Dawood Depatmet of Mathematics, Uivesity of Kashmi

More information

a) The average (mean) of the two fractions is halfway between them: b) The answer is yes. Assume without loss of generality that p < r.

a) The average (mean) of the two fractions is halfway between them: b) The answer is yes. Assume without loss of generality that p < r. Solutios to MAML Olympiad Level 00. Factioated a) The aveage (mea) of the two factios is halfway betwee them: p ps+ q ps+ q + q s qs qs b) The aswe is yes. Assume without loss of geeality that p

More information

On ARMA(1,q) models with bounded and periodically correlated solutions

On ARMA(1,q) models with bounded and periodically correlated solutions Reseach Repot HSC/03/3 O ARMA(,q) models with bouded ad peiodically coelated solutios Aleksade Weo,2 ad Agieszka Wy oma ska,2 Hugo Steihaus Cete, Woc aw Uivesity of Techology 2 Istitute of Mathematics,

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P.

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P. Pogessio Sequece & Seies A set of umbes whose domai is a eal umbe is called a SEQUENCE ad sum of the sequece is called a SERIES. If a, a, a, a 4,., a, is a sequece, the the expessio a + a + a + a 4 + a

More information

MATH /19: problems for supervision in week 08 SOLUTIONS

MATH /19: problems for supervision in week 08 SOLUTIONS MATH10101 2018/19: poblems fo supevisio i week 08 Q1. Let A be a set. SOLUTIONS (i Pove that the fuctio c: P(A P(A, defied by c(x A \ X, is bijective. (ii Let ow A be fiite, A. Use (i to show that fo each

More information

Generalized Fibonacci-Lucas Sequence

Generalized Fibonacci-Lucas Sequence Tuish Joual of Aalysis ad Numbe Theoy, 4, Vol, No 6, -7 Available olie at http://pubssciepubcom/tjat//6/ Sciece ad Educatio Publishig DOI:6/tjat--6- Geealized Fiboacci-Lucas Sequece Bijeda Sigh, Ompaash

More information

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia.

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia. #A39 INTEGERS () RECIPROCAL POWER SUMS Athoy Sofo Victoia Uivesity, Melboue City, Austalia. athoy.sofo@vu.edu.au Received: /8/, Acceted: 6//, Published: 6/5/ Abstact I this ae we give a alteative oof ad

More information

Advanced Physical Geodesy

Advanced Physical Geodesy Supplemetal Notes Review of g Tems i Moitz s Aalytic Cotiuatio Method. Advaced hysical Geodesy GS887 Chistophe Jekeli Geodetic Sciece The Ohio State Uivesity 5 South Oval Mall Columbus, OH 4 7 The followig

More information

9.7 Pascal s Formula and the Binomial Theorem

9.7 Pascal s Formula and the Binomial Theorem 592 Chapte 9 Coutig ad Pobability Example 971 Values of 97 Pascal s Fomula ad the Biomial Theoem I m vey well acquaited, too, with mattes mathematical, I udestad equatios both the simple ad quadatical

More information

A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS

A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS Discussioes Mathematicae Gaph Theoy 28 (2008 335 343 A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS Athoy Boato Depatmet of Mathematics Wilfid Lauie Uivesity Wateloo, ON, Caada, N2L 3C5 e-mail: aboato@oges.com

More information

A RECIPROCITY RELATION FOR WP-BAILEY PAIRS

A RECIPROCITY RELATION FOR WP-BAILEY PAIRS A RECIPROCITY RELATION FOR WP-BAILEY PAIRS JAMES MC LAUGHLIN AND PETER ZIMMER Abstract We derive a ew geeral trasformatio for WP-Bailey pairs by cosiderig the a certai limitig case of a WP-Bailey chai

More information

Range Symmetric Matrices in Minkowski Space

Range Symmetric Matrices in Minkowski Space BULLETIN of the Bull. alaysia ath. Sc. Soc. (Secod Seies) 3 (000) 45-5 LYSIN THETICL SCIENCES SOCIETY Rae Symmetic atices i ikowski Space.R. EENKSHI Depatmet of athematics, amalai Uivesity, amalaiaa 608

