Predicting alpha cabin sound absorption in an industrial context

Size: px
Start display at page:

Download "Predicting alpha cabin sound absorption in an industrial context"

Transcription

1 Predicting alpha cabin sound absorption in an industrial context François-Xavier BÉCOT 1 ; Christophe Locqueteau 2 ; Julia Rodenas 1 1 MATELYS - Research Lab, 7 rue des Maraîchers, Bât B, Vaulx-en-Velin, FRANCE 2 Renault, Le Parc de Gaillon, Aubevoye, FRANCE ABSTRACT In the automotive industry, sound absorption performance is often assessed in terms of ''alpha cabin'' sound absorption coefficient. This measurement setup was initially proposed to test real trims in conditions which were inspired from those of the ISO 354 standard. This type of measurement is now widely spread in the automotive industry even though it suffers from a number of well known issues : absorption coefficients larger than one, limited frequency range, mounting conditions... These characteristics give rise to a number of stakes from a modeling point of view. Therefore, this paper mainly explores the prediction of the ''alpha cabin'' performance e.g. from surface impedance data obtained using ISO measurement or from fine characterization procedure of each individual layer. Simulated data are compared with measured data obtained on several types of trims, from purely absorbing slabs to impervious surfacings needed to cope with industrial usage constraints. Results show that linear regression may be used to extrapolate some existing results while carefully implemented TMM could be predict with fair accuracy the Alpha cabin results of trims which do not yet exist. Keywords: Alpha cabin, Porous, Absorption I-INCE Classification of Subjects Number(s): 35, 52.3, INTRODUCTION The Alpha Cabin quantity is one of the sound absorption data used by material makers and automotive end-users either to prescribe performance levels or to assign levels to be achieved. Therefore it is essential for the two parties to understand the stakes of this quantity and how it could be controlled. Alpha cabin initially originates from trim suppliers as a test of "part" elements as opposed to impedance tube measurements preferred for testing "material" elements. Parts are indeed shaped components, possibly including multiple layers of various nature : impervious, solid, elastic, porous, highly resistive thin layers etc. In addition, most of these elements have varying thickness due to architecture and production constraints and may include curved surfaces used for mechanical and/or mounting issues. The test conditions are inspired from those of the ISO 354 and ASTM C standards [1,2]. It consists in a reverberant chamber having a volume of about 7 m3 with non parallel walls. Similarly to ISO 354, one or several loudspeakers generate a broad band sound which results in diffuse sound field in a given frequency range. The lower frequency limit may be estimated by the so-called Schroeder frequency which gives a lower frequency limit around 1200 Hz. However generally, the examined frequencies covers a range from several hundreds to several thousands of Hertz. Reverberation times are measured without and with the tested component and the Sabine absorption coefficient is retrieved. The surface area of the material is either measured or known from the design process of the part. Data are finally assessed both in terms of sound absorption area, in square meter, or the dimensionless Alpha cabin quantity which is similar to Sabine absorption coefficient in ISO 354. Several precisions should be made at this point concerning the setup and data accuracy. As the test elements are shaped, namely with varying thickness and eventually with curved surface, there may exist some air gaps between the cabin floor and the rear side of the tested part if the part sides are not sealed. If the parts are only laid down on the cabin floor, additional sound dissipation may be created by these thin layers. In addition, automotive trims have usually a small surface area, less than one 1 fxb@matelys.com 2 christophe.locqueteau@renault.com

2 square meter. Therefore, similarly to ISO 354 tests, the Alpha cabin values may exceed unity which is physically not acceptable. It is now admitted that this phenomenon, well known in building acoustics, is due to the incoherence between the predicting theory used to retrieve the sound absorption data and the actual test conditions. The former considers indeed infinitely large samples whereas tested elements are obviously of finite size. The last comment is also valid for large reverberant room measurements. As the sound absorption capacity of the tested elements increases the sound field becomes less diffuse and the underlying hypothesis becomes less valid. In this context, the aim of this paper is to examine the possibilities to predict sound absorption performance as measured in Alpha Cabin test facilities. The calculation of diffuse sound field absorption is firstly examined on a large set of material data by the use of linear regression models. The second one relies on the characterization and the simulation using TMM (Transfer Matrix Method) of diffuse field response of the multi-layer trim. These results are finally discussed with regards to their applicability in an industrial context. 2. DIFFUSE SOUND FIELD PREDICTIONS 2.1 London's prediction models London in 1950 [3] proposed several expressions to compute the diffuse field sound absorption from the absorption coefficient as measured in impedance tube, e.g. according to ISO [4]. Starting from the basic definition, the diffuse field sound absorption is defined as : b = 0 / 2 2 π ( θ ) cosθ sin θ dθ To integrate this relationship, London assumes that the equation for (0) may be verified by an acoustic impedance being real. He call it equivalent impedance, Z e defined by : ( Z 1 0) 1 1 e = Z e + which yields : Z e = (0) 1 (0) Therefore, the previous integral becomes : (0) (0) 1 1 (0) b = ln (0) 1 1 (0) 2 2 where a typographic error has been corrected in the equation (15) of the original paper. This model refers to as the first London's model. Alternatively, the above expression may be significantly simplified using the isotropy of acoustic intensity for perfect diffuse field conditions. In this case, the sound energy in a given direction is proportional to that coming from another direction. If so, the diffuse field absorption may be defined as s = π / 2 0 ( θ ) sin θ dθ which further gives : 1 1 (0) (0) s = 4 ln (0) 1 1 (0) 2 This is referred to as the second model by London. These first two models are used in Section 3 where only sound absorption coefficient data as measured in impedance tube are available. A third and last model is given by equation (6) of London's paper. It expresses the diffuse field sound absorption coefficient from the surface impedance considered as a complex value contrary to the above equations. In this case, 8r r² x² 1 x r P = 1 + tan ln( (1 + r)² + x² ) x² + r² x( x² + r²) 1 + r x² + r²

3 where x and r are respectively the real and the imaginary part of the surface impedance as measured in impedance tube, hence for plane wave under normal incidence. This model is used only in Section 4 where complex values of surface impedance are available. For the sake of completeness, one should mention that London made other more radical assumptions [3], which are left for interesting readers. 2.2 Data regression models A more experimental approach is based on collecting sound absorption data and building up, or eventually, updating a model based on regression over all collected data. This approach has been proposed for instance in [5]. In this work, the authors use their prior knowledge of the sound dissipation mechanisms by porous materials to introduce additional degrees of freedom with a view to increase the prediction accuracy. At last, the regression model is a function of the sound absorption coefficient as measured in impedance tube (0), a frequency factor Φ(f), as well as the mass density ρ, the thickness Θ and the air flow resistivity σ of the predicted sample : 6 M = ln( (0)) + Φ( f ) 0.002ρ Θ e σ Note that the air flow resistivity may be measured directly following the corresponding ISO 3 or ASTM standards [6,7]. Typical values range from a few thousands for low density fibrous materials to up to a few millions for highly resistive screens. In total, the influence of the resistivity and of the mass density are of the same order of magnitude, which is two order of magnitude larger than that of the thickness for typical automotive applications. If the information related to e.g. air flow resistivity, is not available, one may reduce the number of degrees of freedom and build up a linear function of the ln( (0) ) in the form of L = A + B ln( (0)) It is obvious that the accuracy of this relationship relies on the number of data points, and the availability of the degrees of freedom. Only this second type of models are tested in Section 3 of the present paper because data of air flow resistivity are not available for the set of data examined there. 2.3 TMM prediction model The previous relationships are adapted to study variations of trim components close to previously studied cases. They are not adapted to design trim components "from scratch", with physical behavior possibly departing largely from those previously measured. In this case, it is necessary to predict the trim response from the properties of the individual components and then to calculate the diffuse field performance using a numerical integration over all angles of incidence. The properties of the individual components may be obtained either by the experimental characterization of their intrinsic properties or by describing their micro-structure, which allows to predict the macroscopic parameters of each individual component. Once the properties of each component are obtained, the sound absorption coefficient of the multi-layer trim in diffuse field condition is computed using the Transfer Matrix Method (TMM) algorithm [8]. If the trim has varying thickness or if the trim consists of patches of different elements, the total trim response may be computed using a weighted average based on the surface area of each patch : i i S i T = S i i where i represents the thickness index and / or the patch index. In this equation, i S i is the total surface area of the considered trim. Even though more cumbersome, this approach allows to change the properties of one component, e.g. the surfacing, without making obsolete the information available for the other components. It is therefore well suited for parametrical studies at early stage of development projects. Moreover, this approach does not require the material to exist and, if it exists, it requires small size samples corresponding to impedance tube diameters. In more details, the experimental characterization for porous materials is described extensively in 3 Interesting readers are referred to paper 98 by Jaouen for a discussion related to the current modification of the ISO 9053 standard.

