Sparse Gaussian Processes Using Backward Elimination

Size: px
Start display at page:

Download "Sparse Gaussian Processes Using Backward Elimination"

Transcription

1 Sparse Gaussan Processes Usng Backward Elmnaton Lefeng Bo, Lng Wang, and Lcheng Jao Insttute of Intellgent Informaton Processng and Natonal Key Laboratory for Radar Sgnal Processng, Xdan Unversty, X an , Chna {blf018, wlp}@163.com Abstract. Gaussan Processes (GPs) have state of the art performance n regresson. In GPs, all the bass functons are requred for predcton; hence ts test speed s slower than other learnng algorthms such as support vector machnes (SVMs), relevance vector machne (RVM), adaptve sparseness (AS), etc. To overcome ths lmtaton, we present a backward elmnaton algorthm, called GPs-BE that recursvely selects the bass functons for GPs untl some stop crteron s satsfed. By ntegratng rank-1 update, GPs-BE can be mplemented at a reasonable cost. Extensve emprcal comparsons confrm the feasblty and valdty of the proposed algorthm. 1 Introducton Covarance functons have a great effect on the performance of GPs. The experments performed by Wllams [1] and Rusmussen [] have shown that the followng covarance functon works well n practce d p p (, ) exp ( ) C x x j = θ p x xj (1.1) p= 1 where θ p s scalng factor. If some varable s unmportant or rrelevant for regresson, the assocated scalng factor wll be made small; otherwse t wll be made large. The key advantage of GPs s that the hyperparameters of covarance functon can be optmzed by maxmzng the evdence. Ths s not appeared n other kernel based learnng methods such as support vector machnes (SVMs) [3]. In SVMs, an extra model selecton crteron, e.g. cross valdaton score s requred for choosng hyperparameters, whch s ntractable when a large number of hyperparameters are nvolved. Though GPs are very successful, they also have some shortages: (1) the computatonal cost of GPs s ( ) 3 O l, where l s the sze of tranng samples, whch seems to prohbt the applcatons of GPs to large datasets; () all the bass functons are requred for predcton; hence ts test speed s slower than other learnng algorthms such as SVMs, relevance vector machne (RVM) [4], adaptve sparseness (AS) [5], etc. Some researchers have tred to deal wth the shortages of GPs. In 000, Smola et al. [6] presented sparse greedy Gaussan processes (SGGPs) whose computatonal J. Wang et al. (Eds.): ISNN 006, LNCS 3971, pp , 006. Sprnger-Verlag Berln Hedelberg 006

2 1084 L. Bo, L. Wang, and L. Jao cost s O( kn l ), where n s the number of bass functons and k s a constant factor. In 00, Csató et al. also proposed sparse on-lne Gaussan processes (SOGPs) [7] that result n good sparseness and low complexty smultaneously. However both SGGPs and SOGPs throw away the key advantage of GPs. As a result, they have dffcultes n tacklng the hyperparameters. Ths paper focuses on the second shortage of GPs above. We propose a backward elmnaton algorthm (GPs-BE) that recursvely selects the bass functons wth the smallest leave-one-out score at the current step untl some stop crteron s satsfed. GPs-BE has reasonable computatonal complexty by ntegratng rank-1 update formula. GPs-BE s performed after GPs s traned; hence all the advantages of GPs are reserved. Extensve emprcal comparsons show that our method greatly reduces the number of bass functons of GPs almost wthout sacrfcng the performance. Gaussan Processes l Let = {(, y) } 1 Z x be l emprcal samples set drawn from = ( ) y = f x, w + ε, = 1,, L l (.1) where ε s ndependent sample from some nose process whch s further assumed to be mean-zeros Gaussan wth varance σ. We further assume f l (, ) wc(, ) xw = xx (.) = 1 Accordng Bayesan nference, the posteror probablty of w can be expressed as P ( w Z) P = ( Z w) P( w) P( Z) (.3) Maxmzng the log-posteror s equvalent to mnmzng the followng objectve functon T T ( ( ) ( ( ) )) T L λ σ wˆ = arg mn w, = w C C+ I w wc y (.4) where I s the dentty matrx. Hyperparameters are chosen by maxmzng the followng evdence l T ( ) ( ) 1 1 T T P, σ π σ exp ( σ ) 1 θ Z = I + CC y I + CC y (.5) In the related Bayesan models, ths equalty s known as the margnal lkelhood, and ts maxmzaton s known as the type- maxmum lkelhood method [8]. Wllams [9] has demonstrated that ths model s equvalent to Gaussan Processes T σ I+ CC ; hence we call t GPs n ths paper. (GPs) wth the covarance ( )

