A MODULAR IDENTITY FOR THE RAMANUJAN IDENTITY MODULO 35

Size: px
Start display at page:

Download "A MODULAR IDENTITY FOR THE RAMANUJAN IDENTITY MODULO 35"

Transcription

1 A MODULAR IDENTITY FOR THE RAMANUJAN IDENTITY MODULO 35 Adrian Dan Stanger Department of Mathematics, Brigham Young University, Provo, Utah 84602, USA Received: 3/20/02, Revised: 6/27/02, Accepted: 6/27/02, Published: 6/28/02 Abstract In Rademacher s proof [Rad42] of the Ramanujan identities modulo 5 and 7, the function } 1 1 L (z =η(z η ( z+24µ appears. This is a modular function on Γ 0 (, provided that (, 6 = 1. The basic identities p(5n +4 0mod5, p(7n +5 0mod7, (as well as some generalizations to higher powers of 5 and 7 are proved by examining the coefficients of the expansions of L 5 and L 7 at infinity. The two identities above immediately imply the following identity: p(35n mod35. Rademacher ased if there was a corresponding modular identity. Such an identity is derived in this paper. Also, another identity is obtained from the expansion of L 35 at Generalities 1.1 Basics Throughout, p(n refers to the unrestricted partition function. Euler proved the identity p(nq n = 1 1 q m.

2 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 1 (2002, #A09 2 We will see that this ties the partition function intimately to certain types of modular functions (and forms. Let Γ(1 = PSL 2 (Z, which is the special linear group modulo its center (±I. Γ(1 is generated by the two transformations ( 0 1 S =, T = 1 0 ( We ll have need also for the product TST, which we will call W. Then in Γ(1, we have: ( 1 0 W =. 1 1 Γ(1 acts faithfully on the upper half plane H = z C : I(z > 0} via linear fractional transformation. Throughout, we will identify a linear fractional transformation and its matrix. We let q = e 2πiz throughout. In what follows, Dedeind s function η(z will be used, so we remind the reader of some nown facts. Recall η(z =e πiz 12 n=1 (1 e2πinz, and note that η(z is periodic of period 24. It is pole-free and zero-free throughout H. It is a modular form of weight one half, and has a multiplier which is a 24 th root of unity in its transformation equation. The root of unity ε(a, b, c, d is determined by the following formulas (provided c 0: ( } a + d ε(a, b, c, d = exp πi + s( d, c, 12c s(h, =. 1 r=1 ( r hr [ ] hr 1, (1 2 where [] isthegreatest integer function. For properties of the Dedeind s(h, sum see [RW41, RG72]. We will ( often write just ε in place of the more cumbersome ε(a, b, c, d. a b Thus, for any A = Γ(1, η(az =ε(cz + d c d 1/2 η(z. There is a relationship between η and p. Namely, p(nq n = q 1 24 η(z. Also, L has q-expansion given by: L (z =q 1+[ 24] (1 q m p(n + q n, least positive solution of 24n 1mod. (2 It is clear that L has all its poles located at the cusps of Γ 0 (. Note that when = 35 (resp. 5, 7, = 19 (resp. 4, 5. This explains the form for the identities listed earlier. That L (z is a modular function on Γ 0 ( may be seen as follows. One can show

3 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 1 (2002, #A09 3 that η(z η( is a modular function on z Γ0 0( using nown facts about Dedeind sums (see ( 1 24µ particularly Theorems 17 and 18 of [RW41]. The matrices, (0 µ form a set of coset representatives for Γ 0 0( inγ 0 (. Therefore, when we sum over this set of coset representatives to obtain L (z, we obtain a modular function on Γ 0 (. Let ω Q i } be a cusp for Γ 0 (. We will let H ω be the set of modular functions on Γ 0 ( having poles only at ω. It is with this space of functions that we will wor. In particular we will consider functions in H ω, where ω =0ori. We mention also the Frice involution S (z = 1. Let F denote the set of modular z functions on Γ 0 (, and f F.S (z is an operator from F to itself. Moreover, it interchanges the polar orders of f at i and 0 in the appropriate uniformizing variables (i.e, the expansion of f(s (z at i has the same order in the variable q, as the expansion of f(z at zero has in the variable q 1. For the rest of section 1, let = pq, where p and Q are two distinct primes strictly greater than 3. Then S (z interchanges the polar orders of f at the cusps 1 and 1 as well. p Q 1.2 Evaluation at 0 Pursuant to our tas, we need to determine the order of L at each of the cusps. We determine the expansion about 0. To do so we subject L to the transformation S and then compute the expansion as usual. L (S z=η [( ] z 1 0 η [( 1 24µ 1 z]} 2. 0 We need to factor the inner matrix as the product of a unimodular matrix and an upper triangular matrix. Upon factoring and applying the transformation identities we obtain: L (S z= 1 1 η (z ε( 24µ,b,,d δ δ δ1/2 η ( δ 2 z + δy where δ =(µ,, and the matrix inside factors as: ( ( 24µ/δ b δ y, /δ d 0 /δ for some integers b, d and y such that 1, 24µ δ y + b δ = 1,

