Solution for Final Review Problems 1

Size: px
Start display at page:

Download "Solution for Final Review Problems 1"

Transcription

1 Solution for Final Review Problems Final time and location: Dec. Gymnasium, Rows 23, 25 5, 2, Wednesday, 9-2am, Main ) Let fz) be the principal branch of z i. a) Find f + i). b) Show that fz )fz 2 ) λfz z 2 ) for all z, z 2, where λ, e 2π or e 2π. Solution. a) f + i) + i) i expi Log + i)) expiln 2 + πi 4 )) e π/4 cos ln 2 2 ) + i sinln 2 2 )) b) We have Argz ) + Argz 2 ) Argz z 2 ) + 2nπ for some integer n. Since π < Argz ) π, π < Argz 2 ) π and π < Argz z 2 ) π, Therefore, 3π < 2nπ < 3π n Logz ) + Logz 2 ) Logz z 2 ) + 2nπi with n {,, } and fz )fz 2 ) fz z 2 ) 2) Do the following: a) Find sin π 3 + i). expi Log z ) expi Log z 2 ) expi Logz z 2 )) expi Log z + i Log z 2 i Logz z 2 )) exp 2nπ) {e 2π,, e 2π } b) Find the Taylor series of sin z) 2 at z. c) Show that sinz) sinh y ) for all z C, where y Imz). xichen/math3f/fpsol.pdf

2 2 d) Let C R denote the semicircle { z i R, Imz) }. Show that dz R C R z 2 sin z Solution. a) π ) sin 3 + i 2i eiπ/3+i) e iπ/3+i) ) 2i e e πi/3 ee πi/3 ) e cos π 2i 3 + i sin π 3 ) ecos π 3 i sin π ) 3 ) 3 e + ) + i e ) 4 e 4 e b) We have ) e sin z) 2 iz e iz 2 2i 4 e2iz + e 2iz 2) 2i) n z n 2i) n z n + 4 n! 4 n! 2 2 2i) 2n z 2n 2 2n)! 2 ) n 2 2n z 2n 2n)! ) n 2 2n z 2n ) n+ 2 2n z 2n 2n)! 2n)! n c) By triangle inequality, sin z e iz e 2iz 2i 2 n e iz e iz e ix y e ix+y 2 2 e y e y sinh y sinh y ) d) When z C R, Imz). Therefore, sin z sinh). And since for z C R, z z i) + i z i R z 2 sin z R ) 2 sinh)

3 3 for z C R. Therefore, dz C R z 2 sin z dz R ) 2 sinh) C R Since πr R R ) 2 sinh) we conclude R C R dz z 2 sin z πr R ) 2 sinh) 3) For each of the following functions, do the following: find all its singularities in C; write the principal part of the function at each singularity; for each singularity, determine whether it is a pole, a removable singularity, or an essential singularity; compute the residue of the function at each singularity. ) a) fz) z) exp b) fz) z 2 + c) fz) tan z e z d) fz) z 2 z ) z 2 Solution. a) fz) has a singularity at. At z, ) z) exp z)e /z2 z) z 2 n!)z 2n z + So the principal part is n n!)z 2n n!)z 2n n n!)z 2n n n!)z 2n n!)z 2n n n!)z 2n Consequently, fz) has an essential singularity at and Res z fz)!

4 4 b) fz) has two singularities at ±i. We write z 2 + z i)z + i) i 2 z + i ) z i At i, the principal part of fz) is it has a pole of order and i 2 z i Res zi fz) i 2 At i, the principal part of fz) is it has a pole of order and i 2 z + i Res z i fz) i 2 c) fz) has singularities at {cos z } {z kπ + π/2 : k Z}. At z kπ + π/2, we let w z kπ π/2. Then tanz) tan w + kπ + π ) cotw) 2 cos w ) sin w ) n w 2n ) ) n w 2n+ 2n)! 2n + )! ) ) n w 2n ) ) n w 2n w 2n)! 2n + )! ) ) w2 w 2! + w4 4!... w2 3! + w4 5!... w + a n w n z kπ π/2 + a n z kπ π/2) n So the principal part of fz) at kπ + π/2 is z kπ π/2

5 5 fz) has a pole of order at kπ + π/2 and e z z 2 z ) z 2 Res fz) zkπ+π/2 d) fz) has two singularities at and. At z, ) z n ) z n n! z 2 + z! +... ) + z +...) z + 2z) + a 2 n z n z 2 2 z + a n z n So the principal part of fz) at is z 2 2 z it has a pole order 2 at and Res fz) 2 z At z, we let w z and then e z z 2 z ) e w+ + w) 2 w e w ew + w) 2 ) e ) w n ) ) n n + )w n w n! e + w ) w! w +...) e w + a n w n e z + a n z ) n So the principal part of fz) at is e z it has a pole of order and then Res fz) e z 4) Let fz) be an entire function. If fz) z 2 for all z, then fz) az 2 for some constant a C satisfying a.

6 6 Proof. Since fz) is entire, fz) for all z. By Cauchy Integral Formula, f n) ) 2πi f n) ) z n n! z R fz)n! z dz n+ for all n and R >. Since fz) z 2, fz)n! z n+ n! n! z n z R R n for z R. Therefore, ) ) fz)n! 2πi z dz n! n+ 2πR) n! 2π R n R. n 2 And since R n!/r n 2 for n > 2, fz)n! dz R 2πi zn+ z R and hence f n) ) for all n > 2. And since R n!/r n 2 for all n < 2, fz)n! dz R 2πi z R zn+ and hence f n) ) for all n < 2. In conclusion, fz) f ) z 2 az 2 2 for some constants a. Finally, by az 2 z 2, we obtain that a. 5) Let z 3 fz) z 2 3z + 2 Find the Laurent series of fz) in each of the following domains: a) < z < 2; b) 2 < z < ; c) < z <.