3 Sparse Gaussan Processes Usng Backward Elmnaton Backward Elmnaton for Gaussan Processes In GPs, all the bass functons are used for predcton; therefore t s nferor to neural networks, SVMs and RVM n testng speed, whch seems to prohbt ts applcaton n some felds. Here, GPs-BE s proposed to overcome ths problem that selects the bass functon by a backward elmnaton technque after tranng procedure. GPs-BE s a backward greedy algorthm that recursvely removes the bass functon wth the smallest leave-one-out score at the current step untl some stop crteron s satsfed. For convenence of dervaton, we reformulate (.6) nto 1 w = H b (3.1) where ( T T ( ) H = C C+σ I ) and b = C y. Let Δ f k be the ncrement of L wth the tranng sample deleted and then the followng theorem holds true. ( ) ( k ) wk 1 Theorem 3.1: Δ f =, where R = H, R kk denotes the k th dagonal R kk 1 element of H. ( ) We call Δ f k leave-one-out score. At each step, we wll remove the bass functon wth the smallest leave-one-out score. The ndex of the bass functon to be deleted can be obtaned by ( k ) ( f ) th k s = arg mn Δ, (3.) k P where P s a set of the ndces of the remander bass functons. Note that the (l+1)-th varable,.e. the bas, s preserved durng the backward elmnaton process. When one bass functon s deleted, we requre updatng the matrx R and the vector w. In terms of a rank-1 update, R and w can be formulated as ( R ) j RsRsj = Rj,, j s, (3.3) R ss n RsRsj ( w ) = j bj, R j s Rss s. (3.4) Together wth w = Rb, (3.4) s smplfed as Rs ( w ) = w ws, R ss s. (3.5) Suppose that Δ t s the ncrement of f at the t-th teraton, and then we wll termnate the backward elmnaton procedure f Δt ε f (3.6) where we set ε = The detaled backward elmnaton procedure s summarzed n Fgure 3.1.

4 1086 L. Bo, L. Wang, and L. Jao Agorthm1: GPs-BE 1. Compute the ndex of bass functon to be removed by (3.);. Update the matrx R and the vector w by (3.3) and (3.5); 3. Remove the ndex resultng from step 1; 4. If (3.6) s satsfed, Stop; otherwse, go to Step 1. Fg Flow chart of backward elmnaton 4 Emprcal Study In order to evaluate the performance of GPs-BE, we compare t wth GPs, GPs-U, SVM, RVM and AS on four benchmark datasets,.e. Fredman1 [10], Boston Housng, Abalone and Computer Actvty [11]. GPs-U denotes GPs whose covarance functon has the same scalng factors. Before experments, all the tranng data are scaled n [-1, 1] and the testng data are adjusted usng the same lnear transformaton. For Fredman1 and Boston Housng data sets, the results are averaged over 100 random splts of the full datasets. For Abalone and Computer Actvty data sets, the results are averaged over 10 random splts of the mother datasets. The free parameters n GPs, GPs-BE and GPs-U are optmzed by maxmzng the evdence. The free parameters n RVM, SVMs and AS are selected by 10-fold cross valdaton procedure. Table 4.1. Characterstcs of four benchmark datasets Abrr. Problem Attrbutes Total Sze Tranng Sze Testng Sze FRI Fredman BOH Boston Housng ABA Abalone COA Computer Actvty Table 4.. Mean of the testng errors of sx algorthms Problem GPs GPs-BE GPs-U RVM SVMs AS FRI BOH ABA COA Table 4.3. Mean of the number of bass functons of sx algorthms on benchmark datasets Problem GPs GPs-BE GPs-U RVM SVMs AS FRI BOH ABA COA

