Introduction to Stochastic Optimization Part 4: Multi-stage decision

Size: px
Start display at page:

Download "Introduction to Stochastic Optimization Part 4: Multi-stage decision"

Transcription

1 Introduction to Stochastic Optimization Part 4: Multi-stage decision problems April 23, 29

2 The problem ξ = (ξ,..., ξ T ) a multivariate time series process (e.g. future interest rates, future asset prices, future demands, etc.) At times t =, t =,..., t = T, we make decisions x,..., x T.

3 Example: dynamic portfolio management value : mu =.9597 risk = : mu = risk = time stage mu Efficient frontier multirisk dynport risk 2: mu =.9945 risk = : mu = 2.99 risk = : mu = risk = : mu = risk = An efficient frontier using the (negative) multiperiod AV@R as risk functional

4 Scenario processes Instead of a single scenario variable ξ let us now consider a scenario process ξ = (ξ,..., ξ T ). A decision model is called multi-period, if the scenario process has more than one period. and it is called multi-stage, if the decisions are to be made at different times, say at times,, 2,... period : period 2: period 3: observation of observation of observation of the r.v. ξ the r.v. ξ 2 the r.v. ξ 3 stage : stage : stage 2: stage 3: t = t = t = 2 t = 3 decision decision decision decision x x x 2 x 3

5 Tree processes and filtrations A stochastic process (ν t ) is called a tree process, if the sigma-algebra generated by ν t and by (ν, ν 2,..., ν t ) coincide σ(ν t ) = σ(ν,..., ν t ). Let F t = σ(ν t ). Then F = (F,..., F t ) is a filtration, i.e. F t F t+. Conversely, every filtration is generated by a tree process. We use the notation ξ t F t if ξ t is F t measurable for all t, and ξ F if (ξ t ) is adapted to the filtration F, i.e. ξ t F t for all t.

6 The scenario process (ξ t ) is adapted to F if and only if the ξ t s are functions of ν t, i.e. ξ t = f t (ν t ). Decisions must be made in the indicated order: First choose x, then observe ξ, then choose x and so on. i.e. also the decision sequence (x t ) must be adapted to the filtration F. The requirement x F is called the non-anticipativity constraint. Information is a resource. The value of perfect information can be interpreted as shadow costs for the lack of information.

7 Tree processes on finite probability spaces are trees ω ; P{ω } =.2 5 ω 2 ; P{ω 2 } =.3 6 ω 3 ; P{ω 3 } =.3 7 ω 4 ; P{ω 4 } =.8 8 ω 5 ; P{ω 5 } =.4 9 ω 6 ; P{ω 6 } =.8 ν ν ν 2 For a given tree denote by n the predecessor and by n+ the set of successors for the node n.

8 The planning horizon is T, that is the last decision to be taken is x T. The success (cash-flow, income, change of wealth) Y t within period t is a function H t of all observations and decisions before stage t that is Y t = H t (x, ξ,..., x t, ξ t ). The objective of multi-stage financial optimization problems is to maximize the acceptability of the whole operation under the non-anticipativity constraints and possibly some additional operating constraints. Maximize in x = (x, x,..., x T ) : A[Y,..., Y T ; F,..., F T ] where Y t = H t (x, ξ,..., x t, ξ t ) subject to the non-anticipativity constraints x F and possible some more operational constraints ()

9 State-space models Sometimes we may identify states z t such as wealth, actual portfolio, etc. state z decision x r.v. ξ state z decision t = t = Figure: The dynamics of a state-space decision model x r.v. ξ 2 The multi-stage problem in state-space formulation reads Maximize in x : A[H (z ), H 2 (z 2 ),..., H T (z T ); F] under the system dynamics z t = g t (z t, x t, ξ t ) t =,..., T with initial condition z subject to constraints x t X (z t ) and the nonanticipativity constraints x F.

10 Multi-period acceptability and risk functionals Let Y,..., Y T be discounted cash-flow ( success ) process adapted to (F t ). An acceptability functional A(Y,..., Y T, F,..., F T ) is a real valued functional defined on a space of adapted processes (Y t ) F Information monotonicity: If F t F t, for all t, then A(Y,..., Y T ; F,..., F T ) A(Y,..., Y T ; F,..., F T ). Multi-period translation equivariance: If c t F t, then A(Y,..., Y t + c t,..., Y T, F,..., F T ) = E(c t ) +A(Y,..., Y T, F,..., F T ). Concavity. (Y,..., Y T ) A(Y,..., Y T ; F,..., F T ) is concave. Monotonicity: If Y () t Y (2) t, a.s. t =,..., T, then A(Y (),..., Y () T, F,..., F T ) A(Y (2),..., Y (2) T, F,..., F T ).

11 Examples for multi-period acceptability functionals The multi-period conditional distortion functional: A(Y,..., Y T ; F) = T w t E[A Jt (Y t F t )] t= Special case: the multi-period AV@R: AV@R β,w (Y,..., Y T ; F) = T w t E[AV@R βt (Y t F t )]. Here (w t ) are some weights measuring the relative importance of successes at different times. t=

12 Distances for stochastic processes If (Ξ, d ) and (Ξ 2, d 2 ) are Polish spaces then so is the Cartesian product (Ξ Ξ 2 ) with metric d 2 ((u, u 2 ), (v, v 2 )) = d (u, v ) + d 2 (u 2, v 2 ). Consider some metric d on R m, which makes it Polish (it needs not to be the Euclidean one). Then we define the following spaces Ξ = (R m, d) Ξ 2 = (R m P (Ξ, d), d 2 ) = (R m P (R m, d), d 2 ) Ξ 3 = (R m P (Ξ 2, d), d 2 ) = (R m P (R m P (R m, d), d 2 ), d 2 ). Ξ T = (R m P (Ξ T, d), d 2 ) All spaces Ξ,..., Ξ T are Polish spaces and they may carry probability distributions.