More information

Taylor Transformations into G 2

Taylor Transformations into G 2 Iteatioal Mathematical Foum, 5,, o. 43, - 3 Taylo Tasfomatios ito Mulatu Lemma Savaah State Uivesity Savaah, a 344, USA Lemmam@savstate.edu Abstact. Though out this pape, we assume that

More information

Complementary Dual Subfield Linear Codes Over Finite Fields

Complementary Dual Subfield Linear Codes Over Finite Fields 1 Complemetay Dual Subfield Liea Codes Ove Fiite Fields Kiagai Booiyoma ad Somphog Jitma,1 Depatmet of Mathematics, Faculty of Sciece, Silpao Uivesity, Naho Pathom 73000, hailad e-mail : ai_b_555@hotmail.com

More information

ELEMENTARY AND COMPOUND EVENTS PROBABILITY

ELEMENTARY AND COMPOUND EVENTS PROBABILITY Euopea Joual of Basic ad Applied Scieces Vol. 5 No., 08 ELEMENTARY AND COMPOUND EVENTS PROBABILITY William W.S. Che Depatmet of Statistics The Geoge Washigto Uivesity Washigto D.C. 003 E-mail: williamwsche@gmail.com

More information

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS Joual of Pue ad Alied Mathematics: Advaces ad Alicatios Volume 0 Numbe 03 Pages 5-58 ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS ALI H HAKAMI Deatmet of Mathematics

More information

Using Counting Techniques to Determine Probabilities

Using Counting Techniques to Determine Probabilities Kowledge ticle: obability ad Statistics Usig outig Techiques to Detemie obabilities Tee Diagams ad the Fudametal outig iciple impotat aspect of pobability theoy is the ability to detemie the total umbe

More information

Consider unordered sample of size r. This sample can be used to make r! Ordered samples (r! permutations). unordered sample

Consider unordered sample of size r. This sample can be used to make r! Ordered samples (r! permutations). unordered sample Uodeed Samples without Replacemet oside populatio of elemets a a... a. y uodeed aagemet of elemets is called a uodeed sample of size. Two uodeed samples ae diffeet oly if oe cotais a elemet ot cotaied

More information

Generalization of Horadam s Sequence

Generalization of Horadam s Sequence Tuish Joual of Aalysis ad Nube Theoy 6 Vol No 3-7 Available olie at http://pubssciepubco/tjat///5 Sciece ad Educatio Publishig DOI:69/tjat---5 Geealizatio of Hoada s Sequece CN Phadte * YS Valaulia Depatet

More information

Math 166 Week-in-Review - S. Nite 11/10/2012 Page 1 of 5 WIR #9 = 1+ r eff. , where r. is the effective interest rate, r is the annual

Math 166 Week-in-Review - S. Nite 11/10/2012 Page 1 of 5 WIR #9 = 1+ r eff. , where r. is the effective interest rate, r is the annual Math 66 Week-i-Review - S. Nite // Page of Week i Review #9 (F-F.4, 4.-4.4,.-.) Simple Iteest I = Pt, whee I is the iteest, P is the picipal, is the iteest ate, ad t is the time i yeas. P( + t), whee A

More information

On randomly generated non-trivially intersecting hypergraphs

On randomly generated non-trivially intersecting hypergraphs O adomly geeated o-tivially itesectig hypegaphs Balázs Patkós Submitted: May 5, 009; Accepted: Feb, 010; Published: Feb 8, 010 Mathematics Subject Classificatio: 05C65, 05D05, 05D40 Abstact We popose two

More information

COUNTING SUBSET SUMS OF FINITE ABELIAN GROUPS

COUNTING SUBSET SUMS OF FINITE ABELIAN GROUPS COUNTING SUBSET SUMS OF FINITE ABELIAN GROUPS JIYOU LI AND DAQING WAN Abstact I this pape, we obtai a explicit fomula fo the umbe of zeo-sum -elemet subsets i ay fiite abelia goup 1 Itoductio Let A be

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MB BINOMIAL THEOREM Biomial Epessio : A algebaic epessio which cotais two dissimila tems is called biomial epessio Fo eample :,,, etc / ( ) Statemet of Biomial theoem : If, R ad N, the : ( + ) = a b +