5 Sparse Gaussan Processes Usng Backward Elmnaton 1087 Table 4.4. Runtme of sx algorthms on benchmark datasets Problem GPs GPs-BE GPs-U RVM SVMs AS FRI BOH ABA COA From Table 4. we know that GPs-BE and GPs obtan smlar generalzaton performance and are sgnfcantly better than GPs-U, RVM, SVMs and AS n the two regresson tasks,.e. Fredman1and Computer Actvty. As for the remanng two tasks, all the sx approaches have smlar performance. Snce GPs-U s often superor to SGGPs and SOGPs n terms of the generalzaton performance, GPs-BE s expected to have the better generalzaton performance than SGGPs and SOGPs.Table 4.3 show that the number of bass functons of GPs-BE approaches that of RVM and AS, and s sgnfcantly smaller than that of GPs, GPs-U and SVMs. Table 4.4 show that the runtme of GPs-BE approaches that of GPs, GPs-U and AS, and s sgnfcantly smaller than that of GPs, GPs-U and SVMs. An alternatve s to select the bass functons usng the forward selecton proposed by [1-13]. Table 4.5 compares our method wth forward selecton n the same stop crteron. Table 4.5. Comparson of backward elmnaton and forward selecton Problem Backward Elmnaton Forward Selecton FRI BOH ABA COA Normalzed Mean Table 4.5 shows that the backward elmnaton outperforms the forward selecton n the performance and the number of bass functons n the same stop crteron. In summary, GPs-BE greatly reduces the number of bass functons of GPs almost wthout sacrfcng the performance and ncreasng the runtme. Moreover, GPs-BE s better than GPs-U n performance, whch further ndcates the performance of GPs- BE s better than that of SGGPs and SOGPs. GPs-BE s better than SVMs n all the three aspects. GPs-BE s also better than RVM and AS n performance wth the smlar number of bass functons and runtme. Fnally, the backward elmnaton outperforms the forward selecton n the same stop crteron. 5 Concluson Ths paper presents a backward elmnaton algorthm to select the bass functons for GPs. By ntegratng rank-1 update, we can mplement GPs-BE at a reasonable cost. The results show that GPs-BE greatly reduces the number of bass functons of GPs

6 1088 L. Bo, L. Wang, and L. Jao almost wthout sacrfcng the performance and ncreasng the runtme. Comparsons wth forward selecton show that GPS-BE obtans better performance and smaller bass functons n the same stop crteron. Ths research s supported by Natonal Natural Scence Foundaton of Chna under grant and and Natonal 973 Project grant 001CB References 1. Wllams, C. K. I., Rasmussen, C. E.: Gaussan Processes for Regresson. Advances n Neural Informaton Processng Systems 8 (1996) Rasmussen, C. E.: Evaluaton of Gaussan Processes and Other Methods for Non-lnear Regresson. Ph.D. thess, Dep.of Computer Scence, Unversty of Toronto. Avalable from 3. Vapnk, V.: The Nature of Statstcal Learnng Theory. New York: Sprnger-Verlag (1995) 4. Tppng, M. E.: Sparse Bayesan Learnng and the Relevance Vector Machne. Journal Machne Learnng Research 1 (001) Fgueredo, M. A. T.: Adaptve Sparseness for Supervsed Learnng. IEEE Trans. Pattern Analyss and Machne Intellgence 5 (003) Smola, A. J., Bartlett, P. L.: Sparse Greedy Gaussan Processes Regresson, Advances n Neural Informaton Processng Systems 13 (000) Csato, L., Opper, M.: Sparse Onlne Gaussan Processes, Neural Computaton, 14 (00) Berger, J. O.: Statstcal Decson Theory and Bayesan Analyss. Sprnger, Second Edton (1985) 9. Wllams, C. K. I.: Predcton wth Gaussan Processes: from Lnear Regresson to Lnear Predcton and Beyond. Learnng and Inference n Graphcal Models (1998) Fredman, J. H.: Multvarate Adaptve Regresson Splnes. Annals of Statstcs 19 (1991) Blake, C. L., Merz, C. J.: UCI Repostory of Machne Learnng Databases, Techncal Report, Unversty of Calforna, Department of Informaton and Computer Scence, Irvne, CA (1998) Data avalable at 1. Chen, S., Cowan, C. F. N., Grant, P. M.: Orthogonal Least Squares Learnng Algorthm for Radal Bass Functon Networks. IEEE Trans. Neural Networks (1991) Bo, L. F., Wang, L., Jao, L. C.: Sparse Bayesan Learnng Based on an Effcent Subset Selecton, Lecture Notes n Computer Scence 3173 (004) 64-69

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

A New Evolutionary Computation Based Approach for Learning Bayesian Network

A New Evolutionary Computation Based Approach for Learning Bayesian Network Avalable onlne at www.scencedrect.com Proceda Engneerng 15 (2011) 4026 4030 Advanced n Control Engneerng and Informaton Scence A New Evolutonary Computaton Based Approach for Learnng Bayesan Network Yungang

More information

Relevance Vector Machines Explained

Relevance Vector Machines Explained October 19, 2010 Relevance Vector Machnes Explaned Trstan Fletcher www.cs.ucl.ac.uk/staff/t.fletcher/ Introducton Ths document has been wrtten n an attempt to make Tppng s [1] Relevance Vector Machnes

More information

Semi-supervised Classification with Active Query Selection

Semi-supervised Classification with Active Query Selection Sem-supervsed Classfcaton wth Actve Query Selecton Jao Wang and Swe Luo School of Computer and Informaton Technology, Beng Jaotong Unversty, Beng 00044, Chna Wangjao088@63.com Abstract. Labeled samples

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

Determination of Compressive Strength of Concrete by Statistical Learning Algorithms

Determination of Compressive Strength of Concrete by Statistical Learning Algorithms Artcle Determnaton of Compressve Strength of Concrete by Statstcal Learnng Algorthms Pjush Samu Centre for Dsaster Mtgaton and Management, VI Unversty, Vellore, Inda E-mal: pjush.phd@gmal.com Abstract.