4 [9, 10]. It is based on the measurement of the intrinsic wave number and wave impedance using impedance tube [11]. It requires the prior knowledge of the static air flow resistivity and the porosity of the material, which are two quantities directly measurable using adapted experimental setups. Finally, it allows to determine analytically, contrary to curve fitting techniques, the parameters of the Johnson-Champoux-Allard-Lafarge (JCAL) model, namely the high frequency limit of the tortuosity, the viscous and thermal characteristic length and the static thermal permeability. Alternatively, so-called micro-macro approaches allows to determine the same set of parameters from the description of the porous material micro-structure, e.g. the pore or the fiber size, the structure morphology, and the value of the porosity [12]. Only the experimental method has been deployed in the present work. This model is used in Section 4 for three different automotive trims with variation composition. 3. VALIDATION ON BLIND TEST DATA In this section, the first two London's models and the data regression models are tested on a large set of measured data collected by Renault. It contains absorption coefficients measured both in impedance tube and in Alpha Cabin test facilities. The data correspond mainly to foam and felt materials. Due to different frequency ranges of validity of the techniques, only the overlapping interval is kept in the study: [ ] Hz or [ ] Hz, depending on the origin of the data. Finally, 472 pairs of values are available, which are shown in Figure 1. Figure 1 - Alpha Cabin absorption data Vs Impedance tube absorption data These graph shows that all data seem to be fairly well arranged, with a limited dispersion. 3.1 Test of London's models Next, Figure 2 shows the implementation of the first two models by London, namely b and s. These results show that the predictions given by the two models are close for low levels of absorption. For higher levels of absorption, the two assumptions tend to give slightly different tendencies. For levels lower than approximately 0.5, s tend to predict with more accuracy the measured data, where b gives better prediction for higher levels of absorption. However, they both predict Alpha Cabin values which are lower than unity, which is physical, whereas numerous measured data exceed unity. It should be noted that the full integration b gives simulated data which are larger than s. The reason for that is still unclear to the authors and currently under investigation.

5 Figure 2 - Test of the London's models for Alpha Cabin prediction 3.2 Test of the regression models Next, the linear regression model is tested. The model is based on all measured data available, namely including those exceeding unity. The obtained regression model is LR = 0.34 ln( (0)) with R² = Results are shown in Figure 3. Figure 3 - Test of the linear regression model including all measured data. These results show that for low levels of absorption, the linear regression model gives absorption coefficient close to those given by London's models. For higher levels of absorption, the inflexion point is observed at a value of absorption around 0.7. In the entire range, it may be concluded that the linear regression model gives results which are in better agreement with measured values of Alpha Cabin absorption than that given by the London's models. To overcome the problem of Alpha cabin values larger than 1, one can first limit the values to the

6 maximum value physically acceptable, namely 1. A new regression model is built on this set of data : LR 1 = 0.32 ln( (0)) with R² = Alternatively, one can simply omit the points with measured values larger than 1. The regression model becomes in this case : LR 2 = 0.31ln( (0)) with R² = Results are shown in the Figure 4 below. Figure 4 - Test of the linear regression models with measured value limited to 1 (Left) and excluding the values larger than 1 (Right). We observe that excluding values larger than 1 from the set of examined data make the linear regression tend to s values. However, the coefficients are close to each other for the three regression models built here. All standard deviation lie around 0.08 which represent a maximum difference of 5%. It is interesting to note that this corresponds to the uncertainty commonly agreed in Alpha Cabin measurements. The larger determination coefficient is obtained when limiting the unphysical values to 1. Finally, these models are fairly close to the one proposed by Mc Grory (see Section 2.2). The coefficient of the logarithmic function is found to be around 0.3 here against 0.245, which still represents above 20% of variation. Moreover, the constant is found to be here close to 1 whereas Mc Grory would find a slightly lower value, namely DETAILED VALIDATION ON THREE PARTICULAR TRIMS In this section, the approach described in Section 2.3 is examined for three type of trims. Again, this approach, yet more demanding, is more adapted for parametrical studies aiming to optimize the performance of the trim. The characterization of each individual component has been carried out by Matelys on samples of diameter 46 mm. Open porosity and static air flow resistivity have been measured on the same samples. Alpha Cabin data have been obtained by Renault. In all three cases, the parts have been laid onto the floor of the cabin without sealing the part perimeter. TMM simulations have been obtained by Matelys using AlphaCell software product version 8.0 [13]. In addition, London's expression P is also computed using the surface impedance data collected during the characterization procedure. For these latter data, the frequency range of computation corresponds to the frequency range of impedance tube measurements, namely [ ] Hz. 4.1 Purely porous trim First a purely porous trim is examined. It consists in fiberglass layer with non woven surfacing on the visible side. On the rear side, a polyester screen is present which has been measured to have no

7 acoustic influence. The maximum thickness is measured to be 15 mm. The minimal thickness is 2 mm on the perimeter as a consequence of both production and mechanical constraints. A picture of the part is shown in the Figure 5 below. Figure 5 - Purely porous trim: rear side (Left), visible side (Right). Three different thicknesses have been considered. Characterization has been carried out on the thicker material region to increase accuracy. In addition, a compression procedure inspired by works in [14] and adapted from Matelys return of experience, has been applied to obtain simulated data for the other two thicknesses. It should be underlined that effects of the compression have been accounted for the sets of acoustic parameters (JCAL model) as well as elastic parameters (elastic isotropic assumption). The surface area of each thickness has been measured manually. From a measurement point of view, 4 parts were tested to obtain the Alpha Cabin data. Due to the absorbing character of both sides of the part, it was considered that both surfaces contribute to the sound dissipation in the cabin. Comparisons between measured data, simulations using London's P expression and TMM are shown in Figure 6. Figure 6 - Purely porous trim : Alpha Cabin prediction using London and TMM simulations. These results show that TMM simulations correspond well to measured data up to 2000 Hz. At higher frequencies, predicted levels largely overestimates the measured ones. In this frequency range, because of the large absorption level of the tested element, it may be argued that the sound field is no longer diffuse, as already pointed out in [15]. This tends to overestimates the sound absorption levels compared to the actually measured ones. Levels predicted by London's equation are fairly close to those given by TMM. However, the frequency behavior is not correctly.

