Math 120 A Midterm 2 Solutions

Size: px
Start display at page:

Download "Math 120 A Midterm 2 Solutions"

Transcription

1 Math 2 A Midterm 2 Solutions Jim Agler. Find all solutions to the equations tan z = and tan z = i. Solution. Let α be a complex number. Since the equation tan z = α becomes tan z = sin z eiz e iz cos z = 2i e iz +e iz 2 = i e iz e iz e iz + e iz, or equivalently, Multiplying by e iz gives or equivalently, Hence, tan z = α if and only if When α = we have from () that i e iz e iz = α, e iz + e iz e iz e iz = iα(e iz + e iz ). e 2iz = iα(e 2iz + ), ( iα)e 2iz = + iα. e 2iz = + iα iα. () e 2iz = + i i = i which leads to 2iz = (π/2)i + 2nπi. Therefore, tan z = has the solutions z = π 4 + nπ, n =, ±, ±2,.... When α = i, () implies that e 2iz = + i i i i =.

2 Therefore, tan z = i does not have any solutions. 2. Let be the boundary of the triangle with vertices,, and i, oriented in the counterclockwise direction. (i) ompute ez dz directly from the definition. (ii) arefully state a theorem that gives the answer to part (i) without having to do any computation. Solution. (i) For z, z 2 a pair of points in, let [z, z 2 ] denote the contour parametrized by z(t) = z + t(z 2 z ), t. We have that e iz dz = e iz dz + e iz dz + e iz dz. [,] [,i] [i, ] Furthermore, e z dz = [,] e ( +2t) 2 dt = 2e e 2t dt = 2e ( 2 ) e2t = e (e 2 ) = (e e ), 2

3 e z dz = [,i] e (+(i )t) (i ) dt = (i )e e (i )t dt = (i )e ( i ) e(i )t = e (e (i ) ) = e i e, and e z dz = [i, ] e (i (+i)t) ( ( + i)) dt = ( + i)e i e (+i)t dt = ( + i)e i ( + i ) e (+i)t = e i (e (+i) ) Therefore, = e e i. e iz dz = (e e ) + (e i e) + (e e i ) =. Remark: Note that instead of computing the above 3 integrals separately, one could save a bit of time by fixing a pair of complex numbers z and z 2 and then deriving the formula, e iz dz = e iz 2 e iz, [z,z 2 ] which implies each of the above 3 integrals quickly (cf. Midterm 2). Problem #3 on Practice 3

4 (ii) auchy s Theorem asserts that if is a simple closed contour and f is a function that is analytic on and inside, then f(z) dz =. onsequently, since f(z) = ez is analytic on and inside the triangle with vertices,, and i (indeed, f is analytic on the entire plane), it follows from auchy s Theorem that eiz dz =. 3. Let R denote the upper half of the circle z = R, parametrized in the counterclockwise direction. Show that lim dz =. R R z 3 + Solution. R is parametrized by z(t) = Re it, t π. Therefore, π R z 3 + dz = Re it Log(Re it ) ire it dt. R 3 e it + Now, if t π Re it Log(Re it ) = R ln R + it R(ln R + π) and R 3 e it + R 3. Therefore, R z 3 + dz = π Re it Log(Re it ) R 3 e it + ire it dt π π Reit Log(Re it ) R 3 e it + R(ln R + π) R dt R 3 ire it dt But = π R2 (ln R + π). R 3 π R2 (ln R + π) R 3 = π ln R R + π R R 3 4

5 as R. Therefore, lim R R z 3 + dz =. does not have an antiderivative on the punc- 4. Give two different proofs that z tured plane D = {z z }. Proof. We argue by contradiction. Accordingly, assume that /z has an antiderivative on D. By the Antiderivative Theorem, it follows that if is a closed contour in D, then /z dz =. But if is the closed contour in D defined by z(t) = eit, t 2π, /z dz = 2π e it ieit dt 2π = i dt = 2πi. This contradiction implies that /z does not have an antiderivative on D. Proof 2. We again argue by contradiction. Suppose that F is an antiderivative for /z on D, i.e., F is analytic on D and F (z) = /z for all z D. Since F is differentiable on D, in particular, F is continuous on D. (2) Now let D = \ {x R x }, the set of complex numbers with the negative real axis removed. Both f(z) and Log z are analytic on D and as f (z) = /z = d dz Log z for all z D, it follows (cf. Theorem on pg. 73 of the text) that there exists a constant c such that Log z = F (z) + c for all z D. (3) Now, (2) implies that lim F θ π (eiθ ) = lim F θ π+ (eiθ ). 5

