INFLUENCE OF THE PRESENCE OF LINING MATERI- ALS IN THE ACOUSTIC BEHAVIOUR OF PERFORATED PANEL SYSTEMS

Size: px
Start display at page:

Download "INFLUENCE OF THE PRESENCE OF LINING MATERI- ALS IN THE ACOUSTIC BEHAVIOUR OF PERFORATED PANEL SYSTEMS"

Transcription

1 INFLUENCE OF THE PRESENCE OF LINING MATERI- ALS IN THE ACOUSTIC BEHAVIOUR OF PERFORATED PANEL SYSTEMS Ricardo Patraquim Castelhano & Ferreira S.A., Av. Colégio Militar, nº 24A Benfica, Lisboa, Portugal. Luís Godinho, António Tadeu, Paulo Amado-Mendes CICC Centro de Investigação em Ciências da Construção, Dep. Eng. Civil da FCTUC da Universidade de Coimbra, Rua Luís Reis Santos, Pólo 2 da FCTUC, Coimbra, Portugal. lgodinho@dec.uc.pt; tadeu@dec.uc.pt; pamendes@dec.uc.pt Perforated panels are a common technical solution for the acoustical conditioning of closed spaces. The most usual solutions of this type make use of a perforated surface, made of plasterboard or wood, separated from a rigid structure (wall or slab) by an air cavity with a given thickness. Within this cavity, porous materials may be included to improve the absorbing effect of the system. The behaviour of these systems is, thus, complex, combining the effect of the porous absorber (embedded in the cavity) and of an acoustic resonator (originated by the combined effect of the panel s perforation and of the cavity). In many applications, the back of the panels is lined with fabric, whose characteristics can strongly influence the acoustic behaviour of the system. In this work, the authors analyze the influence of this lining in the absorbing properties of the system, performing experimental tests with different types of fabric and evaluating the acoustic absorption in the presence of different system configurations. To better understand the obtained results, the tested fabrics are also characterized in what concerns their density and air-flow resistivity, which are known to be relevant to their acoustic behaviour. The results obtained in the experimental tests are also compared with theoretical predictions, attempting to understand the accuracy of those models for the prediction of the acoustic absorption of such complex systems. 1. Introduction In order to enhance the sound absorption area of the room surfaces, ceilings and walls are usually coated using perforates (perforated panels), with an air cavity defined by the gap between their surface and the rigid wall. In these systems, the process of sound absorption is caused by the resonance of the air mass contained in the holes (bottlenecks) in a resonant cavity - as a Helmholtz resonator. According to Ingard and Bolt [1], the effect of perforated panels corresponds to an addition of mass reactance of air in each hole to the normal surface impedance under the perforated facing, whereas its acoustic resistance is negligible (for perforated panels with holes of large diameter or extra wide slots, above the viscous boundary layer). So, the back cavity under the perforated panels ICSV18, Rio de Janeiro, Brazil, 1-14 July 211 1

2 should be filled with porous absorbent materials in order to increase the sound absorption of the system. In many applications, the back of the perforated panels is lined with fabric (thin acoustic nonwoven), whose characteristics can strongly influence the acoustic behaviour of the system. In fact, there are few works studying the influence of this thin acoustic nonwoven on the back of perforated panels with a relatively high thickness (12mm) and a low fraction of open area (commonly between 3% and 15%). The main reason that triggered this work was the fact that perforated panels were tested in three different laboratories, and none showed a characteristic behaviour of a resonator Figure 1. Those panels (designated here as type A, and described in further detail in section 3), included a nonwoven textile glued on their back. These results indicated that, in the development and implementation of these systems, it becomes important to assess the factors that can influence their acoustic performance. Figure 1. First lab tests no resonance peak, no significant differences Since the sound absorption of the perforates is strongly dependent on the mounting conditions, an experimental parametric study is performed, in order to evaluate, using a reverberation room and according to the ISO 354:23 standard, the dependence of the sound absorption in wooden panels with circular holes on the following parameters: usage of thin acoustic nonwoven as a resistive layer; use of mineral wool on the back layer of air; small variation of the open area of the panels. A theoretical analysis is also performed, following the methodology compiled on [2], based on the works of Morse, Bolt, Ingard and Crandall [3-6]. Following this introduction, the next section presents the definition of perforation impedance and some existing formulations for computing the sound absorption of the system; Section 3 describes the experimental setups and procedures; Section 4 gives the results of sound absorption for the different tests; in Section 5, a comparison between experimental measurements and theoretical predictions is presented; finally, the concluding remarks are presented in Section Modelling sound absorption of perforated panels The methods of modelling the sound absorption of perforated panels are based on the conversion of acoustic impedance of a single hole in an average value corresponding to the open area of the panel. The perforated panel is considered as a set of short tubes of identical length to the thickness of the panel, and the non-perforated material very dense and rigid, and therefore perfectly reflective. It is further assumed that the wavelength of the sound that propagates is sufficiently large compared with the cross-sectional dimension of the tube (i.e., hole). This method includes the terms due to viscosity of air, radiation (from a hole in a baffle), interactions between holes and the effects of reactance of the cavity. 2

3 These acoustic systems are studied using the concept of the transfer matrix method, which determines the acoustic impedance along the normal direction of an interface of a material using the continuity of particle velocity (on both sides of the interface) and knowing the acoustic properties of the medium (characteristic impedance, c a, and the wavenumber or propagation constant, k a ). When the nonwoven acoustic textile is placed right behind the perforated panels, then the resistance behaves as though it actually occurs in the openings. According to Ingard and Bolt [1] and to Vér and Beranek [7], acoustic resistance of the absorber is increased to σ t ε (where σ is the flow resistivity of the nonwoven acoustic textile, t is its thickness and ε is the fraction of open area or porosity of the perforated panel). From the knowledge of the acoustic impedance is possible to determine the sound absorption coefficient and then estimate its value for diffuse field. The arrangement of the absorber is shown in Figure 2. We consider the system as locally reacting, assuming that the sound in the absorber can propagate only perpendicularly to the plane of the interface. t d 1 D=2r air space c, k, Mineral wool σ a, k a, ca s Perforated Panel Thin acoustic nonwoven y x Rigid Wall Figure 2. Arrangement of absorber for prediction At Point the normal surface impedance is infinite ( wall. The normal surface impedance at point 1, ( ) s1 ca a 1 s = ), since it is considered a rigid = i cot k d (1) where c a is the characteristic impedance of the mineral wool, and k a is the wavenumber (or propagation constant). So, to use this model is necessary to have the mineral wool characterized in respect of these physical quantities by means of measurement, as reported by Cox and D Antonio [8], or using an empirical predictions from regression analyses of measured data. As written above, the normal surface impedance at point 2 is: t t = s + σ σ i cot( ) 2 s 1 c k a ad1 ε = + ε (2) and the surface impedance of the system (point 3) along the normal direction is: = + (3) s3 s panel s 2 where the normal surface impedance of a perforated panel corresponds the idea of the impedance of one hole (tube) is converted into a single averaged value corresponding to the fraction of perforated open area and is given by: stube s = (4) panel ε 3