8 4.2 Trim with impervious surfacing The second part to be tested presents a portion of its surface which is covered by an aluminum sheet to satisfy thermal constraints. Otherwise and below this sheet, the trim is composed of non woven surfacing and a so-called shoddy (see Figure 7 below). From a measurement point of view, 5 parts have been tested simultaneously to achieve a sufficient measurement dynamic. From a modeling point of view, the impervious layer has been represented as a septum with a surface mass corresponding to the one actually measured. The surface of this region has been estimated manually to be 70% of the total trim surface. Moreover, only one thickness value and two patch regions were considered. It also was considered that the two faces of the part contribute to the sound dissipation in the cabin. Comparison between measured and simulated data are shown in Figure 8 below. Figure 7 - Trim with impervious surfacing: rear side (Left), visible side (Right). Figure 8 - Trim with impervious surfacing: Alpha Cabin prediction using London and TMM simulations. Levels predicted by TMM approach provide a good correspondence in the low frequency range. Around 1000 Hz, a mass-spring resonance effect is visible which is not observed in the measured data. In this frequency range, simulations largely overestimates the measured levels. At higher frequencies, levels are in better correspondence again. London's predictions do not correspond, nor in levels nor in frequency behavior.

9 4.3 Trim with plastic rigid element The last part to be examined in this paper contains a plastic component, which is totally impervious (see Figure 9). The presence of this plastic element is due to mechanical constraints. The sound absorbing material is made of a polyester fiber layer of constant thickness covered by a non woven surfacing. Three parts were tested simultaneously to obtain sufficient measurement accuracy. From a modeling point of view, the plastic element has not been actually modeled. However it was considered in this case that only the visible side contribute to the sound dissipation in the cabin. Results of measurement and simulations are shown in Figure 10. Figure 9 - Trim with plastic rigid element: rear side (Left), visible side (Right). Figure 10 - Trim with plastic rigid element: Alpha Cabin prediction using London and TMM simulations. In this case, TMM simulations and London's model yield similar levels of absorption, both in levels and frequency tendency. These levels however are underestimated compared to measured levels. One hypothesis is that the lacking level of dissipation originates from the dissipation which may be created by the small gap on the rear side of the part, between the plastic element and the cabin floor. To check this, Alpha Cabin measurements have been carried out with only the plastic element. This dissipation has been added to the levels simulated by the TMM approach. Results are shown in the same figure. Levels are now in good correspondence with the measured ones up to 3000 Hz. Above levels are overestimated for a reason which is still to be determined.

10 5. DISCUSSION This work presents several approaches to predict the sound absorption as measured in Alpha Cabin. Examined approaches include analytical approaches based on the sound absorption coefficient measured in impedance tube and data regression models obtained on a large set of previously measured data. In addition, direct TMM simulations obtained from the characterized set of intrinsic parameters are compared to measured data obtained on three different types of trims. Results show that the analytical approaches yield predictions in close correspondence to measured data. However, these approaches are only adapted to study small variations of designs around a previously measured configuration. TMM simulations seem to give tendencies which correspond well in terms of both physical behavior and of frequency behavior. However, these simulations are largely sensitive to (i) the actual mounting condition of the parts in the Alpha Cabin and (ii) the surface area of the different regions of the tested part. Work are currently in progress to implement the linear regression for the parts tested in the last section of this paper and to obtain lacking information. These results will be presented during the conference. ACKNOWLEDGEMENTS This work has been carried out in the framework of the French research project EcOBEx which is funded by BPI France, Région Rhône-Alpes Auvergne and Grand Lyon La Métropole. All EcOBEx partners are warmly thanked for their support in this work : suppliers RJP, MECAPLAST, and Isover, and research laboratories CrittM2A, UTC, and engineering companies ESI and MicrodB. In particular, the authors thank MECAPLAST for the provision of the additional measured data in Section 4.3 Finally, Christophe Locqueteau would like to thank Olivier Caldier from the Direction of Material Engineering of Renault for the provision of test data. REFERENCES [1] NF EN ISO 354, Acoustics - Measurement of sound absorption in a reverberation room, International Standard Organisation, pp. 9 (2003). [2] ASTM C423-02, Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method, American Society for Testing and Materials, pp. 11 (2002) [3] London, A., The determination of reverberant sound absorption coefficients from acoustic impedance measurements, J. Acoust. Soc. Am., 1950: 22 (2), pp [4] NF EN ISO , Acoustics - Determination of sound absorption coefficient and impedance in impedance tubes - Part 2: Transfer-function method, International Standard Organisation, pp. 27 (1998) [5] McGrory, M. and Castro Cirac, D. and Gaussen, O. and Cabrera, D., Sound absorption coefficient measurement: Re-examining the relationship between impedance tube and reverberant room methods, In Proceedings of Acoustics 12 - Fremantle, Fremantle, Australia (2012) [6] ISO 9053, Acoustics - Materials for acoustical application - Determination of airflow resistance, International Standard Organisation, pp. 10 (1991) [7] ASTM C522-03, Standard Test Method for Airflow Resistance of Acoustical Materials, American Society for Testing and Materials, Vol. pp. 11 (2016) [8] Brouard, B. and Lafarge, D. and Allard, J. F., A general method of modelling sound propagation in layered media, J. Sound Vib., 1995: 183 (1), pp [9] Panneton, R. and Olny, X., Acoustical determination of the parameters governing viscous dissipation in porous media, J. Acoust. Soc. Am., 2006:119 (4), pp [10] Olny, X. and Panneton, R., Acoustical determination of the parameters governing thermal dissipation in porous media, J. Acoust. Soc. Am., 2008:123 (2), pp [11] Iwase, T. and Izumi, Y. and Kawabata, R., A new measuring method for sound propagation constant by using sound tube without any air spaces back of a test material, In Proceedings of inter.noise 98, Christchurch, New Zealand (1998) [12] Perrot, C. and Chevillotte, F. and Hoang, M. T. and Bonnet, G. and Bécot, F.-X. and Gautron, L. and Duval, A., Microstructure, transport, and acoustic properties of open-cell foam samples: Experiments and three-dimensional numerical simulations, J. Appl Phy, 2012:111 (1), pp [13] last visit May, 17th of 2016 [14] Castagnède, B. and Aknine, A. and Brouard, B. and Tarnow, V., Effects of compression on the sound absorption of fibrous materials, Appl. Acoust., 2000:61 pp [15] Duval, A. and Rondeau, J.-F. and Bischoff, L. and Dejaeger, L. and Morgenstern, C. and De Bree,

11 H.-E., In situ impedance and absorption coefficient measurements compared to poro-elastic simulation in free, diffuse or semi-statistical fields using microflown p-u probes, In Proceedings of DAGA 2006, Braunschweig, Germany (2006).

The acoustic characterization of porous media and its standards

The acoustic characterization of porous media and its standards The acoustic characterization of porous media and its standards Luc JAOUEN 1, François-Xavier BECOT, Fabien CHEVILLOTTE Matelys, France ABSTRACT While there is a growing number of methods for the acoustic

More information

Users Manual. Marshall Day Acoustics. Double Panels Contact 33 Details Marshall Day 37.8 Acoustics PO Box

Users Manual. Marshall Day Acoustics. Double Panels Contact 33 Details Marshall Day 37.8 Acoustics PO Box New materials can be permanently entered into the materials.txt file. This is a simple ASCII text file. See the section New Materials for details of how to enter new materials. If desired you can send

More information

Mecanum. Acoustic Materials: Characterization. We build silence. Mecanum Inc.