7 7 Solution. We write fz) as a sum of partial fractions: fz) z z 2 z Then a) For < z < 2, fz) z z 2 z 4 z + 3 z/2) ) z /z) z n z n z z n z + 3 z 2 2 n z n 2 2 n z n n2 z n n z n b) For 2 < z <, fz) z z 2 z z ) ) z 2/z) z /z) z z 2 n z n z z n z z z n+3 z n 2 n+3 )z n 2 n+2 )z n n z n

8 8 c) For < z <, fz) z z 2 z 8 z z ) z z z ) n z 4 7z ) 8 n2 z ) n z 6) Compute the integrals: π a) 2 cos θ) dθ 2 cos2x) b) + x + x dx 2 Solution. a) We parameterize the circle z with z e iθ for π θ π. Then π 2 cos θ) dθ π π π π π π π π π 2i 2i 2 cos θ) 2 dθ 2 e iθ + e iθ )/2) 2 dθ 4 e iθ e iθ ) 2 dθ e 2iθ 4e iθ e 2iθ ) 2 dθ π C e iθ 4e iθ e 2iθ ) 2 deiθ ) z 4z z 2 ) 2 dz

9 9 C and z z dz 2πi Res 4z z 2 ) 2 z2 3 4z z 2 ) 2 z 2πi Res z2 3 z 2 3)) 2 z 2 + 3)) 2 ) z 2πi z 2 + 3)) 2 z2 3 3π 9 i Therefore, π 2 cos θ) dθ 2 3π 2 9 b) Obviously, cos2x) dx Re + x + x2 Re R ) + z + z dz 2 R R + z + z 2 dz We integrate along the closed contour going from R to R and then the semicircle C R { z R, Imz) } counterclockwise. Then R R + z + z dz + e CR 2iz 2 + z + z dz 2 2πi Res z + 3i)/2 + z + z 2 2πi z 3i)/2 2π 3 e 3 cos i sin ) z + 3i)/2 by Cauchy Integral Theorem. For z on C R, e 2y, z 2 + z + z 2 z R 2 R and hence + z + z 2 R 2 R. )

10 Therefore, And since + z + z dz 2 CR we conclude that Thus, and R R R R R πr R 2 R. πr R 2 R, CR dz. + z + z2 2π dz e 3 cos i sin ) + z + z2 3 cos2x) 2π dx e 3 cos. + x + x2 3 7) Compute the following contour integrals. You may apply Cauchy integral theorem and its corollaries wherever possible. a) zdz, b) c) d) L where L is the polygonal path ABC with A, B + i and C i. L z 2 dz where L is the curve in part a). C dz sin 2 z where C is the circle z oriented counter-clockwise. C z 29 z 2 + z + dz where C is the circle z 2 oriented counter-clockwise.

11 L Solution. a) zdz zdz + AB + BC zdz + i)td + i)t) + i) t) + i) + t i)d t) + i) + t i)) i)tdt 2i 2t)i)dt t 2 2i t + i4 ) 2t)2 2i b) Since z 2 is entire, z 2 has a complex anti-derivative z 3 /3 in C and z 2 dz z3 i i L c) /sin z) 2 has singularities at kπ for k Z. Hence z dz sin z) 2 2πi 3 Res zkπ k 3 At z kπ, we let w z kπ and then sin z) 2 sinw + kπ)) 2 sin w) 2 ) 2 ) n w 2n+ 2n + )! sin z) 2 ) 2 ) n+ w 2n w 2 2n + )! n ) n+ w 2n m + ) w 2 2n + )! m n ) m So the Laurent series of /sin w) 2 at w only has terms w n with n even. Therefore, Res zkπ sin z) Res 2 w sin w) 2

12 2 Consequently, z dz sin z) 2 d) We first show that all zeroes of z 2 + z + lie in z < 2. Otherwise, suppose that z 2 + z + for some z 2. Then + z 29 + z 2. But + z 29 + z 2 z 29 z > 2 for z 2. Contradiction. So all zeroes of z 2 + z + lie in z < 2. Therefore, z/z 2 + z + ) is analytic in z > 2. It follows that z 29 z 29 dz 2πi Res C z 2 + z + z z 2 + z + ) z 29 2πi Res z z 2 z 2 + z + 2πi Res z z + z 29 + z 2 ) 2πi

(1) Let f(z) be the principal branch of z 4i. (a) Find f(i). Solution. f(i) = exp(4i Log(i)) = exp(4i(π/2)) = e 2π. (b) Show that

(1) Let f(z) be the principal branch of z 4i. (a) Find f(i). Solution. f(i) = exp(4i Log(i)) = exp(4i(π/2)) = e 2π. (b) Show that Let fz be the principal branch of z 4i. a Find fi. Solution. fi = exp4i Logi = exp4iπ/2 = e 2π. b Show that fz fz 2 fz z 2 fz fz 2 = λfz z 2 for all z, z 2 0, where λ =, e 8π or e 8π. Proof. We have =

More information

MATH 106 HOMEWORK 4 SOLUTIONS. sin(2z) = 2 sin z cos z. (e zi + e zi ) 2. = 2 (ezi e zi )