4 And, according with Crandall [6], the impedance of one hole (tube) is ( s ) ( k r) J ( k r) J1 k r 2 2r s s λ i ωρ s l ωρη ρ c π i ωρ δ = tube where ρ is the air density, ω is the angular frequency, l is the thickness of the perforated panel, r is the radius of the circular hole, η is the coefficient of air viscosity, λ is the wavelength, J n is the n th order of Bessel function and ks = iωρ η is the Stokes wave number. The second term on the right hand side is the end correction, which also accounts for the interaction between the orifices via the expression (see [7] and [8]) 16r δ = ε π 3 ε The sound absorption coefficient for a sound incidence angle θ with respect to the normal of the surface is given by ( ) 2 α θ = 1 R( θ ) (7) where R( θ ) is the reflection coefficient that can be expressed in terms of the normal surface impedance s 3 of the system: R( θ ) = s3 s3 cosθ cosθ+ where = ρc is the acoustic impedance of the air. To estimate the sound absorption coefficient for random incidence, i.e. diffuse field, the authors follow the proposal Vér and Beranek in [7], which state that there is a very close correlation between the calculation of α ( θ) from Eq. (7), for incidence of θ = 45 and more complex approaches proposed by other authors for diffuse incidence. 3. Experimental setup and characteristics of the absorbing system To assess the sound absorption coefficient of the perforated panels under diffuse sound incidence, standardized laboratory tests were performed in a reverberation chamber, following the procedures specified in the ISO 354:23 standard. In this section, a brief description of the test conditions is given, together with some details concerning the tested sound absorbing systems. To perform the sound absorbing tests, a large size reverberant chamber, with a total volume of 23.98m 3 and a floor area of 5.85m x 5.85m, existing in the laboratory infrastructure of ITeCons, at the University of Coimbra, was used. This reverberant chamber has previously been prepared in order to fulfil the requirements of the ISO 354 standard, namely in what concerns the creation of a diffuse field and the limitation of the reverberation times of the empty chamber. A detailed description of the testing conditions within the chamber can be found in [9], and for the purpose of this work it is enough to just highlight that 15 sound polycarbonate diffusers, with convex and concave shapes, totalizing 3 m 2, were used to ensure the correct behaviour of the chamber. Each test sample had an area of approximately 1.8m 2, and consisted of perforated wooden panels over mounted over the floor in a E-5 configuration, incorporating a small resonant cavity between the panel and the floor. The perforated wooden panels were 12 mm thick, with circular holes with a diameter of D=8 mm, equally spaced 32 mm along the two orthogonal directions (see Figure 3). To allow the use of an adequate test area, panels with 6 mm x 6 mm were used, (5) (6) (8) 4

5 forming a grid with 6 by 5 individual panels. These panels were supported by a light wooden structure, mounted over the floor, consisting of an external frame with 4 wooden beams, complemented by internal beams equally spaced 6 mm, disposed along the smaller dimension. Two different types of panels were used, designated as A and B, corresponding to different global perforation areas. In terms of global perforated area, although the hole diameter and spacing remain constant between all solutions, panel B presents an additional row of holes along each side of the panel, which originates a slight increase in the perforated area. Thus, in the case of panel A, this area is approximately 3.57% of the panel area, while in panel type B the perforation corresponds to 4,52% (see Figure 3) D=8 a) Figure 3. Perforation scheme of the different panels (dimensions in mm): a) type A; b) type B. D=8 b) The support wooden structure is approximately 4 mm thick, which ensures the presence of a small air-gap with that thickness bellow the panels. Three different solutions were tested, corresponding to: an air-gap, without any absorbing material; a cavity filled with a mineral wool with a density of 4 kg/m 3 ; a cavity filled with a mineral wool with a density of 7 kg/m 3. On the back of the perforated panels, a nonwoven acoustic textile mat was used, which is a very usual constructive solution in these type of panels, mostly to avoid the emission of small particles from the mineral wools. For the purpose of this work, three types of textile mats were used, which will here be designated as M1, M2 and M3. M1 and M2 correspond to nonwoven textile mats that are of current use on the back of thin micro perforated metal sheets, in order to improve their sound absorption; M3 is a standard nonwoven textile mat that is commonly used on the back of wooden or plasterboard perforated panels. Although no precise data could be obtained for these mats, it was possible to perform a brief laboratory characterisation, evaluating their air-flow resistivity, an essential parameter to incorporate the effect of these mats in the theoretical models of section 2. These values were of 79 MKS rayl, 71 MKS rayl and 27 MKS rayl for the M1, M2 and M3 nonwoven, respectively. 4. Experimental results An experimental parametric study was performed to evaluate the influence of the different variables identified before in the behaviour of the system. Figure 4a illustrates the sound absorption obtained for the tested system with panels of type A, and with the cavity filled with mineral wool (with density of 7 kg/m 3 ). Results for the three nonwovens are presented, together with reference measurements performed without any nonwoven, with and without the mineral wool. For an empty cavity, and without the nonwoven, the resonant behaviour of the system can, as expected, be observed between 4 Hz and 5 Hz, although with a relatively small absorption coefficient (α=.4). When mineral wool is used, this resonance lowers to the frequency band of 315 Hz, due to impedance of this material, and the peak becomes notoriously higher (around α=1.). The introduction of the M3 nonwoven textile produces only a slight variation in this response, with the behaviour of the system maintaining the same features. In fact, a slight broadening effect occurs, with a small decrease in the peak value together with a very slight increase in the absorption observed at low and high frequencies. This effect is clearly related to the additional resistivity introduced by M3. How- 5

6 ever, when this resistivity is higher (nonwovens M1 and M2), the obtained curves show a very different behaviour, even if the remaining parts of the system are kept constant. For those cases, the resonant behaviour almost disappears, and the corresponding curves exhibit much smaller absorption along the mid-frequency range (particularly between 2 Hz and 1 Hz). This is an important observation, which shows that the use of such types of nonwovens can dramatically change the behaviour of the system, decreasing its expected performance. Between M1 and M2, some differences can still be noted, with the latter exhibiting an even lower absorption coefficient throughout the analysed frequency range. In Figure 4b, results for the same mineral wool are presented for the nonwovens M2 and M3, comparing their effects for the two types of panels analysed in this work. It is clear, in that figure, that for both types of nonwovens the increase in the open area provides a perceptible improvement of the absorption. Although this variation is much more evident for M2, even for M3 it can reach α=.15 above the resonance frequency, which can be considered a significant gain. a) b) Figure 4. Results for the 7 kg/m 3 mineral wool: a) effect of different nonwovens for a given mineral wool s density, using panel type A; b) influence of the nonwoven for panel types A and B. In Figure 5a, results measured for panel type B using different mineral wool densities and different nonwovens are presented. In this plot, it can be seen that, when using nonwoven M3, the increase of wool density produces a very small change in the absorption curve in the mid-frequency range. Indeed, there is even a small absorption decrease at the resonance peak, which the authors believe is due to the higher contrast between the two materials when higher density wool is used. a) b) Figure 5. Influence of the nonwoven for different mineral wool densities: a) results for panel type A; b) results for panel type B. This may indicate that a small coupling effect occurs between the thin layer of the nonwoven, which lowers the peak efficiency of the system. A small increase of absorption in the high frequency range is also observed in some of the plots, which was not expected and that the authors 6