6 Hence, (3) implies that But while lim Log θ π (eiθ ) = lim Log θ π+ (eiθ ). lim Log θ π (eiθ ) = π, lim Log θ π+ (eiθ ) = π. This contradiction implies that /z cannot have an antiderivative on D. Proof 3. We again argue by contradiction. Suppose that F is an antiderivative for /z on D, i.e., F is analytic on D and F (z) = /z for all z D. If we let F (z) = u(r, θ) + iv(r, θ), then u and v are well defined real valued functions on r >, θ R, that for each fixed r are periodic in θ with period 2π. Furthermore (cf. Theorem on page 69 of the text), holds as well, for all r and θ, the auchy-riemann equations, ru r = v θ and u θ = rv r hold, and in addition, the formula F (z) = e iθ (u r + iv r ) (4) holds as well. Since F (z) = /z = /(re iθ ), we see that (4) implies that u r + iv r = r. Therefore, u r = /r and v r =, and there exist functions a(θ) and b(θ) such that But since ru r = v θ, we have that u(r, θ) = ln r + a(θ) and v(r, θ) = b(θ). b (θ) = v θ (r, θ) = ru r (r, θ) = r(/r) = for all θ. This implies that there exists a constant b such that b(θ) = θ + b for all θ. onsequently, v(r, θ) = b(θ) = θ + b, contradicting the fact that v is periodic. This contradiction implies that /z cannot have an antiderivative on D. 6

MATH 417 Homework 4 Instructor: D. Cabrera Due July 7. z c = e c log z (1 i) i = e i log(1 i) i log(1 i) = 4 + 2kπ + i ln ) cosz = eiz + e iz

MATH 417 Homework 4 Instructor: D. Cabrera Due July 7. z c = e c log z (1 i) i = e i log(1 i) i log(1 i) = 4 + 2kπ + i ln ) cosz = eiz + e iz MATH 47 Homework 4 Instructor: D. abrera Due July 7. Find all values of each expression below. a) i) i b) cos i) c) sin ) Solution: a) Here we use the formula z c = e c log z i) i = e i log i) The modulus

More information

Second Midterm Exam Name: Practice Problems March 10, 2015

Second Midterm Exam Name: Practice Problems March 10, 2015 Math 160 1. Treibergs Second Midterm Exam Name: Practice Problems March 10, 015 1. Determine the singular points of the function and state why the function is analytic everywhere else: z 1 fz) = z + 1)z

More information

Math 421 Midterm 2 review questions

Math 421 Midterm 2 review questions Math 42 Midterm 2 review questions Paul Hacking November 7, 205 () Let U be an open set and f : U a continuous function. Let be a smooth curve contained in U, with endpoints α and β, oriented from α to

More information

Math 417 Midterm Exam Solutions Friday, July 9, 2010

Math 417 Midterm Exam Solutions Friday, July 9, 2010 Math 417 Midterm Exam Solutions Friday, July 9, 010 Solve any 4 of Problems 1 6 and 1 of Problems 7 8. Write your solutions in the booklet provided. If you attempt more than 5 problems, you must clearly

More information

MATH 106 HOMEWORK 4 SOLUTIONS. sin(2z) = 2 sin z cos z. (e zi + e zi ) 2. = 2 (ezi e zi )

MATH 106 HOMEWORK 4 SOLUTIONS. sin(2z) = 2 sin z cos z. (e zi + e zi ) 2. = 2 (ezi e zi ) MATH 16 HOMEWORK 4 SOLUTIONS 1 Show directly from the definition that sin(z) = ezi e zi i sin(z) = sin z cos z = (ezi e zi ) i (e zi + e zi ) = sin z cos z Write the following complex numbers in standard

More information

MTH 3102 Complex Variables Solutions: Practice Exam 2 Mar. 26, 2017

MTH 3102 Complex Variables Solutions: Practice Exam 2 Mar. 26, 2017 Name Last name, First name): MTH 31 omplex Variables Solutions: Practice Exam Mar. 6, 17 Exam Instructions: You have 1 hour & 1 minutes to complete the exam. There are a total of 7 problems. You must show

More information

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014 Math 3 - Spring 4 Solutions to Assignment # 8 ompletion Date: Friday May 3, 4 Question. [p 49, #] By finding an antiderivative, evaluate each of these integrals, where the path is any contour between the

More information

EE2007 Tutorial 7 Complex Numbers, Complex Functions, Limits and Continuity

EE2007 Tutorial 7 Complex Numbers, Complex Functions, Limits and Continuity EE27 Tutorial 7 omplex Numbers, omplex Functions, Limits and ontinuity Exercise 1. These are elementary exercises designed as a self-test for you to determine if you if have the necessary pre-requisite

More information

Solution for Final Review Problems 1

Solution for Final Review Problems 1 Solution for Final Review Problems Final time and location: Dec. Gymnasium, Rows 23, 25 5, 2, Wednesday, 9-2am, Main ) Let fz) be the principal branch of z i. a) Find f + i). b) Show that fz )fz 2 ) λfz

More information

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17.

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17. MTH0 Spring 07 HW Assignment : Sec. 6: #6,7; Sec. : #5,7; Sec. 8: #8; Sec. 0: # The due date for this assignment is //7. Sec. 6: #6. Use results in Sec. to verify that the function g z = ln r + iθ r >

More information

1 z n = 1. 9.(Problem) Evaluate each of the following, that is, express each in standard Cartesian form x + iy. (2 i) 3. ( 1 + i. 2 i.