MATH 106 HOMEWORK 4 SOLUTIONS. sin(2z) = 2 sin z cos z. (e zi + e zi ) 2. = 2 (ezi e zi ) MATH 16 HOMEWORK 4 SOLUTIONS 1 Show directly from the definition that sin(z) = ezi e zi i sin(z) = sin z cos z = (ezi e zi ) i (e zi + e zi ) = sin z cos z Write the following complex numbers in standard

More information

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014 Math 3 - Spring 4 Solutions to Assignment # 8 ompletion Date: Friday May 3, 4 Question. [p 49, #] By finding an antiderivative, evaluate each of these integrals, where the path is any contour between the

More information

Complex Variables...Review Problems (Residue Calculus Comments)...Fall Initial Draft

Complex Variables...Review Problems (Residue Calculus Comments)...Fall Initial Draft Complex Variables........Review Problems Residue Calculus Comments)........Fall 22 Initial Draft ) Show that the singular point of fz) is a pole; determine its order m and its residue B: a) e 2z )/z 4,

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x + iy, x,y

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x+iy, x,y R:

More information

Syllabus: for Complex variables

Syllabus: for Complex variables EE-2020, Spring 2009 p. 1/42 Syllabus: for omplex variables 1. Midterm, (4/27). 2. Introduction to Numerical PDE (4/30): [Ref.num]. 3. omplex variables: [Textbook]h.13-h.18. omplex numbers and functions,

More information

Math Final Exam.

Math Final Exam. Math 106 - Final Exam. This is a closed book exam. No calculators are allowed. The exam consists of 8 questions worth 100 points. Good luck! Name: Acknowledgment and acceptance of honor code: Signature:

More information

EE2007 Tutorial 7 Complex Numbers, Complex Functions, Limits and Continuity

EE2007 Tutorial 7 Complex Numbers, Complex Functions, Limits and Continuity EE27 Tutorial 7 omplex Numbers, omplex Functions, Limits and ontinuity Exercise 1. These are elementary exercises designed as a self-test for you to determine if you if have the necessary pre-requisite

More information

MTH 3102 Complex Variables Final Exam May 1, :30pm-5:30pm, Skurla Hall, Room 106

MTH 3102 Complex Variables Final Exam May 1, :30pm-5:30pm, Skurla Hall, Room 106 Name (Last name, First name): MTH 02 omplex Variables Final Exam May, 207 :0pm-5:0pm, Skurla Hall, Room 06 Exam Instructions: You have hour & 50 minutes to complete the exam. There are a total of problems.

More information

Residues and Contour Integration Problems

Residues and Contour Integration Problems Residues and ontour Integration Problems lassify the singularity of fz at the indicated point.. fz = cotz at z =. Ans. Simple pole. Solution. The test for a simple pole at z = is that lim z z cotz exists

More information

Evaluation of integrals

Evaluation of integrals Evaluation of certain contour integrals: Type I Type I: Integrals of the form 2π F (cos θ, sin θ) dθ If we take z = e iθ, then cos θ = 1 (z + 1 ), sin θ = 1 (z 1 dz ) and dθ = 2 z 2i z iz. Substituting

More information

Solutions to practice problems for the final

Solutions to practice problems for the final Solutions to practice problems for the final Holomorphicity, Cauchy-Riemann equations, and Cauchy-Goursat theorem 1. (a) Show that there is a holomorphic function on Ω = {z z > 2} whose derivative is z

More information

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India NPTEL web course on Complex Analysis A. Swaminathan I.I.T. Roorkee, India and V.K. Katiyar I.I.T. Roorkee, India A.Swaminathan and V.K.Katiyar (NPTEL) Complex Analysis 1 / 28 Complex Analysis Module: 6:

More information

Math Spring 2014 Solutions to Assignment # 12 Completion Date: Thursday June 12, 2014

Math Spring 2014 Solutions to Assignment # 12 Completion Date: Thursday June 12, 2014 Math 3 - Spring 4 Solutions to Assignment # Completion Date: Thursday June, 4 Question. [p 67, #] Use residues to evaluate the improper integral x + ). Ans: π/4. Solution: Let fz) = below. + z ), and for

More information

2.5 (x + iy)(a + ib) = xa yb + i(xb + ya) = (az by) + i(bx + ay) = (a + ib)(x + iy). The middle = uses commutativity of real numbers.

2.5 (x + iy)(a + ib) = xa yb + i(xb + ya) = (az by) + i(bx + ay) = (a + ib)(x + iy). The middle = uses commutativity of real numbers. Complex Analysis Sketches of Solutions to Selected Exercises Homework 2..a ( 2 i) i( 2i) = 2 i i + i 2 2 = 2 i i 2 = 2i 2..b (2, 3)( 2, ) = (2( 2) ( 3), 2() + ( 3)( 2)) = (, 8) 2.2.a Re(iz) = Re(i(x +

More information

Solutions for Math 411 Assignment #10 1

Solutions for Math 411 Assignment #10 1 Solutions for Math 4 Assignment # AA. Compute the following integrals: a) + sin θ dθ cos x b) + x dx 4 Solution of a). Let z = e iθ. By the substitution = z + z ), sin θ = i z z ) and dθ = iz dz and Residue

More information

Suggested Homework Solutions

Suggested Homework Solutions Suggested Homework Solutions Chapter Fourteen Section #9: Real and Imaginary parts of /z: z = x + iy = x + iy x iy ( ) x iy = x #9: Real and Imaginary parts of ln z: + i ( y ) ln z = ln(re iθ ) = ln r

More information

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing CHAPTER 3 ELEMENTARY FUNCTIONS We consider here various elementary functions studied in calculus and define corresponding functions of a complex variable. To be specific, we define analytic functions of

More information

MA 201 Complex Analysis Lecture 6: Elementary functions

MA 201 Complex Analysis Lecture 6: Elementary functions MA 201 Complex Analysis : The Exponential Function Recall: Euler s Formula: For y R, e iy = cos y + i sin y and for any x, y R, e x+y = e x e y. Definition: If z = x + iy, then e z or exp(z) is defined

More information

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit.