4 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 1 (2002, #A µ δ d b δ =1. Together, the two equations yield that y = d (in the case µ = 0 this is clear. Thus we obtain the following expression: L (S z= 1 1 (1 q m εδ 1 2 e πiyδ 12 δ q n=1 ( } 1 1 e 2πiδyn q δ2 n. (3 Now, since µ = 0 is the only term of the sum in which δ =, and this yields the largest negative power of q, we see that ord 0 (L (1 2 /24. We will return to equation 3 later. 1.3 Evaluation at all other cusps Since is square-free, all the other cusps of Γ 0 ( occur at the points 1/l 1 <l<,l }, in other words, at 1 p and 1 Q. To determine the order of L at 1/l, we subject it to the transformation W l and then evaluate. Thus, we obtain = η ( L W l z = η ( W l z 1 ( } W l 1 z +24µ η ( ] l /l 1 1 [( 1 24lµ 24µ z η 0 /l l [( /l 1 /l 1 1 z]} 1. Now, let δ =(1 24µl, /l. Then the matrix inside factors as ( ( (1 24µl/δ b δ y, ( l/δ d 0 /δ for integers b, d and y such that 1 24µl d + b δ δ l =1, 1 24µl y + b δ δ =24µ, l y + d δ δ =. The final equation above yields ly + d = δ. Using this fact we see that L (W l (z = e +l 12l πi l/ η ( l 2 z l + 1 εδ 1/2 η ( δ 2 z + δy } 1

5 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 1 (2002, #A09 5 = e +l 12l πi l/ (1 ρ ( ln q l2 n 1 εδ 1/2 ρ dy+ l 24 q δ2 l 2 24 (1 } 1 ρ δyn q δ2 n, n=1 ( ρ = e 2πi. 2. Specialization to = Obtaining an explicit polynomial identity at i Now, we tae = 35 for the remainder of this paper. We see from the results above that L 35 (z has a zero of order 2 at i in the variable q, a pole of order 51 at 0 in the variable q 1 35, is holomorphic at 1/5 inq 1 7, and has a zero of order at least 1 at 1/7 in the variable q 1 5. We refer the reader to [New57] for an explicit construction of the basis functions with which we will wor, and for an account of the functions A 9 and B 8 (as well as other similar functions used in deriving the basis of functions at infinity. In summary, the basis functions B 4,B 5,B 6, and B 7 all have poles only at i in the same order as the value of their respective subscript. Similarly, A 9 and B 8 have poles of order 9 and 8, respectively, at i, and A 9 has zeroes of orders 5, 1, and 3 at 0, 1/5 and 1/7 respectively, while B 8 has zeros of orders 6 and 2 at 0 and 1/7 respectively. Suffice it to say that G(z =A 9 (zb 8 8(zL 35 (z is pole-free in H and has order 71 at i, 2 at 0, 0 (or possibly greater at 1/5, and 20 at 1/7. So we have: Theorem 1. G(z C[B 4,B 5,B 6,B 7 ]. The proof follows from the wor in the previous section and the fact that the B i do form a polynomial basis for the set of modular functions in H i. Since the order at i is nown, the polynomial is determined, using Mathematica to calculate the coefficients. Among the possible ways of choosing an appropriate form, it was determined to use B 7 to eep the total degree (as a polynomial in the B i as small as possible. For instance the terms matching q 65, q 64, q 63 are B7B 8 5 B 4, B7B 8 4, 2 B7 9 respectively. Call the polynomial that we obtain P. Then L 35 (z =A 1 9 B8 8 P. Theorem 2. Let c i be the coefficient on the term of P corresponding to q i. Then the polynomial P is determined by the coefficients in the appendix in table 1, where c i is the given i th coefficient multiplied by 1225 (= Corollary 3. p(35n mod35. Remar 1. This identity also shows how the genus dramatically affects a polynomial identity associated with such an identity for the partition function. For the cases = 5

6 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 1 (2002, #A09 6 and = 7, where the genus is 0, Rademacher obtains a linear polynomial and a quadratic polynomial, respectively, in the respective basis function. Here, the genus is 3 and a polynomial of degree 11 in the four basis functions is obtained. In a similar manner, modular identities for the congruences for 55 and 77 may surely be constructed. It is expected that more basis functions and a higher-degree polynomial will be necessary. 2.2 An Identity at 0 We return to equation 3. Recalling the connection with the partition function p, and separating into cases depending on δ, we have : L (S (z = δ 35 q 1 δ ε 1 δ 1 2 e (24n 1δyπi 12 p(nq δ2 n (1 q m. When we group the outer sum into terms by δ, we obtain Gauss sums for the Jacobi- Legendre symbol of the appropriate modulus. We have the following terms: 1 δ =35: (1 q m p(nq 1225n, 35q 51 δ =7: 1 ( n 4 (1 q m p(nq 49n, 7q 2 5 δ =5: 1 ( n 5 (1 q m p(nq 25n, 5q 7 ( n 19 δ =1: (1 q m p(nq n, 35 where (- indicates the Jacobi-Legendre symbol. Now, L 35 (S 35 z has order 51 (resp. 2, 1, 1 at i (resp. 0, 1/5, 1/7. For the last two points we really only now that the order at each of these points is greater than or equal to the given value. Nevertheless, this is sufficient to determine that the function h(z =B 8 (zl 35 (S 35 z has its only pole at i, and the order of the pole there is 59. Thus, h(z C[B 4,B 5,B 6,B 7 ]. To clear fractions, multiply by 35 and then note 35L 35 (S 35 z=b8 1 P 0, where P 0 is a polynomial to be determined in the four basis functions. So This yields the following: q 51 5q 2 7q = P 0 B 1 8 p(nq n. Theorem 4. 35L 35 (S 35 z is a polynomial in the basis functions B 4,B 5,B 6,B 7, with integral coefficients given in table 2 of the appendix.