7 believe is only related to the experimental conditions. Figure 5b presents additional results obtained for panels of type A. A reference curve, obtained without mineral wool nor nonwoven, is added to allow comparison. When just the M3 nonwoven is introduced, there is a striking gain in the absorption coefficients throughout the frequency range; this is performance gain can reach α=.25 at the peak of resonance. The introduction of mineral wool, within the cavity provides a further step up in performance, with maximum values of α=1. being reached at the resonance frequency. As in Figure 5a, no practical differences are observed between the two mineral wools, with the lower density solution even exhibiting slightly higher peak absorption. 5. Comparison with theoretical predictions The theoretical model presented in section 2 was used in order to understand the efficiency of those models in predicting the behaviour of the tested systems. Although several tests were performed for different cases, we here just illustrate a comparison between the theoretical model results and the experimental results obtained for a reduced number of cases. In a first set of results, consider the system composed of type A panels, for which case the perforated area represents 3.57% of the panel, incorporating the nonwoven mat M3 on its back and with an air gap filled with 4 kg/m 3 mineral wool; an air-flow resistivity of rayl/m is assumed for this wool, while the nonwoven M3 is characterized by an air-flow resistivity of 27 rayl. Figure 6a presents a comparison between the theoretical prediction and experimental measurement for this case. In the plot it becomes apparent that the results match very well, with the peak resonance occurring at the same frequency. In the lower frequency region, the two curves have very similar trends, and only a small mismatch is visible when the peak absorption is reached at 315 Hz. At higher frequencies, a larger difference is clear, with an increase in the absorption determined experimentally that is not predicted by the theoretical model. A second plot corresponding to the case in which the air-gap is empty and no nonwoven is used on the back of the panels is presented in Figure 6b. In this case, a much lower absorption coefficient is measured and estimated theoretically, and, again, a reasonable agreement between curves can be observed up to the resonance frequency. As expected, due to the presence of the mineral wool, this resonance is now slightly shifted to the right, and occurs at the 4 Hz band. Again, an unexpected raise in the measured absorption can be observed above 2 Hz in the experimental data, which finds no correspondence in the theoretical predictions. a) b) c) Figure 6. Comparison between theoretical and experimental results (panel A) for three configurations: a) nonwoven M3 and mineral wool; b) panels without nonwoven nor wool; c) nonwoven M1 and mineral wool. A final plot, displayed in Figure 6c, illustrates the behaviour of the system when the nonwoven M1 is used; it is important to note that the flow resistivity is now much higher, with a measured value of 75 rayl. The theoretical curve now exhibits a much smoother shape, with a pronounced decrease in the peak absorption being registered; the resonant behaviour can still be identified, although in a less pronounced manner. The effect of the higher resistivity of the nonwoven M1 is thus very visible in the theoretical curve, reducing the peak absorption and broadening the curve so that better performances are observed at higher frequencies. Comparing to the experimental re- 7

8 sult, the behaviour is not as similar as in the previous cases. In the experimental curve, the resonance effect of the panel can hardly be identified, and only a small peak is visible at the frequency of 2 Hz. It can thus be inferred that for higher values of the air-flow resistivity larger discrepancies between the theoretically expected behaviour and the experimental results were observed. 6. Final remarks This work analysed the behaviour of perforated wooden panels used to provide sound absorption in closed spaces. Particularly, the work addressed the effect of using different nonwoven textiles on the back of the panels together with mineral wools of different densities and different perforated open areas of the panels. The air-flow resistivity of the nonwoven was found to be a determinant variable, influencing the sound absorption of the system. In fact, when used together with a cavity filled with mineral wool, a nonwoven with high resistivity clearly hinders the development of the resonant behaviour of the system, dramatically lowering the absorption provided by the panels at mid-frequencies. If the nonwoven has a small air-flow resistivity, this behaviour is not observed, and the resonance peak in the absorption curve is still very pronounced. A comparison with theoretical results revealed a good agreement when the nonwoven textile exhibits a small resistivity; for higher values of this parameter, larger discrepancies between the theoretically expected behaviour and the experimental results were observed. Acknowledgments The authors would like to thank Castelhano & Ferreira, S.A. and ITeCons - Instituto de Investigação e Desenvolvimento Tecnológico em Ciências da Construção for the support provided during the preparation of this work. REFERENCES K.U. Ingard and R.H. Bolt, Absorption characteristics of acoustic material with perforated facings, Journal of the Acoustical Society of America 23, (1951). R. Patraquim, Perforated wooden panels: design and experimental evaluation of solutions, Master s Thesis submitted to Instituto Superior Técnico, Portugal, in partial fulfilment of the requirements for the Degree of Master of Science in Mechanical Engineering (28). P.M. Morse, R.H. Bolt and R.L. Brown, Acoustic Impedance and sound absorption, Journal of the Acoustical Society of America 12-2, (194). R.H. Bolt, On the design of perforated facings for acoustic materials, Journal of the Acoustical Society of America 19, (1947). K.U. Ingard, On the theory and design of acoustic resonators, Journal of the Acoustical Society of America 25, (1953). I.B. Crandall, Theory of vibrating systems and sound, Van Nostrand, New York (1926). I.L. Vér and L.L. Beranek, oise and Vibration Control Engineering, John Wiley & Sons, 2 nd ed., New York (25). T.J. Cox and P. D Antonio, Acoustic absorbers and diffusers: theory, design and application, Spoon Press, 1 st ed. (24). I. Castro, A. Tadeu, J. António, A. Moreira, P. Amado Mendes and L. Godinho, Câmaras móveis ITeCons para a realização de ensaios acústicos: parte II preparação e caracterização das câmaras horizontais, Proceedings of Acústica 28, Coimbra, Portugal, October 2-22 (28). 8

DESIGN OF MICRO-PERFORATED ABSORBERS (MPA)

DESIGN OF MICRO-PERFORATED ABSORBERS (MPA) DESIGN OF MICRO-PERFORATED ABSORBERS (MPA) Paresh Shravage, Dr. K.V. Desa Electro-acoustic Research Lab, N. Wadia College, Pune-4111 Email: pareshshravage@gmail.com ABSTRACT MPA s are becoming popular

More information

COMPUTATIONAL ANALYSIS OF ACOUSTIC HORNS USING AN MFS MODEL

COMPUTATIONAL ANALYSIS OF ACOUSTIC HORNS USING AN MFS MODEL Invited paper COMPUTATIONAL ANALYSIS OF ACOUSTIC HORNS USING AN MFS MODEL Luís Godinho, Jaime Ramis 2, Paulo Amado-Mendes, William Cardenas 2, J. Carbajo 2 CICC, Dep. Eng. Civil da Universidade de Coimbra,

More information

BOUNDARY CONDITION FOR THE ACOUSTIC IMPEDANCE OF LIGHTWEIGHT MICRO PERFORATED PANELS AND MEMBRANES

BOUNDARY CONDITION FOR THE ACOUSTIC IMPEDANCE OF LIGHTWEIGHT MICRO PERFORATED PANELS AND MEMBRANES BOUNDARY CONDITION FOR THE ACOUSTIC IMPEDANCE OF LIGHTWEIGHT MICRO PERFORATED PANELS AND MEMBRANES Chenxi Li, Ben Cazzolato and Anthony Zander School of Mechanical Engineering, The University of Adelaide,

More information

Users Manual. Marshall Day Acoustics. Double Panels Contact 33 Details Marshall Day 37.8 Acoustics PO Box

Users Manual. Marshall Day Acoustics. Double Panels Contact 33 Details Marshall Day 37.8 Acoustics PO Box New materials can be permanently entered into the materials.txt file. This is a simple ASCII text file. See the section New Materials for details of how to enter new materials. If desired you can send

More information

44º CONGRESO ESPAÑOL DE ACÚSTICA ENCUENTRO IBÉRICO DE ACÚSTICA EAA EUROPEAN SYMPOSIUM ON ENVIRONMENTAL ACOUSTICS AND NOISE MAPPING

44º CONGRESO ESPAÑOL DE ACÚSTICA ENCUENTRO IBÉRICO DE ACÚSTICA EAA EUROPEAN SYMPOSIUM ON ENVIRONMENTAL ACOUSTICS AND NOISE MAPPING 44º CONGRESO ESPAÑOL DE ACÚSTICA ENCUENTRO IBÉRICO DE ACÚSTICA EAA EUROPEAN SYMPOSIUM ON ENVIRONMENTAL ACOUSTICS AND NOISE MAPPING NUMERICAL STUDY OF SOUND ABSORPTION BY PERFORATED PANELS PACS: 43..Ce,