More information

On the Explicit Determinants and Singularities of r-circulant and Left r-circulant Matrices with Some Famous Numbers

On the Explicit Determinants and Singularities of r-circulant and Left r-circulant Matrices with Some Famous Numbers O the Explicit Detemiats Sigulaities of -ciculat Left -ciculat Matices with Some Famous Numbes ZHAOLIN JIANG Depatmet of Mathematics Liyi Uivesity Shuaglig Road Liyi city CHINA jzh08@siacom JUAN LI Depatmet

More information

The number of r element subsets of a set with n r elements

The number of r element subsets of a set with n r elements Popositio: is The umbe of elemet subsets of a set with elemets Poof: Each such subset aises whe we pick a fist elemet followed by a secod elemet up to a th elemet The umbe of such choices is P But this

More information

Advanced Higher Formula List

Advanced Higher Formula List Advaced Highe Fomula List Note: o fomulae give i eam emembe eveythig! Uit Biomial Theoem Factoial! ( ) ( ) Biomial Coefficiet C!! ( )! Symmety Idetity Khayyam-Pascal Idetity Biomial Theoem ( y) C y 0 0

More information

Strong Result for Level Crossings of Random Polynomials

Strong Result for Level Crossings of Random Polynomials IOSR Joual of haacy ad Biological Scieces (IOSR-JBS) e-issn:78-8, p-issn:19-7676 Volue 11, Issue Ve III (ay - Ju16), 1-18 wwwiosjoualsog Stog Result fo Level Cossigs of Rado olyoials 1 DKisha, AK asigh

More information

The Pigeonhole Principle 3.4 Binomial Coefficients

The Pigeonhole Principle 3.4 Binomial Coefficients Discete M athematic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Ageda Ch 3. The Pigeohole Piciple

More information

Lecture 24: Observability and Constructibility

Lecture 24: Observability and Constructibility ectue 24: Obsevability ad Costuctibility 7 Obsevability ad Costuctibility Motivatio: State feedback laws deped o a kowledge of the cuet state. I some systems, xt () ca be measued diectly, e.g., positio

More information

Bernoulli, poly-bernoulli, and Cauchy polynomials in terms of Stirling and r-stirling numbers

Bernoulli, poly-bernoulli, and Cauchy polynomials in terms of Stirling and r-stirling numbers Novembe 4, 2016 Beoulli, oly-beoulli, ad Cauchy olyomials i tems of Stilig ad -Stilig umbes Khisto N. Boyadzhiev Deatmet of Mathematics ad Statistics, Ohio Nothe Uivesity, Ada, OH 45810, USA -boyadzhiev@ou.edu

More information

Some Properties of the K-Jacobsthal Lucas Sequence

Some Properties of the K-Jacobsthal Lucas Sequence Deepia Jhala et. al. /Iteatioal Joual of Mode Scieces ad Egieeig Techology (IJMSET) ISSN 349-3755; Available at https://www.imset.com Volume Issue 3 04 pp.87-9; Some Popeties of the K-Jacobsthal Lucas

More information

Steiner Hyper Wiener Index A. Babu 1, J. Baskar Babujee 2 Department of mathematics, Anna University MIT Campus, Chennai-44, India.

Steiner Hyper Wiener Index A. Babu 1, J. Baskar Babujee 2 Department of mathematics, Anna University MIT Campus, Chennai-44, India. Steie Hype Wiee Idex A. Babu 1, J. Baska Babujee Depatmet of mathematics, Aa Uivesity MIT Campus, Cheai-44, Idia. Abstact Fo a coected gaph G Hype Wiee Idex is defied as WW G = 1 {u,v} V(G) d u, v + d

More information

4. PERMUTATIONS AND COMBINATIONS

4. PERMUTATIONS AND COMBINATIONS 4. PERMUTATIONS AND COMBINATIONS PREVIOUS EAMCET BITS 1. The umbe of ways i which 13 gold cois ca be distibuted amog thee pesos such that each oe gets at least two gold cois is [EAMCET-000] 1) 3 ) 4 3)

