arxiv: v2 [math.ca] 30 Jul 2015

Size: px
Start display at page:

Download "arxiv: v2 [math.ca] 30 Jul 2015"

Transcription

1 O the sum of squared arthms equalty ad related equaltes Foz M. Daa ad Patrzo Neff ad Chrsta Thel arxv:.290v2 [math.ca] 30 Jul 205 July 3, 205 Abstract We cosder the sum of squared arthms equalty ad vestgate possble coectos wth the theory of majorzato. We also dscuss alteratve suffcet codtos o two sets of vectors a,b R + so that a 2 b 2. Geeralzatos of some equaltes from formato theory are obtaed, cludg a geeralzed formato equalty ad a geeralzed sum equalty, whch states for a,b R + ad k,...,k [0, : m a s a +k s b m +k s. Key Words: sum of squared arthms equalty; expoetal fuctos equaltes; sum equalty; Gbbs equalty; formato equalty AMS 200 subject classfcato: 26D05, 26D07 Cotets Itroducto - the sum of squared arthms equalty 2 2 Prelmares 2 s 3 Dfferet codtos for SSLI ad the sum of powered arthms equalty Related equaltes 6 5 New Logarthmc equaltes formato theory 0 Arab Iteratoal Uversty, Syra, emal: fmda@scs-et.org Correspodg author: Patrzo Neff, Head of Lehrstuhl für Nchtleare Aalyss ud Modellerug, Fakultät für Mathematk, Uverstät Dusburg-Esse, Thea-Leyma Str. 9, 527 Esse, Germay, emal: patrzo.eff@u-due.de Lehrstuhl für Nchtleare Aalyss ud Modellerug, Fakultät für Mathematk, Uverstät Dusburg-Esse, Thea- Leyma Str. 9, 527 Esse, Germay, emal: chrsta.thel@u-due.de

2 Itroducto - the sum of squared arthms equalty The Sum of Squared Logarthms Iequalty SSLI was troduced 203 by Bîrsa, Neff ad Laket [], wth the authors gvg a proof for {2,3}. Recetly, Pompe ad Neff [2] have show the equalty for, whch case t reads: Let a,a 2,a 3,a,b,b 2,b 3,b > 0 be gve postve umbers such that The a +a 2 +a 3 +a b +b 2 +b 3 +b, a a 2 +a a 3 +a 2 a 3 +a a +a 2 a +a 3 a b b 2 +b b 3 +b 2 b 3 +b b +b 2 b +b 3 b, a a 2 a 3 +a a 2 a +a 2 a 3 a +a a 3 a b b 2 b 3 +b b 2 b +b 2 b 3 b +b b 3 b, a a 2 a 3 a b b 2 b 3 b. a 2 +a 2 2 +a 3 2 +a 2 b 2 +b 2 2 +b 3 2 +b 2. The geeral form of ths equalty ca be cojectured as follows. Defto.. Let x R. We deote by e k x the k-th elemetary symmetrc polyomal,.e. the sum of all k products of exactly k compoets of x, so that e k x : x x 2...x k for all k {,...,}; <...< k ote that e x x x 2... x. Cojecture.2 Sum of squared arthms equalty. Let a,b R +. If ad e a e b, the e k a e k b a 2 for all k {,..., } b 2. Alteratvely, we ca express the same statemet as a mmzato problem: Let a R + be gve ad defe The E a : { b R + e k a e k b for all k {,..., } ad e a e b }. { } f b 2 b E a a 2. SSLI The sum of squared arthms equalty SSLI has mportat applcatos matrx aalyss ad olear elastcty theory [, 7, 8, 9, 0, ]. We otce that the prevous cojecture for 2 puts codtos o the elemetary symmetrc polyomals of the umbers a,...,a ad b,..., for obtag SSLI. I ths artcle we obta SSLI ad the so called sum of powered arthms equalty 3.5 uder some alteratve codtos. We also troduce some ew equaltes for the expoetal fuctos. A exteso of the sum equalty s also obtaed, whch yelds geeralzatos of the formato equalty. 2 Prelmares The cocept of majorzato s of great mportace to SSLI ad related equaltes. I the followg we state the basc deftos as well as some fudametal propertes of majorzato. For a larger survey we refer to Marshall, Olk ad Arold [5]. There are varous ways to defe Majorzato. Due to Hardy, Lttlewood ad Pólya [] we ca formulate the followg theorem: 2

3 Theorem 2.. Let x,y R +, the the followg are equvalet: a x y ad k x k y for all k. b fx fy for all covex cotous fuctos f: R R. If the expressos hold, x s sad to be majorzed by y, wrtte x y. Smlarly, the cocept of the weak majorzato ca be fomulated see Tomc [3] ad Weyl []: Theorem 2.2. Let x,y R +, the the followg are equvalet: a k x k y for all k. b fx fy for all covex mootoe creasg cotous fuctos f: R R. If the expressos hold, x s sad to be weakly majorzed by y, wrtte x w y. If x s weakly majorzed by y, we state, partcular, that t s weakly majorzed from below. Aaously we ca also characterze weak majorzato from above x w y, were the equalty a holds wth greater or equal for all vectors descedg order ad equvalet de equalty b for all covex mootoe decreasg fuctos. The followg lemma, whch shows elemetary propertes of the so-called weak arthmc majorzato, follows drectly from the arthmc laws ad the mootocty of the arthm. Lemma 2.3 Logarthmc majorzato. Let x,y R +. The x w y f ad oly f x... x k y... y k for all k {,...,}, x w y f ad oly f x... x k y... y k for all k {,...,}, x y f ad oly f x w y ad x... x y... y, where we abbrevate z : z,z 2,...,z for z R +. Proposto 2.. Let x,y R +. The ad x w y mples x w y x w y mples x w y. From Theorem 2. we ca see, the mappg ϕ: R R wth x fx where f s covex has the property x y mples ϕx ϕy. We call ths property Schur-covexty. f ϕ s Schur-covex, so we call ϕ Schur-cocave. Aaously to Theorem 2. ad Theorem 2.2 we ca geeralze to a mportat property of Schur-covex fuctos: Proposto 2.5. Let ϕ: D R R be Schur-covex. If ϕ s also mootoe creasg resp. mootoe decreasg, the ϕx ϕy for all x,y D wth x w y resp. x w y. Theorem 2.6. The elemetary symmetrc polyomals e k : R R are Schur-cocave ad mootoe creasg for all k {,...,} ad eve strctly Schur-cocave for k 2. Corollary 2.7. Let x,y R +. The x y mples e k x e k y for all k {,...,}. However e k x e k y does ot mply x y geeral: For that cosder a 2,2,2 ad b,,. If x st ot oly a permutato of y, the equalty betwee the e k s eve strct for k 2. I verse cocluso we ca say: Corollary 2.8. If x y ad e k x e k y for ay k {2,...,}, the x y ad thus e k x e k y for every k {2,...,}. 3