1 z n = 1. 9.(Problem) Evaluate each of the following, that is, express each in standard Cartesian form x + iy. (2 i) 3. ( 1 + i. 2 i. . 5(b). (Problem) Show that z n = z n and z n = z n for n =,,... (b) Use polar form, i.e. let z = re iθ, then z n = r n = z n. Note e iθ = cos θ + i sin θ =. 9.(Problem) Evaluate each of the following,

More information

3 Elementary Functions

3 Elementary Functions 3 Elementary Functions 3.1 The Exponential Function For z = x + iy we have where Euler s formula gives The note: e z = e x e iy iy = cos y + i sin y When y = 0 we have e x the usual exponential. When z

More information

Syllabus: for Complex variables

Syllabus: for Complex variables EE-2020, Spring 2009 p. 1/42 Syllabus: for omplex variables 1. Midterm, (4/27). 2. Introduction to Numerical PDE (4/30): [Ref.num]. 3. omplex variables: [Textbook]h.13-h.18. omplex numbers and functions,

More information

Complex Homework Summer 2014

Complex Homework Summer 2014 omplex Homework Summer 24 Based on Brown hurchill 7th Edition June 2, 24 ontents hw, omplex Arithmetic, onjugates, Polar Form 2 2 hw2 nth roots, Domains, Functions 2 3 hw3 Images, Transformations 3 4 hw4

More information

Complex Variables...Review Problems (Residue Calculus Comments)...Fall Initial Draft

Complex Variables...Review Problems (Residue Calculus Comments)...Fall Initial Draft Complex Variables........Review Problems Residue Calculus Comments)........Fall 22 Initial Draft ) Show that the singular point of fz) is a pole; determine its order m and its residue B: a) e 2z )/z 4,

More information

Topic 4 Notes Jeremy Orloff

Topic 4 Notes Jeremy Orloff Topic 4 Notes Jeremy Orloff 4 auchy s integral formula 4. Introduction auchy s theorem is a big theorem which we will use almost daily from here on out. Right away it will reveal a number of interesting

More information

MA 201 Complex Analysis Lecture 6: Elementary functions

MA 201 Complex Analysis Lecture 6: Elementary functions MA 201 Complex Analysis : The Exponential Function Recall: Euler s Formula: For y R, e iy = cos y + i sin y and for any x, y R, e x+y = e x e y. Definition: If z = x + iy, then e z or exp(z) is defined

More information

Math 220A Homework 4 Solutions

Math 220A Homework 4 Solutions Math 220A Homework 4 Solutions Jim Agler 26. (# pg. 73 Conway). Prove the assertion made in Proposition 2. (pg. 68) that g is continuous. Solution. We wish to show that if g : [a, b] [c, d] C is a continuous

More information

EE2007: Engineering Mathematics II Complex Analysis

EE2007: Engineering Mathematics II Complex Analysis EE2007: Engineering Mathematics II omplex Analysis Ling KV School of EEE, NTU ekvling@ntu.edu.sg V4.2: Ling KV, August 6, 2006 V4.1: Ling KV, Jul 2005 EE2007 V4.0: Ling KV, Jan 2005, EE2007 V3.1: Ling

More information

18.04 Practice problems exam 1, Spring 2018 Solutions

18.04 Practice problems exam 1, Spring 2018 Solutions 8.4 Practice problems exam, Spring 8 Solutions Problem. omplex arithmetic (a) Find the real and imaginary part of z + z. (b) Solve z 4 i =. (c) Find all possible values of i. (d) Express cos(4x) in terms

More information

MTH 3102 Complex Variables Final Exam May 1, :30pm-5:30pm, Skurla Hall, Room 106

MTH 3102 Complex Variables Final Exam May 1, :30pm-5:30pm, Skurla Hall, Room 106 Name (Last name, First name): MTH 02 omplex Variables Final Exam May, 207 :0pm-5:0pm, Skurla Hall, Room 06 Exam Instructions: You have hour & 50 minutes to complete the exam. There are a total of problems.

More information

Math 715 Homework 1 Solutions

Math 715 Homework 1 Solutions . [arrier, Krook and Pearson Section 2- Exercise ] Show that no purely real function can be analytic, unless it is a constant. onsider a function f(z) = u(x, y) + iv(x, y) where z = x + iy and where u

More information

III.2. Analytic Functions

III.2. Analytic Functions III.2. Analytic Functions 1 III.2. Analytic Functions Recall. When you hear analytic function, think power series representation! Definition. If G is an open set in C and f : G C, then f is differentiable

More information

3 Contour integrals and Cauchy s Theorem

3 Contour integrals and Cauchy s Theorem 3 ontour integrals and auchy s Theorem 3. Line integrals of complex functions Our goal here will be to discuss integration of complex functions = u + iv, with particular regard to analytic functions. Of

More information

Cauchy s Integral Formula for derivatives of functions (part 2)

Cauchy s Integral Formula for derivatives of functions (part 2) auchy s Integral Formula DEPARTMENT OF ELETRIAL AND OMPUTER ENGINEERING Engineering Math EEE 3640 1 auchy s Integral Formula DEPARTMENT OF ELETRIAL AND OMPUTER ENGINEERING Statement of the formula (without

More information

Physics 2400 Midterm I Sample March 2017

Physics 2400 Midterm I Sample March 2017 Physics 4 Midterm I Sample March 17 Question: 1 3 4 5 Total Points: 1 1 1 1 6 Gamma function. Leibniz s rule. 1. (1 points) Find positive x that minimizes the value of the following integral I(x) = x+1