More information

Micro-perforated sound absorbers in stretched materials

Micro-perforated sound absorbers in stretched materials Paper Number 9, Proceedings of ACOUSTICS 011-4 November 011, Gold Coast, Australia Micro-perforated sound absorbers in stretched materials Christian Nocke (1), Catja Hilge (1) and Jean-Marc Scherrer ()

More information

EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS

EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS Kento Hashitsume and Daiji Takahashi Graduate School of Engineering, Kyoto University email: kento.hashitsume.ku@gmail.com

More information

SOUND ABSORPTION OF SLAT STRUCTURES FOR PRACTICAL APPLICATIONS

SOUND ABSORPTION OF SLAT STRUCTURES FOR PRACTICAL APPLICATIONS SOUND ABSORPTION OF SLAT STRUCTURES FOR PRACTICAL APPLICATIONS J Riionheimo N Näveri T Lokki H Möller Aalto University, Akukon Ltd. Helsinki, Finland Akukon Ltd. Helsinki, Finland Aalto University, Espoo,

More information

Reflection and absorption coefficients for use in room acoustic simulations

Reflection and absorption coefficients for use in room acoustic simulations Downloaded from orbit.dtu.dk on: May 1, 018 Reflection and absorption coefficients for use in room acoustic simulations Jeong, Cheol-Ho Published in: Proceedings of Spring Meeting of the Acoustical Society

More information

THE DEPENDENCE OF SOUND ABSORPTION BY AN ISOLATED ACOUSTIC RESONATOR ON THE RESONATOR S VOLUME

THE DEPENDENCE OF SOUND ABSORPTION BY AN ISOLATED ACOUSTIC RESONATOR ON THE RESONATOR S VOLUME THE DEPENDENCE OF SOUND ABSORPTION BY AN ISOLATED ACOUSTIC RESONATOR ON THE RESONATOR S VOLUME PACS REFERENCE: 4.55.Ev Stauskis Vytautas J. Vilnius Gediminas Technical University Sauletekio al., LT-4 Vilnius.

More information

Holistic Acoustic Absorber Design: from modelling and simulation to laboratory testing and practical realization. Toulson, R. and Cirstea, S.

Holistic Acoustic Absorber Design: from modelling and simulation to laboratory testing and practical realization. Toulson, R. and Cirstea, S. WestminsterResearch http://www.westminster.ac.uk/westminsterresearch : from modelling and simulation to laboratory testing and practical realization. Toulson, R. and Cirstea, S. This paper was presented

More information

ACOUSTIC ABSORBENT PANELS WITH LOW PERFORATION COEFFICIENT.

ACOUSTIC ABSORBENT PANELS WITH LOW PERFORATION COEFFICIENT. paper ID: 48 /p. ACOUSTIC ABSORBENT PANELS WITH LOW PERFORATION COEFFICIENT. J. Pfretzschner, F. Simón, C. de la Colina Instituto de Acústica, Serrano 44, 286 Madrid, España ABSTRACT: Usually, acoustic

More information

Transmission loss of rectangular silencers using meso-porous and micro-perforated linings

Transmission loss of rectangular silencers using meso-porous and micro-perforated linings Transmission loss of rectangular silencers using meso-porous and micro-perforated linings T.E.Vigran Acoustic Group, Department of Electronics and Telecommunications, Norwegian University of Science and

More information

Microperforated Insertion Units in free field: A case study

Microperforated Insertion Units in free field: A case study Microperforated Insertion Units in free field: A case study J. Pfretzschner, A. Fernández, P. Cobo, M. Cuesta, Instituto de Acústica. CSIC. Serrano, 86 Madrid, Spain, iacjp36@ia.cetef.csic.es, iacf39@ia.cetef.csic.es,

More information

Transmission Loss of a Dissipative Muffler with Perforated Central Pipe

Transmission Loss of a Dissipative Muffler with Perforated Central Pipe Transmission Loss of a Dissipative Muffler with Perforated Central Pipe 1 Introduction This example problem demonstrates Coustyx ability to model a dissipative muffler with a perforated central pipe. A

More information

Acoustic design of lightweight cabin walls for cruise ships

Acoustic design of lightweight cabin walls for cruise ships Acoustic design of lightweight cabin walls for cruise ships A. Treviso 1, M. G. Smith 1 1 ISVR Consulting, University of Southampton University Road, SO17 BJ1, Southampton, United Kingdom e-mail: mgs@isvr.soton.ac.uk

More information

IMPROVING THE ACOUSTIC PERFORMANCE OF EXPANSION CHAMBERS BY USING MICROPERFORATED PANEL ABSORBERS

IMPROVING THE ACOUSTIC PERFORMANCE OF EXPANSION CHAMBERS BY USING MICROPERFORATED PANEL ABSORBERS Proceedings of COBEM 007 Copyright 007 by ABCM 9th International Congress of Mechanical Engineering November 5-9, 007, Brasília, DF IMPROVING THE ACOUSTIC PERFORMANCE OF EXPANSION CHAMBERS BY USING MICROPERFORATED

More information

Improvement of Low Frequency Sound Absorption of Acoustical Materials

Improvement of Low Frequency Sound Absorption of Acoustical Materials Improvement of Low Frequency Sound Absorption of Acoustical Materials Paresh Shravage, V.V. Phani Kiran, S.K. Jain, K.Desa, S. Raju, The Automotive Research Association of India, Pune-44 Electro-acoustic

More information

Design of ParaMPA: a micro-perforated absorber

Design of ParaMPA: a micro-perforated absorber Design of ParaMPA: a micro-perforated absorber Onursal Onen and Mehmet Caliskan Department of Mechanical Engineering Middle East Technical University 06531 Ankara, Turkey ABSTRACT Perforated absorbers

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER The study on sound-absorbing properties of oblique micro-perforated panel

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER The study on sound-absorbing properties of oblique micro-perforated panel 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, -7 SEPTEMBER 007 The study on sound-absorbing properties of oblique micro-perforated panel Rong-Ping Lai 1, Chung-Chiech Chiang, Kai-Hua Liu 3 1 Professor,Department

More information

Helmholtz resonator with multi-perforated plate

Helmholtz resonator with multi-perforated plate Helmholtz resonator with multi-perforated plate Diogo Filipe Alves Cabral diogo.a.cabral@ist.utl.pt Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal November 2016 Abstract The present

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 213 http://acousticalsociety.org/ ICA 213 Montreal Montreal, Canada 2-7 June 213 Noise Session 4pNSb: Noise Control 4pNSb7. Nonlinear effects of Helmholtz

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Architectural Acoustics Session 2aAAb: New Materials for Architectural

More information

Design of Partial Enclosures. D. W. Herrin, Ph.D., P.E. University of Kentucky Department of Mechanical Engineering

Design of Partial Enclosures. D. W. Herrin, Ph.D., P.E. University of Kentucky Department of Mechanical Engineering D. W. Herrin, Ph.D., P.E. Department of Mechanical Engineering Reference 1. Ver, I. L., and Beranek, L. L. (2005). Control Engineering: Principles and Applications. John Wiley and Sons. 2. Sharp, B. H.