More information

At the end of this topic, students should be able to understand the meaning of finite and infinite sequences and series, and use the notation u

At the end of this topic, students should be able to understand the meaning of finite and infinite sequences and series, and use the notation u Natioal Jio College Mathematics Depatmet 00 Natioal Jio College 00 H Mathematics (Seio High ) Seqeces ad Seies (Lecte Notes) Topic : Seqeces ad Seies Objectives: At the ed of this topic, stdets shold be

More information

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi d Iteatioal Cofeece o Electical Compute Egieeig ad Electoics (ICECEE 5 Mappig adius of egula Fuctio ad Cete of Covex egio Dua Wexi School of Applied Mathematics Beijig Nomal Uivesity Zhuhai Chia 363463@qqcom

More information

A note on random minimum length spanning trees

A note on random minimum length spanning trees A ote o adom miimum legth spaig tees Ala Fieze Miklós Ruszikó Lubos Thoma Depatmet of Mathematical Scieces Caegie Mello Uivesity Pittsbugh PA15213, USA ala@adom.math.cmu.edu, usziko@luta.sztaki.hu, thoma@qwes.math.cmu.edu

More information

( ) ( ) ( ) ( ) Solved Examples. JEE Main/Boards = The total number of terms in the expansion are 8.

( ) ( ) ( ) ( ) Solved Examples. JEE Main/Boards = The total number of terms in the expansion are 8. Mathematics. Solved Eamples JEE Mai/Boads Eample : Fid the coefficiet of y i c y y Sol: By usig fomula of fidig geeal tem we ca easily get coefficiet of y. I the biomial epasio, ( ) th tem is c T ( y )

More information

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology Disc ete Mathem atic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Pigeohole Piciple Suppose that a

More information

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA Iteatioal Joual of Reseach i Egieeig ad aageet Techology (IJRET) olue Issue July 5 Available at http://wwwijetco/ Stog Result fo Level Cossigs of Rado olyoials Dipty Rai Dhal D K isha Depatet of atheatics

More information

On composite conformal mapping of an annulus to a plane with two holes

On composite conformal mapping of an annulus to a plane with two holes O composite cofomal mappig of a aulus to a plae with two holes Mila Batista (July 07) Abstact I the aticle we coside the composite cofomal map which maps aulus to ifiite egio with symmetic hole ad ealy

More information

The Multivariate-t distribution and the Simes Inequality. Abstract. Sarkar (1998) showed that certain positively dependent (MTP 2 ) random variables

The Multivariate-t distribution and the Simes Inequality. Abstract. Sarkar (1998) showed that certain positively dependent (MTP 2 ) random variables The Multivaiate-t distibutio ad the Simes Iequality by Hey W. Block 1, Saat K. Saka 2, Thomas H. Savits 1 ad Jie Wag 3 Uivesity of ittsbugh 1,Temple Uivesity 2,Gad Valley State Uivesity 3 Abstact. Saka

More information

Technical Report: Bessel Filter Analysis

Technical Report: Bessel Filter Analysis Sasa Mahmoodi 1 Techical Repot: Bessel Filte Aalysis 1 School of Electoics ad Compute Sciece, Buildig 1, Southampto Uivesity, Southampto, S17 1BJ, UK, Email: sm3@ecs.soto.ac.uk I this techical epot, we

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

Supplementary materials. Suzuki reaction: mechanistic multiplicity versus exclusive homogeneous or exclusive heterogeneous catalysis

Supplementary materials. Suzuki reaction: mechanistic multiplicity versus exclusive homogeneous or exclusive heterogeneous catalysis Geeal Pape ARKIVOC 009 (xi 85-03 Supplemetay mateials Suzui eactio: mechaistic multiplicity vesus exclusive homogeeous o exclusive heteogeeous catalysis Aa A. Kuohtia, Alexade F. Schmidt* Depatmet of Chemisty

More information

Lower Bounds for Cover-Free Families

Lower Bounds for Cover-Free Families Loe Bouds fo Cove-Fee Families Ali Z. Abdi Covet of Nazaeth High School Gade, Abas 7, Haifa Nade H. Bshouty Dept. of Compute Sciece Techio, Haifa, 3000 Apil, 05 Abstact Let F be a set of blocks of a t-set