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x + iy, x,y

More information

Math Spring 2014 Solutions to Assignment # 12 Completion Date: Thursday June 12, 2014

Math Spring 2014 Solutions to Assignment # 12 Completion Date: Thursday June 12, 2014 Math 3 - Spring 4 Solutions to Assignment # Completion Date: Thursday June, 4 Question. [p 67, #] Use residues to evaluate the improper integral x + ). Ans: π/4. Solution: Let fz) = below. + z ), and for

More information

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India NPTEL web course on Complex Analysis A. Swaminathan I.I.T. Roorkee, India and V.K. Katiyar I.I.T. Roorkee, India A.Swaminathan and V.K.Katiyar (NPTEL) Complex Analysis 1 / 28 Complex Analysis Module: 6:

More information

1 Discussion on multi-valued functions

1 Discussion on multi-valued functions Week 3 notes, Math 7651 1 Discussion on multi-valued functions Log function : Note that if z is written in its polar representation: z = r e iθ, where r = z and θ = arg z, then log z log r + i θ + 2inπ

More information

Functions 45. Integrals, and Contours 55

Functions 45. Integrals, and Contours 55 MATH 43 COMPLEX ANALYSIS TRISTAN PHILLIPS These are notes from an introduction to complex analysis at the undergraduate level as taught by Paul Taylor at Shippensburg University during the Fall 26 semester.

More information

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part I

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part I NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Comple Analsis II Lecture Notes Part I Chapter 1 Preliminar results/review of Comple Analsis I These are more detailed notes for the results

More information

1. DO NOT LIFT THIS COVER PAGE UNTIL INSTRUCTED TO DO SO. Write your student number and name at the top of this page. This test has SIX pages.

1. DO NOT LIFT THIS COVER PAGE UNTIL INSTRUCTED TO DO SO. Write your student number and name at the top of this page. This test has SIX pages. Student Number Name (Printed in INK Mathematics 54 July th, 007 SIMON FRASER UNIVERSITY Department of Mathematics Faculty of Science Midterm Instructor: S. Pimentel 1. DO NOT LIFT THIS COVER PAGE UNTIL

More information

Math 411, Complex Analysis Definitions, Formulas and Theorems Winter y = sinα

Math 411, Complex Analysis Definitions, Formulas and Theorems Winter y = sinα Math 411, Complex Analysis Definitions, Formulas and Theorems Winter 014 Trigonometric Functions of Special Angles α, degrees α, radians sin α cos α tan α 0 0 0 1 0 30 π 6 45 π 4 1 3 1 3 1 y = sinα π 90,

More information

Complex Variables. Cathal Ormond

Complex Variables. Cathal Ormond Complex Variables Cathal Ormond Contents 1 Introduction 3 1.1 Definition: Polar Form.............................. 3 1.2 Definition: Length................................ 3 1.3 Definitions.....................................

More information

Chapter II. Complex Variables

Chapter II. Complex Variables hapter II. omplex Variables Dates: October 2, 4, 7, 2002. These three lectures will cover the following sections of the text book by Keener. 6.1. omplex valued functions and branch cuts; 6.2.1. Differentiation

More information

Homework 27. Homework 28. Homework 29. Homework 30. Prof. Girardi, Math 703, Fall 2012 Homework: Define f : C C and u, v : R 2 R by

Homework 27. Homework 28. Homework 29. Homework 30. Prof. Girardi, Math 703, Fall 2012 Homework: Define f : C C and u, v : R 2 R by Homework 27 Define f : C C and u, v : R 2 R by f(z) := xy where x := Re z, y := Im z u(x, y) = Re f(x + iy) v(x, y) = Im f(x + iy). Show that 1. u and v satisfies the Cauchy Riemann equations at (x, y)

More information

CHAPTER 10. Contour Integration. Dr. Pulak Sahoo

CHAPTER 10. Contour Integration. Dr. Pulak Sahoo HAPTER ontour Integration BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University of Kalyani West Bengal, Inia E-mail : sahoopulak@gmail.com Moule-: ontour Integration-I Introuction

More information

Suggested Homework Solutions

Suggested Homework Solutions Suggested Homework Solutions Chapter Fourteen Section #9: Real and Imaginary parts of /z: z = x + iy = x + iy x iy ( ) x iy = x #9: Real and Imaginary parts of ln z: + i ( y ) ln z = ln(re iθ ) = ln r

More information

1 Sum, Product, Modulus, Conjugate,

1 Sum, Product, Modulus, Conjugate, Sum, Product, Modulus, onjugate, Definition.. Given (, y) R 2, a comple number z is an epression of the form z = + iy. (.) Given a comple number of the form z = + iy we define Re z =, the real part of

More information

z = x + iy ; x, y R rectangular or Cartesian form z = re iθ ; r, θ R polar form. (1)

z = x + iy ; x, y R rectangular or Cartesian form z = re iθ ; r, θ R polar form. (1) 11 Complex numbers Read: Boas Ch. Represent an arb. complex number z C in one of two ways: z = x + iy ; x, y R rectangular or Cartesian form z = re iθ ; r, θ R polar form. (1) Here i is 1, engineers call