More information

Directional distribution of acoustic energy density incident to a surface under reverberant condition

Directional distribution of acoustic energy density incident to a surface under reverberant condition Acoustics 8 Paris Directional distribution of acoustic energy density incident to a surface under reverberant condition C.-H. Jeong a and J.-G. Ih b a Acoustic Technology, DTU Elektro, Technical University

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 NUMERICAL SIMULATION OF THE ACOUSTIC WAVES PROPAGATION IN A STANDING WAVE TUBE

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 NUMERICAL SIMULATION OF THE ACOUSTIC WAVES PROPAGATION IN A STANDING WAVE TUBE 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 27 NUMERICAL SIMULATION OF THE ACOUSTIC WAVES PROPAGATION IN A STANDING WAVE TUBE PACS: 43.2.Ks Juliá Sanchis, Ernesto 1 ; Segura Alcaraz,

More information

Experimental investigation of perforations interactions effects under high sound pressure levels

Experimental investigation of perforations interactions effects under high sound pressure levels Experimental investigation of perforations interactions effects under high sound pressure levels Rostand Tayong and Philippe Leclaire Laboratoire de Recherche en Mécanique et Acoustique Université de Bourgogne,

More information

Numerical Model of the Insertion Loss Promoted by the Enclosure of a Sound Source

Numerical Model of the Insertion Loss Promoted by the Enclosure of a Sound Source Numerical Model of the Insertion Loss Promoted by the Enclosure of a Sound Source Gil F. Greco* 1, Bernardo H. Murta 1, Iam H. Souza 1, Tiago B. Romero 1, Paulo H. Mareze 1, Arcanjo Lenzi 2 and Júlio A.

More information

Oblique incidence sound absorption of parallel arrangement. of multiple micro-perforated panel absorbers in a periodic. pattern

Oblique incidence sound absorption of parallel arrangement. of multiple micro-perforated panel absorbers in a periodic. pattern Oblique incidence sound absorption of parallel arrangement of multiple micro-perforated panel absorbers in a periodic pattern Wang Chunqi *, Huang Lixi, Zhang Yumin Lab of Aerodynamics and Acoustics, Zhejiang

More information

Sound radiation and transmission. Professor Phil Joseph. Departamento de Engenharia Mecânica

Sound radiation and transmission. Professor Phil Joseph. Departamento de Engenharia Mecânica Sound radiation and transmission Professor Phil Joseph Departamento de Engenharia Mecânica SOUND RADIATION BY A PISTON The piston generates plane waves in the tube with particle velocity equal to its own.

More information

A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method

A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method csnak, 014 Int. J. Nav. Archit. Ocean Eng. (014) 6:894~903 http://dx.doi.org/10.478/ijnaoe-013-00 pissn: 09-678, eissn: 09-6790 A simple formula for insertion loss prediction of large acoustical enclosures

More information

Benefits of Reduced-size Reverberation Room Testing

Benefits of Reduced-size Reverberation Room Testing Benefits of Reduced-size Reverberation Room Testing Dr. Marek Kierzkowski (1), Dr. Harvey Law (2) and Jonathon Cotterill (3) (1) Acoustic Engineer, Megasorber Pty Ltd, Melbourne, Australia (2) Technical

More information

The frequency and angular dependence of the absorption coefficient of common types of living plants

The frequency and angular dependence of the absorption coefficient of common types of living plants The frequency and angular dependence of the absorption coefficient of common types of living plants Jevgenjia PRISUTOVA 1 ; Kirill V. HOROSHENKOV 1 ; Jean-Philippe GROBY 2 ; Bruno BROUARD 2 1 1 Department

More information

SOUND ABSORPTION OF MICRO-PERFORATED PANEL PRODUCED BY ADDITIVE MANUFACTURING

SOUND ABSORPTION OF MICRO-PERFORATED PANEL PRODUCED BY ADDITIVE MANUFACTURING SOUND ABSORPTION OF MICRO-PERFORATED PANEL PRODUCED BY ADDITIVE MANUFACTURING Zhengqing Liu, Mohammad Fard, Xiaojing Liu RMIT University, School of Engineering (SENG), Melbourne, VIC 3083, Australia email:

More information

In-situ measurements of the Complex Acoustic

In-situ measurements of the Complex Acoustic MASTER S THESIS 2006 In-situ measurements of the Complex Acoustic Impedance of materials for automobile interiors Jorge D. Alvarez B. Ørsted DTU Acoustic Technology TECHNICAL UNIVERSITY OF DENMARK Ørsteds

More information

NUMERICAL PREDICTION OF PERFORATED TUBE ACOUSTIC IMPEDANCE

NUMERICAL PREDICTION OF PERFORATED TUBE ACOUSTIC IMPEDANCE NUMERICAL PREDICTION OF PERFORATED TUBE ACOUSTIC IMPEDANCE G. Pradeep, T. Thanigaivel Raja, D.Veerababu and B. Venkatesham Department of Mechanical and Aerospace Engineering, Indian Institute of Technology

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 13 http://acousticalsocietyorg/ ICA 13 Montreal Montreal, Canada - 7 June 13 Architectural Acoustics Session paab: Dah-You Maa: His Contributions and Life

More information

Acoustic performance of industrial mufflers with CAE modeling and simulation

Acoustic performance of industrial mufflers with CAE modeling and simulation csnak, 214 Int. J. Nav. Archit. Ocean Eng. (214) 6:935~946 http://dx.doi.org/1.2478/ijnaoe-213-223 pissn: 292-6782, eissn: 292-679 Acoustic performance of industrial mufflers with CAE modeling and simulation

More information

Effect of effective length of the tube on transmission loss of reactive muffler

Effect of effective length of the tube on transmission loss of reactive muffler Effect of effective length of the tube on transmission loss of reactive muffler Gabriela Cristina Cândido da SILVA 1 ; Maria Alzira de Araújo NUNES 1 1 University of Brasilia, Brazil ABSTRACT Reactive

More information

A LOW-FREQUENCY METASURFACE ABSORBER BASED ON HELMHOLTZ RESONATORS

A LOW-FREQUENCY METASURFACE ABSORBER BASED ON HELMHOLTZ RESONATORS A LOW-FREQUENCY METASURFACE ABSORBER BASED ON HELMHOLTZ RESONATORS Honggang Zhao )), Yang Wang ), Dan Zhao ), and Jihong Wen ) email: zhhg963@sina.com Yiu Wai Lam ), Olga Umnova ) ) Vibration and Acoustics

More information

Excess sound absorption at normal incidence by two microperforated panel absorbers with different impedance

Excess sound absorption at normal incidence by two microperforated panel absorbers with different impedance Acoust. Sci. & Tech. 32, 5 (2) PAPER #2 The Acoustical Society of Japan Excess sound absorption at normal incidence by two microperforated panel absorbers with different impedance Motoki Yairi ;, Kimihiro

More information

Air Permeability and Acoustic Absorbing Behavior of Nonwovens

Air Permeability and Acoustic Absorbing Behavior of Nonwovens Journal of Fiber Bioengineering and Informatics Regular Article Air Permeability and Acoustic Absorbing Behavior of Nonwovens Shu Yang, Wei-Dong Yu * College of Textiles & Center of Soft Materials, Donghua

More information

INTER-NOISE AUGUST 2007 ISTANBUL, TURKEY

INTER-NOISE AUGUST 2007 ISTANBUL, TURKEY INTER-NOISE 7 28-31 AUGUST 7 ISTANBUL, TURKEY Improvement of sound insulation of doors/windows by absorption treatment inside the peripheral gaps Takumi Asakura a, Shinichi Sakamoto b Institute of Industrial

More information

Sound radiation and sound insulation

Sound radiation and sound insulation 11.1 Sound radiation and sound insulation We actually do not need this chapter You have learned everything you need to know: When waves propagating from one medium to the next it is the change of impedance

More information

Design possibilities for impact noise insulation in lightweight floors A parameter study