More information

EXAMPLES. Leader in CBSE Coaching. Solutions of BINOMIAL THEOREM A.V.T.E. by AVTE (avte.in) Class XI

EXAMPLES. Leader in CBSE Coaching. Solutions of BINOMIAL THEOREM A.V.T.E. by AVTE (avte.in) Class XI avtei EXAMPLES Solutios of AVTE by AVTE (avtei) lass XI Leade i BSE oachig 1 avtei SHORT ANSWER TYPE 1 Fid the th tem i the epasio of 1 We have T 1 1 1 1 1 1 1 1 1 1 Epad the followig (1 + ) 4 Put 1 y

More information

2012 GCE A Level H2 Maths Solution Paper Let x,

2012 GCE A Level H2 Maths Solution Paper Let x, GCE A Level H Maths Solutio Pape. Let, y ad z be the cost of a ticet fo ude yeas, betwee ad 5 yeas, ad ove 5 yeas categoies espectively. 9 + y + 4z =. 7 + 5y + z = 8. + 4y + 5z = 58.5 Fo ude, ticet costs

More information

LESSON 15: COMPOUND INTEREST

LESSON 15: COMPOUND INTEREST High School: Expoeial Fuctios LESSON 15: COMPOUND INTEREST 1. You have see this fomula fo compoud ieest. Paamete P is the picipal amou (the moey you stat with). Paamete is the ieest ate pe yea expessed

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 2- ALGEBRAIC TECHNIQUES TUTORIAL 1 - PROGRESSIONS

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 2- ALGEBRAIC TECHNIQUES TUTORIAL 1 - PROGRESSIONS EDEXCEL NATIONAL CERTIFICATE UNIT 8 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME - ALGEBRAIC TECHNIQUES TUTORIAL - PROGRESSIONS CONTENTS Be able to apply algebaic techiques Aithmetic pogessio (AP): fist

More information

A Note on k-gamma Function and Pochhammer k-symbol

A Note on k-gamma Function and Pochhammer k-symbol Joual of Ifomatics ad Mathematical Scieces Vol. 6, No., pp. 93 07, 04 ISSN 0975-5748 olie; 0974-875X pit Published by RGN Publicatios http://www.gpublicatios.com A Note o -Gamma Fuctio ad Pochhamme -Symbol

More information

Applications of the Dirac Sequences in Electrodynamics

Applications of the Dirac Sequences in Electrodynamics Poc of the 8th WSEAS It Cof o Mathematical Methods ad Computatioal Techiques i Electical Egieeig Buchaest Octobe 6-7 6 45 Applicatios of the Diac Sequeces i Electodyamics WILHELM W KECS Depatmet of Mathematics

More information

arxiv: v1 [math.co] 4 May 2017

arxiv: v1 [math.co] 4 May 2017 On The Numbe Of Unlabeled Bipatite Gaphs Abdullah Atmaca and A Yavuz Ouç axiv:7050800v [mathco] 4 May 207 Abstact This pape solves a poblem that was stated by M A Haison in 973 [] This poblem, that has

More information

Chapter 3: Theory of Modular Arithmetic 38

Chapter 3: Theory of Modular Arithmetic 38 Chapte 3: Theoy of Modula Aithmetic 38 Section D Chinese Remainde Theoem By the end of this section you will be able to pove the Chinese Remainde Theoem apply this theoem to solve simultaneous linea conguences

More information

The Discrete Fourier Transform

The Discrete Fourier Transform (7) The Discete Fouie Tasfom The Discete Fouie Tasfom hat is Discete Fouie Tasfom (DFT)? (ote: It s ot DTFT discete-time Fouie tasfom) A liea tasfomatio (mati) Samples of the Fouie tasfom (DTFT) of a apeiodic

More information

CfE Advanced Higher Mathematics Course materials Topic 5: Binomial theorem

CfE Advanced Higher Mathematics Course materials Topic 5: Binomial theorem SCHOLAR Study Guide CfE Advaced Highe Mathematics Couse mateials Topic : Biomial theoem Authoed by: Fioa Withey Stilig High School Kae Withey Stilig High School Reviewed by: Magaet Feguso Peviously authoed