13 Nested distributions Definition. A Borel probability distribution P with finite first moment on Ξ T is called a nested distribution of depth T. For any nested distribution P, there is an embedded multivariate distribution P. The projection from the nested distribution to the embedded distribution is not injective. Notation for discrete distributions: probabilities: values: [ ] [ ] [ Left: A valid distribution. Middle: the same distribution. Right: Not a valid distribution ]

14 Examples for nested distributions [ 3. ] [ 3. ] [ ] The embedded multivariate, but non-nested distribution of the scenario process can be gotten from it:

15 Minimal filtrations.5.5 [ ] [ ].. [ ] Left: Not a valid nested distribution. Right: A valid one This fact leads to the concept of minimal filtrations.

16 Example This tree process is already minimal Left: this tree process is not minimal, Right: its minimal reduction.

17 Main Results Theorem. Under a mild condition on the basic problem (compound convexity of R), we may w.l.o.g. reduce the problem to solutions, which are measurable w.r.t. the minimal filtration. We define the nested distance between two nested distributions P and P as the Kantorovich distance of these distributions on the metric space Ξ T. Theorem. Let P, P be nested distributions and P, P be the pertaining multi-period distributions. Then d KA (P, P) d KA (P, P). Theorem. If, for the objective R[H(x, ξ,..., x T, ξ T )], R and H are Lipschitz, then the approximation error satisfies e(opt, Õpt) C d KA(P, P).

18 Example for the nested distance Let and P = N (( ) (, 2 )). P = [.29 ] [. ] [ ]

19 The nested distance is d(p, P) =.82. The distance of the multiperiod distributions is d(p, P) =.68.

20 The nested distance is d(p, P) =.2. The distance of the multiperiod distributions is d(p, P) =.67.

21 he distance algorithm Let ν () and ν (2) be two tree processes and let the scenario processes (the node values) be ξ () t = f () t (ν () t ) resp. ξ (2) t = f (2) t (ν (2) t ). The distance between the two nested distributions is defined in a backward recursion way through a distance d t between the node of process and process 2 at each stage t. Let N () t resp. N (2) t be the node set at stage t of the tree processes ν () resp. ν (2). We define the distances d t on N () t N (2) t for each t. The final value of the distance is the distance between the roots of the two processes. To calculate the distance, we have to solve T () t= #(N t ) #(N (2) t ) linear optimization problems, where #(N (i) t ) is the number of nodes of process i at stage t.

22 End of Recursion. For the last stage T, let for (u, v) N () T N (2) T d T (u, v) := ρ(f () T where ρ is any metric on R m. (2) (u), f T (v)), Backward Recursion Step. Suppose that the distances d t+ have been defined on N () t+ N (2) t+. Then for each pair (u, v) N () t N (2) t, the conditional distributions of ν () t+ ν() t = u resp. ν (2) t+ ν(2) t = v are well defined. Let now d t(u, v) := ρ(f () t (u), f (2) t (u))+d(ν () t+ ν() t = u, ν (2) t+ ν(2) t = v) where the distances between ν () d t+. t+ and ν(2) t+ are measured by Final Result. For t =, the node sets N () resp. N (2) are singletons and contain only the root. The distance d between these roots is the nested distance between the trees.

23 Further examples tree tree 2 tree 3 d(p (), P (2) ) = 3.9; d(p (), P (2) ) = 3.48 d(p (), P (3) ) = 2.52; d(p (), P (3) ) =.77 d(p (2), P (3) ) = 3.79; d(p (2), P (3) ) = 3.44

24 The value of information Let ν t be a tree process and F t = σ(ν t ) = σ(ν,..., ν t ) be the σ-algebra generated by ν t. We will work with the standard filtration resp. the clairvoyant s filtration F = (F,..., F T ) (2) F T = (F T,..., F T ). (3) The standard tree (left) represents the filtration F. The clairvoyant expansion (right) represents the clairvoyants filtration F T.

25 With the short notation H(x, ξ) for H(x, ξ, x,..., x T, ξ T ) we may reformulate the multi-stage decision problem as The clairvoyant s problem is A := max{a[h(x, ξ)] : x F}. (4) C := max{a[h(x, ξ)] : x F T }, (5) where F T is the clairvoyants filtration (3). Notice that the condition x F T is in fact no restriction at all. If the functional A is pointwise monotonic, one may interchange the order of the maximization and the application of the functional in the clairvoyant s problem, i.e. max{a[h(x, ξ)] : x F T } = A[max{H(x, ξ) : x F T }]. (6)

26 Let H denote the inner function in (6), i.e. H(ω,..., ω T ) = max{h(x, ω, x,..., x T, ω T ) : x t X }. (7) The clairvoyant knows this function and gets the objective value It is evident that C = A[ H(ξ,..., ξ T )]. C A, since the feasible set of (4) is contained in the feasible set of (5). We may call the difference the value of perfect information D = C A. D is a measure of multi-period deviation risk.

27 The conditional problem For any possible value v of the tree process ν t, denote by P {νt=v} the conditional probability conditioned on the event {ν t = v}. Under P {νt=v} the variables ν,..., ν t sit on the predecessors of v, i.e. their distribution are concentrated on singletons. The variables ν t+,..., ν T sit only on those nodes, which are successors of the node v. In particular, conditioning on a terminal node v leads to a deterministic process, the predecessor path of v. The same decision problem, which is solved on the original tree, can also be solved on all conditional subtrees. By the notation A P [ ] we express the fact that the probability measure P governs the tree process. Define now A t (v) = max{a P {νt =v}[h(x, ξ)] : x F} C t (v) = max{a P {νt =v}[ H(x, ξ)] : x F T } where H is given by (7). By this construction, (A t ) and (C t ) are processes which depend on the tree process, i.e. are adapted to F.