Design possibilities for impact noise insulation in lightweight floors A parameter study Downloaded from orbit.dtu.dk on: Dec 23, 218 Design possibilities for impact noise insulation in lightweight floors A parameter study Brunskog, Jonas; Hammer, Per Published in: Euronoise Publication date:

More information

1817. Research of sound absorption characteristics for the periodically porous structure and its application in automobile

1817. Research of sound absorption characteristics for the periodically porous structure and its application in automobile 1817. Research of sound absorption characteristics for the periodically porous structure and its application in automobile Xian-lin Ren School of Mechatronics Engineering, University of Electronic Science

More information

Development of a small-scale reverberation room

Development of a small-scale reverberation room Proceedings of ACOUSTICS 2016 9-11 November 2016, Brisbane, Australia Development of a small-scale reverberation room Alexander Rasa Noise Control Research & Development, Pyrotek Pty Ltd, Sydney, Australia

More information

Sound Absorption Measurements for Micro-Perforated Plates: The Effect of Edge Profile

Sound Absorption Measurements for Micro-Perforated Plates: The Effect of Edge Profile Sound Absorption Measurements for Micro-Perforated Plates: The Effect of Edge Profile Muttalip Aşkın Temiz Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.

More information

Test Report. RI Acoustic Lab. Measurement of Sound Absorption Coefficient for RockDelta NoiStop Noise Barrier. 20 Feb. 07

Test Report. RI Acoustic Lab. Measurement of Sound Absorption Coefficient for RockDelta NoiStop Noise Barrier. 20 Feb. 07 Test Report RI Acoustic Lab Measurement of Sound Absorption Coefficient for RockDelta NoiStop Noise Barrier 20 Feb. 07 Title Measurement of Sound Absorption Coefficient for RockDelta NoiStop Noise Barrier

More information

45º CONGRESO ESPAÑOL DE ACÚSTICA 8º CONGRESO IBÉRICO DE ACÚSTICA EUROPEAN SYMPOSIUM ON SMART CITIES AND ENVIRONMENTAL ACOUSTICS

45º CONGRESO ESPAÑOL DE ACÚSTICA 8º CONGRESO IBÉRICO DE ACÚSTICA EUROPEAN SYMPOSIUM ON SMART CITIES AND ENVIRONMENTAL ACOUSTICS COMPARATIVE ANALYSIS OF MEASUREMENT TECHNIQUES OF THE SOUND ABSORPTION COEFFICIENT OF A MATERIAL ANÁLISIS COMPARATIVO DE LAS TÉCNICAS DE MEDIDA DEL COEFICIENTE DE ABSORCIÓN SONORA DE UN MATERIAL PACS:

More information

Noise in enclosed spaces. Phil Joseph

Noise in enclosed spaces. Phil Joseph Noise in enclosed spaces Phil Joseph MODES OF A CLOSED PIPE A 1 A x = 0 x = L Consider a pipe with a rigid termination at x = 0 and x = L. The particle velocity must be zero at both ends. Acoustic resonances

More information

EFFECT OF MEMBRANE SURFACE TENSION AND BACKED-AIR GAP DISTANCE ON SOUND ABSORPTION CHARACTERISTICS

EFFECT OF MEMBRANE SURFACE TENSION AND BACKED-AIR GAP DISTANCE ON SOUND ABSORPTION CHARACTERISTICS EFFECT OF MEMBRANE SURFACE TENSION AND BACKED-AIR GAP DISTANCE ON SOUND ABSORPTION CHARACTERISTICS M. H. Zainulabidin 1, L. M. Wan 1, A. E. Ismail 1, M. Z. Kasron 1 and A. S. M. Kassim 2 1 Faculty of Mechanical

More information

Laboratory and In Situ Sound Absorption Measurement under a Synthetized Diffuse Acoustic Field: a Case Study on Five Materials

Laboratory and In Situ Sound Absorption Measurement under a Synthetized Diffuse Acoustic Field: a Case Study on Five Materials Laboratory and In Situ Sound Absorption Measurement under a Synthetized Diffuse Acoustic Field: a Case Study on Five Materials Olivier Robin, Celse Kafui Amedin, Alain Berry, Noureddine Atalla, Olivier

More information

1238. Relation between reduction of weighted impact sound pressure level and shape of small size specimen of floating floor construction

1238. Relation between reduction of weighted impact sound pressure level and shape of small size specimen of floating floor construction 1238. Relation between reduction of weighted impact sound pressure level and shape of small size specimen of floating floor construction Vidmantas Dikavičius 1, Kęstutis Miškinis 2, Karolis Banionis 3,

More information

Radiated sound power estimates of building elements by means of laser Doppler vibrometry

Radiated sound power estimates of building elements by means of laser Doppler vibrometry Radiated sound power estimates of building elements by means of laser Doppler vibrometry N.B. Roozen, L. Labelle, M. Rychtáriková,2, C. Glorieux, D. Urbán 3, P. Za tko 3, H. Mullner 4 Laboratory of Acoustics,

More information

The use of microperforated plates to attenuate cavity resonances

The use of microperforated plates to attenuate cavity resonances The use of microperforated plates to attenuate cavity resonances Benjamin Fenech a Acoustic Technology, Ørsted DTU, Technical University of Denmark, Building 352, Ørsteds Plads, DK-2800 Kgs. Lyngby, Denmark

More information

Measurement of Acoustic Properties of light weight concrete SL-Deck

Measurement of Acoustic Properties of light weight concrete SL-Deck DELTA Test Report TEST Reg. no. 100 Measurement of Acoustic Properties of light weight concrete SL-Deck Performed for Abeo A/S Project no.: I100486 Page 1 of 25 30 June 2014 DELTA Venlighedsvej 4 2970

More information

Absorption modeling with ensemble averaged impedance for wave-based room acoustics simulations

Absorption modeling with ensemble averaged impedance for wave-based room acoustics simulations Absorption modeling with ensemble averaged impedance for wave-based room acoustics simulations Toru OTSURU 1 ; Reiji TOMIKU 1 ; Takeshi OKUZONO 2 1 Oita University, Japan 2 Kobe University, Japan ABSTRACT

More information

ROOM RESONANCES USING WAVE BASED GEOMET- RICAL ACOUSTICS (WBGA)

ROOM RESONANCES USING WAVE BASED GEOMET- RICAL ACOUSTICS (WBGA) ROOM RESONANCES USING WAVE BASED GEOMET- RICAL ACOUSTICS (WBGA) Panos Economou, Panagiotis Charalampous P.E. Mediterranean Acoustics Research & Development Ltd, Cyprus email: panos@pemard.com Geometrical

More information

On the variations of acoustic absorption peak with flow velocity in Micro Perforated Panels at high level of excitation

On the variations of acoustic absorption peak with flow velocity in Micro Perforated Panels at high level of excitation On the variations of acoustic absorption peak with flow velocity in Micro Perforated Panels at high level of excitation Rostand Tayong, Thomas Dupont, and Philippe Leclaire Laboratoire de Recherche en

More information

Perforated Panel Absorbers with Viscous Energy Dissipation Enhanced by Orifice Design

Perforated Panel Absorbers with Viscous Energy Dissipation Enhanced by Orifice Design Perforated Panel Absorbers with Viscous Energy Dissipation Enhanced by Orifice Design Rolf Tore Randeberg DOCTORAL THESIS submitted to the Department of Telecommunications, Norwegian University of Science

More information

Modeling and simulation of windows with noise mitigation and natural ventilation

Modeling and simulation of windows with noise mitigation and natural ventilation Modeling and simulation of windows with noise mitigation and natural ventilation Xiang YU ; Fangsen CUI ; ze-tiong TAN 2 ; Kui YAO 3 Institute of High Performance Computing, A*TAR, ingapore 2 Building