More information

MATHS FOR ENGINEERS ALGEBRA TUTORIAL 8 MATHEMATICAL PROGRESSIONS AND SERIES

MATHS FOR ENGINEERS ALGEBRA TUTORIAL 8 MATHEMATICAL PROGRESSIONS AND SERIES MATHS FOR ENGINEERS ALGEBRA TUTORIAL 8 MATHEMATICAL PROGRESSIONS AND SERIES O completio of this ttoial yo shold be able to do the followig. Eplai aithmetical ad geometic pogessios. Eplai factoial otatio

More information

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T BINOMIAL THEOREM_SYNOPSIS Geatest tem (umeically) i the epasio of ( + ) Method Let T ( The th tem) be the geatest tem. Fid T, T, T fom the give epasio. Put T T T ad. Th will give a iequality fom whee value

More information

THE COLORED JONES POLYNOMIAL OF CERTAIN PRETZEL KNOTS

THE COLORED JONES POLYNOMIAL OF CERTAIN PRETZEL KNOTS THE COLORED JONES POLYNOMIAL OF CERTAIN PRETZEL KNOTS KATIE WALSH ABSTRACT. Usig the techiques of Gego Masbuam, we povide ad pove a fomula fo the Coloed Joes Polyomial of (1,l 1,2k)-petzel kots to allow

More information

Two-Toned Tilings and Compositions of Integers

Two-Toned Tilings and Compositions of Integers Two-Toed Tiligs ad Compositios of Iteges Melaie Hoffma Abstact. Followig the aticle Combiatoics of Two-Toed Tiligs by Bejami, Chi, Scott, ad Simay [1], this pape itoduces a fuctio to cout tiligs of legth

More information

Journal of Chemical, Biological and Physical Sciences. On transformation formulae for Srivastava-Daoust type q-hypergeometric series

Journal of Chemical, Biological and Physical Sciences. On transformation formulae for Srivastava-Daoust type q-hypergeometric series JCBPS; Sec. C; Feb. 06 Ap. 06, Vol.6, No. ; 677-687. E- ISSN: 49 99 Joual of Chemical, Biological ad Physical Scieces A Iteatioal Pee Review E-3 Joual of Scieces Available olie at www.cbsc.og Sectio C:

More information

Math 7409 Homework 2 Fall from which we can calculate the cycle index of the action of S 5 on pairs of vertices as

Math 7409 Homework 2 Fall from which we can calculate the cycle index of the action of S 5 on pairs of vertices as Math 7409 Hoewok 2 Fall 2010 1. Eueate the equivalece classes of siple gaphs o 5 vetices by usig the patte ivetoy as a guide. The cycle idex of S 5 actig o 5 vetices is 1 x 5 120 1 10 x 3 1 x 2 15 x 1

More information

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS ON CERTAIN CLASS OF ANALYTIC FUNCTIONS Nailah Abdul Rahma Al Diha Mathematics Depatmet Gils College of Educatio PO Box 60 Riyadh 567 Saudi Aabia Received Febuay 005 accepted Septembe 005 Commuicated by

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

On the maximum of r-stirling numbers

On the maximum of r-stirling numbers Advaces i Applied Mathematics 4 2008) 293 306 www.elsevie.com/locate/yaama O the maximum of -Stilig umbes Istvá Mező Depatmet of Algeba ad Numbe Theoy, Istitute of Mathematics, Uivesity of Debece, Hugay

More information

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to Compaiso Fuctios I this lesso, we study stability popeties of the oautoomous system = f t, x The difficulty is that ay solutio of this system statig at x( t ) depeds o both t ad t = x Thee ae thee special

More information

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP 4th Euopea Sigal Pocessig Cofeece (EUSIPCO 6), Floece, Italy, Septembe 4-8, 6, copyight by EURASIP Extedig Laplace ad z Tasfom Domais Michael J Coithios Pofesso, Ecole Polytechique de Motéal Uivesité de