28 The value-of-perfect-information process Define D t = C t A t as the value-of-perfect-information process. It is a nonnegative process, which describes the evolution of risk in time. A is compound convex, if Lemma. A(Y ) E[A(Y F)]. (i) If A is compound convex, then the clairvoyant process C t is a submartingale. (ii) If A is compound linear, then C t is a martingale. (iii) If A is compound convex, then the optimality process A t is a submartingale. (iv) If A is compound linear (in particular if A is the expectation), then the value-of-information process D t is a supermartingale.

Multistage stochastic programs: Time-consistency, time-inconsistency and martingale bounds

Multistage stochastic programs: Time-consistency, time-inconsistency and martingale bounds Multistage stochastic programs: Time-consistency, time-inconsistency and martingale bounds Georg Ch. Pflug, joint work with Raimund Kovacevic and Alois Pichler April 2016 The time-consistency problem Many

More information

Acceptability functionals, risk capital functionals and risk deviation functionals: Primal and dual properties for one-and multiperiod models

Acceptability functionals, risk capital functionals and risk deviation functionals: Primal and dual properties for one-and multiperiod models Acceptability functionals, risk capital functionals and risk deviation functionals: Primal and dual properties for one-and multiperiod models 11.5.2005 Preliminary remark: risk measures risk functionals

More information

Birgit Rudloff Operations Research and Financial Engineering, Princeton University

Birgit Rudloff Operations Research and Financial Engineering, Princeton University TIME CONSISTENT RISK AVERSE DYNAMIC DECISION MODELS: AN ECONOMIC INTERPRETATION Birgit Rudloff Operations Research and Financial Engineering, Princeton University brudloff@princeton.edu Alexandre Street

More information

Scenario estimation and generation

Scenario estimation and generation October 10, 2004 The one-period case Distances of Probability Measures Tensor products of trees Tree reduction A decision problem is subject to uncertainty Uncertainty is represented by probability To

More information

Operations Research Letters. On a time consistency concept in risk averse multistage stochastic programming

Operations Research Letters. On a time consistency concept in risk averse multistage stochastic programming Operations Research Letters 37 2009 143 147 Contents lists available at ScienceDirect Operations Research Letters journal homepage: www.elsevier.com/locate/orl On a time consistency concept in risk averse

More information

Optimization of nonstandard risk functionals

Optimization of nonstandard risk functionals 21.7.2005 Risk functionals Properties Dual properties A collection of risk functionals Algorithms Properties Dual properties A collection of risk functionals Acceptability functionals - Basic properties

More information

Dual representations of risk measures

Dual representations of risk measures May 7, 2005 The variance and similar pure risk measures The standard deviation and similar pure risk measures The lower semi-variance and similar pure risk measures The lower semi-standard deviation and

More information

Ambiguity in portfolio optimization

Ambiguity in portfolio optimization May/June 2006 Introduction: Risk and Ambiguity Frank Knight Risk, Uncertainty and Profit (1920) Risk: the decision-maker can assign mathematical probabilities to random phenomena Uncertainty: randomness

More information

Dynamic Risk Measures and Nonlinear Expectations with Markov Chain noise

Dynamic Risk Measures and Nonlinear Expectations with Markov Chain noise Dynamic Risk Measures and Nonlinear Expectations with Markov Chain noise Robert J. Elliott 1 Samuel N. Cohen 2 1 Department of Commerce, University of South Australia 2 Mathematical Insitute, University

More information

Fundamental Inequalities, Convergence and the Optional Stopping Theorem for Continuous-Time Martingales

Fundamental Inequalities, Convergence and the Optional Stopping Theorem for Continuous-Time Martingales Fundamental Inequalities, Convergence and the Optional Stopping Theorem for Continuous-Time Martingales Prakash Balachandran Department of Mathematics Duke University April 2, 2008 1 Review of Discrete-Time

More information

Risk-Averse Dynamic Optimization. Andrzej Ruszczyński. Research supported by the NSF award CMMI

Risk-Averse Dynamic Optimization. Andrzej Ruszczyński. Research supported by the NSF award CMMI Research supported by the NSF award CMMI-0965689 Outline 1 Risk-Averse Preferences 2 Coherent Risk Measures 3 Dynamic Risk Measurement 4 Markov Risk Measures 5 Risk-Averse Control Problems 6 Solution Methods

More information

Dynamic Generation of Scenario Trees

Dynamic Generation of Scenario Trees Dynamic Generation of Scenario Trees Georg Ch. Pflug and Alois Pichler June 16, 015 Abstract We present new algorithms for the dynamic generation of scenario trees for multistage stochastic optimization.

More information

Stability-based generation of scenario trees for multistage stochastic programs

Stability-based generation of scenario trees for multistage stochastic programs Stability-based generation of scenario trees for multistage stochastic programs H. Heitsch and W. Römisch Humboldt-University Berlin Institute of Mathematics 10099 Berlin, Germany http://www.math.hu-berlin.de/~romisch

More information

Generalized Hypothesis Testing and Maximizing the Success Probability in Financial Markets

Generalized Hypothesis Testing and Maximizing the Success Probability in Financial Markets Generalized Hypothesis Testing and Maximizing the Success Probability in Financial Markets Tim Leung 1, Qingshuo Song 2, and Jie Yang 3 1 Columbia University, New York, USA; leung@ieor.columbia.edu 2 City

More information

Risk neutral and risk averse approaches to multistage stochastic programming.

