Collaborative Multi-Output Gaussian Processes for Collections of Sparse Multivariate Time Series

Size: px
Start display at page:

Download "Collaborative Multi-Output Gaussian Processes for Collections of Sparse Multivariate Time Series"

Transcription

1 Collaboratve Mult-Output Gaussan Processes for Collectons of Sparse Multvarate Tme Seres Steven Cheng-Xan L Benamn Marln College of Informaton & Computer Scences Uversty of Massachusetts Amherst {cxl,marln}@cs.umass.edu Abstract Collaboratve Mult-Output Gaussan Processes COGPs) are a flexble tool for modelng multvarate tme seres. They nduce correlaton across outputs through the use of shared latent processes. Whle past work has focused on the computatonal challenges that result from a sngle multvarate tme seres wth many observed values, ths paper explores the problem of fttng the COGP model to collectons of many sparse and rregularly sampled multvarate tme seres. Ths work s motvated by applcatons to modelng physologcal data heart rate, blood pressure, etc.) n Electroc Health Records EHRs). 1 Introducton Gaussan process GP) regresson s a well-known and wdely-used approach for modelng temporal and spatal data [9]. The man drawback of GP models s the prohbtve cost of the requred computatons. To address ths ssue, Hensman et al. [4] recently ntroduced a scalable algorthm to perform GP nference based on a stochastc varatonal approxmaton [5]. Usng a smlar approach, Nguyen and Bolla [7] proposed collaboratve mult-output Gaussan processes COGP) for effcently learng mult-output GPs gven a sngle multvarate tme seres wth many observatons. Ths work extends a long lne of pror research on mult-output GPs [1, 2, 3, 11, 12]. In ths paper, we consder the problem of learng the COGP model when the data consst of a collecton of many sparse and rregularly sampled multvarate tme seres. Ths problem s motvated by the analyss of Intensve Care Ut ICU) Electroc Health Records EHR) data. In the ICU EHR settng, each patent s represented by an ensemble of sparse and rregularly sampled physologcal tme seres, one per underlyng physologcal varable such as heart rate, blood pressure, etc. A typcal ICU EHR record contans observatons of physologcal varables recorded at rregular ntervals by clcal staff durng the routne course of care. Key varables may have one to two recorded observatons per hour, so the data are qute sparse. On the other hand, ndvdual hosptals may have access to EHRs for many thousands) of patents. Our goal s to ft a common COGP model by leveragng the data from multple patents. We present an extenson to the COGP model and a modfed varatonal learng algorthm that explots the fact that we have many sparsely observed multvarate tme seres. We also explore the use of sparsty-nducng regularzaton on the factors controllng the nteractons between outputs to deal wth varables that are hghly sparsely observed. We present predctve log lkelhood results on a real ICU EHR data set. 2 Mult-Output Gaussan Processes Consder a data set contang a collecton of multvarate tme seres D = {S 1,..., S N }. Each tme seres S n conssts of P channels S n = {t n1, y n1 ),..., t np, y np )} n whch t s a set of 1