Mecanum. Acoustic Materials: Characterization. We build silence. Mecanum Inc. ecanum We build silence Acoustic aterials: Characterization ecanum Inc. info@mecanum.com www.mecanum.com otivation Sound quality in vehicles starts at the design stage odels are used to simulate the acoustics

More information

Micro-perforated sound absorbers in stretched materials

Micro-perforated sound absorbers in stretched materials Paper Number 9, Proceedings of ACOUSTICS 011-4 November 011, Gold Coast, Australia Micro-perforated sound absorbers in stretched materials Christian Nocke (1), Catja Hilge (1) and Jean-Marc Scherrer ()

More information

Improvement of Low Frequency Sound Absorption of Acoustical Materials

Improvement of Low Frequency Sound Absorption of Acoustical Materials Improvement of Low Frequency Sound Absorption of Acoustical Materials Paresh Shravage, V.V. Phani Kiran, S.K. Jain, K.Desa, S. Raju, The Automotive Research Association of India, Pune-44 Electro-acoustic

More information

The frequency and angular dependence of the absorption coefficient of common types of living plants

The frequency and angular dependence of the absorption coefficient of common types of living plants The frequency and angular dependence of the absorption coefficient of common types of living plants Jevgenjia PRISUTOVA 1 ; Kirill V. HOROSHENKOV 1 ; Jean-Philippe GROBY 2 ; Bruno BROUARD 2 1 1 Department

More information

Acoustical Design of Vehicle Dash Insulator

Acoustical Design of Vehicle Dash Insulator Acoustical Design of Vehicle Dash Insulator 2011-26-0022 Published on 19 th -21 st January 2011 SIAT, India S K Jain, Paresh Shravage, Manasi Joshi and N V Karanth The Automotive Research Association of

More information

Identification of the characteristic parameters of porous media using active control

Identification of the characteristic parameters of porous media using active control Identification of the characteristic parameters of porous media using active control Nadine Sellen, Marie-Annick Galland and Olivier Hilbrunner LaboratoiredeMécanique des Fluides et d Acoustique EcoleCentraledeLyon&UMRCNRS5509

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 FREQUENCY DEPENDENCY AND ANISOTROPY OF THE ELASTIC CONSTANTS OF (NON-)POROUS MATERIALS AND THEIR INFLUENCE ON THE USAGE IN BUILDING

More information

Development of an analytical solution of modified Biot s equations for the optimization of lightweight acoustic protection

Development of an analytical solution of modified Biot s equations for the optimization of lightweight acoustic protection Development of an analytical solution of modified Biot s equations for the optimization of lightweight acoustic protection Jamil Kanfoud a and Mohamed Ali Hamdi Laboratoire Roberval, Université de Technologie

More information

SOUND ABSORPTION OF MICRO-PERFORATED PANEL PRODUCED BY ADDITIVE MANUFACTURING

SOUND ABSORPTION OF MICRO-PERFORATED PANEL PRODUCED BY ADDITIVE MANUFACTURING SOUND ABSORPTION OF MICRO-PERFORATED PANEL PRODUCED BY ADDITIVE MANUFACTURING Zhengqing Liu, Mohammad Fard, Xiaojing Liu RMIT University, School of Engineering (SENG), Melbourne, VIC 3083, Australia email:

More information

Proceedings of ISMA2012

Proceedings of ISMA2012 - - Mechanical Departement Engineering Werktuigkunde KU Leuven Department of Mechanical Engineering Celestijnenlaan 300B - box 2420 B-3001 Heverlee (Belgium) Proceedings of ISMA2012 International Conference

More information

Sound Propagation in Porous Media

Sound Propagation in Porous Media Final Project Report for ENGN34 Sound Propagation in Porous Media ---Numerical simulation based on MATLAB Name: Siyuan Song Department: Engineering Date: Dec.15 17 1 Name: Siyuan Song Department: Engineering

More information

1817. Research of sound absorption characteristics for the periodically porous structure and its application in automobile

1817. Research of sound absorption characteristics for the periodically porous structure and its application in automobile 1817. Research of sound absorption characteristics for the periodically porous structure and its application in automobile Xian-lin Ren School of Mechatronics Engineering, University of Electronic Science

More information

Acoustic contributions of a sound absorbing blanket placed in a double panel structure: Absorption versus transmission

Acoustic contributions of a sound absorbing blanket placed in a double panel structure: Absorption versus transmission Acoustic contributions of a sound absorbing blanket placed in a double panel structure: Absorption versus transmission Olivier Doutres a and Noureddine Atalla Groupe d Acoustique de l Universite de Sherbrooke,

More information

Porous Materials for Sound Absorption and Transmission Control

Porous Materials for Sound Absorption and Transmission Control Purdue e-pubs Publications of the Ray W. School of Mechanical Engineering 8-2005 Porous Materials for Sound Absorption and Transmission Control J Stuart Bolton, bolton@purdue.edu Follow this and additional

More information

SOUND TRANSMISSION LOSS MEASUREMENTS - AN AUTOMOTIVE OVERVIEW

SOUND TRANSMISSION LOSS MEASUREMENTS - AN AUTOMOTIVE OVERVIEW NSA-15 Goa National Symposium on Acoustics Acoustics for Ocean Environment SOUND TRANSMISSION LOSS MEASUREMENTS - AN AUTOMOTIVE OVERVIEW Paresh Shravage Alfa Acoustics Pune, Maharashtra 1133, India e-mail:

More information

Air Permeability and Acoustic Absorbing Behavior of Nonwovens

Air Permeability and Acoustic Absorbing Behavior of Nonwovens Journal of Fiber Bioengineering and Informatics Regular Article Air Permeability and Acoustic Absorbing Behavior of Nonwovens Shu Yang, Wei-Dong Yu * College of Textiles & Center of Soft Materials, Donghua

More information

Transmission loss of rectangular silencers using meso-porous and micro-perforated linings

Transmission loss of rectangular silencers using meso-porous and micro-perforated linings Transmission loss of rectangular silencers using meso-porous and micro-perforated linings T.E.Vigran Acoustic Group, Department of Electronics and Telecommunications, Norwegian University of Science and

More information

A methodology for a robust inverse identification of model parameters for porous sound absorbing materials

A methodology for a robust inverse identification of model parameters for porous sound absorbing materials A methodology for a robust inverse identification of model parameters for porous sound absorbing materials T.G. Zieliński Institute of Fundamental Technological Research, Polish Academy of Sciences ul.

More information

Some issues in measurement of the random-incidence scattering coefficients in a reverberation room

Some issues in measurement of the random-incidence scattering coefficients in a reverberation room Proceedings of ACOUSTICS 6 20-22 November 6, Christchurch, New Zealand Some issues in measurement of the random-incidence scattering coefficients in a reverberation room Young-Ji Choi, Dae-Up Jeong and

More information

ESTIMATION OF SOUND ABSORPTION COEFFICIENTS OF POROUS MATERIALS. Marianna Mirowska, Kazimierz CzyŜewski

ESTIMATION OF SOUND ABSORPTION COEFFICIENTS OF POROUS MATERIALS. Marianna Mirowska, Kazimierz CzyŜewski ICSV14 Cairns Australia 9-1 July, 007 Abstract ESTIMATION OF SOUND ABSORPTION COEFFICIENTS OF POROUS MATERIALS Marianna Mirowska, Kazimierz CzyŜewski ITB - Building Research Institute, Acoustics Department,

More information

Benefits of Reduced-size Reverberation Room Testing

Benefits of Reduced-size Reverberation Room Testing Benefits of Reduced-size Reverberation Room Testing Dr. Marek Kierzkowski (1), Dr. Harvey Law (2) and Jonathon Cotterill (3) (1) Acoustic Engineer, Megasorber Pty Ltd, Melbourne, Australia (2) Technical

More information

Improvement of the Delany-Bazley and Miki models for fibrous sound-absorbing materials

Improvement of the Delany-Bazley and Miki models for fibrous sound-absorbing materials Acoust. Sci. & Tech. 9, (8) PAPER #8 The Acoustical Society of Japan Improvement of the Delany-Bazley and s for fibrous sound-absorbing materials Takeshi Komatsu Industrial Research Institute of Shizuoka

More information

Unit-cell variability and micro-macro modeling of polyurethane acoustic foams

Unit-cell variability and micro-macro modeling of polyurethane acoustic foams Unit-cell variability and micro-macro modeling of polyurethane acoustic foams Olivier Doutres ETS, Montréal, Canada Morvan Ouisse FEMTO-ST Applied Mechanics, Besançon, France Noureddine Atalla GAUS, Sherbrooke,