More information

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing CHAPTER 3 ELEMENTARY FUNCTIONS We consider here various elementary functions studied in calculus and define corresponding functions of a complex variable. To be specific, we define analytic functions of

More information

13 Maximum Modulus Principle

13 Maximum Modulus Principle 3 Maximum Modulus Principle Theorem 3. (maximum modulus principle). If f is non-constant and analytic on an open connected set Ω, then there is no point z 0 Ω such that f(z) f(z 0 ) for all z Ω. Remark

More information

Complex Analysis Math 185A, Winter 2010 Final: Solutions

Complex Analysis Math 185A, Winter 2010 Final: Solutions Complex Analysis Math 85A, Winter 200 Final: Solutions. [25 pts] The Jacobian of two real-valued functions u(x, y), v(x, y) of (x, y) is defined by the determinant (u, v) J = (x, y) = u x u y v x v y.

More information

MA424, S13 HW #6: Homework Problems 1. Answer the following, showing all work clearly and neatly. ONLY EXACT VALUES WILL BE ACCEPTED.

MA424, S13 HW #6: Homework Problems 1. Answer the following, showing all work clearly and neatly. ONLY EXACT VALUES WILL BE ACCEPTED. MA424, S13 HW #6: 44-47 Homework Problems 1 Answer the following, showing all work clearly and neatly. ONLY EXACT VALUES WILL BE ACCEPTED. NOTATION: Recall that C r (z) is the positively oriented circle

More information

INTRODUCTION TO COMPLEX ANALYSIS W W L CHEN

INTRODUCTION TO COMPLEX ANALYSIS W W L CHEN INTRODUTION TO OMPLEX ANALYSIS W W L HEN c W W L hen, 986, 2008. This chapter originates from material used by the author at Imperial ollege, University of London, between 98 and 990. It is available free

More information

Math 312 Fall 2013 Final Exam Solutions (2 + i)(i + 1) = (i 1)(i + 1) = 2i i2 + i. i 2 1

Math 312 Fall 2013 Final Exam Solutions (2 + i)(i + 1) = (i 1)(i + 1) = 2i i2 + i. i 2 1 . (a) We have 2 + i i Math 32 Fall 203 Final Exam Solutions (2 + i)(i + ) (i )(i + ) 2i + 2 + i2 + i i 2 3i + 2 2 3 2 i.. (b) Note that + i 2e iπ/4 so that Arg( + i) π/4. This implies 2 log 2 + π 4 i..

More information

Residues and Contour Integration Problems

Residues and Contour Integration Problems Residues and ontour Integration Problems lassify the singularity of fz at the indicated point.. fz = cotz at z =. Ans. Simple pole. Solution. The test for a simple pole at z = is that lim z z cotz exists

More information

2.5 (x + iy)(a + ib) = xa yb + i(xb + ya) = (az by) + i(bx + ay) = (a + ib)(x + iy). The middle = uses commutativity of real numbers.

2.5 (x + iy)(a + ib) = xa yb + i(xb + ya) = (az by) + i(bx + ay) = (a + ib)(x + iy). The middle = uses commutativity of real numbers. Complex Analysis Sketches of Solutions to Selected Exercises Homework 2..a ( 2 i) i( 2i) = 2 i i + i 2 2 = 2 i i 2 = 2i 2..b (2, 3)( 2, ) = (2( 2) ( 3), 2() + ( 3)( 2)) = (, 8) 2.2.a Re(iz) = Re(i(x +

More information

EEE 203 COMPLEX CALCULUS JANUARY 02, α 1. a t b

EEE 203 COMPLEX CALCULUS JANUARY 02, α 1. a t b Comple Analysis Parametric interval Curve 0 t z(t) ) 0 t α 0 t ( t α z α ( ) t a a t a+α 0 t a α z α 0 t a α z = z(t) γ a t b z = z( t) γ b t a = (γ, γ,..., γ n, γ n ) a t b = ( γ n, γ n,..., γ, γ ) b

More information

* Problems may be difficult. (2) Given three distinct complex numbers α, β, γ. Show that they are collinear iff Im(αβ + βγ + γα) =0.

* Problems may be difficult. (2) Given three distinct complex numbers α, β, γ. Show that they are collinear iff Im(αβ + βγ + γα) =0. Practice Exercise Set I * Problems may be difficult. ( Describe the sets whose points satisfy the following relations (a + = (b + < (c = (d arg + i = π 3 ( Given three distinct complex numbers α, β, γ.