2 tme ponts and y are the correspondng observed values. For ICU EHR data, each tme seres has only a small number of observatons that are rregularly sampled. We extend the collaboratve mult-output Gaussan processes COGP) [7] to model correlaton across dfferent channels gven a collecton of mult-channel tme seres where each channel s sparse and rregularly sampled. Let y k denote the kth observaton of channel from S n measured at tme t k, t s modeled as a nosy observaton of the sum of a functon h and a weghted combnaton of Q shared latent functons g 1,..., g Q evaluated at t k, where each functon has an ndependent Gaussan process GP) pror h GP 0, k h), ) ) for = 1,..., P and g GP 0, k g), ) ) for = 1,..., Q. Specfcally, py k ) = N h t k ) + Q ) w g t k ), β 1 Note that the hyperparameters of the covarance functons k h) and k g) are shared across the entre tme seres collecton D, and so are the weghts w. The shared Gaussan precson β 1 models the nose of the process that s shared by all of the tme seres n the th channel. In order to effcently estmate the hyperparameters mentoned above, a set of M nducng tme ponts z = [z 1,..., z M ] s ntroduced to approxmate the orgnal GP posteror for all g and h. These nducng ponts provde a uversal reference so that we can estmate the combnaton weghts and other hyperparameters solely on the margnal dstrbuton. Moreover, by choosng a smaller M those GPs can be sparsfed to speed up computaton [4, 5]. Let g = g t ) and h = h t ) for n = 1,..., N, = 1,..., P and = 1,..., Q. Lke other GP approxmatons [8], a set of nducng varables u and v are ntroduced such that pg u n ) = pu n ) = pg u n ) = pu n ) = N g µ g), ) Kg) N u n 0, k g) z, z) ) ph n v n ) = ph v ) = N h µ h), Kh) ) pv n ) = pv ) = N v 0, k h) z, z) ) where µ g) and Kg) are defned smlarly. are the posteror mean and covarance defned as follows and µh) µ g) = kg) K g) = kg) t, z)k g) z, z) 1 u n t, t ) k g) In ths work, we use squared exponental kernels for both k h) whereas for k g) t, z)k g) z, z) 1 k g) z, t ). and k g), that s, k h) x, x ) = a exp b x x ) 2), for a > 0 and b > 0 and K h) we fx the leadng coeffcent a = 1 snce the weghts w control the scale already. We use varatonal nference to estmate the parameters. Followng the procedure of COGP, we can derve the evdence lower bound wth all g and h collapsed as n [4] and ntroduce the mean feld varatonal dstrbutons qu n ) = N u n m g) n, ) Sg) n and qv ) = N v m h), ) Sh) for all n,,. We obtan the lower bound shown below. 2

3 N { [ ] log pd) qu n, v n )E pgn,h n u n,v n) log py n g n, h n ) du n dv n n=1 Q P } D KL qu n ) pu n )) D KL qv ) pv )) Snce we are workng n the scenaro that the number of samples n each channel of the ICU EHR s small, nstead of updatng the varatonal parameters of u n and v usng stochastc optmzaton as n [7], we can estmate them analytcally n the varatonal E-step to speed up the overall convergence. Specfcally, we estmate S g) and Sh) ndvdually n closed form by settng the dervatves n of the evdence lower bounds to zero: where A g) As for m g) n = kg) S g) n S h) S g) n = S h) = k g) z, z) 1 + k h) t, z)k h) z, z) 1 and A h) P z, z) 1 + β A h) A h) ) 1 β wa 2 g) Ag) ) 1 = k h) t, z)k h) z, z) 1. and mh), we can estmate all of them ontly by solvng the followng lnear system. ) 1m g) n ) 1m h) = P β w A g) y A h) mh) ) w k A g) k mg) nk, for all k = β w A h) 3 Experment and Results Q y ) w A g) mg) n, for all We evaluate the performance of our extenson of the mult-output GP model COGP) usng predctve lkelhood on held out data. Our experments are based on a pedatrc ICU EHR data set collected at the Chldren s Hosptal of Los Angeles. The data contan sparse and rregularly sampled tme seres for 13 standard physologcal varables. The data set we use for these experments contans a collecton of 1000 patent records. We extract the samples from the frst 24 hours n each epsode. The average number of observatons per day vares between 7 and 50 for these varables wth consderable varaton between patents. We compare the predctve performance on the held-out data ponts usng the COGP wth dfferent regularzaton schemes. We also compare to a baselne method that models each channel as an ndependent GP INDEP-GP). We randomly splt the 1000 epsodes nto 500 for trang and test on the remang half. For each channel, we hold out the mddle one-thrd of the observatons of each epsode to evaluate the predctve dstrbuton on the held-out tme ponts, so that nference has to account for nformaton from other channels due to the lack of reference n the neghborhood. Ths nvolves estmatng m g), S g), m h), S h) for each test case gven the shared hyperparameters that Table 1: Held-out log-lkelhood comparson method average log-lkelhood Q regularzaton parameter COGP-COL ±0.045) 3 τ = 0.2 COGP-ROW ±0.036) 3 λ = 2.0 COGP-IND ±0.043) 5 λ = 0.8 COGP ±0.042) 3 INDEP-GP ±0.171) 3