More information

Validity of the limp model for porous materials: A criterion based on the Biot theory

Validity of the limp model for porous materials: A criterion based on the Biot theory Validity of the limp model for porous materials: A criterion based on the Biot theory Olivier Doutres, a Nicolas Dauchez, Jean-Michel Génevaux, and Olivier Dazel Laboratoire d Acoustique UMR CNRS 6613,

More information

Laboratory and In Situ Sound Absorption Measurement under a Synthetized Diffuse Acoustic Field: a Case Study on Five Materials

Laboratory and In Situ Sound Absorption Measurement under a Synthetized Diffuse Acoustic Field: a Case Study on Five Materials Laboratory and In Situ Sound Absorption Measurement under a Synthetized Diffuse Acoustic Field: a Case Study on Five Materials Olivier Robin, Celse Kafui Amedin, Alain Berry, Noureddine Atalla, Olivier

More information

DESIGN OF MICRO-PERFORATED ABSORBERS (MPA)

DESIGN OF MICRO-PERFORATED ABSORBERS (MPA) DESIGN OF MICRO-PERFORATED ABSORBERS (MPA) Paresh Shravage, Dr. K.V. Desa Electro-acoustic Research Lab, N. Wadia College, Pune-4111 Email: pareshshravage@gmail.com ABSTRACT MPA s are becoming popular

More information

Sound propagation in activated carbon felts

Sound propagation in activated carbon felts INTER-NOISE 26 Sound propagation in activated carbon felts Hugo KARPINSKI ; Rodolfo VENEGAS 2 Olga UMNOVA 3 ; Jonathan Andrew HARGREAVES 3 ; Salford University and Carbon Air Ltd, United Kingdom 2 Université

More information

On measurement of mechanical properties of sound absorbing materials

On measurement of mechanical properties of sound absorbing materials On measurement of mechanical properties of sound absorbing materials Nicolas Dauchez, Manuel Etchessahar, Sohbi Sahraoui To cite this version: Nicolas Dauchez, Manuel Etchessahar, Sohbi Sahraoui. On measurement

More information

This is a repository copy of How reproducible is the acoustical characterization of porous media?.

This is a repository copy of How reproducible is the acoustical characterization of porous media?. This is a repository copy of How reproducible is the acoustical characterization of porous media?. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/362/ Version: Accepted Version

More information

This is a repository copy of An application of Kozeny Carman flow resistivity model to predict the acoustical properties of polyester fibre.

This is a repository copy of An application of Kozeny Carman flow resistivity model to predict the acoustical properties of polyester fibre. This is a repository copy of An application of Kozeny Carman flow resistivity model to predict the acoustical properties of polyester fibre. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/93426/

More information

Rigid-Frame Porous Material Acoustic Attenuation on Compressor Discharge

Rigid-Frame Porous Material Acoustic Attenuation on Compressor Discharge Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2012 Rigid-Frame Porous Material Acoustic Attenuation on Compressor Discharge Paulo Henrique

More information

A practical device to determine the reflection coefficient of acoustic materials in-situ based on a Microflown and microphone sensor

A practical device to determine the reflection coefficient of acoustic materials in-situ based on a Microflown and microphone sensor A practical device to determine the reflection coefficient of acoustic materials in-situ based on a Microflown and microphone sensor R. Lanoye 1a, H.-E. de Bree b, W. Lauriks a and G. Vermeir a 1 Aspirant

More information

Assessing sound absorption coefficient under a synthesized diffuse acoustic field: effect of the sample size and nature

Assessing sound absorption coefficient under a synthesized diffuse acoustic field: effect of the sample size and nature Assessing sound absorption coefficient under a synthesized diffuse acoustic field: effect of the sample size and nature Olivier Robin a Celse Kafui Amedin b Alain Berry c Noureddine Atalla d Groupe d Acoustique

More information

Transmission Loss of a Dissipative Muffler with Perforated Central Pipe

Transmission Loss of a Dissipative Muffler with Perforated Central Pipe Transmission Loss of a Dissipative Muffler with Perforated Central Pipe 1 Introduction This example problem demonstrates Coustyx ability to model a dissipative muffler with a perforated central pipe. A

More information

Reproducibility experiments on measuring acoustical properties of rigid-frame porous media (round-robin tests)

Reproducibility experiments on measuring acoustical properties of rigid-frame porous media (round-robin tests) Reproducibility experiments on measuring acoustical properties of rigid-frame porous media (round-robin tests) Kirill V. Horoshenkov a and Amir Khan School of Engineering, Design and Technology, University

More information

CONSOLIDATED GRANULAR MEDIA FOR SOUND INSULATION: PERFORMANCE EVALUATION THROUGH DIFFERENT METHODS

CONSOLIDATED GRANULAR MEDIA FOR SOUND INSULATION: PERFORMANCE EVALUATION THROUGH DIFFERENT METHODS Twelfth International Congress on Sound and Vibration CONSOLIDATED GRANULAR MEDIA FOR SOUND INSULATION: PERFORMANCE EVALUATION THROUGH DIFFERENT METHODS G. Pispola a and K. V. Horoshenkov b a Department

More information

A semi-empirical approach to link macroscopic parameters to microstructure of fibrous materials

A semi-empirical approach to link macroscopic parameters to microstructure of fibrous materials A semi-empirical approach to link macroscopic parameters to microstructure of fibrous materials P. Kerdudou, J.-B. Chéné, G. Jacqus, Camille Perrot, S. Berger, P. Leroy To cite this version: P. Kerdudou,

More information

THE DEPENDENCE OF SOUND ABSORPTION BY AN ISOLATED ACOUSTIC RESONATOR ON THE RESONATOR S VOLUME

THE DEPENDENCE OF SOUND ABSORPTION BY AN ISOLATED ACOUSTIC RESONATOR ON THE RESONATOR S VOLUME THE DEPENDENCE OF SOUND ABSORPTION BY AN ISOLATED ACOUSTIC RESONATOR ON THE RESONATOR S VOLUME PACS REFERENCE: 4.55.Ev Stauskis Vytautas J. Vilnius Gediminas Technical University Sauletekio al., LT-4 Vilnius.

More information

Simulation Based Optimization of Layered Non-wovens as Acoustic Trims

Simulation Based Optimization of Layered Non-wovens as Acoustic Trims Simulation Based Optimization of Layered Non-wovens as Acoustic Trims Dr. Volker P. Schulz P.D. Dr. Heiko Andrä Dr. Konrad Steiner Fraunhofer-Institut für Techno- und Wirtschaftsmathematik, Kaiserslautern

More information

Normalized inverse characterization of sound absorbing rigid porous media

Normalized inverse characterization of sound absorbing rigid porous media This is a preprint to the article published in: Journal of the Acoustical Society of America Vol. 37 No. 6 pp. 33-343 (5). http://dx.doi.org/./.49986 Please cite this document as: T. G. ZIELIŃSKI. Normalized

More information

A Multi-Physics Study of the Wave Propagation Problem in Open Cell Polyurethane Foams

A Multi-Physics Study of the Wave Propagation Problem in Open Cell Polyurethane Foams A Multi-Physics Study of the Wave Propagation Problem in Open Cell Polyurethane Foams M. Brennan 1, M. Dossi 1, M. Moesen 1 1. Huntsman Polyurethanes, Everslaan 45, 3078 Everberg, Belgium. Abstract Flexible

More information

In-situ measurements of the complex acoustic impedance of materials in vehicle interiors

In-situ measurements of the complex acoustic impedance of materials in vehicle interiors 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 In-situ measurements of the complex acoustic impedance of materials in vehicle interiors Leonardo Miranda Group Research/Vehicle Concepts,