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x+iy, x,y R:

More information

Math 185 Fall 2015, Sample Final Exam Solutions

Math 185 Fall 2015, Sample Final Exam Solutions Math 185 Fall 2015, Sample Final Exam Solutions Nikhil Srivastava December 12, 2015 1. True or false: (a) If f is analytic in the annulus A = {z : 1 < z < 2} then there exist functions g and h such that

More information

Complex Analysis Qualifying Exam Solutions

Complex Analysis Qualifying Exam Solutions Complex Analysis Qualifying Exam Solutions May, 04 Part.. Let log z be the principal branch of the logarithm defined on G = {z C z (, 0]}. Show that if t > 0, then the equation log z = t has exactly one

More information

Ma 416: Complex Variables Solutions to Homework Assignment 6

Ma 416: Complex Variables Solutions to Homework Assignment 6 Ma 46: omplex Variables Solutions to Homework Assignment 6 Prof. Wickerhauser Due Thursday, October th, 2 Read R. P. Boas, nvitation to omplex Analysis, hapter 2, sections 9A.. Evaluate the definite integral

More information

Mid Term-1 : Solutions to practice problems

Mid Term-1 : Solutions to practice problems Mid Term- : Solutions to practice problems 0 October, 06. Is the function fz = e z x iy holomorphic at z = 0? Give proper justification. Here we are using the notation z = x + iy. Solution: Method-. Use

More information

Math Final Exam.

Math Final Exam. Math 106 - Final Exam. This is a closed book exam. No calculators are allowed. The exam consists of 8 questions worth 100 points. Good luck! Name: Acknowledgment and acceptance of honor code: Signature:

More information

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic.

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic. MATH 45 SAMPLE 3 SOLUTIONS May 3, 06. (0 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic. Because f is holomorphic, u and v satisfy the Cauchy-Riemann equations:

More information

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit.

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. 1. The TI-89 calculator says, reasonably enough, that x 1) 1/3 1 ) 3 = 8. lim

More information

Lecture Notes Complex Analysis. Complex Variables and Applications 7th Edition Brown and Churchhill

Lecture Notes Complex Analysis. Complex Variables and Applications 7th Edition Brown and Churchhill Lecture Notes omplex Analysis based on omplex Variables and Applications 7th Edition Brown and hurchhill Yvette Fajardo-Lim, Ph.D. Department of Mathematics De La Salle University - Manila 2 ontents THE

More information

cauchy s integral theorem: examples

cauchy s integral theorem: examples Physics 4 Spring 17 cauchy s integral theorem: examples lecture notes, spring semester 17 http://www.phys.uconn.edu/ rozman/courses/p4_17s/ Last modified: April 6, 17 Cauchy s theorem states that if f

More information

Handout 1 - Contour Integration

Handout 1 - Contour Integration Handout 1 - Contour Integration Will Matern September 19, 214 Abstract The purpose of this handout is to summarize what you need to know to solve the contour integration problems you will see in SBE 3.

More information

Solutions for Math 411 Assignment #10 1

Solutions for Math 411 Assignment #10 1 Solutions for Math 4 Assignment # AA. Compute the following integrals: a) + sin θ dθ cos x b) + x dx 4 Solution of a). Let z = e iθ. By the substitution = z + z ), sin θ = i z z ) and dθ = iz dz and Residue

More information

FINAL EXAM { SOLUTION

FINAL EXAM { SOLUTION United Arab Emirates University ollege of Sciences Department of Mathematical Sciences FINAL EXAM { SOLUTION omplex Analysis I MATH 5 SETION 0 RN 56 9:0 { 0:45 on Monday & Wednesday Date: Wednesday, January

More information

Chapter 9. Analytic Continuation. 9.1 Analytic Continuation. For every complex problem, there is a solution that is simple, neat, and wrong.

Chapter 9. Analytic Continuation. 9.1 Analytic Continuation. For every complex problem, there is a solution that is simple, neat, and wrong. Chapter 9 Analytic Continuation For every complex problem, there is a solution that is simple, neat, and wrong. - H. L. Mencken 9.1 Analytic Continuation Suppose there is a function, f 1 (z) that is analytic

More information

Midterm Examination #2

Midterm Examination #2 Anthony Austin MATH 47 April, 9 AMDG Midterm Examination #. The integrand has poles of order whenever 4, which occurs when is equal to i, i,, or. Since a R, a >, the only one of these poles that lies inside

More information

Math Spring 2014 Solutions to Assignment # 6 Completion Date: Friday May 23, 2014

Math Spring 2014 Solutions to Assignment # 6 Completion Date: Friday May 23, 2014 Math 11 - Spring 014 Solutions to Assignment # 6 Completion Date: Friday May, 014 Question 1. [p 109, #9] With the aid of expressions 15) 16) in Sec. 4 for sin z cos z, namely, sin z = sin x + sinh y cos

More information

= 2πi Res. z=0 z (1 z) z 5. z=0. = 2πi 4 5z

= 2πi Res. z=0 z (1 z) z 5. z=0. = 2πi 4 5z MTH30 Spring 07 HW Assignment 7: From [B4]: hap. 6: Sec. 77, #3, 7; Sec. 79, #, (a); Sec. 8, #, 3, 5, Sec. 83, #5,,. The due date for this assignment is 04/5/7. Sec. 77, #3. In the example in Sec. 76,

More information

Problem Set 5 Solution Set

Problem Set 5 Solution Set Problem Set 5 Solution Set Anthony Varilly Math 113: Complex Analysis, Fall 2002 1. (a) Let g(z) be a holomorphic function in a neighbourhood of z = a. Suppose that g(a) = 0. Prove that g(z)/(z a) extends