4 Table 2: Average log-lkelhood on each channel channel COGP-COL COGP INDEP-GP # test n use avg length SpO ±0.06) 1.22 ±0.10) 4.51 ±0.29) HR 0.92 ±0.10) 1.19 ±0.14) 5.84 ±0.45) RR 0.04 ±0.01) 0.01 ±0.01) 0.77 ±0.16) sbp 0.53 ±0.10) 0.53 ±0.10) 2.46 ±0.34) dbp 0.88 ±0.02) 1.37 ±0.04) 0.78 ±0.15) EtCO ±0.01) 0.09 ±0.01) 0.97 ±0.17) Temp 0.82 ±0.36) 0.80 ±0.37) 0.25 ±0.19) TGCS 0.58 ±0.08) 0.58 ±0.08) 4.48 ±0.29) CRR 0.71 ±0.05) 0.75 ±0.07) 0.85 ±0.19) UO 1.13 ±0.08) 1.14 ±0.08) 6.32 ±0.29) FO ±0.28) 1.76 ±0.29) 5.57 ±0.89) Gluc 0.05 ±0.01) 0.01 ±0.01) 0.57 ±0.06) ph 0.48 ±0.05) 0.47 ±0.05) 1.11 ±0.14) have been traned. Note that we dscard epsodes that have less than 3 observatons n the gven channel. As the samplng densty vares a lot across channels, the number of test cases n use to evaluate predctve performance for each channels can be consderably dfferent. Therefore, we compute the average log lkelhood on each channel and report the average over all 13 average log lkelhoods as the evaluaton metrc. For mult-output GPs, we consder three schemes to regularze the combnaton weght matrx w R P Q. Frst, we apply l 1 regularzaton on each entry of w by mposng the constrant w 1 < τ COGP-IND). We also consder regularzng w usng group lasso by addng an extra term λ G,) G w2 to the negatve evdence lower bound where G s a set of ndces of w that forms a group, where λ > 0 controls the strength of the regularzaton. We consder takng each column as a group COGP-COL) and takng each row as a group COGP-ROW). In the experment, we use a proected quas-newton algorthm [10] to optmze the regularzed evdence lower bound. We also compare to COGP wthout regularzaton COGP). We test on dfferent values of Q as well as parameters τ, λ for each regularzaton scheme. In the nterest of space, we only show the best results of each method. Table 1 shows the best average held-out log-lkelhood usng dfferent methods. We consder Q {3, 5, 8, 10}. The results show that smaller numbers of latent GPs results n better performance. Importantly, COGP sgfcantly outperforms the ndependent baselne model. Table 1 also shows that regularzaton on columns gves the best result, although there s no column beng zeroed out completely. Table 2 shows the average log-lkelhood of each channel. We can see that COGP outperforms INDEP-GP n all cases except for two of the sparser channels dbp and Temp). Wth sparsty nducng regularzaton, COGP-COL s able to sgfcantly mprove the results for dbp whle havng a mld postve or negatve) effect on other channels. 4 Concluson and Future Drectons In ths work, we extend the collaboratve mult-output GPs to learn correlatons across dfferent outputs based on a collecton of multvarate sparse and rregularly-sampled tme seres. Ths s an mportant step toward follow-up machne learng tasks such as tme seres classfcaton or clusterng. Our work can be ntegrated wth, for example, the expected Gaussan kernel [6] to perform varous machne learng tasks whle makng use of the more accurate modelng provded by COGPs. References [1] Maurco A Alvarez, Lorenzo Rosasco, and Nel D Lawrence. Kernels for vector-valued functons: A revew. arxv preprnt arxv: ,

5 [2] Edwn V Bolla, Kan M Cha, and Chrstopher Wllams. Mult-task gaussan process predcton. In Advances n neural nformaton processng systems, pages , [3] Phllp Boyle and Marcus Frean. Dependent gaussan processes. In Advances n neural nformaton processng systems, pages , [4] James Hensman, Ncolo Fus, and Nel D Lawrence. Gaussan processes for bg data. In Conference on Uncertanty n Artfcal Intellegence, pages aua.org, [5] Matthew D Hoffman, Davd M Ble, Chong Wang, and John Pasley. Stochastc varatonal nference. The Journal of Machne Learng Research, 141): , [6] Steven Cheng-Xan L and Benamn Marln. Classfcaton of sparse and rregularly sampled tme seres wth mxtures of expected gaussan kernels and random features. In Conference on Uncertanty n Artfcal Intellegence, [7] Trung V Nguyen and Edwn V Bolla. Collaboratve mult-output gaussan processes. UAI, [8] Joaqun Quñonero-Candela and Carl Edward Rasmussen. A ufyng vew of sparse approxmate gaussan process regresson. The Journal of Machne Learng Research, 6: , [9] C.E. Rasmussen and C. Wllams. Gaussan processes for machne learng [10] Mark W Schmdt, Ewout Berg, Mchael P Fredlander, and Kevn P Murphy. Optmzng costly functons wth smple constrants: A lmted-memory proected quas-newton algorthm. In Internatonal Conference on Artfcal Intellgence and Statstcs, page None, [11] Yee-Whye Teh, Matthas Seeger, and Mchael Jordan. Semparametrc latent factor models. In Artfcal Intellgence and Statstcs 10, number EPFL-CONF , [12] Andrew Wlson, Zoubn Ghahrama, and Davd A Knowles. Gaussan process regresson networks. In Proceedngs of the 29th Internatonal Conference on Machne Learng ICML- 12), pages ,