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Natural Images, Gaussian Mixtures and Dead Leaves Supplementary Material

Natural Images, Gaussian Mixtures and Dead Leaves Supplementary Material Natural Images, Gaussan Mxtures and Dead Leaves Supplementary Materal Danel Zoran Interdscplnary Center for Neural Computaton Hebrew Unversty of Jerusalem Israel http://www.cs.huj.ac.l/ danez Yar Wess

More information

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications Durban Watson for Testng the Lack-of-Ft of Polynomal Regresson Models wthout Replcatons Ruba A. Alyaf, Maha A. Omar, Abdullah A. Al-Shha ralyaf@ksu.edu.sa, maomar@ksu.edu.sa, aalshha@ksu.edu.sa Department

More information

Supporting Information

Supporting Information Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the element-wse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

Gaussian process classification: a message-passing viewpoint

Gaussian process classification: a message-passing viewpoint Gaussan process classfcaton: a message-passng vewpont Flpe Rodrgues fmpr@de.uc.pt November 014 Abstract The goal of ths short paper s to provde a message-passng vewpont of the Expectaton Propagaton EP

More information

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

Chapter 8 Indicator Variables

Chapter 8 Indicator Variables Chapter 8 Indcator Varables In general, e explanatory varables n any regresson analyss are assumed to be quanttatve n nature. For example, e varables lke temperature, dstance, age etc. are quanttatve n

More information

Week 5: Neural Networks

Week 5: Neural Networks Week 5: Neural Networks Instructor: Sergey Levne Neural Networks Summary In the prevous lecture, we saw how we can construct neural networks by extendng logstc regresson. Neural networks consst of multple

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

FORECASTING EXCHANGE RATE USING SUPPORT VECTOR MACHINES

FORECASTING EXCHANGE RATE USING SUPPORT VECTOR MACHINES Proceedngs of the Fourth Internatonal Conference on Machne Learnng and Cybernetcs, Guangzhou, 8- August 005 FORECASTING EXCHANGE RATE USING SUPPORT VECTOR MACHINES DING-ZHOU CAO, SU-LIN PANG, YUAN-HUAI

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018 INF 5860 Machne learnng for mage classfcaton Lecture 3 : Image classfcaton and regresson part II Anne Solberg January 3, 08 Today s topcs Multclass logstc regresson and softma Regularzaton Image classfcaton

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

Natural Language Processing and Information Retrieval

Natural Language Processing and Information Retrieval Natural Language Processng and Informaton Retreval Support Vector Machnes Alessandro Moschtt Department of nformaton and communcaton technology Unversty of Trento Emal: moschtt@ds.untn.t Summary Support

More information

Multigradient for Neural Networks for Equalizers 1

Multigradient for Neural Networks for Equalizers 1 Multgradent for Neural Netorks for Equalzers 1 Chulhee ee, Jnook Go and Heeyoung Km Department of Electrcal and Electronc Engneerng Yonse Unversty 134 Shnchon-Dong, Seodaemun-Ku, Seoul 1-749, Korea ABSTRACT

More information

Hidden Markov Models

Hidden Markov Models CM229S: Machne Learnng for Bonformatcs Lecture 12-05/05/2016 Hdden Markov Models Lecturer: Srram Sankararaman Scrbe: Akshay Dattatray Shnde Edted by: TBD 1 Introducton For a drected graph G we can wrte

More information

Scalable Multi-Class Gaussian Process Classification using Expectation Propagation

Scalable Multi-Class Gaussian Process Classification using Expectation Propagation Scalable Mult-Class Gaussan Process Classfcaton usng Expectaton Propagaton Carlos Vllacampa-Calvo and Danel Hernández Lobato Computer Scence Department Unversdad Autónoma de Madrd http://dhnzl.org, danel.hernandez@uam.es

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Finite Mixture Models and Expectation Maximization. Most slides are from: Dr. Mario Figueiredo, Dr. Anil Jain and Dr. Rong Jin

Finite Mixture Models and Expectation Maximization. Most slides are from: Dr. Mario Figueiredo, Dr. Anil Jain and Dr. Rong Jin Fnte Mxture Models and Expectaton Maxmzaton Most sldes are from: Dr. Maro Fgueredo, Dr. Anl Jan and Dr. Rong Jn Recall: The Supervsed Learnng Problem Gven a set of n samples X {(x, y )},,,n Chapter 3 of