More information

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE MATH 3: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE Recall the Residue Theorem: Let be a simple closed loop, traversed counterclockwise. Let f be a function that is analytic on and meromorphic inside. Then

More information

u = 0; thus v = 0 (and v = 0). Consequently,

u = 0; thus v = 0 (and v = 0). Consequently, MAT40 - MANDATORY ASSIGNMENT #, FALL 00; FASIT REMINDER: The assignment must be handed in before 4:30 on Thursday October 8 at the Department of Mathematics, in the 7th floor of Niels Henrik Abels hus,

More information

18.04 Practice problems exam 2, Spring 2018 Solutions

18.04 Practice problems exam 2, Spring 2018 Solutions 8.04 Practice problems exam, Spring 08 Solutions Problem. Harmonic functions (a) Show u(x, y) = x 3 3xy + 3x 3y is harmonic and find a harmonic conjugate. It s easy to compute: u x = 3x 3y + 6x, u xx =

More information

Solutions to practice problems for the final

Solutions to practice problems for the final Solutions to practice problems for the final Holomorphicity, Cauchy-Riemann equations, and Cauchy-Goursat theorem 1. (a) Show that there is a holomorphic function on Ω = {z z > 2} whose derivative is z

More information

Complex Variables & Integral Transforms

Complex Variables & Integral Transforms Complex Variables & Integral Transforms Notes taken by J.Pearson, from a S4 course at the U.Manchester. Lecture delivered by Dr.W.Parnell July 9, 007 Contents 1 Complex Variables 3 1.1 General Relations

More information

LECTURE-13 : GENERALIZED CAUCHY S THEOREM

LECTURE-13 : GENERALIZED CAUCHY S THEOREM LECTURE-3 : GENERALIZED CAUCHY S THEOREM VED V. DATAR The aim of this lecture to prove a general form of Cauchy s theorem applicable to multiply connected domains. We end with computations of some real

More information

1 Res z k+1 (z c), 0 =

1 Res z k+1 (z c), 0 = 32. COMPLEX ANALYSIS FOR APPLICATIONS Mock Final examination. (Monday June 7..am 2.pm) You may consult your handwritten notes, the book by Gamelin, and the solutions and handouts provided during the Quarter.

More information

CHAPTER 9. Conformal Mapping and Bilinear Transformation. Dr. Pulak Sahoo

CHAPTER 9. Conformal Mapping and Bilinear Transformation. Dr. Pulak Sahoo CHAPTER 9 Conformal Mapping and Bilinear Transformation BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University of Kalyani West Bengal, India E-mail : sahoopulak@gmail.com Module-3:

More information

MATH 280 Multivariate Calculus Fall Integrating a vector field over a curve

MATH 280 Multivariate Calculus Fall Integrating a vector field over a curve MATH 280 Multivariate alculus Fall 2012 Definition Integrating a vector field over a curve We are given a vector field F and an oriented curve in the domain of F as shown in the figure on the left below.

More information

Jim Lambers MAT 280 Fall Semester Practice Final Exam Solution

Jim Lambers MAT 280 Fall Semester Practice Final Exam Solution Jim Lambers MAT 8 Fall emester 6-7 Practice Final Exam olution. Use Lagrange multipliers to find the point on the circle x + 4 closest to the point (, 5). olution We have f(x, ) (x ) + ( 5), the square

More information

MAT389 Fall 2016, Problem Set 11

MAT389 Fall 2016, Problem Set 11 MAT389 Fall 216, Problem Set 11 Improper integrals 11.1 In each of the following cases, establish the convergence of the given integral and calculate its value. i) x 2 x 2 + 1) 2 ii) x x 2 + 1)x 2 + 2x

More information

Topic 3 Notes Jeremy Orloff

Topic 3 Notes Jeremy Orloff Topic 3 Notes Jerem Orloff 3 Line integrals and auch s theorem 3.1 Introduction The basic theme here is that comple line integrals will mirror much of what we ve seen for multivariable calculus line integrals.

More information

Complex functions, single and multivalued.

Complex functions, single and multivalued. Complex functions, single and multivalued. D. Craig 2007 03 27 1 Single-valued functions All of the following functions can be defined via power series which converge for the entire complex plane, and

More information

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India NPTEL web course on omplex Analysis A. Swaminathan I.I.T. Roorkee, India and V.K. Katiyar I.I.T. Roorkee, India A.Swaminathan and V.K.Katiyar (NPTEL) omplex Analysis 1 / 18 omplex Analysis Module: 6: Residue

More information

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2016

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2016 Department of Mathematics, University of California, Berkeley YOUR 1 OR 2 DIGIT EXAM NUMBER GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2016 1. Please write your 1- or 2-digit exam number on

More information

Section 7.2. The Calculus of Complex Functions

Section 7.2. The Calculus of Complex Functions Section 7.2 The Calculus of Complex Functions In this section we will iscuss limits, continuity, ifferentiation, Taylor series in the context of functions which take on complex values. Moreover, we will

More information

Summary for Vector Calculus and Complex Calculus (Math 321) By Lei Li

Summary for Vector Calculus and Complex Calculus (Math 321) By Lei Li Summary for Vector alculus and omplex alculus (Math 321) By Lei Li 1 Vector alculus 1.1 Parametrization urves, surfaces, or volumes can be parametrized. Below, I ll talk about 3D case. Suppose we use e