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1 On an Extenson of Stochastc Approxmaton EM Algorthm for Incomplete Data Problems Vahd Tadayon Abstract: The Stochastc Approxmaton EM (SAEM algorthm, a varant stochastc approxmaton of EM, s a versatle tool

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

Hidden Markov Models & The Multivariate Gaussian (10/26/04) CS281A/Stat241A: Statstcal Learnng Theory Hdden Markov Models & The Multvarate Gaussan (10/26/04) Lecturer: Mchael I. Jordan Scrbes: Jonathan W. Hu 1 Hdden Markov Models As a bref revew, hdden Markov models

More information

Scalable Multi-Class Gaussian Process Classification using Expectation Propagation

Scalable Multi-Class Gaussian Process Classification using Expectation Propagation Scalable Mult-Class Gaussan Process Classfcaton usng Expectaton Propagaton Carlos Vllacampa-Calvo and Danel Hernández Lobato Computer Scence Department Unversdad Autónoma de Madrd http://dhnzl.org, danel.hernandez@uam.es

More information

Gaussian process classification: a message-passing viewpoint

Gaussian process classification: a message-passing viewpoint Gaussan process classfcaton: a message-passng vewpont Flpe Rodrgues fmpr@de.uc.pt November 014 Abstract The goal of ths short paper s to provde a message-passng vewpont of the Expectaton Propagaton EP

More information

Linear Feature Engineering 11

Linear Feature Engineering 11 Lnear Feature Engneerng 11 2 Least-Squares 2.1 Smple least-squares Consder the followng dataset. We have a bunch of nputs x and correspondng outputs y. The partcular values n ths dataset are x y 0.23 0.19

More information

Gaussian Mixture Models

Gaussian Mixture Models Lab Gaussan Mxture Models Lab Objectve: Understand the formulaton of Gaussan Mxture Models (GMMs) and how to estmate GMM parameters. You ve already seen GMMs as the observaton dstrbuton n certan contnuous

More information

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method Appled Mathematcal Scences, Vol. 7, 0, no. 47, 07-0 HIARI Ltd, www.m-hkar.com Comparson of the Populaton Varance Estmators of -Parameter Exponental Dstrbuton Based on Multple Crtera Decson Makng Method

More information

Natural Images, Gaussian Mixtures and Dead Leaves Supplementary Material

Natural Images, Gaussian Mixtures and Dead Leaves Supplementary Material Natural Images, Gaussan Mxtures and Dead Leaves Supplementary Materal Danel Zoran Interdscplnary Center for Neural Computaton Hebrew Unversty of Jerusalem Israel http://www.cs.huj.ac.l/ danez Yar Wess

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition) Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of non-negatve nteger values Examples: number of drver route changes per week, the number of trp departure changes

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maxmum Lkelhood Estmaton INFO-2301: Quanttatve Reasonng 2 Mchael Paul and Jordan Boyd-Graber MARCH 7, 2017 INFO-2301: Quanttatve Reasonng 2 Paul and Boyd-Graber Maxmum Lkelhood Estmaton 1 of 9 Why MLE?