More information

Discretization of Continuous Attributes in Rough Set Theory and Its Application*

Discretization of Continuous Attributes in Rough Set Theory and Its Application* Dscretzaton of Contnuous Attrbutes n Rough Set Theory and Its Applcaton* Gexang Zhang 1,2, Lazhao Hu 1, and Wedong Jn 2 1 Natonal EW Laboratory, Chengdu 610036 Schuan, Chna dylan7237@sna.com 2 School of

More information

MDL-Based Unsupervised Attribute Ranking

MDL-Based Unsupervised Attribute Ranking MDL-Based Unsupervsed Attrbute Rankng Zdravko Markov Computer Scence Department Central Connectcut State Unversty New Brtan, CT 06050, USA http://www.cs.ccsu.edu/~markov/ markovz@ccsu.edu MDL-Based Unsupervsed

More information

Lecture 3: Dual problems and Kernels

Lecture 3: Dual problems and Kernels Lecture 3: Dual problems and Kernels C4B Machne Learnng Hlary 211 A. Zsserman Prmal and dual forms Lnear separablty revsted Feature mappng Kernels for SVMs Kernel trck requrements radal bass functons SVM

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

An Improved multiple fractal algorithm

An Improved multiple fractal algorithm Advanced Scence and Technology Letters Vol.31 (MulGraB 213), pp.184-188 http://dx.do.org/1.1427/astl.213.31.41 An Improved multple fractal algorthm Yun Ln, Xaochu Xu, Jnfeng Pang College of Informaton

More information

Outline. Bayesian Networks: Maximum Likelihood Estimation and Tree Structure Learning. Our Model and Data. Outline

Outline. Bayesian Networks: Maximum Likelihood Estimation and Tree Structure Learning. Our Model and Data. Outline Outlne Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Huzhen Yu janey.yu@cs.helsnk.f Dept. Computer Scence, Unv. of Helsnk Probablstc Models, Sprng, 200 Notces: I corrected a number

More information

EM and Structure Learning

EM and Structure Learning EM and Structure Learnng Le Song Machne Learnng II: Advanced Topcs CSE 8803ML, Sprng 2012 Partally observed graphcal models Mxture Models N(μ 1, Σ 1 ) Z X N N(μ 2, Σ 2 ) 2 Gaussan mxture model Consder

More information

Cluster Validation Determining Number of Clusters. Umut ORHAN, PhD.

Cluster Validation Determining Number of Clusters. Umut ORHAN, PhD. Cluster Analyss Cluster Valdaton Determnng Number of Clusters 1 Cluster Valdaton The procedure of evaluatng the results of a clusterng algorthm s known under the term cluster valdty. How do we evaluate

More information

Ensemble of GA based Selective Neural Network Ensembles

Ensemble of GA based Selective Neural Network Ensembles Ensemble of GA based Selectve eural etwork Ensembles Jan-Xn WU Zh-Hua ZHOU Zhao-Qan CHE atonal Laboratory for ovel Software Technology anjng Unversty anjng, 0093, P.R.Chna wujx@a.nju.edu.cn {zhouzh, chenzq}@nju.edu.cn

More information

Non-linear Canonical Correlation Analysis Using a RBF Network

Non-linear Canonical Correlation Analysis Using a RBF Network ESANN' proceedngs - European Smposum on Artfcal Neural Networks Bruges (Belgum), 4-6 Aprl, d-sde publ., ISBN -97--, pp. 57-5 Non-lnear Canoncal Correlaton Analss Usng a RBF Network Sukhbnder Kumar, Elane

More information

Dynamic Ensemble Selection and Instantaneous Pruning for Regression

Dynamic Ensemble Selection and Instantaneous Pruning for Regression Dynamc Ensemble Selecton and Instantaneous Prunng for Regresson Kaushala Das and Terry Wndeatt Centre for Vson Speech and Sgnal Processng Faculty of Engneerng and Physcal Scences Unversty of Surrey, Guldford,

More information

Kristin P. Bennett. Rensselaer Polytechnic Institute

Kristin P. Bennett. Rensselaer Polytechnic Institute Support Vector Machnes and Other Kernel Methods Krstn P. Bennett Mathematcal Scences Department Rensselaer Polytechnc Insttute Support Vector Machnes (SVM) A methodology for nference based on Statstcal

More information

Hidden Markov Models

Hidden Markov Models Hdden Markov Models Namrata Vaswan, Iowa State Unversty Aprl 24, 204 Hdden Markov Model Defntons and Examples Defntons:. A hdden Markov model (HMM) refers to a set of hdden states X 0, X,..., X t,...,