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. 1. The TI-89 calculator says, reasonably enough, that x 1) 1/3 1 ) 3 = 8. lim

More information

MA 412 Complex Analysis Final Exam

MA 412 Complex Analysis Final Exam MA 4 Complex Analysis Final Exam Summer II Session, August 9, 00.. Find all the values of ( 8i) /3. Sketch the solutions. Answer: We start by writing 8i in polar form and then we ll compute the cubic root:

More information

Qualifying Exam Complex Analysis (Math 530) January 2019

Qualifying Exam Complex Analysis (Math 530) January 2019 Qualifying Exam Complex Analysis (Math 53) January 219 1. Let D be a domain. A function f : D C is antiholomorphic if for every z D the limit f(z + h) f(z) lim h h exists. Write f(z) = f(x + iy) = u(x,

More information

Math 185 Fall 2015, Sample Final Exam Solutions

Math 185 Fall 2015, Sample Final Exam Solutions Math 185 Fall 2015, Sample Final Exam Solutions Nikhil Srivastava December 12, 2015 1. True or false: (a) If f is analytic in the annulus A = {z : 1 < z < 2} then there exist functions g and h such that

More information

18.04 Practice problems exam 2, Spring 2018 Solutions

18.04 Practice problems exam 2, Spring 2018 Solutions 8.04 Practice problems exam, Spring 08 Solutions Problem. Harmonic functions (a) Show u(x, y) = x 3 3xy + 3x 3y is harmonic and find a harmonic conjugate. It s easy to compute: u x = 3x 3y + 6x, u xx =

More information

Second Midterm Exam Name: Practice Problems March 10, 2015

Second Midterm Exam Name: Practice Problems March 10, 2015 Math 160 1. Treibergs Second Midterm Exam Name: Practice Problems March 10, 015 1. Determine the singular points of the function and state why the function is analytic everywhere else: z 1 fz) = z + 1)z

More information

Math 417 Midterm Exam Solutions Friday, July 9, 2010

Math 417 Midterm Exam Solutions Friday, July 9, 2010 Math 417 Midterm Exam Solutions Friday, July 9, 010 Solve any 4 of Problems 1 6 and 1 of Problems 7 8. Write your solutions in the booklet provided. If you attempt more than 5 problems, you must clearly

More information

MATH 417 Homework 4 Instructor: D. Cabrera Due July 7. z c = e c log z (1 i) i = e i log(1 i) i log(1 i) = 4 + 2kπ + i ln ) cosz = eiz + e iz

MATH 417 Homework 4 Instructor: D. Cabrera Due July 7. z c = e c log z (1 i) i = e i log(1 i) i log(1 i) = 4 + 2kπ + i ln ) cosz = eiz + e iz MATH 47 Homework 4 Instructor: D. abrera Due July 7. Find all values of each expression below. a) i) i b) cos i) c) sin ) Solution: a) Here we use the formula z c = e c log z i) i = e i log i) The modulus

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

Complex Analysis Math 185A, Winter 2010 Final: Solutions

Complex Analysis Math 185A, Winter 2010 Final: Solutions Complex Analysis Math 85A, Winter 200 Final: Solutions. [25 pts] The Jacobian of two real-valued functions u(x, y), v(x, y) of (x, y) is defined by the determinant (u, v) J = (x, y) = u x u y v x v y.

More information

13 Maximum Modulus Principle

13 Maximum Modulus Principle 3 Maximum Modulus Principle Theorem 3. (maximum modulus principle). If f is non-constant and analytic on an open connected set Ω, then there is no point z 0 Ω such that f(z) f(z 0 ) for all z Ω. Remark

More information

MTH 3102 Complex Variables Solutions: Practice Exam 2 Mar. 26, 2017

MTH 3102 Complex Variables Solutions: Practice Exam 2 Mar. 26, 2017 Name Last name, First name): MTH 31 omplex Variables Solutions: Practice Exam Mar. 6, 17 Exam Instructions: You have 1 hour & 1 minutes to complete the exam. There are a total of 7 problems. You must show

More information

Math 411, Complex Analysis Definitions, Formulas and Theorems Winter y = sinα

Math 411, Complex Analysis Definitions, Formulas and Theorems Winter y = sinα Math 411, Complex Analysis Definitions, Formulas and Theorems Winter 014 Trigonometric Functions of Special Angles α, degrees α, radians sin α cos α tan α 0 0 0 1 0 30 π 6 45 π 4 1 3 1 3 1 y = sinα π 90,

More information

3 Elementary Functions

3 Elementary Functions 3 Elementary Functions 3.1 The Exponential Function For z = x + iy we have where Euler s formula gives The note: e z = e x e iy iy = cos y + i sin y When y = 0 we have e x the usual exponential. When z

More information

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r 2. A harmonic conjugate always exists locally: if u is a harmonic function in an open set U, then for any disk D(z 0, r) U, there is f, which is analytic in D(z 0, r) and satisfies that Re f u. Since such