More information

Linear Correlation. Many research issues are pursued with nonexperimental studies that seek to establish relationships among 2 or more variables

Linear Correlation. Many research issues are pursued with nonexperimental studies that seek to establish relationships among 2 or more variables Lnear Correlaton Many research ssues are pursued wth nonexpermental studes that seek to establsh relatonshps among or more varables E.g., correlates of ntellgence; relaton between SAT and GPA; relaton

More information

Semiparametric geographically weighted generalised linear modelling in GWR 4.0

Semiparametric geographically weighted generalised linear modelling in GWR 4.0 Semparametrc geographcally weghted generalsed lnear modellng n GWR 4.0 T. Nakaya 1, A. S. Fotherngham 2, M. Charlton 2, C. Brunsdon 3 1 Department of Geography, Rtsumekan Unversty, 56-1 Tojn-kta-mach,

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 22, Reference Priors

Stat260: Bayesian Modeling and Inference Lecture Date: February 22, Reference Priors Stat60: Bayesan Modelng and Inference Lecture Date: February, 00 Reference Prors Lecturer: Mchael I. Jordan Scrbe: Steven Troxler and Wayne Lee In ths lecture, we assume that θ R; n hgher-dmensons, reference

More information

BIO Lab 2: TWO-LEVEL NORMAL MODELS with school children popularity data

BIO Lab 2: TWO-LEVEL NORMAL MODELS with school children popularity data Lab : TWO-LEVEL NORMAL MODELS wth school chldren popularty data Purpose: Introduce basc two-level models for normally dstrbuted responses usng STATA. In partcular, we dscuss Random ntercept models wthout

More information

A Robust Method for Calculating the Correlation Coefficient

A Robust Method for Calculating the Correlation Coefficient A Robust Method for Calculatng the Correlaton Coeffcent E.B. Nven and C. V. Deutsch Relatonshps between prmary and secondary data are frequently quantfed usng the correlaton coeffcent; however, the tradtonal

More information

Conjugacy and the Exponential Family

Conjugacy and the Exponential Family CS281B/Stat241B: Advanced Topcs n Learnng & Decson Makng Conjugacy and the Exponental Famly Lecturer: Mchael I. Jordan Scrbes: Bran Mlch 1 Conjugacy In the prevous lecture, we saw conjugate prors for the

More information

1 Motivation and Introduction

1 Motivation and Introduction Instructor: Dr. Volkan Cevher EXPECTATION PROPAGATION September 30, 2008 Rce Unversty STAT 63 / ELEC 633: Graphcal Models Scrbes: Ahmad Beram Andrew Waters Matthew Nokleby Index terms: Approxmate nference,

More information

MAXIMUM A POSTERIORI TRANSDUCTION

MAXIMUM A POSTERIORI TRANSDUCTION MAXIMUM A POSTERIORI TRANSDUCTION LI-WEI WANG, JU-FU FENG School of Mathematcal Scences, Peng Unversty, Bejng, 0087, Chna Center for Informaton Scences, Peng Unversty, Bejng, 0087, Chna E-MIAL: {wanglw,

More information

LECTURE 9 CANONICAL CORRELATION ANALYSIS

LECTURE 9 CANONICAL CORRELATION ANALYSIS LECURE 9 CANONICAL CORRELAION ANALYSIS Introducton he concept of canoncal correlaton arses when we want to quantfy the assocatons between two sets of varables. For example, suppose that the frst set of

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 where (x 1,..., x N ) X N, N s called the populaton sze, f(x) f (x) for at least one {1, 2,..., N}, and those dfferent from f(x) are called the tral dstrbutons n terms of mportance samplng. Dfferent ways

More information

Supporting Information

Supporting Information Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the element-wse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

ECE559VV Project Report

ECE559VV Project Report ECE559VV Project Report (Supplementary Notes Loc Xuan Bu I. MAX SUM-RATE SCHEDULING: THE UPLINK CASE We have seen (n the presentaton that, for downlnk (broadcast channels, the strategy maxmzng the sum-rate

More information

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14 APPROXIMAE PRICES OF BASKE AND ASIAN OPIONS DUPON OLIVIER Prema 14 Contents Introducton 1 1. Framewor 1 1.1. Baset optons 1.. Asan optons. Computng the prce 3. Lower bound 3.1. Closed formula for the prce

More information

STATS 306B: Unsupervised Learning Spring Lecture 10 April 30

STATS 306B: Unsupervised Learning Spring Lecture 10 April 30 STATS 306B: Unsupervsed Learnng Sprng 2014 Lecture 10 Aprl 30 Lecturer: Lester Mackey Scrbe: Joey Arthur, Rakesh Achanta 10.1 Factor Analyss 10.1.1 Recap Recall the factor analyss (FA) model for lnear