7 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 1 (2002, #A09 7 Corollary 5. ( n p(nq 1225n 5 p(nq 25(n = q 51 P 0 B 1 8 ( n 4 p(nq 49(n+1 5 ( } n 19 p(nq n p(nq n. I would lie to than my doctoral advisor, Morris Newman, who suggested this problem to me, and Bruce Berndt and the referee for their helpful comments. 3. Appendix: tables Table 1: Coefficients for P i coefficient i coefficient continued on next page

8 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 1 (2002, #A09 8 Table 1: continued i coefficient i coefficient Table 2: Coefficients for P 0 i coefficient i coefficient continued on next page

9 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 1 (2002, #A09 9 Table 2: continued i coefficient i coefficient References [Apo95] T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, [Apo97] T. M. Apostol. Modular Functions and Dirichlet Series in Number Theory, volume 41 of Graduate Texts in Mathematics. Springer-Verlag, second edition, [New57] M. Newman. Construction and application of a class of modular functions. Proceedings of the London Mathematical Society, VII(27: , July [Rad42] H. Rademacher. The Ramanujan identities under modular substitutions. Trans. American Math. Soc., 51(3: , May [RG72] H. Rademacher and E. Grosswald. Dedeind Sums. MAA, [RW41] H. Rademacher and A. Whiteman. Theorems on Dedeind sums. American Journal of Mathematics, 63: , 1941.

DIVISIBILITY PROPERTIES OF THE 5-REGULAR AND 13-REGULAR PARTITION FUNCTIONS

DIVISIBILITY PROPERTIES OF THE 5-REGULAR AND 13-REGULAR PARTITION FUNCTIONS INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (008), #A60 DIVISIBILITY PROPERTIES OF THE 5-REGULAR AND 13-REGULAR PARTITION FUNCTIONS Neil Calkin Department of Mathematical Sciences, Clemson

More information

Modular forms, combinatorially and otherwise

Modular forms, combinatorially and otherwise Modular forms, combinatorially and otherwise p. 1/103 Modular forms, combinatorially and otherwise David Penniston Sums of squares Modular forms, combinatorially and otherwise p. 2/103 Modular forms, combinatorially

More information

#A22 INTEGERS 17 (2017) NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS

#A22 INTEGERS 17 (2017) NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS #A22 INTEGERS 7 (207) NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS Shane Chern Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania shanechern@psu.edu Received: 0/6/6,

More information

DIVISIBILITY AND DISTRIBUTION OF PARTITIONS INTO DISTINCT PARTS

DIVISIBILITY AND DISTRIBUTION OF PARTITIONS INTO DISTINCT PARTS DIVISIBILITY AND DISTRIBUTION OF PARTITIONS INTO DISTINCT PARTS JEREMY LOVEJOY Abstract. We study the generating function for (n), the number of partitions of a natural number n into distinct parts. Using

More information

DEDEKIND S ETA-FUNCTION AND ITS TRUNCATED PRODUCTS. George E. Andrews and Ken Ono. February 17, Introduction and Statement of Results

DEDEKIND S ETA-FUNCTION AND ITS TRUNCATED PRODUCTS. George E. Andrews and Ken Ono. February 17, Introduction and Statement of Results DEDEKIND S ETA-FUNCTION AND ITS TRUNCATED PRODUCTS George E. Andrews and Ken Ono February 7, 2000.. Introduction and Statement of Results Dedekind s eta function ηz, defined by the infinite product ηz

More information

PARITY OF THE PARTITION FUNCTION. (Communicated by Don Zagier)

PARITY OF THE PARTITION FUNCTION. (Communicated by Don Zagier) ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 1, Issue 1, 1995 PARITY OF THE PARTITION FUNCTION KEN ONO (Communicated by Don Zagier) Abstract. Let p(n) denote the number

More information

ARITHMETIC OF THE 13-REGULAR PARTITION FUNCTION MODULO 3

ARITHMETIC OF THE 13-REGULAR PARTITION FUNCTION MODULO 3 ARITHMETIC OF THE 13-REGULAR PARTITION FUNCTION MODULO 3 JOHN J WEBB Abstract. Let b 13 n) denote the number of 13-regular partitions of n. We study in this paper the behavior of b 13 n) modulo 3 where

More information

CONGRUENCE PROPERTIES FOR THE PARTITION FUNCTION. Department of Mathematics Department of Mathematics. Urbana, Illinois Madison, WI 53706

CONGRUENCE PROPERTIES FOR THE PARTITION FUNCTION. Department of Mathematics Department of Mathematics. Urbana, Illinois Madison, WI 53706 CONGRUENCE PROPERTIES FOR THE PARTITION FUNCTION Scott Ahlgren Ken Ono Department of Mathematics Department of Mathematics University of Illinois University of Wisconsin Urbana, Illinois 61801 Madison,

More information

THE NUMBER OF PARTITIONS INTO DISTINCT PARTS MODULO POWERS OF 5

THE NUMBER OF PARTITIONS INTO DISTINCT PARTS MODULO POWERS OF 5 THE NUMBER OF PARTITIONS INTO DISTINCT PARTS MODULO POWERS OF 5 JEREMY LOVEJOY Abstract. We establish a relationship between the factorization of n+1 and the 5-divisibility of Q(n, where Q(n is the number