Risk neutral and risk averse approaches to multistage stochastic programming. Risk neutral and risk averse approaches to multistage stochastic programming. A. Shapiro School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205, USA

More information

CONDITIONAL ACCEPTABILITY MAPPINGS AS BANACH-LATTICE VALUED MAPPINGS

CONDITIONAL ACCEPTABILITY MAPPINGS AS BANACH-LATTICE VALUED MAPPINGS CONDITIONAL ACCEPTABILITY MAPPINGS AS BANACH-LATTICE VALUED MAPPINGS RAIMUND KOVACEVIC Department of Statistics and Decision Support Systems, University of Vienna, Vienna, Austria Abstract. Conditional

More information

Mean-field dual of cooperative reproduction

Mean-field dual of cooperative reproduction The mean-field dual of systems with cooperative reproduction joint with Tibor Mach (Prague) A. Sturm (Göttingen) Friday, July 6th, 2018 Poisson construction of Markov processes Let (X t ) t 0 be a continuous-time

More information

Stochastic Programming: From statistical data to optimal decisions

Stochastic Programming: From statistical data to optimal decisions Stochastic Programming: From statistical data to optimal decisions W. Römisch Humboldt-University Berlin Department of Mathematics (K. Emich, H. Heitsch, A. Möller) Page 1 of 24 6th International Conference

More information

ORIGINS OF STOCHASTIC PROGRAMMING

ORIGINS OF STOCHASTIC PROGRAMMING ORIGINS OF STOCHASTIC PROGRAMMING Early 1950 s: in applications of Linear Programming unknown values of coefficients: demands, technological coefficients, yields, etc. QUOTATION Dantzig, Interfaces 20,1990

More information

Valuation and Pricing of Electricity Delivery Contracts The Producer s View

Valuation and Pricing of Electricity Delivery Contracts The Producer s View SWM ORCOS Valuation and Pricing of Electricity Delivery Contracts The Producer s View Raimund M. Kovacevic Research Report 2015-04 February, 2015 Operations Research and Control Systems Institute of Statistics

More information

Decomposability and time consistency of risk averse multistage programs

Decomposability and time consistency of risk averse multistage programs Decomposability and time consistency of risk averse multistage programs arxiv:1806.01497v1 [math.oc] 5 Jun 2018 A. Shapiro School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta,

More information

Portfolio Optimization in discrete time

Portfolio Optimization in discrete time Portfolio Optimization in discrete time Wolfgang J. Runggaldier Dipartimento di Matematica Pura ed Applicata Universitá di Padova, Padova http://www.math.unipd.it/runggaldier/index.html Abstract he paper

More information

Aggregate Risk. MFM Practitioner Module: Quantitative Risk Management. John Dodson. February 6, Aggregate Risk. John Dodson.

Aggregate Risk. MFM Practitioner Module: Quantitative Risk Management. John Dodson. February 6, Aggregate Risk. John Dodson. MFM Practitioner Module: Quantitative Risk Management February 6, 2019 As we discussed last semester, the general goal of risk measurement is to come up with a single metric that can be used to make financial

More information

Risk averse stochastic programming: time consistency and optimal stopping

Risk averse stochastic programming: time consistency and optimal stopping Risk averse stochastic programming: time consistency and optimal stopping A. Pichler Fakultät für Mathematik Technische Universität Chemnitz D 09111 Chemnitz, Germany A. Shapiro School of Industrial and

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 9 10/2/2013. Conditional expectations, filtration and martingales

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 9 10/2/2013. Conditional expectations, filtration and martingales MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 9 10/2/2013 Conditional expectations, filtration and martingales Content. 1. Conditional expectations 2. Martingales, sub-martingales

More information

Minimax and risk averse multistage stochastic programming

Minimax and risk averse multistage stochastic programming Minimax and risk averse multistage stochastic programming Alexander Shapiro School of Industrial & Systems Engineering, Georgia Institute of Technology, 765 Ferst Drive, Atlanta, GA 30332. Abstract. In

More information

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales.

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. Lecture 2 1 Martingales We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. 1.1 Doob s inequality We have the following maximal

More information

arxiv: v1 [math.pr] 24 Sep 2018

arxiv: v1 [math.pr] 24 Sep 2018 A short note on Anticipative portfolio optimization B. D Auria a,b,1,, J.-A. Salmerón a,1 a Dpto. Estadística, Universidad Carlos III de Madrid. Avda. de la Universidad 3, 8911, Leganés (Madrid Spain b

More information

Stochastic Programming: Basic Theory

Stochastic Programming: Basic Theory Stochastic Programming: Basic Theory John R. Birge John.Birge@ChicagoBooth.edu www.chicagobooth.edu/fac/john.birge JRBirge ICSP, Bergamo, July 2013 1 Goals Provide background on the basics of stochastic

More information

A DISTANCE FOR MULTISTAGE STOCHASTIC OPTIMIZATION MODELS

A DISTANCE FOR MULTISTAGE STOCHASTIC OPTIMIZATION MODELS A DISTANCE FOR MULTISTAGE STOCHASTIC OPTIMIZATION MODELS GEORG CH. PFLUG AND ALOIS PICHLER Abstract. We describe multistage stochastic programs in a purely in-distribution setting, i.e. without any reference

More information

Point Process Control

Point Process Control Point Process Control The following note is based on Chapters I, II and VII in Brémaud s book Point Processes and Queues (1981). 1 Basic Definitions Consider some probability space (Ω, F, P). A real-valued

More information

Dynkin (λ-) and π-systems; monotone classes of sets, and of functions with some examples of application (mainly of a probabilistic flavor)

Dynkin (λ-) and π-systems; monotone classes of sets, and of functions with some examples of application (mainly of a probabilistic flavor) Dynkin (λ-) and π-systems; monotone classes of sets, and of functions with some examples of application (mainly of a probabilistic flavor) Matija Vidmar February 7, 2018 1 Dynkin and π-systems Some basic

More information

of space-time diffusions

of space-time diffusions Optimal investment for all time horizons and Martin boundary of space-time diffusions Sergey Nadtochiy and Michael Tehranchi October 5, 2012 Abstract This paper is concerned with the axiomatic foundation

More information

DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION

DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION UNIVERSITY OF MARYLAND: ECON 600. Alternative Methods of Discrete Time Intertemporal Optimization We will start by solving a discrete time intertemporal

More information

Existence and Comparisons for BSDEs in general spaces

Existence and Comparisons for BSDEs in general spaces Existence and Comparisons for BSDEs in general spaces Samuel N. Cohen and Robert J. Elliott University of Adelaide and University of Calgary BFS 2010 S.N. Cohen, R.J. Elliott (Adelaide, Calgary) BSDEs