More information

Complex Series (3A) Young Won Lim 8/17/13

Complex Series (3A) Young Won Lim 8/17/13 Complex Series (3A) 8/7/3 Copyright (c) 202, 203 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or

More information

Chapter 30 MSMYP1 Further Complex Variable Theory

Chapter 30 MSMYP1 Further Complex Variable Theory Chapter 30 MSMYP Further Complex Variable Theory (30.) Multifunctions A multifunction is a function that may take many values at the same point. Clearly such functions are problematic for an analytic study,

More information

Math 120 A Midterm 2 Solutions

Math 120 A Midterm 2 Solutions Math 2 A Midterm 2 Solutions Jim Agler. Find all solutions to the equations tan z = and tan z = i. Solution. Let α be a complex number. Since the equation tan z = α becomes tan z = sin z eiz e iz cos z

More information

Complex Homework Summer 2014

Complex Homework Summer 2014 omplex Homework Summer 24 Based on Brown hurchill 7th Edition June 2, 24 ontents hw, omplex Arithmetic, onjugates, Polar Form 2 2 hw2 nth roots, Domains, Functions 2 3 hw3 Images, Transformations 3 4 hw4

More information

Topic 4 Notes Jeremy Orloff

Topic 4 Notes Jeremy Orloff Topic 4 Notes Jeremy Orloff 4 auchy s integral formula 4. Introduction auchy s theorem is a big theorem which we will use almost daily from here on out. Right away it will reveal a number of interesting

More information

Synopsis of Complex Analysis. Ryan D. Reece

Synopsis of Complex Analysis. Ryan D. Reece Synopsis of Complex Analysis Ryan D. Reece December 7, 2006 Chapter Complex Numbers. The Parts of a Complex Number A complex number, z, is an ordered pair of real numbers similar to the points in the real

More information

1 Discussion on multi-valued functions

1 Discussion on multi-valued functions Week 3 notes, Math 7651 1 Discussion on multi-valued functions Log function : Note that if z is written in its polar representation: z = r e iθ, where r = z and θ = arg z, then log z log r + i θ + 2inπ

More information

1 Res z k+1 (z c), 0 =

1 Res z k+1 (z c), 0 = 32. COMPLEX ANALYSIS FOR APPLICATIONS Mock Final examination. (Monday June 7..am 2.pm) You may consult your handwritten notes, the book by Gamelin, and the solutions and handouts provided during the Quarter.

More information

6. Residue calculus. where C is any simple closed contour around z 0 and inside N ε.

6. Residue calculus. where C is any simple closed contour around z 0 and inside N ε. 6. Residue calculus Let z 0 be an isolated singularity of f(z), then there exists a certain deleted neighborhood N ε = {z : 0 < z z 0 < ε} such that f is analytic everywhere inside N ε. We define Res(f,

More information

Chapter 6: Residue Theory. Introduction. The Residue Theorem. 6.1 The Residue Theorem. 6.2 Trigonometric Integrals Over (0, 2π) Li, Yongzhao

Chapter 6: Residue Theory. Introduction. The Residue Theorem. 6.1 The Residue Theorem. 6.2 Trigonometric Integrals Over (0, 2π) Li, Yongzhao Outline Chapter 6: Residue Theory Li, Yongzhao State Key Laboratory of Integrated Services Networks, Xidian University June 7, 2009 Introduction The Residue Theorem In the previous chapters, we have seen

More information

Part IB. Complex Analysis. Year

Part IB. Complex Analysis. Year Part IB Complex Analysis Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 Paper 1, Section I 2A Complex Analysis or Complex Methods 7 (a) Show that w = log(z) is a conformal

More information

Chapter 3 Elementary Functions

Chapter 3 Elementary Functions Chapter 3 Elementary Functions In this chapter, we will consier elementary functions of a complex variable. We will introuce complex exponential, trigonometric, hyperbolic, an logarithmic functions. 23.

More information

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions.

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions. Complex Analysis Qualifying Examination 1 The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions 2 ANALYTIC FUNCTIONS:

More information

CHAPTER 4. Elementary Functions. Dr. Pulak Sahoo

CHAPTER 4. Elementary Functions. Dr. Pulak Sahoo CHAPTER 4 Elementary Functions BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University Of Kalyani West Bengal, India E-mail : sahoopulak1@gmail.com 1 Module-4: Multivalued Functions-II

More information

Complex Variables. Cathal Ormond

Complex Variables. Cathal Ormond Complex Variables Cathal Ormond Contents 1 Introduction 3 1.1 Definition: Polar Form.............................. 3 1.2 Definition: Length................................ 3 1.3 Definitions.....................................

More information

1 z n = 1. 9.(Problem) Evaluate each of the following, that is, express each in standard Cartesian form x + iy. (2 i) 3. ( 1 + i. 2 i.

1 z n = 1. 9.(Problem) Evaluate each of the following, that is, express each in standard Cartesian form x + iy. (2 i) 3. ( 1 + i. 2 i. . 5(b). (Problem) Show that z n = z n and z n = z n for n =,,... (b) Use polar form, i.e. let z = re iθ, then z n = r n = z n. Note e iθ = cos θ + i sin θ =. 9.(Problem) Evaluate each of the following,

More information

MTH 3102 Complex Variables Final Exam May 1, :30pm-5:30pm, Skurla Hall, Room 106

MTH 3102 Complex Variables Final Exam May 1, :30pm-5:30pm, Skurla Hall, Room 106 Name (Last name, First name): MTH 32 Complex Variables Final Exam May, 27 3:3pm-5:3pm, Skurla Hall, Room 6 Exam Instructions: You have hour & 5 minutes to complete the exam. There are a total of problems.