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

Lab 4: Two-level Random Intercept Model

Lab 4: Two-level Random Intercept Model BIO 656 Lab4 009 Lab 4: Two-level Random Intercept Model Data: Peak expratory flow rate (pefr) measured twce, usng two dfferent nstruments, for 17 subjects. (from Chapter 1 of Multlevel and Longtudnal

More information

8 : Learning in Fully Observed Markov Networks. 1 Why We Need to Learn Undirected Graphical Models. 2 Structural Learning for Completely Observed MRF

8 : Learning in Fully Observed Markov Networks. 1 Why We Need to Learn Undirected Graphical Models. 2 Structural Learning for Completely Observed MRF 10-708: Probablstc Graphcal Models 10-708, Sprng 2014 8 : Learnng n Fully Observed Markov Networks Lecturer: Erc P. Xng Scrbes: Meng Song, L Zhou 1 Why We Need to Learn Undrected Graphcal Models In the

More information

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 6 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutons to assst canddates preparng for the eamnatons n future years and for

More information

Sparse Gaussian Processes Using Backward Elimination

Sparse Gaussian Processes Using Backward Elimination Sparse Gaussan Processes Usng Backward Elmnaton Lefeng Bo, Lng Wang, and Lcheng Jao Insttute of Intellgent Informaton Processng and Natonal Key Laboratory for Radar Sgnal Processng, Xdan Unversty, X an

More information

Chapter 5 Multilevel Models

Chapter 5 Multilevel Models Chapter 5 Multlevel Models 5.1 Cross-sectonal multlevel models 5.1.1 Two-level models 5.1.2 Multple level models 5.1.3 Multple level modelng n other felds 5.2 Longtudnal multlevel models 5.2.1 Two-level

More information

Relevance Vector Machines Explained

Relevance Vector Machines Explained October 19, 2010 Relevance Vector Machnes Explaned Trstan Fletcher www.cs.ucl.ac.uk/staff/t.fletcher/ Introducton Ths document has been wrtten n an attempt to make Tppng s [1] Relevance Vector Machnes

More information

Introduction to Regression

Introduction to Regression Introducton to Regresson Dr Tom Ilvento Department of Food and Resource Economcs Overvew The last part of the course wll focus on Regresson Analyss Ths s one of the more powerful statstcal technques Provdes

More information

Number of cases Number of factors Number of covariates Number of levels of factor i. Value of the dependent variable for case k

Number of cases Number of factors Number of covariates Number of levels of factor i. Value of the dependent variable for case k ANOVA Model and Matrx Computatons Notaton The followng notaton s used throughout ths chapter unless otherwse stated: N F CN Y Z j w W Number of cases Number of factors Number of covarates Number of levels

More information

Exercises of Chapter 2

Exercises of Chapter 2 Exercses of Chapter Chuang-Cheh Ln Department of Computer Scence and Informaton Engneerng, Natonal Chung Cheng Unversty, Mng-Hsung, Chay 61, Tawan. Exercse.6. Suppose that we ndependently roll two standard

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y)

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y) Secton 1.5 Correlaton In the prevous sectons, we looked at regresson and the value r was a measurement of how much of the varaton n y can be attrbuted to the lnear relatonshp between y and x. In ths secton,

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6 Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING 1 ADVANCED ACHINE LEARNING ADVANCED ACHINE LEARNING Non-lnear regresson technques 2 ADVANCED ACHINE LEARNING Regresson: Prncple N ap N-dm. nput x to a contnuous output y. Learn a functon of the type: N

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Explaining the Stein Paradox

Explaining the Stein Paradox Explanng the Sten Paradox Kwong Hu Yung 1999/06/10 Abstract Ths report offers several ratonale for the Sten paradox. Sectons 1 and defnes the multvarate normal mean estmaton problem and ntroduces Sten

More information

Statistics II Final Exam 26/6/18

Statistics II Final Exam 26/6/18 Statstcs II Fnal Exam 26/6/18 Academc Year 2017/18 Solutons Exam duraton: 2 h 30 mn 1. (3 ponts) A town hall s conductng a study to determne the amount of leftover food produced by the restaurants n the