More information

Geometry and Optimization of Relative Arbitrage

Geometry and Optimization of Relative Arbitrage Geometry and Optimization of Relative Arbitrage Ting-Kam Leonard Wong joint work with Soumik Pal Department of Mathematics, University of Washington Financial/Actuarial Mathematic Seminar, University of

More information

Financial Optimization ISE 347/447. Lecture 21. Dr. Ted Ralphs

Financial Optimization ISE 347/447. Lecture 21. Dr. Ted Ralphs Financial Optimization ISE 347/447 Lecture 21 Dr. Ted Ralphs ISE 347/447 Lecture 21 1 Reading for This Lecture C&T Chapter 16 ISE 347/447 Lecture 21 2 Formalizing: Random Linear Optimization Consider the

More information

arxiv: v2 [q-fin.mf] 10 May 2018

arxiv: v2 [q-fin.mf] 10 May 2018 Robust Utility Maximization in Discrete-Time Markets with Friction Ariel Neufeld Mario Šikić May 11, 2018 arxiv:1610.09230v2 [q-fin.mf] 10 May 2018 Abstract We study a robust stochastic optimization problem

More information

Set-Valued Risk Measures and Bellman s Principle

Set-Valued Risk Measures and Bellman s Principle Set-Valued Risk Measures and Bellman s Principle Zach Feinstein Electrical and Systems Engineering, Washington University in St. Louis Joint work with Birgit Rudloff (Vienna University of Economics and

More information

Risk Measures. A. Shapiro School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia , USA ICSP 2016

Risk Measures. A. Shapiro School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia , USA ICSP 2016 Risk Measures A. Shapiro School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205, USA ICSP 2016 Min-max (distributionally robust) approach to stochastic

More information

THE ASYMPTOTIC ELASTICITY OF UTILITY FUNCTIONS AND OPTIMAL INVESTMENT IN INCOMPLETE MARKETS 1

THE ASYMPTOTIC ELASTICITY OF UTILITY FUNCTIONS AND OPTIMAL INVESTMENT IN INCOMPLETE MARKETS 1 The Annals of Applied Probability 1999, Vol. 9, No. 3, 94 95 THE ASYMPTOTIC ELASTICITY OF UTILITY FUNCTIONS AND OPTIMAL INVESTMENT IN INCOMPLETE MARKETS 1 By D. Kramkov 2 and W. Schachermayer Steklov Mathematical

More information

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011 Department of Probability and Mathematical Statistics Faculty of Mathematics and Physics, Charles University in Prague petrasek@karlin.mff.cuni.cz Seminar in Stochastic Modelling in Economics and Finance

More information

Stability of Stochastic Programming Problems

Stability of Stochastic Programming Problems Stability of Stochastic Programming Problems W. Römisch Humboldt-University Berlin Institute of Mathematics 10099 Berlin, Germany http://www.math.hu-berlin.de/~romisch Page 1 of 35 Spring School Stochastic

More information

At t = T the investors learn the true state.

At t = T the investors learn the true state. 1. Martingales A discrete time introduction Model of the market with the following submodels (i) T + 1 trading dates, t =0, 1,...,T. Mathematics of Financial Derivatives II Seppo Pynnönen Professor of

More information

Lecture 1. Stochastic Optimization: Introduction. January 8, 2018

Lecture 1. Stochastic Optimization: Introduction. January 8, 2018 Lecture 1 Stochastic Optimization: Introduction January 8, 2018 Optimization Concerned with mininmization/maximization of mathematical functions Often subject to constraints Euler (1707-1783): Nothing

More information

Optimal stopping for non-linear expectations Part I

Optimal stopping for non-linear expectations Part I Stochastic Processes and their Applications 121 (2011) 185 211 www.elsevier.com/locate/spa Optimal stopping for non-linear expectations Part I Erhan Bayraktar, Song Yao Department of Mathematics, University

More information

Financial Asset Price Bubbles under Model Uncertainty

Financial Asset Price Bubbles under Model Uncertainty Financial Asset Price Bubbles under Model Uncertainty Francesca Biagini, Jacopo Mancin October 24, 27 Abstract We study the concept of financial bubbles in a market model endowed with a set P of probability

More information

Simple Consumption / Savings Problems (based on Ljungqvist & Sargent, Ch 16, 17) Jonathan Heathcote. updated, March The household s problem X

Simple Consumption / Savings Problems (based on Ljungqvist & Sargent, Ch 16, 17) Jonathan Heathcote. updated, March The household s problem X Simple Consumption / Savings Problems (based on Ljungqvist & Sargent, Ch 16, 17) subject to for all t Jonathan Heathcote updated, March 2006 1. The household s problem max E β t u (c t ) t=0 c t + a t+1

More information

SMALL SUBSETS OF THE REALS AND TREE FORCING NOTIONS

SMALL SUBSETS OF THE REALS AND TREE FORCING NOTIONS SMALL SUBSETS OF THE REALS AND TREE FORCING NOTIONS MARCIN KYSIAK AND TOMASZ WEISS Abstract. We discuss the question which properties of smallness in the sense of measure and category (e.g. being a universally

More information

Minimal Sufficient Conditions for a Primal Optimizer in Nonsmooth Utility Maximization

Minimal Sufficient Conditions for a Primal Optimizer in Nonsmooth Utility Maximization Finance and Stochastics manuscript No. (will be inserted by the editor) Minimal Sufficient Conditions for a Primal Optimizer in Nonsmooth Utility Maximization Nicholas Westray Harry Zheng. Received: date

More information

CVaR and Examples of Deviation Risk Measures

CVaR and Examples of Deviation Risk Measures CVaR and Examples of Deviation Risk Measures Jakub Černý Department of Probability and Mathematical Statistics Stochastic Modelling in Economics and Finance November 10, 2014 1 / 25 Contents CVaR - Dual