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1 On an Extenson of Stochastc Approxmaton EM Algorthm for Incomplete Data Problems Vahd Tadayon Abstract: The Stochastc Approxmaton EM (SAEM algorthm, a varant stochastc approxmaton of EM, s a versatle tool

More information

Global Gaussian approximations in latent Gaussian models

Global Gaussian approximations in latent Gaussian models Global Gaussan approxmatons n latent Gaussan models Botond Cseke Aprl 9, 2010 Abstract A revew of global approxmaton methods n latent Gaussan models. 1 Latent Gaussan models In ths secton we ntroduce notaton

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VIII LECTURE - 34 ANALYSIS OF VARIANCE IN RANDOM-EFFECTS MODEL AND MIXED-EFFECTS EFFECTS MODEL Dr Shalabh Department of Mathematcs and Statstcs Indan

More information

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing Advanced Scence and Technology Letters, pp.164-168 http://dx.do.org/10.14257/astl.2013 Pop-Clc Nose Detecton Usng Inter-Frame Correlaton for Improved Portable Audtory Sensng Dong Yun Lee, Kwang Myung Jeon,

More information

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS Darusz Bskup 1. Introducton The paper presents a nonparaetrc procedure for estaton of an unknown functon f n the regresson odel y = f x + ε = N. (1) (

More information

Boostrapaggregating (Bagging)

Boostrapaggregating (Bagging) Boostrapaggregatng (Baggng) An ensemble meta-algorthm desgned to mprove the stablty and accuracy of machne learnng algorthms Can be used n both regresson and classfcaton Reduces varance and helps to avod

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

Appendix B: Resampling Algorithms

Appendix B: Resampling Algorithms 407 Appendx B: Resamplng Algorthms A common problem of all partcle flters s the degeneracy of weghts, whch conssts of the unbounded ncrease of the varance of the mportance weghts ω [ ] of the partcles

More information

Adaptive Fit Parameters Tuning with Data Density Changes in Locally Weighted Learning

Adaptive Fit Parameters Tuning with Data Density Changes in Locally Weighted Learning Adaptve Ft Parameters Tunng wth Data Densty Changes n Locally Weghted Learnng Han Le, Xe un Qng, and Song Guo Je ey Laboratory of Machne Percepton (Mnstry of Educaton), Pekng Unversty {hanle,kunqng}@cs.pku.edu.cn,

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

Instance-Based Learning (a.k.a. memory-based learning) Part I: Nearest Neighbor Classification

Instance-Based Learning (a.k.a. memory-based learning) Part I: Nearest Neighbor Classification Instance-Based earnng (a.k.a. memory-based learnng) Part I: Nearest Neghbor Classfcaton Note to other teachers and users of these sldes. Andrew would be delghted f you found ths source materal useful n

More information

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata Multlayer Perceptrons and Informatcs CG: Lecture 6 Mrella Lapata School of Informatcs Unversty of Ednburgh mlap@nf.ed.ac.uk Readng: Kevn Gurney s Introducton to Neural Networks, Chapters 5 6.5 January,

More information

An efficient algorithm for multivariate Maclaurin Newton transformation

An efficient algorithm for multivariate Maclaurin Newton transformation Annales UMCS Informatca AI VIII, 2 2008) 5 14 DOI: 10.2478/v10065-008-0020-6 An effcent algorthm for multvarate Maclaurn Newton transformaton Joanna Kapusta Insttute of Mathematcs and Computer Scence,

More information

Regularized Discriminant Analysis for Face Recognition

Regularized Discriminant Analysis for Face Recognition 1 Regularzed Dscrmnant Analyss for Face Recognton Itz Pma, Mayer Aladem Department of Electrcal and Computer Engneerng, Ben-Guron Unversty of the Negev P.O.Box 653, Beer-Sheva, 845, Israel. Abstract Ths

More information

A Robust Method for Calculating the Correlation Coefficient

A Robust Method for Calculating the Correlation Coefficient A Robust Method for Calculatng the Correlaton Coeffcent E.B. Nven and C. V. Deutsch Relatonshps between prmary and secondary data are frequently quantfed usng the correlaton coeffcent; however, the tradtonal

More information

BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS. M. Krishna Reddy, B. Naveen Kumar and Y. Ramu

BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS. M. Krishna Reddy, B. Naveen Kumar and Y. Ramu BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS M. Krshna Reddy, B. Naveen Kumar and Y. Ramu Department of Statstcs, Osmana Unversty, Hyderabad -500 007, Inda. nanbyrozu@gmal.com, ramu0@gmal.com