4 3 Dfferet codtos for SSLI ad the sum of powered arthms equalty I the followg theorems we gve dfferet codtos that guaratee the valdty of SSLI. We wll use Chebyshev s sum equalty certa cases, whch states: Lemma 3. Chebyshev s sum equalty. If a a 2... a ad b b 2... are two mootoe creasg sequeces of real umbers, the a b a b a Theorem 3.2. Let a,b R + ad there exsts a rearragemet of a ad b that satsfy b a b 2 a 2... a ad a b a 2 b 2... a. 3.2 If we addtoally assume oe of the followg two codtos e a e b ad e a e b, or e a e b ad e a e b, the we get the sum of squared arthms equalty SSLI: 3.2a 3.2b a 2 b 2. Proof. Frst we assume Codto 3.2a: Due to the mootocty of the arthm t follows from the assumptos that b a b 2 a 2... a ad a b a 2 b 2... a. Now we ca estmate wth Chebychev s equalty 3. usg ã +k : b a ad +k : a b : b 2 a 2 b 2 a 2 b a b a b a e b/e a 3. e ae b Fally y 2 a 2 0 s equvalet to SSLI. b a b +a b a b b a a 0. Next we assume codto 3.2b: We set ã, b R + wth ã k : a + k ad b k : + k for k {,...,}, so that we have ã,ã 2,...,ã a,a,...,a ad b, b 2,..., b,b,...,b. The bk ã k + k a + k a + k + k ad ã k bk a + k + k.

5 Hece Furthermore b ã a b 2 ã 2 a... ã ad ã b a ã 2 b2 a... ã b. e b e b e a e ã ad e ãe b e a e b, thus ã ad b satsfy codto 3.2a. Therefore SSLI holds for ã ad b, ad we fd ã 2 2 a b 2 2 b a a b a b Example 3.3. Nether the codtos Cojecture.2 are stroger tha Theorem 3.2 or coversely: Wth a,2,0 ad b 20,2,7 we have e k a e k b for all k {,..., } ad e a e b but there s o rearragemet of a ad b that satsfes b a b2 a 2 b3 a 3 ad a b a 2 b 2 a 3 b 3. Wth a 6,5,7 ad b 0,8,3 we have ad Because of e a 20 ad e b 20 we have e a e b ad e ae b but ot e a e b. Wth a 2,2,2 ad b,2, we have e k a e k b for all k {,..., } ad e a e b. Moreover , ad e ae b. Theorem 3. sum of powered arthms equalty. Let a,b R ad p R wth a >, b > ad p < 0. Assume a w b. The a p b p. 3.5 Remark 3.5. I order for a p ad b p to be well defed for all p R, we must assume a > ad b >. Proof. From a w b wth Proposto 2. we obta k a k b for all k {,...,}. Let x,y R + wth x : a, y : b therefore x : a ad y : b for all k {,...,} the x w y. We ow cosder the fucto g: R + R wth gz z p, the g z p <0 z p >0 < 0 ad g z pp >0 z p 2 >0 > 0. For ths reaso g s mootoe decreasg ad covex. Wth Theorem 2. we obta xp Resubsttuto ow drectly yelds the statemet. Remark 3.6. a b s a codto too weak ad a b plus e a e b s too strog for SSLI: For a 3,2,2 ad b,2, we get a b but 2.7 a 2 < b For a,, ad b 0,, we get a b but 5.77 a 2 > b yp. 5

6 We have show by Lemma 2.7 that a b mples e k a e k ote the reverse equalty. What about usg a b ad e a e b as suffcet requremets for SSLI? We ca easly show a b ad e a e b mply the arthmc majorzato a b. Sce the mappg t t 2 s covex, t follows from Theorem 2. that the equalty a 2 b 2 holds. However, for a b, we ca apply Corollary 2.7 to fd e k a e k b, hece Cojecture.2 mples a 2 b 2 ad thus a 2 b 2. Ths s ot surprsg: we already kow see Remark 2.8 that a b ad e a e b a b. Thus the vectors a ad b R + are equal up to permutatos. Related equaltes Proposto.. Let x,y R + ad m R +. Assume addtoally x w y, the e mx e my.. Proof. We set ϕ: R R wth ϕx. Wth Proposto 2. we have x emx w y. Sce x e mx s covex ad mootoe creasg, t follows drectly from Theorem 2.2 that ϕx ϕy. Theorem.2. If the real umbers a,b,c,x,y,z satsfy a+b+c x+y +z 0 ad the e xy +e yz +e zx < a 2 +b 2 +c 2 x 2 +y 2 +z 2 0, e x2 +e y2 +e z2 exp 3 3 a2 b 2 c 2.2 ad e ab +e bc +e ca < e a2 +e b2 +e c2 exp 3 3 x2 y 2 z 2..3 Proof. For α,β,γ R we obta α + β + γ 2 α 2 + β 2 + γ 2 + 2αβ + 2βγ + 2γα, therefore uder the codtos ab+bc+ca a+b+c 2 a 2 +b 2 +c 2 2 x+y +z 2 x 2 +y 2 +z 2 xy +yz +zx 2 ad we ca set Furthermore p : ab+bc+ca xy +yz +zx. x 3 +px xyz x 3 +x 2 y +xyz +x 2 z xyz x 2 x+y +z x ad aaously y 3 +py xyz 0 ad z 3 +pz xyz 0. Therefore the cubc equato X 3 +px xyz 0 has exactly the three solutos X {x,y,z}. 6