More information

Inverse Stochastic Dominance Constraints Duality and Methods

Inverse Stochastic Dominance Constraints Duality and Methods Duality and Methods Darinka Dentcheva 1 Andrzej Ruszczyński 2 1 Stevens Institute of Technology Hoboken, New Jersey, USA 2 Rutgers University Piscataway, New Jersey, USA Research supported by NSF awards

More information

In the Ramsey model we maximized the utility U = u[c(t)]e nt e t dt. Now

In the Ramsey model we maximized the utility U = u[c(t)]e nt e t dt. Now PERMANENT INCOME AND OPTIMAL CONSUMPTION On the previous notes we saw how permanent income hypothesis can solve the Consumption Puzzle. Now we use this hypothesis, together with assumption of rational

More information

An iterative procedure for constructing subsolutions of discrete-time optimal control problems

An iterative procedure for constructing subsolutions of discrete-time optimal control problems An iterative procedure for constructing subsolutions of discrete-time optimal control problems Markus Fischer version of November, 2011 Abstract An iterative procedure for constructing subsolutions of

More information

Dynamic Pricing for Non-Perishable Products with Demand Learning

Dynamic Pricing for Non-Perishable Products with Demand Learning Dynamic Pricing for Non-Perishable Products with Demand Learning Victor F. Araman Stern School of Business New York University René A. Caldentey DIMACS Workshop on Yield Management and Dynamic Pricing

More information

P (A G) dp G P (A G)

P (A G) dp G P (A G) First homework assignment. Due at 12:15 on 22 September 2016. Homework 1. We roll two dices. X is the result of one of them and Z the sum of the results. Find E [X Z. Homework 2. Let X be a r.v.. Assume

More information

Probability Theory I: Syllabus and Exercise

Probability Theory I: Syllabus and Exercise Probability Theory I: Syllabus and Exercise Narn-Rueih Shieh **Copyright Reserved** This course is suitable for those who have taken Basic Probability; some knowledge of Real Analysis is recommended( will

More information

Pure Patterns and Ordinal Numbers

Pure Patterns and Ordinal Numbers Pure Patterns and Ordinal Numbers Gunnar Wilken Okinawa Institute of Science and Technology Graduate University Japan Sets and Computations Institute of the Mathematical Sciences National University of

More information

Upper bound for optimal value of risk averse multistage problems

Upper bound for optimal value of risk averse multistage problems Upper bound for optimal value of risk averse multistage problems Lingquan Ding School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta, GA 30332-0205 Alexander Shapiro School

More information

Cf "Expected shortage and surplus functions", in Stochastic Programming, by Willem K. Klein Haneveld and Maarten H. van der Vlerk, Dept of

Cf Expected shortage and surplus functions, in Stochastic Programming, by Willem K. Klein Haneveld and Maarten H. van der Vlerk, Dept of Cf. 3.3.3 "Expected shortage and surplus functions", in Stochastic Programming, by Willem K. Klein Haneveld and Maarten H. van der Vlerk, Dept of Econometrics & OR, University of Groningen, Netherlands

More information

PORTFOLIO OPTIMIZATION WITH PERFORMANCE RATIOS

PORTFOLIO OPTIMIZATION WITH PERFORMANCE RATIOS International Journal of Theoretical and Applied Finance c World Scientific Publishing Company PORTFOLIO OPTIMIZATION WITH PERFORMANCE RATIOS HONGCAN LIN Department of Statistics and Actuarial Science,

More information

Consumption. Consider a consumer with utility. v(c τ )e ρ(τ t) dτ.

Consumption. Consider a consumer with utility. v(c τ )e ρ(τ t) dτ. Consumption Consider a consumer with utility v(c τ )e ρ(τ t) dτ. t He acts to maximize expected utility. Utility is increasing in consumption, v > 0, and concave, v < 0. 1 The utility from consumption

More information

Modern Portfolio Theory with Homogeneous Risk Measures

Modern Portfolio Theory with Homogeneous Risk Measures Modern Portfolio Theory with Homogeneous Risk Measures Dirk Tasche Zentrum Mathematik Technische Universität München http://www.ma.tum.de/stat/ Rotterdam February 8, 2001 Abstract The Modern Portfolio

More information

ECOM 009 Macroeconomics B. Lecture 2

ECOM 009 Macroeconomics B. Lecture 2 ECOM 009 Macroeconomics B Lecture 2 Giulio Fella c Giulio Fella, 2014 ECOM 009 Macroeconomics B - Lecture 2 40/197 Aim of consumption theory Consumption theory aims at explaining consumption/saving decisions

More information

Jan Kallsen. Stochastic Optimal Control in Mathematical Finance

Jan Kallsen. Stochastic Optimal Control in Mathematical Finance Jan Kallsen Stochastic Optimal Control in Mathematical Finance CAU zu Kiel, WS 15/16, as of April 21, 2016 Contents 0 Motivation 4 I Discrete time 7 1 Recap of stochastic processes 8 1.1 Processes, stopping

More information

Speculation and the Bond Market: An Empirical No-arbitrage Framework

Speculation and the Bond Market: An Empirical No-arbitrage Framework Online Appendix to the paper Speculation and the Bond Market: An Empirical No-arbitrage Framework October 5, 2015 Part I: Maturity specific shocks in affine and equilibrium models This Appendix present

More information

Exercises Measure Theoretic Probability

Exercises Measure Theoretic Probability Exercises Measure Theoretic Probability 2002-2003 Week 1 1. Prove the folloing statements. (a) The intersection of an arbitrary family of d-systems is again a d- system. (b) The intersection of an arbitrary

More information

Question 1. The correct answers are: (a) (2) (b) (1) (c) (2) (d) (3) (e) (2) (f) (1) (g) (2) (h) (1)