More information

Non-linear Canonical Correlation Analysis Using a RBF Network

Non-linear Canonical Correlation Analysis Using a RBF Network ESANN' proceedngs - European Smposum on Artfcal Neural Networks Bruges (Belgum), 4-6 Aprl, d-sde publ., ISBN -97--, pp. 57-5 Non-lnear Canoncal Correlaton Analss Usng a RBF Network Sukhbnder Kumar, Elane

More information

Bayesian predictive Configural Frequency Analysis

Bayesian predictive Configural Frequency Analysis Psychologcal Test and Assessment Modelng, Volume 54, 2012 (3), 285-292 Bayesan predctve Confgural Frequency Analyss Eduardo Gutérrez-Peña 1 Abstract Confgural Frequency Analyss s a method for cell-wse

More information

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud Resource Allocaton wth a Budget Constrant for Computng Independent Tasks n the Cloud Wemng Sh and Bo Hong School of Electrcal and Computer Engneerng Georga Insttute of Technology, USA 2nd IEEE Internatonal

More information

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models Computaton of Hgher Order Moments from Two Multnomal Overdsperson Lkelhood Models BY J. T. NEWCOMER, N. K. NEERCHAL Department of Mathematcs and Statstcs, Unversty of Maryland, Baltmore County, Baltmore,

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

Chapter 15 - Multiple Regression

Chapter 15 - Multiple Regression Chapter - Multple Regresson Chapter - Multple Regresson Multple Regresson Model The equaton that descrbes how the dependent varable y s related to the ndependent varables x, x,... x p and an error term

More information

Andreas C. Drichoutis Agriculural University of Athens. Abstract

Andreas C. Drichoutis Agriculural University of Athens. Abstract Heteroskedastcty, the sngle crossng property and ordered response models Andreas C. Drchouts Agrculural Unversty of Athens Panagots Lazards Agrculural Unversty of Athens Rodolfo M. Nayga, Jr. Texas AMUnversty

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

How its computed. y outcome data λ parameters hyperparameters. where P denotes the Laplace approximation. k i k k. Andrew B Lawson 2013

How its computed. y outcome data λ parameters hyperparameters. where P denotes the Laplace approximation. k i k k. Andrew B Lawson 2013 Andrew Lawson MUSC INLA INLA s a relatvely new tool that can be used to approxmate posteror dstrbutons n Bayesan models INLA stands for ntegrated Nested Laplace Approxmaton The approxmaton has been known

More information

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach A Bayes Algorthm for the Multtask Pattern Recognton Problem Drect Approach Edward Puchala Wroclaw Unversty of Technology, Char of Systems and Computer etworks, Wybrzeze Wyspanskego 7, 50-370 Wroclaw, Poland

More information

Factor models with many assets: strong factors, weak factors, and the two-pass procedure

Factor models with many assets: strong factors, weak factors, and the two-pass procedure Factor models wth many assets: strong factors, weak factors, and the two-pass procedure Stanslav Anatolyev 1 Anna Mkusheva 2 1 CERGE-EI and NES 2 MIT December 2017 Stanslav Anatolyev and Anna Mkusheva

More information

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Decision Analysis (part 2 of 2) Review Linear Regression

Decision Analysis (part 2 of 2) Review Linear Regression Harvard-MIT Dvson of Health Scences and Technology HST.951J: Medcal Decson Support, Fall 2005 Instructors: Professor Lucla Ohno-Machado and Professor Staal Vnterbo 6.873/HST.951 Medcal Decson Support Fall

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Lecture 20: November 7

Lecture 20: November 7 0-725/36-725: Convex Optmzaton Fall 205 Lecturer: Ryan Tbshran Lecture 20: November 7 Scrbes: Varsha Chnnaobreddy, Joon Sk Km, Lngyao Zhang Note: LaTeX template courtesy of UC Berkeley EECS dept. Dsclamer:

More information

Estimating the Fundamental Matrix by Transforming Image Points in Projective Space 1

Estimating the Fundamental Matrix by Transforming Image Points in Projective Space 1 Estmatng the Fundamental Matrx by Transformng Image Ponts n Projectve Space 1 Zhengyou Zhang and Charles Loop Mcrosoft Research, One Mcrosoft Way, Redmond, WA 98052, USA E-mal: fzhang,cloopg@mcrosoft.com