7 Followg Cardao s method see Cardao [2] the cubc equato X 3 +px +q 0 has exactly three real roots, f ad oly f q 2 p 3 D : + < Therefore we obta thus p 3 < 27 x2 y 2 z 2 ad therefore xyz Aaously we obta from X 3 +px abc 0 Now thus 2 2 p 3 x y 2 z 2 + p3 27 < 0, p xy +yz +zx < 3 3 x2 y 2 z 2.. p ab+bc+ca < 3 3 a2 b 2 c 2..5 p p+x 2 x 2 xy +yz +zx+x 2 x 2 yz x 2, yz x 2 +p ad aaously xz y 2 +p ad xy z 2 +p. Accordg to.5 ad the mootocty of the expoetal fucto we have e yz < e x2 exp 3 3 a2 b 2 c 2, e zx < e y2 exp 3 3 a2 b 2 c 2, e xy < e z2 exp 3 3 a2 b 2 c 2 ad summg up we obta.2. The proof of.3 proceeds aaously. Theorem.3. Let I R ad assume f,...,f : I R wth f t 0 ad f t f 2 t... f t ad g: I R wth gt e ft for all t I. for all t I If f t f 2t... f t for all t I, the g t 0 for all t I, respectvely g s mootoe creasg. If f t f 2t... f t for all t I, the g t 0 for all t I, respectvely g s mootoe decreasg. Proof. The codto f t 0 for all t I mples f t d f t 0 for all t I. dt Assume f t f 2 t... f t for all t I. From the mootocty of the expoetal fucto ad Chebychev s equalty wth a : e ft, b : f t, we obta g t f t e ft 3. f t e ft

8 Now assume stead f t f 2 t... f t for all t I. From the mootocty of the expoetal fucto ad Chebychev s equalty wth a : e ft, +k : f t, we obta g t f 3. t eft f e ft 0. 0 Example.. Cosder the fuctos f,f 2,f 3 : R R wth ad The Addtoally f x x 2 +, f 2 x x, f 3 x x 2 x f x 2x, f 2x, f 3x 2x. f x+f 2 x+f 3 x 0 for all x R. f x f 2 x f 3 x ad f x f 2x f 3x for all x [,, [ ] f 2 x f 3 x f x ad f x f 2 x f 3 x for all x,. Now we defe g: R R wth gx e x2 + +e +x +e x2 x e fx +e f2x +e f3x, therefore we ca coclude wth Theorem.3: g s mootoe creasg o [, ad mootoe decreasg o [,]. Now we geeralze Theorem.3 Theorem.5. Let I R ad f,...,f : I R wth f t 0, f t f 2 t... f t ad f t f 2t... f t for all t I ad assume g,h: I R wth h postve ad mootoe creasg ad g h t e htft for all t I. The g h t 0 for all t I, whch mples that g h s mootoe creasg. Proof. The codto f t 0 for all t I mples f t d f t 0 for all t I. dt Wth Chebychev s equalty usg a : f t resp. a : f t ad b : e htft we coclude g h t h tf t+htf te htft h t f t e +ht htft f t e htft 3. h t f t e +ht htft f t e htft

9 Theorem.6. Let I R ad assume f,...,f : I R wth the propertes f t 0, f t f 2 t... f t ad f t f 2t... f t for all t I. Addtoally h: D R s gve mootoe creasg ad covex. I ths regard D R provdes hf t s well defed for all {,...,} ad all t I. We defe furthermore H: I R wth Ht e hft. The H t 0 for all t I ad H s mootoe creasg. Proof. The codto f t 0 for all t I mples f t d f t 0 for all t I. dt Because h s mootoe creasg h x 0 ad hx hy for x y, thus h f t 0 ad hf t hf 2 t... hf t for all t I. By assumpto h s covex ad h s mootoe creasg, thus h x h y for x y, therefore h f t h f 2 t... h f t for all t I. If for real umbers a,a 2,b,b 2 the equaltes 0 < a a 2 ad b b 2 are satsfed, the a b a 2 b 2. Ths appled terated, we obta h f t f t h f 2 t f 2t... h f t f t for all t I. Fally we ca easly show the orgal statemet by applyg Chebychev s equalty oce wth a : h f tf t ad b : e hft, twce wth a : h f t ad b : f t. We obta H t h f t e hft h f tf t ehft 3. h f t f t e hft 3. 2 h f t f t e hft The followg theorem was proved by Bîrsa, Neff ad Laket []. Usg Theorem.3 respectvely the geeralzatos Theorem.5 or Theorem.6 we ca ow show a alteratve ad otherwse very elemetary proof: Theorem.7. Let a,b,c,x,y,z R wth Furthermore The f ad oly f a x. a b c ad x y z..8 a+b+c x+y +z 0 ad a 2 +b 2 +c 2 x 2 +y 2 +z 2..9 e a +e b +e c e x +e y +e z.0 9