More information

Statistical machine learning and its application to neonatal seizure detection

Statistical machine learning and its application to neonatal seizure detection 19/Oct/2009 Statstcal machne learnng and ts applcaton to neonatal sezure detecton Presented by Andry Temko Department of Electrcal and Electronc Engneerng Page 2 of 42 A. Temko, Statstcal Machne Learnng

More information

Spatial Modelling of Peak Frequencies of Brain Signals

Spatial Modelling of Peak Frequencies of Brain Signals Malaysan Journal of Mathematcal Scences 3(1): 13-6 (9) Spatal Modellng of Peak Frequences of Bran Sgnals 1 Mahendran Shtan, Hernando Ombao, 1 Kok We Lng 1 Department of Mathematcs, Faculty of Scence, and

More information

A quantum-statistical-mechanical extension of Gaussian mixture model

A quantum-statistical-mechanical extension of Gaussian mixture model A quantum-statstcal-mechancal extenson of Gaussan mxture model Kazuyuk Tanaka, and Koj Tsuda 2 Graduate School of Informaton Scences, Tohoku Unversty, 6-3-09 Aramak-aza-aoba, Aoba-ku, Senda 980-8579, Japan

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

2 STATISTICALLY OPTIMAL TRAINING DATA 2.1 A CRITERION OF OPTIMALITY We revew the crteron of statstcally optmal tranng data (Fukumzu et al., 1994). We

2 STATISTICALLY OPTIMAL TRAINING DATA 2.1 A CRITERION OF OPTIMALITY We revew the crteron of statstcally optmal tranng data (Fukumzu et al., 1994). We Advances n Neural Informaton Processng Systems 8 Actve Learnng n Multlayer Perceptrons Kenj Fukumzu Informaton and Communcaton R&D Center, Rcoh Co., Ltd. 3-2-3, Shn-yokohama, Yokohama, 222 Japan E-mal:

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

Advances in Longitudinal Methods in the Social and Behavioral Sciences. Finite Mixtures of Nonlinear Mixed-Effects Models.

Advances in Longitudinal Methods in the Social and Behavioral Sciences. Finite Mixtures of Nonlinear Mixed-Effects Models. Advances n Longtudnal Methods n the Socal and Behavoral Scences Fnte Mxtures of Nonlnear Mxed-Effects Models Jeff Harrng Department of Measurement, Statstcs and Evaluaton The Center for Integrated Latent

More information

Development of a Semi-Automated Approach for Regional Corrector Surface Modeling in GPS-Levelling

Development of a Semi-Automated Approach for Regional Corrector Surface Modeling in GPS-Levelling Development of a Sem-Automated Approach for Regonal Corrector Surface Modelng n GPS-Levellng G. Fotopoulos, C. Kotsaks, M.G. Sders, and N. El-Shemy Presented at the Annual Canadan Geophyscal Unon Meetng

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

Estimation: Part 2. Chapter GREG estimation

Estimation: Part 2. Chapter GREG estimation Chapter 9 Estmaton: Part 2 9. GREG estmaton In Chapter 8, we have seen that the regresson estmator s an effcent estmator when there s a lnear relatonshp between y and x. In ths chapter, we generalzed the

More information

Feature Selection in Multi-instance Learning

Feature Selection in Multi-instance Learning The Nnth Internatonal Symposum on Operatons Research and Its Applcatons (ISORA 10) Chengdu-Juzhagou, Chna, August 19 23, 2010 Copyrght 2010 ORSC & APORC, pp. 462 469 Feature Selecton n Mult-nstance Learnng

More information

MAXIMUM A POSTERIORI TRANSDUCTION

MAXIMUM A POSTERIORI TRANSDUCTION MAXIMUM A POSTERIORI TRANSDUCTION LI-WEI WANG, JU-FU FENG School of Mathematcal Scences, Peng Unversty, Bejng, 0087, Chna Center for Informaton Scences, Peng Unversty, Bejng, 0087, Chna E-MIAL: {wanglw,

More information

1 Motivation and Introduction

1 Motivation and Introduction Instructor: Dr. Volkan Cevher EXPECTATION PROPAGATION September 30, 2008 Rce Unversty STAT 63 / ELEC 633: Graphcal Models Scrbes: Ahmad Beram Andrew Waters Matthew Nokleby Index terms: Approxmate nference,

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

Improve Multi-Instance Neural Networks through Feature Selection

Improve Multi-Instance Neural Networks through Feature Selection Improve Mult-Instance Neural Networks through Feature Selecton Mn-Lng Zhang and Zh-Hua Zhou* State Key Laboratory for Novel Software Technology, Nanjng Unversty, Nanjng 210093, Chna Abstract. Mult-nstance