More information

SOUND and SOLID SURFACES

SOUND and SOLID SURFACES SOUND and SOLID SURFACES The interaction of sound with solid surfaces could well be taken as the beginning of architectural acoustics. Sound undergoes three types of fundamental interactions upon encountering

More information

ESTIMATION OF SOUND ABSORPTION COEFFICIENTS OF POROUS MATERIALS. Marianna Mirowska, Kazimierz CzyŜewski

ESTIMATION OF SOUND ABSORPTION COEFFICIENTS OF POROUS MATERIALS. Marianna Mirowska, Kazimierz CzyŜewski ICSV14 Cairns Australia 9-1 July, 007 Abstract ESTIMATION OF SOUND ABSORPTION COEFFICIENTS OF POROUS MATERIALS Marianna Mirowska, Kazimierz CzyŜewski ITB - Building Research Institute, Acoustics Department,

More information

Available online at ScienceDirect. Energy Procedia 78 (2015 ) th International Building Physics Conference, IBPC 2015

Available online at  ScienceDirect. Energy Procedia 78 (2015 ) th International Building Physics Conference, IBPC 2015 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 78 (2015 ) 146 151 6th International Building Physics Conference, IBPC 2015 A combined experimental and analytical approach for the

More information

Measurements on Quarterwavelength Tubes and Helmholtz Resonators

Measurements on Quarterwavelength Tubes and Helmholtz Resonators Measurements on Quarterwavelength Tubes and Helmholtz Resonators A. Soto-Nicolas Nokia Co, Sinivaival 5, 7 Tampere, Finland alberto.soto-nicolas@nokia.com 67 In this work some measurements on quarter-wavelength

More information

Answer - SAQ 1. The intensity, I, is given by: Back

Answer - SAQ 1. The intensity, I, is given by: Back Answer - SAQ 1 The intensity, I, is given by: Noise Control. Edited by Shahram Taherzadeh. 2014 The Open University. Published 2014 by John Wiley & Sons Ltd. 142 Answer - SAQ 2 It shows that the human

More information

DELTA Test Report. DANAK TEST Reg. no Measurement of Sound Absorption Coefficient for Kvadrat Soft Cells Wall Panel Type Time

DELTA Test Report. DANAK TEST Reg. no Measurement of Sound Absorption Coefficient for Kvadrat Soft Cells Wall Panel Type Time We help ideas meet the real world DELTA Test Report DANAK TEST Reg. no. 100 Measurement of Sound Absorption Coefficient for Kvadrat Soft Cells Wall Panel Type Time Client: Kvadrat Soft Cells A/S Page 1

More information

AN SEA-LIKE MODEL FOR DOUBLE WALLS FILLED WITH ABSORBING MATERIALS

AN SEA-LIKE MODEL FOR DOUBLE WALLS FILLED WITH ABSORBING MATERIALS AN SEA-LIKE MODEL FOR DOUBLE WALLS FILLED WITH ABSORBING MATERIALS Cristina Díaz-Cereceda, Jordi Poblet-Puig, Antonio Rodríguez-Ferran Laboratori de Càlcul Numèric. E.T.S. d'enginyers de Camins, Canals

More information

Microphone reciprocity calibration: acoustic field in the coupler

Microphone reciprocity calibration: acoustic field in the coupler Microphone reciprocity calibration: acoustic field in the coupler Cécile Guianvarc h, Jean-Noël Durocher Laboratoire National d Essais, 29 av. Roger Hennequin, 78197 Trappes Cedex, France, e-mail: {cecile.guianvarch,

More information

PART VIII: ABSORPTIVE SILENCER DESIGN

PART VIII: ABSORPTIVE SILENCER DESIGN PART VIII: ABSORPTIVE SILENCER DESIGN Elden F. Ray June 10, 2013 TABLE OF CONTENTS Introduction 2 Silencer Performance 4 Flow Resistance and Resistivity 7 Flow Velocity 7 Baffle Attenuation Example 7 Silencer

More information

MANUAL FOR WINFLAG, VERSION 2.4 TOR ERIK VIGRAN. Trondheim

MANUAL FOR WINFLAG, VERSION 2.4 TOR ERIK VIGRAN. Trondheim MANUAL FOR WINFLAG, VERSION 2.4 BY TOR ERIK VIGRAN Trondheim 16.05.11 1 CONTENTS 1 Introduction... 4 2 Overview... 5 3 Main features... 5 3.1 New features in version 2.4... 6 4 Brief description of the

More information

Reactive Silencer Modeling by Transfer Matrix Method and Experimental Study

Reactive Silencer Modeling by Transfer Matrix Method and Experimental Study Reactive Silencer Modeling by ransfer Matrix Method and Experimental Study OVIDIU VASILE *, KOLUMBAN VLADIMIR ** * Department of Mechanics University POLIEHNICA of Bucharest Splaiul Independentei, post

More information

Effect of Length and Porosity on the Acoustic Performance of Concentric Tube Resonators

Effect of Length and Porosity on the Acoustic Performance of Concentric Tube Resonators Effect of Length and Porosity on the Acoustic Performance of Concentric Tube Resonators David Neihguk *1, and Abhinav Prasad 1 1 Mahindra Research Valley, Mahindra & Mahindra Ltd. *Corresponding author:

More information

Absorption boundary conditions for geometrical acoustics

Absorption boundary conditions for geometrical acoustics Absorption boundary conditions for geometrical acoustics Cheol-Ho Jeong a) Acoustic Technology, Department of Electrical Engineering, Technical University of Denmark, DK-800, Kongens Lyngby, Denmark Defining

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Architectural Acoustics Session 2aAAb: New Materials for Architectural

More information

Static pressure and temperature coefficients of working standard microphones

Static pressure and temperature coefficients of working standard microphones Static pressure and temperature coefficients of working standard microphones Salvador BARRERA-FIGUEROA 1 ; Vicente CUTANDA-HENRÍQUEZ ; Antoni TORRAS-ROSELL 3 1,3 Danish Fundamental Metrology (DFM) A/S,

More information

Performance of T shape barriers with top surface covered with absorptive quadratic residue diffusers

Performance of T shape barriers with top surface covered with absorptive quadratic residue diffusers Performance of T shape barriers with top surface covered with absorptive quadratic residue diffusers Monazzam, M and Lam, YW http://dx.doi.org/10.1016/j.apacoust.2006.10.006 Title Authors Type URL Performance

More information

Analogy Electromagnetism - Acoustics: Validation and Application to Local Impedance Active Control for Sound Absorption

Analogy Electromagnetism - Acoustics: Validation and Application to Local Impedance Active Control for Sound Absorption Analogy Electromagnetism - Acoustics: Validation and Application to Local Impedance Active Control for Sound Absorption L. Nicolas CEGELY - UPRESA CNRS 5005 - Ecole Centrale de Lyon BP63-693 Ecully cedex

More information

EXPERIMENTAL VERIFICATION OF THE EUROPEAN METHODOLOGY FOR TESTING NOISE BARRIERS IN SITU: SOUND REFLECTION

EXPERIMENTAL VERIFICATION OF THE EUROPEAN METHODOLOGY FOR TESTING NOISE BARRIERS IN SITU: SOUND REFLECTION 000059.doc/0 EXPERIMENTAL VERIFICATION OF THE EUROPEAN METHODOLOGY FOR TESTING NOISE BARRIERS IN SITU: SOUND REFLECTION M. GARAI, P. GUIDORZI DIENCA, University of Bologna, Viale Risorgimento 2, 40136,