More information

On Continued Fraction of Order Twelve

On Continued Fraction of Order Twelve Pue Mathematical Sciences, Vol. 1, 2012, no. 4, 197-205 On Continued Faction of Ode Twelve B. N. Dhamenda*, M. R. Rajesh Kanna* and R. Jagadeesh** *Post Gaduate Depatment of Mathematics Mahaani s Science

More information

ON NEW FORMS OF THE RECIPROCITY THEOREMS

ON NEW FORMS OF THE RECIPROCITY THEOREMS Gulf Joural of Mathematics Vol 3, Issue 1 2015) 104-117 ON NEW FORMS OF THE RECIPROCITY THEOREMS D. D. SOMASHEKARA 1, K. NARASIMHA MURTHY 2, S. L. SHALINI 3 Abstract. I his lost otebook, Ramauja has stated

More information

Lacunary Almost Summability in Certain Linear Topological Spaces

Lacunary Almost Summability in Certain Linear Topological Spaces BULLETIN of te MLYSİN MTHEMTİCL SCİENCES SOCİETY Bull. Malays. Mat. Sci. Soc. (2) 27 (2004), 27 223 Lacuay lost Suability i Cetai Liea Topological Spaces BÜNYMIN YDIN Cuuiyet Uivesity, Facutly of Educatio,

More information

INVERSE CAUCHY PROBLEMS FOR NONLINEAR FRACTIONAL PARABOLIC EQUATIONS IN HILBERT SPACE

INVERSE CAUCHY PROBLEMS FOR NONLINEAR FRACTIONAL PARABOLIC EQUATIONS IN HILBERT SPACE IJAS 6 (3 Febuay www.apapess.com/volumes/vol6issue3/ijas_6_3_.pdf INVESE CAUCH POBLEMS FO NONLINEA FACTIONAL PAABOLIC EQUATIONS IN HILBET SPACE Mahmoud M. El-Boai Faculty of Sciece Aleadia Uivesit Aleadia

More information

ON INDEPENDENT SETS IN PURELY ATOMIC PROBABILITY SPACES WITH GEOMETRIC DISTRIBUTION. 1. Introduction. 1 r r. r k for every set E A, E \ {0},

ON INDEPENDENT SETS IN PURELY ATOMIC PROBABILITY SPACES WITH GEOMETRIC DISTRIBUTION. 1. Introduction. 1 r r. r k for every set E A, E \ {0}, ON INDEPENDENT SETS IN PURELY ATOMIC PROBABILITY SPACES WITH GEOMETRIC DISTRIBUTION E. J. IONASCU and A. A. STANCU Abstact. We ae inteested in constucting concete independent events in puely atomic pobability

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uivesity of Hawaii ICS141: Discete Mathematics fo Compute Sciece I Dept. Ifomatio & Compute Sci., Uivesity of Hawaii Ja Stelovsy based o slides by D. Bae ad D. Still Oigials by D. M. P. Fa ad D. J.L. Goss

More information

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2.

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2. Paabola Volume 5, Issue (017) Solutions 151 1540 Q151 Take any fou consecutive whole numbes, multiply them togethe and add 1. Make a conjectue and pove it! The esulting numbe can, fo instance, be expessed

More information

RELIABILITY ASSESSMENT OF SYSTEMS WITH PERIODIC MAINTENANCE UNDER RARE FAILURES OF ITS ELEMENTS

RELIABILITY ASSESSMENT OF SYSTEMS WITH PERIODIC MAINTENANCE UNDER RARE FAILURES OF ITS ELEMENTS Y Geis ELIABILITY ASSESSMENT OF SYSTEMS WITH PEIODIC MAINTENANCE UNDE AE FAILUES OF ITS ELEMENTS T&A # (6) (Vol) 2, Mach ELIABILITY ASSESSMENT OF SYSTEMS WITH PEIODIC MAINTENANCE UNDE AE FAILUES OF ITS

More information

Introduction to the Theory of Inference

Introduction to the Theory of Inference CSSM Statistics Leadeship Istitute otes Itoductio to the Theoy of Ifeece Jo Cye, Uivesity of Iowa Jeff Witme, Obeli College Statistics is the systematic study of vaiatio i data: how to display it, measue

More information