More information

Divisibility of the 5- and 13-regular partition functions

Divisibility of the 5- and 13-regular partition functions Divisibility of the 5- and 13-regular partition functions 28 March 2008 Collaborators Joint Work This work was begun as an REU project and is joint with Neil Calkin, Nathan Drake, Philip Lee, Shirley Law,

More information

NON-VANISHING OF THE PARTITION FUNCTION MODULO SMALL PRIMES

NON-VANISHING OF THE PARTITION FUNCTION MODULO SMALL PRIMES NON-VANISHING OF THE PARTITION FUNCTION MODULO SMALL PRIMES MATTHEW BOYLAN Abstract Let pn be the ordinary partition function We show, for all integers r and s with s 1 and 0 r < s, that #{n : n r mod

More information

The Hardy-Ramanujan-Rademacher Expansion of p(n)

The Hardy-Ramanujan-Rademacher Expansion of p(n) The Hardy-Ramanujan-Rademacher Expansion of p(n) Definition 0. A partition of a positive integer n is a nonincreasing sequence of positive integers whose sum is n. We denote the number of partitions of

More information

THE RAMANUJAN-SERRE DIFFERENTIAL OPERATORS AND CERTAIN ELLIPTIC CURVES. (q = e 2πiτ, τ H : the upper-half plane) ( d 5) q n

THE RAMANUJAN-SERRE DIFFERENTIAL OPERATORS AND CERTAIN ELLIPTIC CURVES. (q = e 2πiτ, τ H : the upper-half plane) ( d 5) q n THE RAMANUJAN-SERRE DIFFERENTIAL OPERATORS AND CERTAIN ELLIPTIC CURVES MASANOBU KANEKO AND YUICHI SAKAI Abstract. For several congruence subgroups of low levels and their conjugates, we derive differential

More information

HECKE OPERATORS ON CERTAIN SUBSPACES OF INTEGRAL WEIGHT MODULAR FORMS.

HECKE OPERATORS ON CERTAIN SUBSPACES OF INTEGRAL WEIGHT MODULAR FORMS. HECKE OPERATORS ON CERTAIN SUBSPACES OF INTEGRAL WEIGHT MODULAR FORMS. MATTHEW BOYLAN AND KENNY BROWN Abstract. Recent works of Garvan [2] and Y. Yang [7], [8] concern a certain family of half-integral

More information

Applications of modular forms to partitions and multipartitions

Applications of modular forms to partitions and multipartitions Applications of modular forms to partitions and multipartitions Holly Swisher Oregon State University October 22, 2009 Goal The goal of this talk is to highlight some applications of the theory of modular

More information

arxiv: v3 [math.nt] 28 Jul 2012

arxiv: v3 [math.nt] 28 Jul 2012 SOME REMARKS ON RANKIN-COHEN BRACKETS OF EIGENFORMS arxiv:1111.2431v3 [math.nt] 28 Jul 2012 JABAN MEHER Abstract. We investigate the cases for which products of two quasimodular or nearly holomorphic eigenforms

More information

COMPOSITIONS, PARTITIONS, AND FIBONACCI NUMBERS

COMPOSITIONS, PARTITIONS, AND FIBONACCI NUMBERS COMPOSITIONS PARTITIONS AND FIBONACCI NUMBERS ANDREW V. SILLS Abstract. A bijective proof is given for the following theorem: the number of compositions of n into odd parts equals the number of compositions

More information

REPRESENTATIONS OF INTEGERS AS SUMS OF SQUARES. Ken Ono. Dedicated to the memory of Robert Rankin.

REPRESENTATIONS OF INTEGERS AS SUMS OF SQUARES. Ken Ono. Dedicated to the memory of Robert Rankin. REPRESENTATIONS OF INTEGERS AS SUMS OF SQUARES Ken Ono Dedicated to the memory of Robert Rankin.. Introduction and Statement of Results. If s is a positive integer, then let rs; n denote the number of

More information

CONGRUENCES FOR POWERS OF THE PARTITION FUNCTION

CONGRUENCES FOR POWERS OF THE PARTITION FUNCTION CONGRUENCES FOR POWERS OF THE PARTITION FUNCTION MADELINE LOCUS AND IAN WAGNER Abstract. Let p tn denote the number of partitions of n into t colors. In analogy with Ramanujan s work on the partition function,

More information

COMPUTING THE INTEGER PARTITION FUNCTION

COMPUTING THE INTEGER PARTITION FUNCTION MATHEMATICS OF COMPUTATION Volume 00, Number 0, Pages 000 000 S 005-578(XX)0000-0 COMPUTING THE INTEGER PARTITION FUNCTION NEIL CALKIN, JIMENA DAVIS, KEVIN JAMES, ELIZABETH PEREZ, AND CHARLES SWANNACK

More information

A PERIODIC APPROACH TO PLANE PARTITION CONGRUENCES

A PERIODIC APPROACH TO PLANE PARTITION CONGRUENCES A PERIODIC APPROACH TO PLANE PARTITION CONGRUENCES MATTHEW S. MIZUHARA, JAMES A. SELLERS, AND HOLLY SWISHER Abstract. Ramanujan s celebrated congruences of the partition function p(n have inspired a vast