More information

NUMERICAL ESTIMATION OF THE ABSORPTION COEFFICIENT OF FLEXIBLE MICRO-PERFORATED PLATES IN AN IMPEDANCE TUBE

NUMERICAL ESTIMATION OF THE ABSORPTION COEFFICIENT OF FLEXIBLE MICRO-PERFORATED PLATES IN AN IMPEDANCE TUBE 23 rd International Congress on Sound & Vibration Athens, Greece -4 July 26 ICSV23 NUMERICAL ESTIMATION OF THE ABSORPTION COEFFICIENT OF FLEXIBLE MICRO-PERFORATED PLATES IN AN IMPEDANCE TUBE Muttalip Aşkın

More information

The Influence of Boundary Conditions and Constraints on the Performance of Noise Control Treatments: Foams to Metamaterials

The Influence of Boundary Conditions and Constraints on the Performance of Noise Control Treatments: Foams to Metamaterials Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 7-2013 The Influence of Boundary Conditions and Constraints on the Performance of Noise

More information

An Analytical Study of the Weak Radiating Cell as a Passive Low Frequency Noise Control Device

An Analytical Study of the Weak Radiating Cell as a Passive Low Frequency Noise Control Device An Analytical Study of the Weak Radiating Cell as a Passive Low Frequency Noise Control Device by Zachary T. Kitts Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University

More information

Introduction to Acoustics Exercises

Introduction to Acoustics Exercises . 361-1-3291 Introduction to Acoustics Exercises 1 Fundamentals of acoustics 1. Show the effect of temperature on acoustic pressure. Hint: use the equation of state and the equation of state at equilibrium.

More information

Preprint. Vibro-acoustic response of flexible Micro-Perforated Plates: impact of the boundary condition at the perforation walls.

Preprint. Vibro-acoustic response of flexible Micro-Perforated Plates: impact of the boundary condition at the perforation walls. Vibro-acoustic response of flexible Micro-Perforated Plates: impact of the boundary condition at the perforation walls J. Tournadre, M. A. Temiz 2, P. Martínez-Lera 3, W. De Roeck, W. Desmet,4 KU Leuven,

More information

FDTD analysis on the sound insulation performance of wall system with narrow gaps

FDTD analysis on the sound insulation performance of wall system with narrow gaps FDTD analysis on the sound insulation performance of wall system with narrow gaps Takumi Asakura a Shinichi Sakamoto b Institute of Industrial Science, The University of Tokyo. Komaba 4-6-, Meguro-ku,

More information

From a profiled diffuser to an optimized absorber

From a profiled diffuser to an optimized absorber From a profiled diffuser to an optimized absorber Wu, T, Cox, TJ and Lam, YW http://dx.doi.org/10.1121/1.429596 Title Authors Type URL From a profiled diffuser to an optimized absorber Wu, T, Cox, TJ and

More information

RECENT DEVELOPMENTS IN APPLICATIONS OF MICROPERFORATED PANEL ABSORBERS

RECENT DEVELOPMENTS IN APPLICATIONS OF MICROPERFORATED PANEL ABSORBERS ICSV14 Cairns Australia 9-1 July, 7 RECENT DEVELOPMENTS IN APPLICATIONS OF MICROPERFORATED PANEL ABSORBERS Kimihiro Sakagami 1, Masayuki Morimoto 1 and Motoki Yairi 1 Environmental Acoustics Laboratory,

More information

CONSOLIDATED GRANULAR MEDIA FOR SOUND INSULATION: PERFORMANCE EVALUATION THROUGH DIFFERENT METHODS

CONSOLIDATED GRANULAR MEDIA FOR SOUND INSULATION: PERFORMANCE EVALUATION THROUGH DIFFERENT METHODS Twelfth International Congress on Sound and Vibration CONSOLIDATED GRANULAR MEDIA FOR SOUND INSULATION: PERFORMANCE EVALUATION THROUGH DIFFERENT METHODS G. Pispola a and K. V. Horoshenkov b a Department

More information

Numerical modeling of the primary source in a hemi-anechoic room

Numerical modeling of the primary source in a hemi-anechoic room Numerical modeling of the primary source in a hemi-anechoic room R. Arina 1, K. Völkel 2 1 Politecnico di Torino, Torino, Italy 2 Physikalisch Technische Bundesanstalt, Braunschweig, Germany ABSTRACT An

More information

Mecanum. Acoustic Materials: Characterization. We build silence. Mecanum Inc.

Mecanum. Acoustic Materials: Characterization. We build silence. Mecanum Inc. ecanum We build silence Acoustic aterials: Characterization ecanum Inc. info@mecanum.com www.mecanum.com otivation Sound quality in vehicles starts at the design stage odels are used to simulate the acoustics

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.5 IMPEDANCE CONSIDERATION

More information

Micro-perforates in vibro-acoustic systems Li CHENG

Micro-perforates in vibro-acoustic systems Li CHENG Micro-perforates in vibro-acoustic systems Li CHENG Chair Professor and Director Consortium for Sound and Vibration research Department of Mechanical Engineering The Hong Kong Polytechnic University CAV

More information

ON SITE DETERMINATION OF SOUND ABSORPTION COEFFICIENT OF ROAD PAVEMENTS USING MOBILE LABORATORY

ON SITE DETERMINATION OF SOUND ABSORPTION COEFFICIENT OF ROAD PAVEMENTS USING MOBILE LABORATORY ON SITE DETERMINATION OF SOUND ABSORPTION COEFFICIENT OF ROAD PAVEMENTS USING MOBILE LABORATORY Fabio Lo Castro, Sergio Iarossi, Massimiliano De Luca, Elena Ascari, Domenico Stanzial, Gaetano Licitra CNR-IDASC

More information

SOUND TRANSMISSION LOSS

SOUND TRANSMISSION LOSS SOUND TRANSMISSION LOSS 9.1 TRANSMISSION LOSS Sound Transmission Between Reverberant Spaces The transmission of sound from one space to another through a partition is a subject of some complexity. In the

More information

Estimation of the area effect of sound absorbent surfaces by using a boundary integral equation

Estimation of the area effect of sound absorbent surfaces by using a boundary integral equation Acoust. Sci. & Tech. 26, 2 (25) PAPER Estimation of the area effect of sound absorbent surfaces by using a boundary integral equation Yasuhito Kawai and Hiroshige Meotoiwa y Department of Architecture,

More information

This is a repository copy of An application of Kozeny Carman flow resistivity model to predict the acoustical properties of polyester fibre.

This is a repository copy of An application of Kozeny Carman flow resistivity model to predict the acoustical properties of polyester fibre. This is a repository copy of An application of Kozeny Carman flow resistivity model to predict the acoustical properties of polyester fibre. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/93426/

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 2.0 TLM MODEL FOR SOUND

More information

The measurement of complex acoustical properties of homogeneous materials by means of impulse response in a plane wave tube

The measurement of complex acoustical properties of homogeneous materials by means of impulse response in a plane wave tube The measurement of complex acoustical properties of homogeneous materials by means of impulse response in a plane wave tube Paolo Bonfiglio, Francesco Pompoli, Nicola Prodi Dipartimento di Ingegneria,

More information

SRI LANKAN PHYSICS OLYMPIAD COMPETITION 2008

SRI LANKAN PHYSICS OLYMPIAD COMPETITION 2008 SRI LANKAN PHYSICS OLYMPIAD COMPETITION 008 Time Allocated : 0 Hours Calculators are not allowed to use. Date of Examination : 1 07 008 Index No. :. Time : 9.30 a.m. - 11.30 a.m. INSTRUCTIONS Answer all

More information