More information

Exercises involving elementary functions

Exercises involving elementary functions 017:11:0:16:4:09 c M K Warby MA3614 Complex variable methods and applications 1 Exercises involving elementary functions 1 This question was in the class test in 016/7 and was worth 5 marks a) Let z +

More information

Section 7.2. The Calculus of Complex Functions

Section 7.2. The Calculus of Complex Functions Section 7.2 The Calculus of Complex Functions In this section we will iscuss limits, continuity, ifferentiation, Taylor series in the context of functions which take on complex values. Moreover, we will

More information

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook.

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook. Phys374, Spring 2008, Prof. Ted Jacobson Department of Physics, University of Maryland Complex numbers version 5/21/08 Here are brief notes about topics covered in class on complex numbers, focusing on

More information

A REVIEW OF RESIDUES AND INTEGRATION A PROCEDURAL APPROACH

A REVIEW OF RESIDUES AND INTEGRATION A PROCEDURAL APPROACH A REVIEW OF RESIDUES AND INTEGRATION A PROEDURAL APPROAH ANDREW ARHIBALD 1. Introduction When working with complex functions, it is best to understand exactly how they work. Of course, complex functions

More information

PSI Lectures on Complex Analysis

PSI Lectures on Complex Analysis PSI Lectures on Complex Analysis Tibra Ali August 14, 14 Lecture 4 1 Evaluating integrals using the residue theorem ecall the residue theorem. If f (z) has singularities at z 1, z,..., z k which are enclosed

More information

Lecture 9. = 1+z + 2! + z3. 1 = 0, it follows that the radius of convergence of (1) is.

Lecture 9. = 1+z + 2! + z3. 1 = 0, it follows that the radius of convergence of (1) is. The Exponential Function Lecture 9 The exponential function 1 plays a central role in analysis, more so in the case of complex analysis and is going to be our first example using the power series method.

More information

Exercises involving elementary functions

Exercises involving elementary functions 017:11:0:16:4:09 c M. K. Warby MA3614 Complex variable methods and applications 1 Exercises involving elementary functions 1. This question was in the class test in 016/7 and was worth 5 marks. a) Let

More information

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic.

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic. MATH 45 SAMPLE 3 SOLUTIONS May 3, 06. (0 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic. Because f is holomorphic, u and v satisfy the Cauchy-Riemann equations:

More information

EE2007: Engineering Mathematics II Complex Analysis

EE2007: Engineering Mathematics II Complex Analysis EE2007: Engineering Mathematics II omplex Analysis Ling KV School of EEE, NTU ekvling@ntu.edu.sg V4.2: Ling KV, August 6, 2006 V4.1: Ling KV, Jul 2005 EE2007 V4.0: Ling KV, Jan 2005, EE2007 V3.1: Ling

More information

n } is convergent, lim n in+1

n } is convergent, lim n in+1 hapter 3 Series y residuos redit: This notes are 00% from chapter 6 of the book entitled A First ourse in omplex Analysis with Applications of Dennis G. Zill and Patrick D. Shanahan (2003) [2]. auchy s

More information

Mid Term-1 : Solutions to practice problems

Mid Term-1 : Solutions to practice problems Mid Term- : Solutions to practice problems 0 October, 06. Is the function fz = e z x iy holomorphic at z = 0? Give proper justification. Here we are using the notation z = x + iy. Solution: Method-. Use

More information

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE MATH 3: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE Recall the Residue Theorem: Let be a simple closed loop, traversed counterclockwise. Let f be a function that is analytic on and meromorphic inside. Then

More information

MA3111S COMPLEX ANALYSIS I

MA3111S COMPLEX ANALYSIS I MA3111S COMPLEX ANALYSIS I 1. The Algebra of Complex Numbers A complex number is an expression of the form a + ib, where a and b are real numbers. a is called the real part of a + ib and b the imaginary

More information

1. DO NOT LIFT THIS COVER PAGE UNTIL INSTRUCTED TO DO SO. Write your student number and name at the top of this page. This test has SIX pages.

1. DO NOT LIFT THIS COVER PAGE UNTIL INSTRUCTED TO DO SO. Write your student number and name at the top of this page. This test has SIX pages. Student Number Name (Printed in INK Mathematics 54 July th, 007 SIMON FRASER UNIVERSITY Department of Mathematics Faculty of Science Midterm Instructor: S. Pimentel 1. DO NOT LIFT THIS COVER PAGE UNTIL

More information

Complex Function. Chapter Complex Number. Contents

Complex Function. Chapter Complex Number. Contents Chapter 6 Complex Function Contents 6. Complex Number 3 6.2 Elementary Functions 6.3 Function of Complex Variables, Limit and Derivatives 3 6.4 Analytic Functions and Their Derivatives 8 6.5 Line Integral

More information

Lecture 16 and 17 Application to Evaluation of Real Integrals. R a (f)η(γ; a)

Lecture 16 and 17 Application to Evaluation of Real Integrals. R a (f)η(γ; a) Lecture 16 and 17 Application to Evaluation of Real Integrals Theorem 1 Residue theorem: Let Ω be a simply connected domain and A be an isolated subset of Ω. Suppose f : Ω\A C is a holomorphic function.