More information

REVIEW OF ACOUSTIC CHARACTERISTICS OF MATERIALS USING IMPEDANCE TUBE

REVIEW OF ACOUSTIC CHARACTERISTICS OF MATERIALS USING IMPEDANCE TUBE REVIEW OF ACOUSTIC CHARACTERISTICS OF MATERIALS USING IMPEDANCE TUBE Niresh J. 1, Neelakrishnan S. 1, Subharani S. 2, Kannaian T. 3 and Prabhakaran R. 1 1 Department of Automobile Engineering, PSG College

More information

45º CONGRESO ESPAÑOL DE ACÚSTICA 8º CONGRESO IBÉRICO DE ACÚSTICA EUROPEAN SYMPOSIUM ON SMART CITIES AND ENVIRONMENTAL ACOUSTICS

45º CONGRESO ESPAÑOL DE ACÚSTICA 8º CONGRESO IBÉRICO DE ACÚSTICA EUROPEAN SYMPOSIUM ON SMART CITIES AND ENVIRONMENTAL ACOUSTICS COMPARATIVE ANALYSIS OF MEASUREMENT TECHNIQUES OF THE SOUND ABSORPTION COEFFICIENT OF A MATERIAL ANÁLISIS COMPARATIVO DE LAS TÉCNICAS DE MEDIDA DEL COEFICIENTE DE ABSORCIÓN SONORA DE UN MATERIAL PACS:

More information

Download date 21/07/ :18:16.

Download date 21/07/ :18:16. Vibro-acoustic products from re-cycled raw materials using a cold extrusion process. A continuous cold extrusion process has been developed to tailor a porous structure from polymeric waste, so that the

More information

INFLUENCE OF THE PRESENCE OF LINING MATERI- ALS IN THE ACOUSTIC BEHAVIOUR OF PERFORATED PANEL SYSTEMS

INFLUENCE OF THE PRESENCE OF LINING MATERI- ALS IN THE ACOUSTIC BEHAVIOUR OF PERFORATED PANEL SYSTEMS INFLUENCE OF THE PRESENCE OF LINING MATERI- ALS IN THE ACOUSTIC BEHAVIOUR OF PERFORATED PANEL SYSTEMS Ricardo Patraquim Castelhano & Ferreira S.A., Av. Colégio Militar, nº 24A Benfica, Lisboa, Portugal.

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Architectural Acoustics Session 2aAAb: New Materials for Architectural

More information

Diffuse field absorption coefficient simulation of porous materials in small reverberant rooms: finite size and diffusivity issues

Diffuse field absorption coefficient simulation of porous materials in small reverberant rooms: finite size and diffusivity issues Diffuse field absorption coefficient simulation of porous materials in small reverberant rooms: finite size and diffusivity issues Arnaud Duval, Jean-François Rondeau, Ludovic Dejeager, Franck Sgard, Noureddine

More information

Summary. The basic principles of the simulation technique SERT

Summary. The basic principles of the simulation technique SERT Determination of the absorption coefficient of structured absorbing systems in a "virtual" reverberation chamber - an application of the sound particle method SERT (Translation of the original publication:

More information

A PRACTICAL ACOUSTICAL ABSORPTION ANALYSIS OF COIR FIBER BASED ON RIGID FRAME MODELING

A PRACTICAL ACOUSTICAL ABSORPTION ANALYSIS OF COIR FIBER BASED ON RIGID FRAME MODELING A PRACTICAL ACOUSTICAL ABSORPTION ANALYSIS OF COIR FIBER BASED ON RIGID FRAME MODELING Md. Ayub 1 *, Mohd Jailani Mohd Nor 1, Mohammad Hosseini Fouladi 3, Rozli Zulkifli 1, Nowshad Amin 2,4 1 Department

More information

EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS

EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS Kento Hashitsume and Daiji Takahashi Graduate School of Engineering, Kyoto University email: kento.hashitsume.ku@gmail.com

More information

Test Report. RI Acoustic Lab. Measurement of Sound Absorption Coefficient for RockDelta NoiStop Noise Barrier. 20 Feb. 07

Test Report. RI Acoustic Lab. Measurement of Sound Absorption Coefficient for RockDelta NoiStop Noise Barrier. 20 Feb. 07 Test Report RI Acoustic Lab Measurement of Sound Absorption Coefficient for RockDelta NoiStop Noise Barrier 20 Feb. 07 Title Measurement of Sound Absorption Coefficient for RockDelta NoiStop Noise Barrier

More information

Fibrous Material Microstructure Design for Optimal Damping Performance

Fibrous Material Microstructure Design for Optimal Damping Performance Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 12-8-2017 Fibrous Material Microstructure Design for Optimal Damping Performance Yutong

More information

DIFFUSIVITY AND ITS SIGNIFICANCE TO EFFECTIVE SEAT ABSORPTION IN CONCERT HALLS

DIFFUSIVITY AND ITS SIGNIFICANCE TO EFFECTIVE SEAT ABSORPTION IN CONCERT HALLS akutek DIFFUSIVITY AND ITS SIGNIFICANCE TO EFFECTIVE SEAT ABSORPTION IN CONCERT HALLS M Skålevik 1,2, Bølstadtunet 7, 3430 Spikkestad, Norway 1 ) 2 ) Brekke & Strand akustikk email:msk@bs-akustikk 1 INTRODUCTION

More information

Analogy Electromagnetism - Acoustics: Validation and Application to Local Impedance Active Control for Sound Absorption

Analogy Electromagnetism - Acoustics: Validation and Application to Local Impedance Active Control for Sound Absorption Analogy Electromagnetism - Acoustics: Validation and Application to Local Impedance Active Control for Sound Absorption L. Nicolas CEGELY - UPRESA CNRS 5005 - Ecole Centrale de Lyon BP63-693 Ecully cedex

More information

Absorption modeling with ensemble averaged impedance for wave-based room acoustics simulations

Absorption modeling with ensemble averaged impedance for wave-based room acoustics simulations Absorption modeling with ensemble averaged impedance for wave-based room acoustics simulations Toru OTSURU 1 ; Reiji TOMIKU 1 ; Takeshi OKUZONO 2 1 Oita University, Japan 2 Kobe University, Japan ABSTRACT

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 1.0 MODELING AND OPTIMIZATION

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 2.0 TLM MODEL FOR SOUND

More information

Acoustic design of lightweight cabin walls for cruise ships

Acoustic design of lightweight cabin walls for cruise ships Acoustic design of lightweight cabin walls for cruise ships A. Treviso 1, M. G. Smith 1 1 ISVR Consulting, University of Southampton University Road, SO17 BJ1, Southampton, United Kingdom e-mail: mgs@isvr.soton.ac.uk

More information

On the use of a loudspeaker for measuring the viscoelastic properties of sound absorbing materials

On the use of a loudspeaker for measuring the viscoelastic properties of sound absorbing materials On the use of a loudspeaker for measuring the viscoelastic properties of sound absorbing materials Olivier Doutres, Nicolas Dauchez, Jean-Michel Génevaux, Guy Lemarquand To cite this version: Olivier Doutres,

More information

Radiated sound power estimates of building elements by means of laser Doppler vibrometry

Radiated sound power estimates of building elements by means of laser Doppler vibrometry Radiated sound power estimates of building elements by means of laser Doppler vibrometry N.B. Roozen, L. Labelle, M. Rychtáriková,2, C. Glorieux, D. Urbán 3, P. Za tko 3, H. Mullner 4 Laboratory of Acoustics,

More information

THE ACOUSTIC IMPEDANCE MEASUREMNET SYSTEM USING TWO MICROPHONES

THE ACOUSTIC IMPEDANCE MEASUREMNET SYSTEM USING TWO MICROPHONES P-7 THE ACOUSTIC IMPEDANCE MEASUREMNET SYSTEM USING TWO MICROPHONES RYU, YUNSEON BRUEL & KJAER SOUND & VIBRATION MEASUREMENT A/S SKODSBORGVEJ 307 NAERUM 2850 DENMARK TEL : +45 77 41 23 87 FAX : +45 77