10 Remark.8. Usg Theorem.5 or Theorem.6 stead of Theorem.3 the followg proof eve allows to show the stroger statemet uter the codtos of Theorem.7: e ma +e mb +e mc e mx +e my +e mz f ad oly f a x for all m R +. Proof. Let us frst fx a,b,c. The we defe for smplfcato r R + wth r 2 : a 2 + b 2 + c 2. From the codtos.8 ad.9 wemayuquely determe y ad z depedg ox R + Wth.8 x < 0mples a+b+c < 0+y+z 0+0+0; a cotradctoto.9. Sce z x y we fd y 2 + x y 2 +x 2 r 2 0. Let x ad r be gve, the we obta a quadratc equato ad we ca solve wth the quadratc formula to obta y 2 + x y 2 +x 2 r 2 2y 2 +2xy +2x 2 r 2 0 y 2 +xy +x 2 2 r2 0 y 2 x± x2 x r2 2 x± 3 x2 + 2 r2. Isertg these two solutos to z x y, we get z 2 x 3 x2 + 2 r2. From these two possbltes ± for y, oly the postve case, for z oly the egatve case remas to satsfy.8. Both equatos have three real solutos, f ad oly f 3 x2 + 2 r We must have x 3 r2 for ths. Moreover x y x 2 x+ 3 x2 + 2 r2 3 2 x 3 x2 + 2 r2 9 x2 3 x2 + 2 r2 3x 2 2 r2 x 6 r2. [ ] Wth D r : 6 r2 2, 3 r2 we obta the dfferetable fuctos y,z: D r R ad yx 2 x+ 3 x2 + 2 r2 ad zx 2 x 3 x2 + 2 r2. as the uque solutos x,yx,zx of.8 ad.9. Because the gve a,b,c satsfy these codtos, obvously a D r, b ya ad c yb. Now we defe for m R + the fucto g: D r R wth gx e myx +e mzx. We kow yx zx ad y x 3 2 x 3 3 x x z x. r2 3 x2 + 2 r2 Thus, we ca coclude wth Theorem.5 or Theorem.6 both cases we ca set ht : mt. For m we ca use drectly Theorem.3 that g s mootoe creasg. Addtoally x e mx s mootoe creasg, so buldg the sum g: R R wth gx e mx +e myx +e mzx s also mootoe creasg. Therefore gx ga f ad oly f x a, whch s equvalet to the statemet f we set m. 5 New Logarthmc equaltes formato theory Frst we troduce Jese s equaltycf. Mtrovć, Pečarć,[6, eq. 2. p.9] ad the sum equalty cf. Cover, Thomas [3, 2.7 p.29]. The we prove the formato equalty whch s dfferet otato kow uder the ame Gbbs equalty. The formato equalty cf. Cover, Thomas [3, 2.6 p.28] s 0

11 the most fudametal equalty formato theory. It asserts that the relatve etropy betwee two probablty dstrbutos p,q: Ω [0,], whch s defed by Dp q : x Ω px px qx or, f p ad q are probablty measures o a fte set Ω {,...,}, by Dp q : p p q, s oegatve. Lemma 5. Jese s equalty. Let I R be a terval, f: I R be a covex fucto, λ,...,λ postve umbers wth λ +...+λ ad x,...,x I. The f λ x Note: Wth 2 we have drectly the defto of covexty of f. Wth Jese s equalty we ca prove the so called sum equalty: 5. λ fx. 5.2 Lemma 5.2 stroger sum equalty. Let a,...,a,b,..., R + ad k 0, the a a +k a b a +k. 5.3 We have equalty f ad oly f a b a2 b 2... a. Remark 5.3. For k 0 we get the sum equalty: a a a b a. 5. Proof. Wth fx x x+k, λ : b / b, x : a /b ad 5.2 we get a b a b a b +k a +k b b λ x x +k 5.2 λ fx f λ x b λ x λ x +k b a b a b +k a a b +k. 5.5 If c : a b a2 b 2... a, we have x c ad we get f λ x f λ c fc λ fc λ fx. If there s a {,..., } wth a b a+ b + the we get λ fx > f λ x.

12 Proposto 5. Gbbs equalty / Iformato equalty. Let P deote the set of probablty measures o a -elemet set, that s P {p R + p }. The followg four expressos the frst three are amed Gbbs equalty, the last Iformato equalty are equvalet ad hold for all a,b P : { sup ξ P ξ a } a b a a, a a, v Da b { } f a ξ a a, ξ P a a b Proof. Frst we prove the equalty of the four expressos: { sup b P b a b a } a b { a a f b P a a a a a a b 0 Da b 0. b a } b a a a a a a a b 0 b a a a Now let a,b P. Wth the stroger sum equalty ad because a b we get a a +k a b a +k +k. 5.7 Wth k 0 we oba equalty case v formato equalty. Remark 5.5. Aaously we ca deote equalty 5.7 as the stroger formato equalty. Corollary 5.6 geeralzed sum equalty. Let a,b R + ad k,...,k [0,. The s m a s a +k s b a m b s a +k s. 5.8 Proof. Wth m umbers k,...,k m [0, we obta by m tmes buldg sums of the stroger sum equalty 5.3 m a m a +k s a b a +k s. s Wth use of dstrbutvty ad laws of arthms we drectly obta the desred result. Corollary 5.7 geeralzed formato equalty. Let a,b P ad k,...,k [0,. The m a s a +k s b m +k s. 5.9 Proof. We smplfy 5.8 uder the codto a,b P, therefore a b. s 2

13 Refereces [] M. Bîrsa, P. Neff, ad J. Laket. Sum of squared arthms a equalty relatg postve defte matrces ad ther matrx arthm. Joural of Iequaltes ad Applcatos, 203. [2] G. Cardao. Ars Maga. Petreus, 55. [3] T. Cover ad J. Thomas. Elemets of formato theory. Wley, 202. [] G. H. Hardy, J. E. Lttlewood, ad G. Pólya. Iequaltes. Cambrdge Uversty Press, 952. [5] A. Marshall, I. Olk, ad B. Arold. Iequaltes: Theory of majorzato ad ts applcatos: Theory of majorzato ad ts applcatos. Sprger Seres Statstcs. Sprger, 200. [6] D. S. Mtrovć, J. E. Pečarć, ad A. M. Fk. Classcal ad ew equaltes aalyss. Sprger, 993. [7] P. Neff, B. Edel, F. Osterbrk, ad R. Mart. A Remaa approach to stra measures olear elastcty. Comptes Redus Mécaque, 32:25 257, 20. [8] P. Neff, I.-D. Ghba, ad J. Laket. The expoetated hecky-arthmc stra eergy. part : costtutve ssues ad rak-oe covexty. Joural of Elastcty, pages 92, 20. [9] P. Neff, J. Laket, I.-D. Ghba, R. Mart, ad D. Stegma. The expoetated Hecky-arthmc stra eergy. part II: Coercvty, plaar polycovexty ad exstece of mmzers. Zetschrft für agewadte Mathematk ud Physk, pages 23, 205. [0] P. Neff, J. Laket, ad A. Madeo. O Grol s mmum property ad ts relato to Cauchy s polar decomposto. Iteratoal Joural of Egeerg Scece, 800:209 27, 20. [] P. Neff, Y. Nakatsukasa, ad A. Fschle. A arthmc mmzato property of the utary polar factor the spectral orm ad the Frobeus matrx orm. SIAM Joural o Matrx Aalyss ad Applcatos, 353:32 5, 20. [2] W. Pompe ad P. Neff. O the geeralsed sum of squared arthms equalty. Joural of Iequaltes ad Applcatos, 205: 7, 205. [3] M. Tomc. Théoreme de Gauss relatf au cetre de gravté et so applcato. Bull. Soc. Math. Phys. Serbe, :3 0, 99. [] H. Weyl. Iequaltes betwee the two kds of egevalues of a lear trasformato. Proceedgs of the Natoal Academy of Sceces of the Uted States of Amerca, 357:08, 99. 3