More information

TMA4120, Matematikk 4K, Fall Date Section Topic HW Textbook problems Suppl. Answers. Sept 12 Aug 31/

TMA4120, Matematikk 4K, Fall Date Section Topic HW Textbook problems Suppl. Answers. Sept 12 Aug 31/ TMA420, Matematikk 4K, Fall 206 LECTURE SCHEDULE AND ASSIGNMENTS Date Section Topic HW Textbook problems Suppl Answers Aug 22 6 Laplace transform 6:,7,2,2,22,23,25,26,4 A Sept 5 Aug 24/25 62-3 ODE, Heaviside

More information

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder. Lent 29 COMPLEX METHODS G. Taylor A star means optional and not necessarily harder. Conformal maps. (i) Let f(z) = az + b, with ad bc. Where in C is f conformal? cz + d (ii) Let f(z) = z +. What are the

More information

Math 715 Homework 1 Solutions

Math 715 Homework 1 Solutions . [arrier, Krook and Pearson Section 2- Exercise ] Show that no purely real function can be analytic, unless it is a constant. onsider a function f(z) = u(x, y) + iv(x, y) where z = x + iy and where u

More information

EEE 203 COMPLEX CALCULUS JANUARY 02, α 1. a t b

EEE 203 COMPLEX CALCULUS JANUARY 02, α 1. a t b Comple Analysis Parametric interval Curve 0 t z(t) ) 0 t α 0 t ( t α z α ( ) t a a t a+α 0 t a α z α 0 t a α z = z(t) γ a t b z = z( t) γ b t a = (γ, γ,..., γ n, γ n ) a t b = ( γ n, γ n,..., γ, γ ) b

More information

Lecture Notes Complex Analysis. Complex Variables and Applications 7th Edition Brown and Churchhill

Lecture Notes Complex Analysis. Complex Variables and Applications 7th Edition Brown and Churchhill Lecture Notes omplex Analysis based on omplex Variables and Applications 7th Edition Brown and hurchhill Yvette Fajardo-Lim, Ph.D. Department of Mathematics De La Salle University - Manila 2 ontents THE

More information

MATH FINAL SOLUTION

MATH FINAL SOLUTION MATH 185-4 FINAL SOLUTION 1. (8 points) Determine whether the following statements are true of false, no justification is required. (1) (1 point) Let D be a domain and let u,v : D R be two harmonic functions,

More information

SOLUTION SET IV FOR FALL z 2 1

SOLUTION SET IV FOR FALL z 2 1 SOLUTION SET IV FOR 8.75 FALL 4.. Residues... Functions of a Complex Variable In the following, I use the notation Res zz f(z) Res(z ) Res[f(z), z ], where Res is the residue of f(z) at (the isolated singularity)

More information

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India NPTEL web course on omplex Analysis A. Swaminathan I.I.T. Roorkee, India and V.K. Katiyar I.I.T. Roorkee, India A.Swaminathan and V.K.Katiyar (NPTEL) omplex Analysis 1 / 18 omplex Analysis Module: 6: Residue

More information

MATH243 First Semester 2013/14. Exercises 1

MATH243 First Semester 2013/14. Exercises 1 Complex Functions Dr Anna Pratoussevitch MATH43 First Semester 013/14 Exercises 1 Submit your solutions to questions marked with [HW] in the lecture on Monday 30/09/013 Questions or parts of questions

More information

18.04 Practice problems exam 1, Spring 2018 Solutions

18.04 Practice problems exam 1, Spring 2018 Solutions 8.4 Practice problems exam, Spring 8 Solutions Problem. omplex arithmetic (a) Find the real and imaginary part of z + z. (b) Solve z 4 i =. (c) Find all possible values of i. (d) Express cos(4x) in terms

More information

= 2πi Res. z=0 z (1 z) z 5. z=0. = 2πi 4 5z

= 2πi Res. z=0 z (1 z) z 5. z=0. = 2πi 4 5z MTH30 Spring 07 HW Assignment 7: From [B4]: hap. 6: Sec. 77, #3, 7; Sec. 79, #, (a); Sec. 8, #, 3, 5, Sec. 83, #5,,. The due date for this assignment is 04/5/7. Sec. 77, #3. In the example in Sec. 76,

More information

PROBLEM SET 3 FYS3140

PROBLEM SET 3 FYS3140 PROBLEM SET FYS40 Problem. (Cauchy s theorem and integral formula) Cauchy s integral formula f(a) = πi z a dz πi f(a) a in z a dz = 0 otherwise we solve the following problems by comparing the integrals

More information

Fourth Week: Lectures 10-12

Fourth Week: Lectures 10-12 Fourth Week: Lectures 10-12 Lecture 10 The fact that a power series p of positive radius of convergence defines a function inside its disc of convergence via substitution is something that we cannot ignore

More information

INTEGRATION WORKSHOP 2004 COMPLEX ANALYSIS EXERCISES

INTEGRATION WORKSHOP 2004 COMPLEX ANALYSIS EXERCISES INTEGRATION WORKSHOP 2004 COMPLEX ANALYSIS EXERCISES PHILIP FOTH 1. Cauchy s Formula and Cauchy s Theorem 1. Suppose that γ is a piecewise smooth positively ( counterclockwise ) oriented simple closed

More information

Complex Analysis Qualifying Exam Solutions

Complex Analysis Qualifying Exam Solutions Complex Analysis Qualifying Exam Solutions May, 04 Part.. Let log z be the principal branch of the logarithm defined on G = {z C z (, 0]}. Show that if t > 0, then the equation log z = t has exactly one

More information

Complex Variables & Integral Transforms

Complex Variables & Integral Transforms Complex Variables & Integral Transforms Notes taken by J.Pearson, from a S4 course at the U.Manchester. Lecture delivered by Dr.W.Parnell July 9, 007 Contents 1 Complex Variables 3 1.1 General Relations

More information

Solutions to Selected Exercises. Complex Analysis with Applications by N. Asmar and L. Grafakos

Solutions to Selected Exercises. Complex Analysis with Applications by N. Asmar and L. Grafakos Solutions to Selected Exercises in Complex Analysis with Applications by N. Asmar and L. Grafakos Section. Complex Numbers Solutions to Exercises.. We have i + i. So a and b. 5. We have So a 3 and b 4.