Question 1. The correct answers are: (a) (2) (b) (1) (c) (2) (d) (3) (e) (2) (f) (1) (g) (2) (h) (1) Question 1 The correct answers are: a 2 b 1 c 2 d 3 e 2 f 1 g 2 h 1 Question 2 a Any probability measure Q equivalent to P on F 2 can be described by Q[{x 1, x 2 }] := q x1 q x1,x 2, 1 where q x1, q x1,x

More information

Stochastic Programming with Multivariate Second Order Stochastic Dominance Constraints with Applications in Portfolio Optimization

Stochastic Programming with Multivariate Second Order Stochastic Dominance Constraints with Applications in Portfolio Optimization Stochastic Programming with Multivariate Second Order Stochastic Dominance Constraints with Applications in Portfolio Optimization Rudabeh Meskarian 1 Department of Engineering Systems and Design, Singapore

More information

MIDAS: A Mixed Integer Dynamic Approximation Scheme

MIDAS: A Mixed Integer Dynamic Approximation Scheme MIDAS: A Mixed Integer Dynamic Approximation Scheme Andy Philpott, Faisal Wahid, Frédéric Bonnans May 7, 2016 Abstract Mixed Integer Dynamic Approximation Scheme (MIDAS) is a new sampling-based algorithm

More information

On Kusuoka Representation of Law Invariant Risk Measures

On Kusuoka Representation of Law Invariant Risk Measures MATHEMATICS OF OPERATIONS RESEARCH Vol. 38, No. 1, February 213, pp. 142 152 ISSN 364-765X (print) ISSN 1526-5471 (online) http://dx.doi.org/1.1287/moor.112.563 213 INFORMS On Kusuoka Representation of

More information

Stochastic Equilibrium Problems arising in the energy industry

Stochastic Equilibrium Problems arising in the energy industry Stochastic Equilibrium Problems arising in the energy industry Claudia Sagastizábal (visiting researcher IMPA) mailto:sagastiz@impa.br http://www.impa.br/~sagastiz ENEC workshop, IPAM, Los Angeles, January

More information

Bounds on Risk-averse Mixed-integer Multi-stage Stochastic Programming Problems with Mean-CVaR

Bounds on Risk-averse Mixed-integer Multi-stage Stochastic Programming Problems with Mean-CVaR Bounds on Risk-averse Mixed-integer Multi-stage Stochastic Programming Problems with Mean-CVaR Ali rfan Mahmuto ullar, Özlem Çavu³, and M. Selim Aktürk Department of Industrial Engineering, Bilkent University,

More information

Stability of optimization problems with stochastic dominance constraints

Stability of optimization problems with stochastic dominance constraints Stability of optimization problems with stochastic dominance constraints D. Dentcheva and W. Römisch Stevens Institute of Technology, Hoboken Humboldt-University Berlin www.math.hu-berlin.de/~romisch SIAM

More information

Stochastic Dual Dynamic Programming with CVaR Risk Constraints Applied to Hydrothermal Scheduling. ICSP 2013 Bergamo, July 8-12, 2012

Stochastic Dual Dynamic Programming with CVaR Risk Constraints Applied to Hydrothermal Scheduling. ICSP 2013 Bergamo, July 8-12, 2012 Stochastic Dual Dynamic Programming with CVaR Risk Constraints Applied to Hydrothermal Scheduling Luiz Carlos da Costa Junior Mario V. F. Pereira Sérgio Granville Nora Campodónico Marcia Helena Costa Fampa

More information

Modeling Uncertainty in Linear Programs: Stochastic and Robust Linear Programming

Modeling Uncertainty in Linear Programs: Stochastic and Robust Linear Programming Modeling Uncertainty in Linear Programs: Stochastic and Robust Programming DGA PhD Student - PhD Thesis EDF-INRIA 10 November 2011 and motivations In real life, Linear Programs are uncertain for several

More information

1 Basics of probability theory

1 Basics of probability theory Examples of Stochastic Optimization Problems In this chapter, we will give examples of three types of stochastic optimization problems, that is, optimal stopping, total expected (discounted) cost problem,

More information

Course Handouts: Pages 1-20 ASSET PRICE BUBBLES AND SPECULATION. Jan Werner

Course Handouts: Pages 1-20 ASSET PRICE BUBBLES AND SPECULATION. Jan Werner Course Handouts: Pages 1-20 ASSET PRICE BUBBLES AND SPECULATION Jan Werner European University Institute May 2010 1 I. Price Bubbles: An Example Example I.1 Time is infinite; so dates are t = 0,1,2,...,.

More information

On Minimal Entropy Martingale Measures

On Minimal Entropy Martingale Measures On Minimal Entropy Martingale Measures Andrii Andrusiv Friedrich Schiller University of Jena, Germany Marie Curie ITN Outline 1. One Period Model Definitions and Notations Minimal Entropy Martingale Measure

More information

Risk Measures in non-dominated Models

Risk Measures in non-dominated Models Purpose: Study Risk Measures taking into account the model uncertainty in mathematical finance. Plan 1 Non-dominated Models Model Uncertainty Fundamental topological Properties 2 Risk Measures on L p (c)

More information

University of Warwick, EC9A0 Maths for Economists Lecture Notes 10: Dynamic Programming

University of Warwick, EC9A0 Maths for Economists Lecture Notes 10: Dynamic Programming University of Warwick, EC9A0 Maths for Economists 1 of 63 University of Warwick, EC9A0 Maths for Economists Lecture Notes 10: Dynamic Programming Peter J. Hammond Autumn 2013, revised 2014 University of

More information

Robust Optimization for Risk Control in Enterprise-wide Optimization

Robust Optimization for Risk Control in Enterprise-wide Optimization Robust Optimization for Risk Control in Enterprise-wide Optimization Juan Pablo Vielma Department of Industrial Engineering University of Pittsburgh EWO Seminar, 011 Pittsburgh, PA Uncertainty in Optimization