More information

COMPARISON OF THE METHODS TO CALIBRATE THE DIFFUSE FIELD SENSITIVITY OF LABORATORY STAND- ARD MICROPHONE

COMPARISON OF THE METHODS TO CALIBRATE THE DIFFUSE FIELD SENSITIVITY OF LABORATORY STAND- ARD MICROPHONE COMPARISON OF THE METHODS TO CALIBRATE THE DIFFUSE FIELD SENSITIVITY OF LABORATORY STAND- ARD MICROPHONE Wan-Ho Cho, Hyu-Sang Kwon, and Ji-Ho Chang Korea Research Institute of Standards and Science, Center

More information

Effect and minimization of errors in in-situ ground

Effect and minimization of errors in in-situ ground Effect and minimization of errors in in-situ ground impedance measurements Roland Kruse, Volker Mellert Oldenburg University, Inst. of Physics, 6 Oldenburg, Germany Abstract The transfer function method

More information

Calcul des coefficients d'absorption alpha sabine

Calcul des coefficients d'absorption alpha sabine Calcul des coefficients d'absorption alpha sabine Selon Norme NFEN 20354 TEST n : 138G04-7 TYPE : Vinyl 340/360 g/m² DATE : 04 février 2005 SUPPORT : Echantillon collé sur plaque de BA13 DONNEES : Température

More information

Reflection and absorption coefficients for use in room acoustic simulations

Reflection and absorption coefficients for use in room acoustic simulations Downloaded from orbit.dtu.dk on: May 1, 018 Reflection and absorption coefficients for use in room acoustic simulations Jeong, Cheol-Ho Published in: Proceedings of Spring Meeting of the Acoustical Society

More information

An alternative Biot s displacement formulation for porous materials

An alternative Biot s displacement formulation for porous materials An alternative Biot s displacement formulation for porous materials Olivier Dazel, a Bruno Brouard, Claude Depollier, and Stéphane Griffiths Laboratoire d Acoustique de l Université du Maine - UMR CNRS

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.2 LABORATORY MEASUREMENT

More information

campus, Kuching, Malaysia Kuching, Malaysia

campus, Kuching, Malaysia Kuching, Malaysia Applied Mechanics and Materials Vol. 315 (2013) pp 577-581 (2013) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amm.315.577 Experimental determination of Sound Absorption Coefficients

More information

LABORATORY MEASUREMENTS OF THE SOUND ABSORPTION COEFFICIENTS OF OSCAR EVO-PANELS

LABORATORY MEASUREMENTS OF THE SOUND ABSORPTION COEFFICIENTS OF OSCAR EVO-PANELS Report No. L/3237 Page 1 of 8 for Oscar Acoustics Michaels Lane Ash Kent TN15 7HT Dated: 24 July 2012 LABORATORY MEASUREMENTS OF THE SOUND ABSORPTION COEFFICIENTS OF OSCAR EVO-PANELS Report Author: M Sawyer

More information

A 3 D finite element model for sound transmission through a double plate system with isotropic elastic porous materials

A 3 D finite element model for sound transmission through a double plate system with isotropic elastic porous materials Acoustics and Vibrations Group Université de Sherbrooke, QC CANADA Département génie mécanique Université de Sherbrooke Sherbrooke, QC CANADA Tel.: (819) 821-7157 Fax: (819) 821-7163 A 3 D finite element

More information

DELTA Test Report. Measurement of sound absorption coefficient for 15 mm Fraster felt Plus acoustic panels with mounting depth 45 mm

DELTA Test Report. Measurement of sound absorption coefficient for 15 mm Fraster felt Plus acoustic panels with mounting depth 45 mm DELTA Test Report TEST Reg. no. 100 Measurement of sound absorption coefficient for 15 mm Fraster felt Plus acoustic panels with mounting depth 45 mm Performed for Fraster ApS DANAK 100/2275 Project no.:

More information

ON SITE DETERMINATION OF SOUND ABSORPTION COEFFICIENT OF ROAD PAVEMENTS USING MOBILE LABORATORY

ON SITE DETERMINATION OF SOUND ABSORPTION COEFFICIENT OF ROAD PAVEMENTS USING MOBILE LABORATORY ON SITE DETERMINATION OF SOUND ABSORPTION COEFFICIENT OF ROAD PAVEMENTS USING MOBILE LABORATORY Fabio Lo Castro, Sergio Iarossi, Massimiliano De Luca, Elena Ascari, Domenico Stanzial, Gaetano Licitra CNR-IDASC

More information

Notes on Absorption and Impedance Measurements

Notes on Absorption and Impedance Measurements Notes on Absorption and Impedance Measurements Andrew F. Seybert University of Kentucky Lexington, KY 456-18 859-257-6336 x 8645 seybert@engr.uky.edu Applicable Standards. There are two standards 1,2 for

More information

MANUAL FOR NORFLAG, VERSION 4.0 TOR ERIK VIGRAN. Trondheim

MANUAL FOR NORFLAG, VERSION 4.0 TOR ERIK VIGRAN. Trondheim MANUAL FOR NORFLAG, VERSION 4.0 BY TOR ERIK VIGRAN Trondheim 05.11.18 1 CONTENTS 1. Introduction... 4 2. Overview... 5 3. Main features... 5 3.1 New features in version 4.0 (updates from version 3.0)...

More information

Development of a small-scale reverberation room

Development of a small-scale reverberation room Proceedings of ACOUSTICS 2016 9-11 November 2016, Brisbane, Australia Development of a small-scale reverberation room Alexander Rasa Noise Control Research & Development, Pyrotek Pty Ltd, Sydney, Australia

More information

The measurement of complex acoustical properties of homogeneous materials by means of impulse response in a plane wave tube

The measurement of complex acoustical properties of homogeneous materials by means of impulse response in a plane wave tube The measurement of complex acoustical properties of homogeneous materials by means of impulse response in a plane wave tube Paolo Bonfiglio, Francesco Pompoli, Nicola Prodi Dipartimento di Ingegneria,

More information

Extraordinary absorption of sound in porous lamella-crystals SUPPLEMENTARY INFORMATION

Extraordinary absorption of sound in porous lamella-crystals SUPPLEMENTARY INFORMATION Extraordinary absorption of sound in porous lamella-crystals SUPPLEMENTARY INFORMATION J. Christensen*, 1, 2 V. Romero-García, 3, 4 R. Pico, 3 A. Cebrecos, 3 F. J. García de Abajo, 5, 6 N. A. Mortensen,

More information

Evaluation of standards for transmission loss tests

Evaluation of standards for transmission loss tests Evaluation of standards for transmission loss tests M. Cassidy, R. K Cooper, R. Gault and J. Wang Queen s University Belfast, School of Mechanical and Aerospace Engineering, Ashby Building, Stranmillis

More information

REPORT ON THE DETERMINATION OF SOUND ABSORPTION COEFFICIENTS OF WOVEN IMAGE ECHO PANEL 7MM TESTED WITH A 20MM AIR GAP IN A REVERBERATION ROOM.