More information

THE ARITHMETIC OF THE COEFFICIENTS OF HALF INTEGRAL WEIGHT EISENSTEIN SERIES. H(1, n)q n =

THE ARITHMETIC OF THE COEFFICIENTS OF HALF INTEGRAL WEIGHT EISENSTEIN SERIES. H(1, n)q n = THE ARITHMETIC OF THE COEFFICIENTS OF HALF INTEGRAL WEIGHT EISENSTEIN SERIES ANTAL BALOG, WILLIAM J. MCGRAW AND KEN ONO 1. Introduction and Statement of Results If H( n) denotes the Hurwitz-Kronecer class

More information

Abstract. Gauss s hypergeometric function gives a modular parameterization of period integrals of elliptic curves in Legendre normal form

Abstract. Gauss s hypergeometric function gives a modular parameterization of period integrals of elliptic curves in Legendre normal form GAUSS S 2 F HYPERGEOMETRIC FUNCTION AND THE CONGRUENT NUMBER ELLIPTIC CURVE AHMAD EL-GUINDY AND KEN ONO Abstract Gauss s hypergeometric function gives a modular parameterization of period integrals of

More information

Ramanujan s first letter to Hardy: 5 + = 1 + e 2π 1 + e 4π 1 +

Ramanujan s first letter to Hardy: 5 + = 1 + e 2π 1 + e 4π 1 + Ramanujan s first letter to Hardy: e 2π/ + + 1 = 1 + e 2π 2 2 1 + e 4π 1 + e π/ 1 e π = 2 2 1 + 1 + e 2π 1 + Hardy: [These formulas ] defeated me completely. I had never seen anything in the least like

More information

Polynomial analogues of Ramanujan congruences for Han s hooklength formula

Polynomial analogues of Ramanujan congruences for Han s hooklength formula Polynomial analogues of Ramanujan congruences for Han s hooklength formula William J. Keith CELC, University of Lisbon Email: william.keith@gmail.com Detailed arxiv preprint: 1109.1236 Context Partition

More information

RAMANUJAN S MOST BEAUTIFUL IDENTITY

RAMANUJAN S MOST BEAUTIFUL IDENTITY RAMANUJAN S MOST BEAUTIFUL IDENTITY MICHAEL D. HIRSCHHORN Abstract We give a simple proof of the identity which for Hardy represented the best of Ramanujan. On the way, we give a new proof of an important

More information

= i 0. a i q i. (1 aq i ).

= i 0. a i q i. (1 aq i ). SIEVED PARTITIO FUCTIOS AD Q-BIOMIAL COEFFICIETS Fran Garvan* and Dennis Stanton** Abstract. The q-binomial coefficient is a polynomial in q. Given an integer t and a residue class r modulo t, a sieved

More information

Arithmetic Relations for Overpartitions

Arithmetic Relations for Overpartitions Arithmetic Relations for Overpartitions Michael D. Hirschhorn School of Mathematics, UNSW, Sydney 2052, Australia m.hirschhorn@unsw.edu.au James A. Sellers Department of Mathematics The Pennsylvania State

More information

THE ARITHMETIC OF BORCHERDS EXPONENTS. Jan H. Bruinier and Ken Ono

THE ARITHMETIC OF BORCHERDS EXPONENTS. Jan H. Bruinier and Ken Ono THE ARITHMETIC OF BORCHERDS EXPONENTS Jan H. Bruinier and Ken Ono. Introduction and Statement of Results. Recently, Borcherds [B] provided a striking description for the exponents in the naive infinite

More information

Analogues of Ramanujan s 24 squares formula

Analogues of Ramanujan s 24 squares formula International Journal of Number Theory Vol., No. 5 (24) 99 9 c World Scientific Publishing Company DOI:.42/S79342457 Analogues of Ramanujan s 24 squares formula Faruk Uygul Department of Mathematics American

More information

GUO-NIU HAN AND KEN ONO

GUO-NIU HAN AND KEN ONO HOOK LENGTHS AND 3-CORES GUO-NIU HAN AND KEN ONO Abstract. Recently, the first author generalized a formula of Nekrasov and Okounkov which gives a combinatorial formula, in terms of hook lengths of partitions,

More information

Ramanujan-type congruences for overpartitions modulo 16. Nankai University, Tianjin , P. R. China

Ramanujan-type congruences for overpartitions modulo 16. Nankai University, Tianjin , P. R. China Ramanujan-type congruences for overpartitions modulo 16 William Y.C. Chen 1,2, Qing-Hu Hou 2, Lisa H. Sun 1,2 and Li Zhang 1 1 Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin 300071, P.

More information

TURÁN INEQUALITIES AND SUBTRACTION-FREE EXPRESSIONS

TURÁN INEQUALITIES AND SUBTRACTION-FREE EXPRESSIONS TURÁN INEQUALITIES AND SUBTRACTION-FREE EXPRESSIONS DAVID A. CARDON AND ADAM RICH Abstract. By using subtraction-free expressions, we are able to provide a new proof of the Turán inequalities for the Taylor

More information

CONGRUENCES FOR BROKEN k-diamond PARTITIONS

CONGRUENCES FOR BROKEN k-diamond PARTITIONS CONGRUENCES FOR BROKEN k-diamond PARTITIONS MARIE JAMESON Abstract. We prove two conjectures of Paule and Radu from their recent paper on broken k-diamond partitions. 1. Introduction and Statement of Results

More information

Super congruences involving binomial coefficients and new series for famous constants

Super congruences involving binomial coefficients and new series for famous constants Tal at the 5th Pacific Rim Conf. on Math. (Stanford Univ., 2010 Super congruences involving binomial coefficients and new series for famous constants Zhi-Wei Sun Nanjing University Nanjing 210093, P. R.