More information

MFM Practitioner Module: Risk & Asset Allocation. John Dodson. January 25, 2012

MFM Practitioner Module: Risk & Asset Allocation. John Dodson. January 25, 2012 MFM Practitioner Module: Risk & Asset Allocation January 25, 2012 Optimizing Allocations Once we have 1. chosen the markets and an investment horizon 2. modeled the markets 3. agreed on an objective with

More information

Complexity of two and multi-stage stochastic programming problems

Complexity of two and multi-stage stochastic programming problems Complexity of two and multi-stage stochastic programming problems A. Shapiro School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205, USA The concept

More information

Introduction Optimality and Asset Pricing

Introduction Optimality and Asset Pricing Introduction Optimality and Asset Pricing Andrea Buraschi Imperial College Business School October 2010 The Euler Equation Take an economy where price is given with respect to the numéraire, which is our

More information

Time Consistency in Decision Making

Time Consistency in Decision Making Time Consistency in Decision Making Igor Cialenco Department of Applied Mathematics Illinois Institute of Technology cialenco@iit.edu Joint work with Tomasz R. Bielecki and Marcin Pitera Mathematical Finance

More information

A note on scenario reduction for two-stage stochastic programs

A note on scenario reduction for two-stage stochastic programs A note on scenario reduction for two-stage stochastic programs Holger Heitsch a and Werner Römisch a a Humboldt-University Berlin, Institute of Mathematics, 199 Berlin, Germany We extend earlier work on

More information

Asset Pricing. Chapter IX. The Consumption Capital Asset Pricing Model. June 20, 2006

Asset Pricing. Chapter IX. The Consumption Capital Asset Pricing Model. June 20, 2006 Chapter IX. The Consumption Capital Model June 20, 2006 The Representative Agent Hypothesis and its Notion of Equilibrium 9.2.1 An infinitely lived Representative Agent Avoid terminal period problem Equivalence

More information

1 Stochastic Dynamic Programming

1 Stochastic Dynamic Programming 1 Stochastic Dynamic Programming Formally, a stochastic dynamic program has the same components as a deterministic one; the only modification is to the state transition equation. When events in the future

More information

x log x, which is strictly convex, and use Jensen s Inequality:

x log x, which is strictly convex, and use Jensen s Inequality: 2. Information measures: mutual information 2.1 Divergence: main inequality Theorem 2.1 (Information Inequality). D(P Q) 0 ; D(P Q) = 0 iff P = Q Proof. Let ϕ(x) x log x, which is strictly convex, and

More information

Value Iteration and Action ɛ-approximation of Optimal Policies in Discounted Markov Decision Processes

Value Iteration and Action ɛ-approximation of Optimal Policies in Discounted Markov Decision Processes Value Iteration and Action ɛ-approximation of Optimal Policies in Discounted Markov Decision Processes RAÚL MONTES-DE-OCA Departamento de Matemáticas Universidad Autónoma Metropolitana-Iztapalapa San Rafael

More information

The Asymptotic Theory of Transaction Costs

The Asymptotic Theory of Transaction Costs The Asymptotic Theory of Transaction Costs Lecture Notes by Walter Schachermayer Nachdiplom-Vorlesung, ETH Zürich, WS 15/16 1 Models on Finite Probability Spaces In this section we consider a stock price

More information

Sample of Ph.D. Advisory Exam For MathFinance

Sample of Ph.D. Advisory Exam For MathFinance Sample of Ph.D. Advisory Exam For MathFinance Students who wish to enter the Ph.D. program of Mathematics of Finance are required to take the advisory exam. This exam consists of three major parts. The

More information

Existence and uniqueness of a stationary and ergodic solution to stochastic recurrence equations via Matkowski s FPT

Existence and uniqueness of a stationary and ergodic solution to stochastic recurrence equations via Matkowski s FPT Arvanitis, Cogent Mathematics 2017), 4: 1380392 APPLIED & INTERDISCIPLINARY MATHEMATICS RESEARCH ARTICLE Existence and uniqueness of a stationary and ergodic solution to stochastic recurrence equations

More information

CHANGE OF MEASURE. D.Majumdar

CHANGE OF MEASURE. D.Majumdar CHANGE OF MEASURE D.Majumdar We had touched upon this concept when we looked at Finite Probability spaces and had defined a R.V. Z to change probability measure on a space Ω. We need to do the same thing

More information

SOME HISTORY OF STOCHASTIC PROGRAMMING

SOME HISTORY OF STOCHASTIC PROGRAMMING SOME HISTORY OF STOCHASTIC PROGRAMMING Early 1950 s: in applications of Linear Programming unknown values of coefficients: demands, technological coefficients, yields, etc. QUOTATION Dantzig, Interfaces

More information

Final Exam - Math Camp August 27, 2014

Final Exam - Math Camp August 27, 2014 Final Exam - Math Camp August 27, 2014 You will have three hours to complete this exam. Please write your solution to question one in blue book 1 and your solutions to the subsequent questions in blue

More information

Dynamic Programming with Hermite Interpolation

Dynamic Programming with Hermite Interpolation Dynamic Programming with Hermite Interpolation Yongyang Cai Hoover Institution, 424 Galvez Mall, Stanford University, Stanford, CA, 94305 Kenneth L. Judd Hoover Institution, 424 Galvez Mall, Stanford University,

More information

A. Shapiro Introduction

A. Shapiro Introduction ESAIM: PROCEEDINGS, December 2003, Vol. 13, 65 73 J.P. Penot, Editor DOI: 10.1051/proc:2003003 MONTE CARLO SAMPLING APPROACH TO STOCHASTIC PROGRAMMING A. Shapiro 1 Abstract. Various stochastic programming

More information

A new approach for investment performance measurement. 3rd WCMF, Santa Barbara November 2009

A new approach for investment performance measurement. 3rd WCMF, Santa Barbara November 2009 A new approach for investment performance measurement 3rd WCMF, Santa Barbara November 2009 Thaleia Zariphopoulou University of Oxford, Oxford-Man Institute and The University of Texas at Austin 1 Performance

More information