Q-analogue of a Linear Transformation Preserving Log-concavity

Q-analogue of a Linear Transformation Preserving Log-concavity Iteratoal Joural of Algebra, Vol. 1, 2007, o. 2, 87-94 Q-aalogue of a Lear Trasformato Preservg Log-cocavty Daozhog Luo Departmet of Mathematcs, Huaqao Uversty Quazhou, Fua 362021, P. R. Cha ldzblue@163.com

More information

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

PROJECTION PROBLEM FOR REGULAR POLYGONS

PROJECTION PROBLEM FOR REGULAR POLYGONS Joural of Mathematcal Sceces: Advaces ad Applcatos Volume, Number, 008, Pages 95-50 PROJECTION PROBLEM FOR REGULAR POLYGONS College of Scece Bejg Forestry Uversty Bejg 0008 P. R. Cha e-mal: sl@bjfu.edu.c

More information

Generalized Convex Functions on Fractal Sets and Two Related Inequalities

Generalized Convex Functions on Fractal Sets and Two Related Inequalities Geeralzed Covex Fuctos o Fractal Sets ad Two Related Iequaltes Huxa Mo, X Su ad Dogya Yu 3,,3School of Scece, Bejg Uversty of Posts ad Telecommucatos, Bejg,00876, Cha, Correspodece should be addressed

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

MAX-MIN AND MIN-MAX VALUES OF VARIOUS MEASURES OF FUZZY DIVERGENCE

MAX-MIN AND MIN-MAX VALUES OF VARIOUS MEASURES OF FUZZY DIVERGENCE merca Jr of Mathematcs ad Sceces Vol, No,(Jauary 0) Copyrght Md Reader Publcatos wwwjouralshubcom MX-MIN ND MIN-MX VLUES OF VRIOUS MESURES OF FUZZY DIVERGENCE RKTul Departmet of Mathematcs SSM College

More information

The Arithmetic-Geometric mean inequality in an external formula. Yuki Seo. October 23, 2012

The Arithmetic-Geometric mean inequality in an external formula. Yuki Seo. October 23, 2012 Sc. Math. Japocae Vol. 00, No. 0 0000, 000 000 1 The Arthmetc-Geometrc mea equalty a exteral formula Yuk Seo October 23, 2012 Abstract. The classcal Jese equalty ad ts reverse are dscussed by meas of terally

More information

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy Bouds o the expected etropy ad KL-dvergece of sampled multomal dstrbutos Brado C. Roy bcroy@meda.mt.edu Orgal: May 18, 2011 Revsed: Jue 6, 2011 Abstract Iformato theoretc quattes calculated from a sampled

More information

About k-perfect numbers

About k-perfect numbers DOI: 0.47/auom-04-0005 A. Şt. Uv. Ovdus Costaţa Vol.,04, 45 50 About k-perfect umbers Mhály Becze Abstract ABSTRACT. I ths paper we preset some results about k-perfect umbers, ad geeralze two equaltes

More information

Research Article Gauss-Lobatto Formulae and Extremal Problems

Research Article Gauss-Lobatto Formulae and Extremal Problems Hdaw Publshg Corporato Joural of Iequaltes ad Applcatos Volume 2008 Artcle ID 624989 0 pages do:055/2008/624989 Research Artcle Gauss-Lobatto Formulae ad Extremal Problems wth Polyomals Aa Mara Acu ad

More information

arxiv:math/ v1 [math.gm] 8 Dec 2005

arxiv:math/ v1 [math.gm] 8 Dec 2005 arxv:math/05272v [math.gm] 8 Dec 2005 A GENERALIZATION OF AN INEQUALITY FROM IMO 2005 NIKOLAI NIKOLOV The preset paper was spred by the thrd problem from the IMO 2005. A specal award was gve to Yure Boreko

More information

On Submanifolds of an Almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Metric Connection

On Submanifolds of an Almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Metric Connection Theoretcal Mathematcs & Applcatos vol. 4 o. 4 04-7 ISS: 79-9687 prt 79-9709 ole Scepress Ltd 04 O Submafolds of a Almost r-paracotact emaa Mafold Edowed wth a Quarter Symmetrc Metrc Coecto Mob Ahmad Abdullah.