More information

The Calculus of Residues

The Calculus of Residues hapter 7 The alculus of Residues If fz) has a pole of order m at z = z, it can be written as Eq. 6.7), or fz) = φz) = a z z ) + a z z ) +... + a m z z ) m, 7.) where φz) is analytic in the neighborhood

More information

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part II

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part II NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part II Chapter 2 Further properties of analytic functions 21 Local/Global behavior of analytic functions;

More information

Types of Real Integrals

Types of Real Integrals Math B: Complex Variables Types of Real Integrals p(x) I. Integrals of the form P.V. dx where p(x) and q(x) are polynomials and q(x) q(x) has no eros (for < x < ) and evaluate its integral along the fol-

More information

Complex Analysis for Applications, Math 132/1, Home Work Solutions-II Masamichi Takesaki

Complex Analysis for Applications, Math 132/1, Home Work Solutions-II Masamichi Takesaki Page 48, Problem. Complex Analysis for Applications, Math 3/, Home Work Solutions-II Masamichi Takesaki Γ Γ Γ 0 Page 9, Problem. If two contours Γ 0 and Γ are respectively shrunkable to single points in

More information

LECTURE-13 : GENERALIZED CAUCHY S THEOREM

LECTURE-13 : GENERALIZED CAUCHY S THEOREM LECTURE-3 : GENERALIZED CAUCHY S THEOREM VED V. DATAR The aim of this lecture to prove a general form of Cauchy s theorem applicable to multiply connected domains. We end with computations of some real

More information

u = 0; thus v = 0 (and v = 0). Consequently,

u = 0; thus v = 0 (and v = 0). Consequently, MAT40 - MANDATORY ASSIGNMENT #, FALL 00; FASIT REMINDER: The assignment must be handed in before 4:30 on Thursday October 8 at the Department of Mathematics, in the 7th floor of Niels Henrik Abels hus,

More information

Complex varibles:contour integration examples

Complex varibles:contour integration examples omple varibles:ontour integration eamples 1 Problem 1 onsider the problem d 2 + 1 If we take the substitution = tan θ then d = sec 2 θdθ, which leads to dθ = π sec 2 θ tan 2 θ + 1 dθ Net we consider the

More information

i>clicker Questions Phys 101 W2013

i>clicker Questions Phys 101 W2013 i>clicker Questions Phys 101 W2013 Set your frequency to AC. Hold down the power button til you see blinking. Then hit A, followed by C. Official standard is i>clicker2 (but original i>clicker will work

More information

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17.

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17. MTH0 Spring 07 HW Assignment : Sec. 6: #6,7; Sec. : #5,7; Sec. 8: #8; Sec. 0: # The due date for this assignment is //7. Sec. 6: #6. Use results in Sec. to verify that the function g z = ln r + iθ r >

More information

Introduction to Complex Analysis

Introduction to Complex Analysis Introduction to Complex Analysis George Voutsadakis Mathematics and Computer Science Lake Superior State University LSSU Math 43 George Voutsadakis (LSSU) Complex Analysis October 204 / 58 Outline Consequences

More information

Complex Analysis Topic: Singularities

Complex Analysis Topic: Singularities Complex Analysis Topic: Singularities MA201 Mathematics III Department of Mathematics IIT Guwahati August 2015 Complex Analysis Topic: Singularities 1 / 15 Zeroes of Analytic Functions A point z 0 C is

More information

Math Spring 2014 Solutions to Assignment # 6 Completion Date: Friday May 23, 2014

Math Spring 2014 Solutions to Assignment # 6 Completion Date: Friday May 23, 2014 Math 11 - Spring 014 Solutions to Assignment # 6 Completion Date: Friday May, 014 Question 1. [p 109, #9] With the aid of expressions 15) 16) in Sec. 4 for sin z cos z, namely, sin z = sin x + sinh y cos

More information

EE2 Mathematics : Complex Variables

EE2 Mathematics : Complex Variables EE Mathematics : omplex Variables J. D. Gibbon (Professor J. D Gibbon 1, Dept of Mathematics) j.d.gibbon@ic.ac.uk http://www.imperial.ac.uk/ jdg These notes are not identical word-for-word with my lectures

More information

Man will occasionally stumble over the truth, but most of the time he will pick himself up and continue on.

Man will occasionally stumble over the truth, but most of the time he will pick himself up and continue on. hapter 3 The Residue Theorem Man will occasionally stumble over the truth, but most of the time he will pick himself up and continue on. - Winston hurchill 3. The Residue Theorem We will find that many

More information

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16 Physics 307 Mathematical Physics Luis Anchordoqui 1 Bibliography L. A. Anchordoqui and T. C. Paul, ``Mathematical Models of Physics Problems (Nova Publishers, 2013) G. F. D. Duff and D. Naylor, ``Differential

More information