More information

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

Regression Using Support Vector Machines: Basic Foundations

Regression Using Support Vector Machines: Basic Foundations Regresson Usng Support Vector Machnes: Basc Foundatons Techncal Report December 004 Aly Farag and Refaat M Mohamed Computer Vson and Image Processng Laboratory Electrcal and Computer Engneerng Department

More information

Evaluation of simple performance measures for tuning SVM hyperparameters

Evaluation of simple performance measures for tuning SVM hyperparameters Evaluaton of smple performance measures for tunng SVM hyperparameters Kabo Duan, S Sathya Keerth, Aun Neow Poo Department of Mechancal Engneerng, Natonal Unversty of Sngapore, 0 Kent Rdge Crescent, 960,

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Research Article Green s Theorem for Sign Data

Research Article Green s Theorem for Sign Data Internatonal Scholarly Research Network ISRN Appled Mathematcs Volume 2012, Artcle ID 539359, 10 pages do:10.5402/2012/539359 Research Artcle Green s Theorem for Sgn Data Lous M. Houston The Unversty of

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

Number of cases Number of factors Number of covariates Number of levels of factor i. Value of the dependent variable for case k

Number of cases Number of factors Number of covariates Number of levels of factor i. Value of the dependent variable for case k ANOVA Model and Matrx Computatons Notaton The followng notaton s used throughout ths chapter unless otherwse stated: N F CN Y Z j w W Number of cases Number of factors Number of covarates Number of levels

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables LINEAR REGRESSION ANALYSIS MODULE VIII Lecture - 7 Indcator Varables Dr. Shalabh Department of Maematcs and Statstcs Indan Insttute of Technology Kanpur Indcator varables versus quanttatve explanatory

More information

Chapter 15 Student Lecture Notes 15-1

Chapter 15 Student Lecture Notes 15-1 Chapter 15 Student Lecture Notes 15-1 Basc Busness Statstcs (9 th Edton) Chapter 15 Multple Regresson Model Buldng 004 Prentce-Hall, Inc. Chap 15-1 Chapter Topcs The Quadratc Regresson Model Usng Transformatons

More information

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models Computaton of Hgher Order Moments from Two Multnomal Overdsperson Lkelhood Models BY J. T. NEWCOMER, N. K. NEERCHAL Department of Mathematcs and Statstcs, Unversty of Maryland, Baltmore County, Baltmore,

More information

Statistical Foundations of Pattern Recognition

Statistical Foundations of Pattern Recognition Statstcal Foundatons of Pattern Recognton Learnng Objectves Bayes Theorem Decson-mang Confdence factors Dscrmnants The connecton to neural nets Statstcal Foundatons of Pattern Recognton NDE measurement

More information

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester 0/25/6 Admn Assgnment 7 Class /22 Schedule for the rest of the semester NEURAL NETWORKS Davd Kauchak CS58 Fall 206 Perceptron learnng algorthm Our Nervous System repeat untl convergence (or for some #

More information

Conjugacy and the Exponential Family

Conjugacy and the Exponential Family CS281B/Stat241B: Advanced Topcs n Learnng & Decson Makng Conjugacy and the Exponental Famly Lecturer: Mchael I. Jordan Scrbes: Bran Mlch 1 Conjugacy In the prevous lecture, we saw conjugate prors for the

More information

PROPERTIES I. INTRODUCTION. Finite element (FE) models are widely used to predict the dynamic characteristics of aerospace

PROPERTIES I. INTRODUCTION. Finite element (FE) models are widely used to predict the dynamic characteristics of aerospace FINITE ELEMENT MODEL UPDATING USING BAYESIAN FRAMEWORK AND MODAL PROPERTIES Tshldz Marwala 1 and Sbusso Sbs I. INTRODUCTION Fnte element (FE) models are wdely used to predct the dynamc characterstcs of

More information

Computing MLE Bias Empirically

Computing MLE Bias Empirically Computng MLE Bas Emprcally Kar Wa Lm Australan atonal Unversty January 3, 27 Abstract Ths note studes the bas arses from the MLE estmate of the rate parameter and the mean parameter of an exponental dstrbuton.

More information

Unified Subspace Analysis for Face Recognition

Unified Subspace Analysis for Face Recognition Unfed Subspace Analyss for Face Recognton Xaogang Wang and Xaoou Tang Department of Informaton Engneerng The Chnese Unversty of Hong Kong Shatn, Hong Kong {xgwang, xtang}@e.cuhk.edu.hk Abstract PCA, LDA

More information

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore 8/5/17 Data Modelng Patrce Koehl Department of Bologcal Scences atonal Unversty of Sngapore http://www.cs.ucdavs.edu/~koehl/teachng/bl59 koehl@cs.ucdavs.edu Data Modelng Ø Data Modelng: least squares Ø

More information