REPORT ON THE DETERMINATION OF SOUND ABSORPTION COEFFICIENTS OF WOVEN IMAGE ECHO PANEL 7MM TESTED WITH A 20MM AIR GAP IN A REVERBERATION ROOM. REPORT ON THE DETERMINATION OF SOUND ABSORPTION COEFFICIENTS OF WOVEN IMAGE ECHO PANEL 7MM TESTED WITH A 20MM AIR GAP IN A REVERBERATION ROOM. Testing Procedure: AS ISO 354-2006 Testing Laboratory: Client:

More information

In-situ measurements of the Complex Acoustic

In-situ measurements of the Complex Acoustic MASTER S THESIS 2006 In-situ measurements of the Complex Acoustic Impedance of materials for automobile interiors Jorge D. Alvarez B. Ørsted DTU Acoustic Technology TECHNICAL UNIVERSITY OF DENMARK Ørsteds

More information

Recent topics in acoustic scattering coefficient determination for wall surfaces

Recent topics in acoustic scattering coefficient determination for wall surfaces Toronto, Canada International Symposium on Room Acoustics 2013 June 9-11 Recent topics in acoustic scattering coefficient determination for wall surfaces Tetsuya Sakuma (sakuma@k.u-tokyo.ac.jp) Hyojin

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 NUMERICAL SIMULATION OF THE ACOUSTIC WAVES PROPAGATION IN A STANDING WAVE TUBE

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 NUMERICAL SIMULATION OF THE ACOUSTIC WAVES PROPAGATION IN A STANDING WAVE TUBE 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 27 NUMERICAL SIMULATION OF THE ACOUSTIC WAVES PROPAGATION IN A STANDING WAVE TUBE PACS: 43.2.Ks Juliá Sanchis, Ernesto 1 ; Segura Alcaraz,

More information

Design of ParaMPA: a micro-perforated absorber

Design of ParaMPA: a micro-perforated absorber Design of ParaMPA: a micro-perforated absorber Onursal Onen and Mehmet Caliskan Department of Mechanical Engineering Middle East Technical University 06531 Ankara, Turkey ABSTRACT Perforated absorbers

More information

EFFECT OF MEMBRANE SURFACE TENSION AND BACKED-AIR GAP DISTANCE ON SOUND ABSORPTION CHARACTERISTICS

EFFECT OF MEMBRANE SURFACE TENSION AND BACKED-AIR GAP DISTANCE ON SOUND ABSORPTION CHARACTERISTICS EFFECT OF MEMBRANE SURFACE TENSION AND BACKED-AIR GAP DISTANCE ON SOUND ABSORPTION CHARACTERISTICS M. H. Zainulabidin 1, L. M. Wan 1, A. E. Ismail 1, M. Z. Kasron 1 and A. S. M. Kassim 2 1 Faculty of Mechanical

More information

The Influence of Boundary Conditions and Constraints on the Performance of Noise Control Treatments: Foams to Metamaterials

The Influence of Boundary Conditions and Constraints on the Performance of Noise Control Treatments: Foams to Metamaterials Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 7-2013 The Influence of Boundary Conditions and Constraints on the Performance of Noise

More information

SOUND ABSORPTION OF SLAT STRUCTURES FOR PRACTICAL APPLICATIONS

SOUND ABSORPTION OF SLAT STRUCTURES FOR PRACTICAL APPLICATIONS SOUND ABSORPTION OF SLAT STRUCTURES FOR PRACTICAL APPLICATIONS J Riionheimo N Näveri T Lokki H Möller Aalto University, Akukon Ltd. Helsinki, Finland Akukon Ltd. Helsinki, Finland Aalto University, Espoo,

More information

FDTD analysis on the sound insulation performance of wall system with narrow gaps

FDTD analysis on the sound insulation performance of wall system with narrow gaps FDTD analysis on the sound insulation performance of wall system with narrow gaps Takumi Asakura a Shinichi Sakamoto b Institute of Industrial Science, The University of Tokyo. Komaba 4-6-, Meguro-ku,

More information

High resolution absorption mapping with a pu surface impedance method

High resolution absorption mapping with a pu surface impedance method Baltimore, Maryland NOISE-CON 2010 2010 April 19-21 High resolution absorption mapping with a pu surface impedance method Emiel Tijs a Microflown Technologies Zevenaar, The Netherlands Hans-Elias de Bree

More information

Factors Influencing Acoustic Performance of Sound Absorptive Materials

Factors Influencing Acoustic Performance of Sound Absorptive Materials Australian Journal of Basic and Applied Sciences, 3(4): 4610-4617, 2009 ISSN 1991-8178 2009, INSInet Publication Factors Influencing Acoustic Performance of Sound Absorptive Materials Hoda S. Seddeq Housing

More information

Microperforated Insertion Units in free field: A case study

Microperforated Insertion Units in free field: A case study Microperforated Insertion Units in free field: A case study J. Pfretzschner, A. Fernández, P. Cobo, M. Cuesta, Instituto de Acústica. CSIC. Serrano, 86 Madrid, Spain, iacjp36@ia.cetef.csic.es, iacf39@ia.cetef.csic.es,

More information

A LOW-FREQUENCY METASURFACE ABSORBER BASED ON HELMHOLTZ RESONATORS

A LOW-FREQUENCY METASURFACE ABSORBER BASED ON HELMHOLTZ RESONATORS A LOW-FREQUENCY METASURFACE ABSORBER BASED ON HELMHOLTZ RESONATORS Honggang Zhao )), Yang Wang ), Dan Zhao ), and Jihong Wen ) email: zhhg963@sina.com Yiu Wai Lam ), Olga Umnova ) ) Vibration and Acoustics

More information

Semeniuk, B., Göransson, P. (2018) Modelling the Dynamic Viscous and Thermal Dissipation Mechanisms in a Fibrous Porous Material In:

Semeniuk, B., Göransson, P. (2018) Modelling the Dynamic Viscous and Thermal Dissipation Mechanisms in a Fibrous Porous Material In: http://www.diva-portal.org This is the published version of a paper presented at COMSOL Conference 2018 Lausanne. Citation for the original published paper: Semeniuk, B., Göransson, P. (2018) Modelling

More information

DELTA Test Report. DANAK TEST Reg. no Measurement of Sound Absorption Coefficient for Kvadrat Soft Cells Wall Panel Type Time

DELTA Test Report. DANAK TEST Reg. no Measurement of Sound Absorption Coefficient for Kvadrat Soft Cells Wall Panel Type Time We help ideas meet the real world DELTA Test Report DANAK TEST Reg. no. 100 Measurement of Sound Absorption Coefficient for Kvadrat Soft Cells Wall Panel Type Time Client: Kvadrat Soft Cells A/S Page 1

More information

Laboratory for Acoustics. Determination of the sound absorption (reverberation room method) of Airpanel, manufacturer Texdecor

Laboratory for Acoustics. Determination of the sound absorption (reverberation room method) of Airpanel, manufacturer Texdecor Laboratory for Acoustics Determination of the sound absorption (reverberation room method) of Airpanel, manufacturer Texdecor Report number A 3151-2E-RA-001 d.d. June 1, 2017 Laboratory for Acoustics Determination

More information

Porous layer impedance applied to a moving wall: application to the radiation

Porous layer impedance applied to a moving wall: application to the radiation Author manuscript, published in "The Journal of the Acoustical Society of America 121, 1 (27) 26-213" DOI : 1.1121/1.2359233 AIP/123-QED Porous layer impedance applied to a moving wall: application to

More information

Method of estimating the reverberant sound absorption coefficient of the absorbing structure composed of different plane porous materials

Method of estimating the reverberant sound absorption coefficient of the absorbing structure composed of different plane porous materials J. Acoust. Soc. Jpn. (E) 1, 1 (1980) Method of estimating the reverberant sound absorption coefficient of the absorbing structure composed of different plane porous materials Kyoji Fujiwara and Yasuo Makita

More information

Curtain fabric type Ace Manufacturer Kvadrat A/S

Curtain fabric type Ace Manufacturer Kvadrat A/S Müller-BBM GmbH Robert-Koch-Str. 11 82152 Planegg bei München Telephone +49(89)85602 0 Telefax +49(89)85602 111 www.muellerbbm.com M. Eng. Philipp Meistring Telephone +49(89)85602 228 Philipp.Meistring@mbbm.com

More information