More information

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore 8/5/17 Data Modelng Patrce Koehl Department of Bologcal Scences atonal Unversty of Sngapore http://www.cs.ucdavs.edu/~koehl/teachng/bl59 koehl@cs.ucdavs.edu Data Modelng Ø Data Modelng: least squares Ø

More information

Introduction to Hidden Markov Models

Introduction to Hidden Markov Models Introducton to Hdden Markov Models Alperen Degrmenc Ths document contans dervatons and algorthms for mplementng Hdden Markov Models. The content presented here s a collecton of my notes and personal nsghts

More information

Chapter 15 Student Lecture Notes 15-1

Chapter 15 Student Lecture Notes 15-1 Chapter 15 Student Lecture Notes 15-1 Basc Busness Statstcs (9 th Edton) Chapter 15 Multple Regresson Model Buldng 004 Prentce-Hall, Inc. Chap 15-1 Chapter Topcs The Quadratc Regresson Model Usng Transformatons

More information

Generative classification models

Generative classification models CS 675 Intro to Machne Learnng Lecture Generatve classfcaton models Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Data: D { d, d,.., dn} d, Classfcaton represents a dscrete class value Goal: learn

More information

Evaluation for sets of classes

Evaluation for sets of classes Evaluaton for Tet Categorzaton Classfcaton accuracy: usual n ML, the proporton of correct decsons, Not approprate f the populaton rate of the class s low Precson, Recall and F 1 Better measures 21 Evaluaton

More information

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS HCMC Unversty of Pedagogy Thong Nguyen Huu et al. A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS Thong Nguyen Huu and Hao Tran Van Department of mathematcs-nformaton,

More information

Fuzzy Boundaries of Sample Selection Model

Fuzzy Boundaries of Sample Selection Model Proceedngs of the 9th WSES Internatonal Conference on ppled Mathematcs, Istanbul, Turkey, May 7-9, 006 (pp309-34) Fuzzy Boundares of Sample Selecton Model L. MUHMD SFIIH, NTON BDULBSH KMIL, M. T. BU OSMN

More information

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018 INF 5860 Machne learnng for mage classfcaton Lecture 3 : Image classfcaton and regresson part II Anne Solberg January 3, 08 Today s topcs Multclass logstc regresson and softma Regularzaton Image classfcaton

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

On Outlier Robust Small Area Mean Estimate Based on Prediction of Empirical Distribution Function

On Outlier Robust Small Area Mean Estimate Based on Prediction of Empirical Distribution Function On Outler Robust Small Area Mean Estmate Based on Predcton of Emprcal Dstrbuton Functon Payam Mokhtaran Natonal Insttute of Appled Statstcs Research Australa Unversty of Wollongong Small Area Estmaton

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

Chapter 12 Analysis of Covariance

Chapter 12 Analysis of Covariance Chapter Analyss of Covarance Any scentfc experment s performed to know somethng that s unknown about a group of treatments and to test certan hypothess about the correspondng treatment effect When varablty

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

4.3 Poisson Regression

4.3 Poisson Regression of teratvely reweghted least squares regressons (the IRLS algorthm). We do wthout gvng further detals, but nstead focus on the practcal applcaton. > glm(survval~log(weght)+age, famly="bnomal", data=baby)

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

and V is a p p positive definite matrix. A normal-inverse-gamma distribution.

and V is a p p positive definite matrix. A normal-inverse-gamma distribution. OSR Journal of athematcs (OSR-J) e-ssn: 78-578, p-ssn: 39-765X. Volume 3, ssue 3 Ver. V (ay - June 07), PP 68-7 www.osrjournals.org Comparng The Performance of Bayesan And Frequentst Analyss ethods of

More information

STAT 511 FINAL EXAM NAME Spring 2001

STAT 511 FINAL EXAM NAME Spring 2001 STAT 5 FINAL EXAM NAME Sprng Instructons: Ths s a closed book exam. No notes or books are allowed. ou may use a calculator but you are not allowed to store notes or formulas n the calculator. Please wrte

More information

Appendix B: Resampling Algorithms

Appendix B: Resampling Algorithms 407 Appendx B: Resamplng Algorthms A common problem of all partcle flters s the degeneracy of weghts, whch conssts of the unbounded ncrease of the varance of the mportance weghts ω [ ] of the partcles

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information