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

arxiv: v4 [math.nt] 14 Aug 2015

arxiv: v4 [math.nt] 14 Aug 2015 arxv:52.799v4 [math.nt] 4 Aug 25 O the propertes of terated bomal trasforms for the Padova ad Perr matrx sequeces Nazmye Ylmaz ad Necat Tasara Departmet of Mathematcs, Faculty of Scece, Selcu Uversty,

More information

Research Article Multidimensional Hilbert-Type Inequalities with a Homogeneous Kernel

Research Article Multidimensional Hilbert-Type Inequalities with a Homogeneous Kernel Hdaw Publshg Corporato Joural of Iequaltes ad Applcatos Volume 29, Artcle ID 3958, 2 pages do:.55/29/3958 Research Artcle Multdmesoal Hlbert-Type Iequaltes wth a Homogeeous Kerel Predrag Vuovć Faculty

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10 Global Joural of Mathematcal Sceces: Theory ad Practcal. ISSN 974-3 Volume 9, Number 3 (7), pp. 43-4 Iteratoal Research Publcato House http://www.rphouse.com A Study o Geeralzed Geeralzed Quas (9) hyperbolc

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

THE COMPLETE ENUMERATION OF FINITE GROUPS OF THE FORM R 2 i ={R i R j ) k -i=i

THE COMPLETE ENUMERATION OF FINITE GROUPS OF THE FORM R 2 i ={R i R j ) k -i=i ENUMERATON OF FNTE GROUPS OF THE FORM R ( 2 = (RfR^'u =1. 21 THE COMPLETE ENUMERATON OF FNTE GROUPS OF THE FORM R 2 ={R R j ) k -= H. S. M. COXETER*. ths paper, we vestgate the abstract group defed by

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Decomposition of Hadamard Matrices

Decomposition of Hadamard Matrices Chapter 7 Decomposto of Hadamard Matrces We hae see Chapter that Hadamard s orgal costructo of Hadamard matrces states that the Kroecer product of Hadamard matrces of orders m ad s a Hadamard matrx of

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

Generalization of the Dissimilarity Measure of Fuzzy Sets

Generalization of the Dissimilarity Measure of Fuzzy Sets Iteratoal Mathematcal Forum 2 2007 o. 68 3395-3400 Geeralzato of the Dssmlarty Measure of Fuzzy Sets Faramarz Faghh Boformatcs Laboratory Naobotechology Research Ceter vesa Research Isttute CECR Tehra

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Asymptotic Formulas Composite Numbers II

Asymptotic Formulas Composite Numbers II Iteratoal Matematcal Forum, Vol. 8, 203, o. 34, 65-662 HIKARI Ltd, www.m-kar.com ttp://d.do.org/0.2988/mf.203.3854 Asymptotc Formulas Composte Numbers II Rafael Jakmczuk Dvsó Matemátca, Uversdad Nacoal

More information

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION Joural of Scece ad Arts Year 12, No. 3(2), pp. 297-32, 212 ORIGINAL AER THE ROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION DOREL MIHET 1, CLAUDIA ZAHARIA 1 Mauscrpt receved: 3.6.212; Accepted

More information

Some properties of symmetry classes of tensors

Some properties of symmetry classes of tensors The d Aual Meetg Mathematcs (AMM 07) Departmet of Mathematcs, Faculty of Scece Chag Ma Uversty, Chag Ma Thalad Some propertes of symmetry classes of tesors Kulathda Chmla, ad Kjt Rodtes Departmet of Mathematcs,

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II CEE49b Chapter - Free Vbrato of Mult-Degree-of-Freedom Systems - II We ca obta a approxmate soluto to the fudametal atural frequecy through a approxmate formula developed usg eergy prcples by Lord Raylegh

More information

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights CIS 800/002 The Algorthmc Foudatos of Data Prvacy October 13, 2011 Lecturer: Aaro Roth Lecture 9 Scrbe: Aaro Roth Database Update Algorthms: Multplcatve Weghts We ll recall aga) some deftos from last tme:

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

International Journal of Mathematical Archive-5(8), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(8), 2014, Available online through   ISSN Iteratoal Joural of Mathematcal Archve-5(8) 204 25-29 Avalable ole through www.jma.fo ISSN 2229 5046 COMMON FIXED POINT OF GENERALIZED CONTRACTION MAPPING IN FUZZY METRIC SPACES Hamd Mottagh Golsha* ad

More information

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES FDM: Appromato of Frst Order Dervatves Lecture APPROXIMATION OF FIRST ORDER DERIVATIVES. INTRODUCTION Covectve term coservato equatos volve frst order dervatves. The smplest possble approach for dscretzato

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

On the construction of symmetric nonnegative matrix with prescribed Ritz values

On the construction of symmetric nonnegative matrix with prescribed Ritz values Joural of Lear ad Topologcal Algebra Vol. 3, No., 14, 61-66 O the costructo of symmetrc oegatve matrx wth prescrbed Rtz values A. M. Nazar a, E. Afshar b a Departmet of Mathematcs, Arak Uversty, P.O. Box

More information

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem Joural of Amerca Scece ;6( Cubc Nopolyomal Sple Approach to the Soluto of a Secod Order Two-Pot Boudary Value Problem W.K. Zahra, F.A. Abd El-Salam, A.A. El-Sabbagh ad Z.A. ZAk * Departmet of Egeerg athematcs

More information

The internal structure of natural numbers, one method for the definition of large prime numbers, and a factorization test

The internal structure of natural numbers, one method for the definition of large prime numbers, and a factorization test Fal verso The teral structure of atural umbers oe method for the defto of large prme umbers ad a factorzato test Emmaul Maousos APM Isttute for the Advacemet of Physcs ad Mathematcs 3 Poulou str. 53 Athes

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

h-analogue of Fibonacci Numbers

h-analogue of Fibonacci Numbers h-aalogue of Fboacc Numbers arxv:090.0038v [math-ph 30 Sep 009 H.B. Beaoum Prce Mohammad Uversty, Al-Khobar 395, Saud Araba Abstract I ths paper, we troduce the h-aalogue of Fboacc umbers for o-commutatve

More information

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK Far East Joural of Appled Mathematcs Volume, Number, 2008, Pages Ths paper s avalable ole at http://www.pphm.com 2008 Pushpa Publshg House ANALYSIS ON THE NATURE OF THE ASI EQUATIONS IN SYNERGETI INTER-REPRESENTATION

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Arithmetic Mean and Geometric Mean

Arithmetic Mean and Geometric Mean Acta Mathematca Ntresa Vol, No, p 43 48 ISSN 453-6083 Arthmetc Mea ad Geometrc Mea Mare Varga a * Peter Mchalča b a Departmet of Mathematcs, Faculty of Natural Sceces, Costate the Phlosopher Uversty Ntra,