More information

SOME CONGRUENCES FOR PARTITION FUNCTIONS RELATED TO MOCK THETA FUNCTIONS ω(q) AND ν(q) S.N. Fathima and Utpal Pore (Received October 13, 2017)

SOME CONGRUENCES FOR PARTITION FUNCTIONS RELATED TO MOCK THETA FUNCTIONS ω(q) AND ν(q) S.N. Fathima and Utpal Pore (Received October 13, 2017) NEW ZEALAND JOURNAL OF MATHEMATICS Volume 47 2017), 161-168 SOME CONGRUENCES FOR PARTITION FUNCTIONS RELATED TO MOCK THETA FUNCTIONS ωq) AND νq) S.N. Fathima and Utpal Pore Received October 1, 2017) Abstract.

More information

On the zeros of certain modular forms

On the zeros of certain modular forms On the zeros of certain modular forms Masanobu Kaneko Dedicated to Professor Yasutaka Ihara on the occasion of his 60th birthday. The aim of this short note is to list several families of modular forms

More information

Spaces of Weakly Holomorphic Modular Forms in Level 52. Daniel Meade Adams

Spaces of Weakly Holomorphic Modular Forms in Level 52. Daniel Meade Adams Spaces of Weakly Holomorphic Modular Forms in Level 52 Daniel Meade Adams A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master

More information

A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS. Masaru Nagisa. Received May 19, 2014 ; revised April 10, (Ax, x) 0 for all x C n.

A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS. Masaru Nagisa. Received May 19, 2014 ; revised April 10, (Ax, x) 0 for all x C n. Scientiae Mathematicae Japonicae Online, e-014, 145 15 145 A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS Masaru Nagisa Received May 19, 014 ; revised April 10, 014 Abstract. Let f be oeprator monotone

More information

PARITY OF THE COEFFICIENTS OF KLEIN S j-function

PARITY OF THE COEFFICIENTS OF KLEIN S j-function PARITY OF THE COEFFICIENTS OF KLEIN S j-function CLAUDIA ALFES Abstract. Klein s j-function is one of the most fundamental modular functions in number theory. However, not much is known about the parity

More information

LINEAR RELATIONS BETWEEN MODULAR FORM COEFFICIENTS AND NON-ORDINARY PRIMES

LINEAR RELATIONS BETWEEN MODULAR FORM COEFFICIENTS AND NON-ORDINARY PRIMES LINEAR RELATIONS BETWEEN MODULAR FORM COEFFICIENTS AND NON-ORDINARY PRIMES YOUNGJU CHOIE, WINFRIED KOHNEN, AND KEN ONO Appearing in the Bulletin of the London Mathematical Society Abstract. Here we generalize

More information

The kappa function. [ a b. c d

The kappa function. [ a b. c d The kappa function Masanobu KANEKO Masaaki YOSHIDA Abstract: The kappa function is introduced as the function κ satisfying Jκτ)) = λτ), where J and λ are the elliptic modular functions. A Fourier expansion

More information

THE HYPERBOLIC METRIC OF A RECTANGLE

THE HYPERBOLIC METRIC OF A RECTANGLE Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 26, 2001, 401 407 THE HYPERBOLIC METRIC OF A RECTANGLE A. F. Beardon University of Cambridge, DPMMS, Centre for Mathematical Sciences Wilberforce

More information

Ramanujan-type Congruences for Broken 2-Diamond Partitions Modulo 3

Ramanujan-type Congruences for Broken 2-Diamond Partitions Modulo 3 Ramanujan-type Congruences for Broken 2-Diamond Partitions Modulo 3 William Y.C. Chen 1, Anna R.B. Fan 2 and Rebecca T. Yu 3 1,2,3 Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin 300071,

More information

Math 259: Introduction to Analytic Number Theory Some more about modular forms

Math 259: Introduction to Analytic Number Theory Some more about modular forms Math 259: Introduction to Analytic Number Theory Some more about modular forms The coefficients of the q-expansions of modular forms and functions Concerning Theorem 5 (Hecke) of [Serre 1973, VII (p.94)]:

More information

TATE-SHAFAREVICH GROUPS OF THE CONGRUENT NUMBER ELLIPTIC CURVES. Ken Ono. X(E N ) is a simple

TATE-SHAFAREVICH GROUPS OF THE CONGRUENT NUMBER ELLIPTIC CURVES. Ken Ono. X(E N ) is a simple TATE-SHAFAREVICH GROUPS OF THE CONGRUENT NUMBER ELLIPTIC CURVES Ken Ono Abstract. Using elliptic modular functions, Kronecker proved a number of recurrence relations for suitable class numbers of positive

More information

arxiv: v1 [math.nt] 7 Oct 2009

arxiv: v1 [math.nt] 7 Oct 2009 Congruences for the Number of Cubic Partitions Derived from Modular Forms arxiv:0910.1263v1 [math.nt] 7 Oct 2009 William Y.C. Chen 1 and Bernard L.S. Lin 2 Center for Combinatorics, LPMC-TJKLC Nankai University,