More information

MA3111S COMPLEX ANALYSIS I

MA3111S COMPLEX ANALYSIS I MA3111S COMPLEX ANALYSIS I 1. The Algebra of Complex Numbers A complex number is an expression of the form a + ib, where a and b are real numbers. a is called the real part of a + ib and b the imaginary

More information

Analysis Comprehensive Exam, January 2011 Instructions: Do as many problems as you can. You should attempt to answer completely some questions in both

Analysis Comprehensive Exam, January 2011 Instructions: Do as many problems as you can. You should attempt to answer completely some questions in both Analysis Comprehensive Exam, January 2011 Instructions: Do as many problems as you can. You should attempt to answer completely some questions in both real and complex analysis. You have 3 hours. Real

More information

Mathematical Review for AC Circuits: Complex Number

Mathematical Review for AC Circuits: Complex Number Mathematical Review for AC Circuits: Complex Number 1 Notation When a number x is real, we write x R. When a number z is complex, we write z C. Complex conjugate of z is written as z here. Some books use

More information

Math 213br HW 1 solutions

Math 213br HW 1 solutions Math 213br HW 1 solutions February 26, 2014 Problem 1 Let P (x) be a polynomial of degree d > 1 with P (x) > 0 for all x 0. For what values of α R does the integral I(α) = 0 x α P (x) dx converge? Give

More information

(1) Let f(z) be the principal branch of z 4i. (a) Find f(i). Solution. f(i) = exp(4i Log(i)) = exp(4i(π/2)) = e 2π. (b) Show that

(1) Let f(z) be the principal branch of z 4i. (a) Find f(i). Solution. f(i) = exp(4i Log(i)) = exp(4i(π/2)) = e 2π. (b) Show that Let fz be the principal branch of z 4i. a Find fi. Solution. fi = exp4i Logi = exp4iπ/2 = e 2π. b Show that fz fz 2 fz z 2 fz fz 2 = λfz z 2 for all z, z 2 0, where λ =, e 8π or e 8π. Proof. We have =

More information

Properties of Entire Functions

Properties of Entire Functions Properties of Entire Functions Generalizing Results to Entire Functions Our main goal is still to show that every entire function can be represented as an everywhere convergent power series in z. So far

More information

a k 0, then k + 1 = 2 lim 1 + 1

a k 0, then k + 1 = 2 lim 1 + 1 Math 7 - Midterm - Form A - Page From the desk of C. Davis Buenger. https://people.math.osu.edu/buenger.8/ Problem a) [3 pts] If lim a k = then a k converges. False: The divergence test states that if

More information

The Residue Theorem. Integration Methods over Closed Curves for Functions with Singularities

The Residue Theorem. Integration Methods over Closed Curves for Functions with Singularities The Residue Theorem Integration Methods over losed urves for Functions with Singularities We have shown that if f(z) is analytic inside and on a closed curve, then f(z)dz = 0. We have also seen examples

More information

6. Residue calculus. where C is any simple closed contour around z 0 and inside N ε.

6. Residue calculus. where C is any simple closed contour around z 0 and inside N ε. 6. Residue calculus Let z 0 be an isolated singularity of f(z), then there exists a certain deleted neighborhood N ε = {z : 0 < z z 0 < ε} such that f is analytic everywhere inside N ε. We define Res(f,

More information

F (z) =f(z). f(z) = a n (z z 0 ) n. F (z) = a n (z z 0 ) n

F (z) =f(z). f(z) = a n (z z 0 ) n. F (z) = a n (z z 0 ) n 6 Chapter 2. CAUCHY S THEOREM AND ITS APPLICATIONS Theorem 5.6 (Schwarz reflection principle) Suppose that f is a holomorphic function in Ω + that extends continuously to I and such that f is real-valued

More information

MATH 162. Midterm 2 ANSWERS November 18, 2005

MATH 162. Midterm 2 ANSWERS November 18, 2005 MATH 62 Midterm 2 ANSWERS November 8, 2005. (0 points) Does the following integral converge or diverge? To get full credit, you must justify your answer. 3x 2 x 3 + 4x 2 + 2x + 4 dx You may not be able

More information

Part IB. Complex Analysis. Year

Part IB. Complex Analysis. Year Part IB Complex Analysis Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 Paper 1, Section I 2A Complex Analysis or Complex Methods 7 (a) Show that w = log(z) is a conformal

More information

SOLUTION SET IV FOR FALL z 2 1

SOLUTION SET IV FOR FALL z 2 1 SOLUTION SET IV FOR 8.75 FALL 4.. Residues... Functions of a Complex Variable In the following, I use the notation Res zz f(z) Res(z ) Res[f(z), z ], where Res is the residue of f(z) at (the isolated singularity)

More information

Chapter 3 Elementary Functions

Chapter 3 Elementary Functions Chapter 3 Elementary Functions In this chapter, we will consier elementary functions of a complex variable. We will introuce complex exponential, trigonometric, hyperbolic, an logarithmic functions. 23.

More information