More information

Numerical Analysis Formulae Booklet

Numerical Analysis Formulae Booklet Numercal Aalyss Formulae Booklet. Iteratve Scemes for Systems of Lear Algebrac Equatos:.... Taylor Seres... 3. Fte Dfferece Approxmatos... 3 4. Egevalues ad Egevectors of Matrces.... 3 5. Vector ad Matrx

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Numercal Computg -I UNIT SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Structure Page Nos..0 Itroducto 6. Objectves 7. Ital Approxmato to a Root 7. Bsecto Method 8.. Error Aalyss 9.4 Regula Fals Method

More information

Qualifying Exam Statistical Theory Problem Solutions August 2005

Qualifying Exam Statistical Theory Problem Solutions August 2005 Qualfyg Exam Statstcal Theory Problem Solutos August 5. Let X, X,..., X be d uform U(,),

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

3. Basic Concepts: Consequences and Properties

3. Basic Concepts: Consequences and Properties : 3. Basc Cocepts: Cosequeces ad Propertes Markku Jutt Overvew More advaced cosequeces ad propertes of the basc cocepts troduced the prevous lecture are derved. Source The materal s maly based o Sectos.6.8

More information

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables ppled Mathematcal Sceces, Vol 4, 00, o 3, 637-64 xted the Borel-Catell Lemma to Sequeces of No-Idepedet Radom Varables olah Der Departmet of Statstc, Scece ad Research Campus zad Uversty of Tehra-Ira der53@gmalcom

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 2006, #A12 LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX Hacèe Belbachr 1 USTHB, Departmet of Mathematcs, POBox 32 El Ala, 16111,

More information

Beam Warming Second-Order Upwind Method

Beam Warming Second-Order Upwind Method Beam Warmg Secod-Order Upwd Method Petr Valeta Jauary 6, 015 Ths documet s a part of the assessmet work for the subject 1DRP Dfferetal Equatos o Computer lectured o FNSPE CTU Prague. Abstract Ths documet

More information

ONE GENERALIZED INEQUALITY FOR CONVEX FUNCTIONS ON THE TRIANGLE

ONE GENERALIZED INEQUALITY FOR CONVEX FUNCTIONS ON THE TRIANGLE Joural of Pure ad Appled Mathematcs: Advaces ad Applcatos Volume 4 Number 205 Pages 77-87 Avalable at http://scetfcadvaces.co. DOI: http://.do.org/0.8642/jpamaa_7002534 ONE GENERALIZED INEQUALITY FOR CONVEX

More information

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming ppled Matheatcal Sceces Vol 008 o 50 7-80 New Method for Solvg Fuzzy Lear Prograg by Solvg Lear Prograg S H Nasser a Departet of Matheatcs Faculty of Basc Sceces Mazadara Uversty Babolsar Ira b The Research

More information

arxiv: v1 [math.st] 24 Oct 2016

arxiv: v1 [math.st] 24 Oct 2016 arxv:60.07554v [math.st] 24 Oct 206 Some Relatoshps ad Propertes of the Hypergeometrc Dstrbuto Peter H. Pesku, Departmet of Mathematcs ad Statstcs York Uversty, Toroto, Otaro M3J P3, Caada E-mal: pesku@pascal.math.yorku.ca

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

On the convergence of derivatives of Bernstein approximation

On the convergence of derivatives of Bernstein approximation O the covergece of dervatves of Berste approxmato Mchael S. Floater Abstract: By dfferetatg a remader formula of Stacu, we derve both a error boud ad a asymptotc formula for the dervatves of Berste approxmato.

More information

Aitken delta-squared generalized Juncgk-type iterative procedure

Aitken delta-squared generalized Juncgk-type iterative procedure Atke delta-squared geeralzed Jucgk-type teratve procedure M. De la Se Isttute of Research ad Developmet of Processes. Uversty of Basque Coutry Campus of Leoa (Bzkaa) PO Box. 644- Blbao, 488- Blbao. SPAIN

More information

Maps on Triangular Matrix Algebras

Maps on Triangular Matrix Algebras Maps o ragular Matrx lgebras HMED RMZI SOUROUR Departmet of Mathematcs ad Statstcs Uversty of Vctora Vctora, BC V8W 3P4 CND sourour@mathuvcca bstract We surveys results about somorphsms, Jorda somorphsms,

More information

Algorithms Theory, Solution for Assignment 2

Algorithms Theory, Solution for Assignment 2 Juor-Prof. Dr. Robert Elsässer, Marco Muñz, Phllp Hedegger WS 2009/200 Algorthms Theory, Soluto for Assgmet 2 http://lak.formatk.u-freburg.de/lak_teachg/ws09_0/algo090.php Exercse 2. - Fast Fourer Trasform

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Analysis of Lagrange Interpolation Formula

Analysis of Lagrange Interpolation Formula P IJISET - Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue, December 4. www.jset.com ISS 348 7968 Aalyss of Lagrage Iterpolato Formula Vjay Dahya PDepartmet of MathematcsMaharaja Surajmal

More information

Lecture 4 Sep 9, 2015

Lecture 4 Sep 9, 2015 CS 388R: Radomzed Algorthms Fall 205 Prof. Erc Prce Lecture 4 Sep 9, 205 Scrbe: Xagru Huag & Chad Voegele Overvew I prevous lectures, we troduced some basc probablty, the Cheroff boud, the coupo collector

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

On L- Fuzzy Sets. T. Rama Rao, Ch. Prabhakara Rao, Dawit Solomon And Derso Abeje.