More information

THE CIRCLE METHOD, THE j FUNCTION, AND PARTITIONS

THE CIRCLE METHOD, THE j FUNCTION, AND PARTITIONS THE CIRCLE METHOD, THE j FUCTIO, AD PARTITIOS JEREMY BOOHER. Introduction The circle method was first used by Hardy and Ramanujan [] in 98 to investigate the asymptotic growth of the partition function,

More information

MATH 310: Homework 7

MATH 310: Homework 7 1 MATH 310: Homework 7 Due Thursday, 12/1 in class Reading: Davenport III.1, III.2, III.3, III.4, III.5 1. Show that x is a root of unity modulo m if and only if (x, m 1. (Hint: Use Euler s theorem and

More information

ON CONGRUENCE PROPERTIES OF CONSECUTIVE VALUES OF P(N, M) Brandt Kronholm Department of Mathematics, University at Albany, Albany, New York, 12222

ON CONGRUENCE PROPERTIES OF CONSECUTIVE VALUES OF P(N, M) Brandt Kronholm Department of Mathematics, University at Albany, Albany, New York, 12222 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (007), #A16 ON CONGRUENCE PROPERTIES OF CONSECUTIVE VALUES OF P(N, M) Brandt Kronholm Department of Mathematics, University at Albany, Albany,

More information

EXERCISES IN MODULAR FORMS I (MATH 726) (2) Prove that a lattice L is integral if and only if its Gram matrix has integer coefficients.

EXERCISES IN MODULAR FORMS I (MATH 726) (2) Prove that a lattice L is integral if and only if its Gram matrix has integer coefficients. EXERCISES IN MODULAR FORMS I (MATH 726) EYAL GOREN, MCGILL UNIVERSITY, FALL 2007 (1) We define a (full) lattice L in R n to be a discrete subgroup of R n that contains a basis for R n. Prove that L is

More information

AN ARITHMETIC FORMULA FOR THE PARTITION FUNCTION

AN ARITHMETIC FORMULA FOR THE PARTITION FUNCTION AN ARITHMETIC FORMULA FOR THE PARTITION FUNCTION KATHRIN BRINGMANN AND KEN ONO 1 Introduction and Statement of Results A partition of a non-negative integer n is a non-increasing sequence of positive integers

More information

THE ANDREWS-STANLEY PARTITION FUNCTION AND p(n): CONGRUENCES

THE ANDREWS-STANLEY PARTITION FUNCTION AND p(n): CONGRUENCES THE ANDREWS-STANLEY PARTITION FUNCTION AND pn: CONGRUENCES HOLLY SWISHER Abstract R Stanley formulated a partition function tn which counts the number of partitions π for which the number of odd parts

More information

KUMMER S LEMMA KEITH CONRAD

KUMMER S LEMMA KEITH CONRAD KUMMER S LEMMA KEITH CONRAD Let p be an odd prime and ζ ζ p be a primitive pth root of unity In the ring Z[ζ], the pth power of every element is congruent to a rational integer mod p, since (c 0 + c 1

More information

ON THE POSITIVITY OF THE NUMBER OF t CORE PARTITIONS. Ken Ono. 1. Introduction

ON THE POSITIVITY OF THE NUMBER OF t CORE PARTITIONS. Ken Ono. 1. Introduction ON THE POSITIVITY OF THE NUMBER OF t CORE PARTITIONS Ken Ono Abstract. A partition of a positive integer n is a nonincreasing sequence of positive integers whose sum is n. A Ferrers graph represents a

More information

COMPUTATIONAL PROOFS OF CONGRUENCES FOR 2-COLORED FROBENIUS PARTITIONS

COMPUTATIONAL PROOFS OF CONGRUENCES FOR 2-COLORED FROBENIUS PARTITIONS IJMMS 29:6 2002 333 340 PII. S0161171202007342 http://ijmms.hindawi.com Hindawi Publishing Corp. COMPUTATIONAL PROOFS OF CONGRUENCES FOR 2-COLORED FROBENIUS PARTITIONS DENNIS EICHHORN and JAMES A. SELLERS

More information

SOME RECURRENCES FOR ARITHMETICAL FUNCTIONS. Ken Ono, Neville Robbins, Brad Wilson. Journal of the Indian Mathematical Society, 62, 1996, pages

SOME RECURRENCES FOR ARITHMETICAL FUNCTIONS. Ken Ono, Neville Robbins, Brad Wilson. Journal of the Indian Mathematical Society, 62, 1996, pages SOME RECURRENCES FOR ARITHMETICAL FUNCTIONS Ken Ono, Neville Robbins, Brad Wilson Journal of the Indian Mathematical Society, 6, 1996, pages 9-50. Abstract. Euler proved the following recurrence for p(n),

More information

Journal of Combinatorics and Number Theory 1(2009), no. 1, ON SUMS OF PRIMES AND TRIANGULAR NUMBERS. Zhi-Wei Sun

Journal of Combinatorics and Number Theory 1(2009), no. 1, ON SUMS OF PRIMES AND TRIANGULAR NUMBERS. Zhi-Wei Sun Journal of Combinatorics and Number Theory 1(009), no. 1, 65 76. ON SUMS OF PRIMES AND TRIANGULAR NUMBERS Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing 10093, People s Republic of China