On L- Fuzzy Sets. T. Rama Rao, Ch. Prabhakara Rao, Dawit Solomon And Derso Abeje. Iteratoal Joural of Fuzzy Mathematcs ad Systems. ISSN 2248-9940 Volume 3, Number 5 (2013), pp. 375-379 Research Ida Publcatos http://www.rpublcato.com O L- Fuzzy Sets T. Rama Rao, Ch. Prabhakara Rao, Dawt

More information

ON THE LOGARITHMIC INTEGRAL

ON THE LOGARITHMIC INTEGRAL Hacettepe Joural of Mathematcs ad Statstcs Volume 39(3) (21), 393 41 ON THE LOGARITHMIC INTEGRAL Bra Fsher ad Bljaa Jolevska-Tueska Receved 29:9 :29 : Accepted 2 :3 :21 Abstract The logarthmc tegral l(x)

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix Assgmet 7/MATH 47/Wter, 00 Due: Frday, March 9 Powers o a square matrx Gve a square matrx A, ts powers A or large, or eve arbtrary, teger expoets ca be calculated by dagoalzg A -- that s possble (!) Namely,

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Complete Convergence for Weighted Sums of Arrays of Rowwise Asymptotically Almost Negative Associated Random Variables

Complete Convergence for Weighted Sums of Arrays of Rowwise Asymptotically Almost Negative Associated Random Variables A^VÇÚO 1 32 ò 1 5 Ï 2016 c 10 Chese Joural of Appled Probablty ad Statstcs Oct., 2016, Vol. 32, No. 5, pp. 489-498 do: 10.3969/j.ss.1001-4268.2016.05.005 Complete Covergece for Weghted Sums of Arrays of

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

Entropies & Information Theory

Entropies & Information Theory Etropes & Iformato Theory LECTURE II Nlajaa Datta Uversty of Cambrdge,U.K. See lecture otes o: http://www.q.damtp.cam.ac.uk/ode/223 quatum system States (of a physcal system): Hlbert space (fte-dmesoal)

More information

4 Inner Product Spaces

4 Inner Product Spaces 11.MH1 LINEAR ALGEBRA Summary Notes 4 Ier Product Spaces Ier product s the abstracto to geeral vector spaces of the famlar dea of the scalar product of two vectors or 3. I what follows, keep these key

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

BERNSTEIN COLLOCATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS. Aysegul Akyuz Dascioglu and Nese Isler

BERNSTEIN COLLOCATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS. Aysegul Akyuz Dascioglu and Nese Isler Mathematcal ad Computatoal Applcatos, Vol. 8, No. 3, pp. 293-300, 203 BERNSTEIN COLLOCATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS Aysegul Ayuz Dascoglu ad Nese Isler Departmet of Mathematcs,

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem CS86. Lecture 4: Dur s Proof of the PCP Theorem Scrbe: Thom Bohdaowcz Prevously, we have prove a weak verso of the PCP theorem: NP PCP 1,1/ (r = poly, q = O(1)). Wth ths result we have the desred costat

More information

ON THE ELEMENTARY SYMMETRIC FUNCTIONS OF A SUM OF MATRICES

ON THE ELEMENTARY SYMMETRIC FUNCTIONS OF A SUM OF MATRICES Joural of lgebra, umber Theory: dvaces ad pplcatos Volume, umber, 9, Pages 99- O THE ELEMETRY YMMETRIC FUCTIO OF UM OF MTRICE R.. COT-TO Departmet of Mathematcs Uversty of Calfora ata Barbara, C 96 U...

More information

Solution of General Dual Fuzzy Linear Systems. Using ABS Algorithm

Solution of General Dual Fuzzy Linear Systems. Using ABS Algorithm Appled Mathematcal Sceces, Vol 6, 0, o 4, 63-7 Soluto of Geeral Dual Fuzzy Lear Systems Usg ABS Algorthm M A Farborz Aragh * ad M M ossezadeh Departmet of Mathematcs, Islamc Azad Uversty Cetral ehra Brach,

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

MOLECULAR VIBRATIONS

MOLECULAR VIBRATIONS MOLECULAR VIBRATIONS Here we wsh to vestgate molecular vbratos ad draw a smlarty betwee the theory of molecular vbratos ad Hückel theory. 1. Smple Harmoc Oscllator Recall that the eergy of a oe-dmesoal

More information

The Role of Root System in Classification of Symmetric Spaces

The Role of Root System in Classification of Symmetric Spaces Amerca Joural of Mathematcs ad Statstcs 2016, 6(5: 197-202 DOI: 10.5923/j.ajms.20160605.01 The Role of Root System Classfcato of Symmetrc Spaces M-Alam A. H. Ahmed 1,2 1 Departmet of Mathematcs, Faculty

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

Nonlinear Piecewise-Defined Difference Equations with Reciprocal Quadratic Terms

Nonlinear Piecewise-Defined Difference Equations with Reciprocal Quadratic Terms Joural of Matematcs ad Statstcs Orgal Researc Paper Nolear Pecewse-Defed Dfferece Equatos wt Recprocal Quadratc Terms Ramada Sabra ad Saleem Safq Al-Asab Departmet of Matematcs, Faculty of Scece, Jaza

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET Abstract. The Permaet versus Determat problem s the followg: Gve a matrx X of determates over a feld of characterstc dfferet from

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodyamcs I UNIT C: 2-D Arfols C-1: Aerodyamcs of Arfols 1 C-2: Aerodyamcs of Arfols 2 C-3: Pael Methods C-4: Th Arfol Theory AE301 Aerodyamcs I Ut C-3: Lst of Subects Problem Solutos?

More information

1 0, x? x x. 1 Root finding. 1.1 Introduction. Solve[x^2-1 0,x] {{x -1},{x 1}} Plot[x^2-1,{x,-2,2}] 3

1 0, x? x x. 1 Root finding. 1.1 Introduction. Solve[x^2-1 0,x] {{x -1},{x 1}} Plot[x^2-1,{x,-2,2}] 3 Adrew Powuk - http://www.powuk.com- Math 49 (Numercal Aalyss) Root fdg. Itroducto f ( ),?,? Solve[^-,] {{-},{}} Plot[^-,{,-,}] Cubc equato https://e.wkpeda.org/wk/cubc_fucto Quartc equato https://e.wkpeda.org/wk/quartc_fucto

More information