More information

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q)

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q) CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ωq) AND νq) GEORGE E. ANDREWS, DONNY PASSARY, JAMES A. SELLERS, AND AE JA YEE Abstract. Recently, Andrews, Dixit, and Yee introduced partition

More information

Some congruences for Andrews Paule s broken 2-diamond partitions

Some congruences for Andrews Paule s broken 2-diamond partitions Discrete Mathematics 308 (2008) 5735 5741 www.elsevier.com/locate/disc Some congruences for Andrews Paule s broken 2-diamond partitions Song Heng Chan Division of Mathematical Sciences, School of Physical

More information

RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS

RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS BRUCE C. BERNDT, BYUNGCHAN KIM, AND AE JA YEE 2 Abstract. Combinatorial proofs

More information

Congruences for Fourier Coefficients of Modular Functions of Levels 2 and 4

Congruences for Fourier Coefficients of Modular Functions of Levels 2 and 4 Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2018-07-01 Congruences for Fourier Coefficients of Modular Functions of Levels 2 and 4 Eric Brandon Moss Brigham Young University

More information

Apéry Numbers, Franel Numbers and Binary Quadratic Forms

Apéry Numbers, Franel Numbers and Binary Quadratic Forms A tal given at Tsinghua University (April 12, 2013) and Hong Kong University of Science and Technology (May 2, 2013) Apéry Numbers, Franel Numbers and Binary Quadratic Forms Zhi-Wei Sun Nanjing University

More information

New Congruences for Broken k-diamond Partitions

New Congruences for Broken k-diamond Partitions 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 21 (2018), Article 18.5.8 New Congruences for Broken k-diamond Partitions Dazhao Tang College of Mathematics and Statistics Huxi Campus Chongqing University

More information

RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS

RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS BRUCE C. BERNDT, BYUNGCHAN KIM, AND AE JA YEE Abstract. Combinatorial proofs

More information

An Approach to Hensel s Lemma

An Approach to Hensel s Lemma Irish Math. Soc. Bulletin 47 (2001), 15 21 15 An Approach to Hensel s Lemma gary mcguire Abstract. Hensel s Lemma is an important tool in many ways. One application is in factoring polynomials over Z.

More information

Part II. The power of q. Michael D. Hirschhorn. A course of lectures presented at Wits, July 2014.

Part II. The power of q. Michael D. Hirschhorn. A course of lectures presented at Wits, July 2014. m.hirschhorn@unsw.edu.au most n 1(1 q n ) 3 = ( 1) n (2n+1)q (n2 +n)/2. Note that the power on q, (n 2 +n)/2 0, 1 or 3 mod 5. And when (n 2 +n)/2 3 (mod 5), n 2 (mod 5), and then the coefficient, (2n+1)

More information

Arithmetic properties of overcubic partition pairs

Arithmetic properties of overcubic partition pairs Arithmetic properties of overcubic partition pairs Bernard L.S. Lin School of Sciences Jimei University Xiamen 3101, P.R. China linlsjmu@13.com Submitted: May 5, 014; Accepted: Aug 7, 014; Published: Sep

More information

q-series IDENTITIES AND VALUES OF CERTAIN L-FUNCTIONS Appearing in the Duke Mathematical Journal.

q-series IDENTITIES AND VALUES OF CERTAIN L-FUNCTIONS Appearing in the Duke Mathematical Journal. q-series IDENTITIES AND VALUES OF CERTAIN L-FUNCTIONS George E. Andrews, Jorge Jiménez-Urroz and Ken Ono Appearing in the Duke Mathematical Journal.. Introduction and Statement of Results. As usual, define

More information

Representations of integers as sums of an even number of squares. Özlem Imamoḡlu and Winfried Kohnen

Representations of integers as sums of an even number of squares. Özlem Imamoḡlu and Winfried Kohnen Representations of integers as sums of an even number of squares Özlem Imamoḡlu and Winfried Kohnen 1. Introduction For positive integers s and n, let r s (n) be the number of representations of n as a

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics ELLIPTIC FUNCTIONS TO THE QUINTIC BASE HENG HUAT CHAN AND ZHI-GUO LIU Volume 226 No. July 2006 PACIFIC JOURNAL OF MATHEMATICS Vol. 226, No., 2006 ELLIPTIC FUNCTIONS TO THE

More information

congruences Shanghai, July 2013 Simple proofs of Ramanujan s partition congruences Michael D. Hirschhorn

congruences Shanghai, July 2013 Simple proofs of Ramanujan s partition congruences Michael D. Hirschhorn s s m.hirschhorn@unsw.edu.au Let p(n) be the number of s of n. For example, p(4) = 5, since we can write 4 = 4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1 and there are 5 such representations. It was known to Euler

More information

On Rankin-Cohen Brackets of Eigenforms

On Rankin-Cohen Brackets of Eigenforms On Rankin-Cohen Brackets of Eigenforms Dominic Lanphier and Ramin Takloo-Bighash July 2, 2003 1 Introduction Let f and g be two modular forms of weights k and l on a congruence subgroup Γ. The n th Rankin-Cohen

More information

AN ARITHMETIC FORMULA FOR THE PARTITION FUNCTION

AN ARITHMETIC FORMULA FOR THE PARTITION FUNCTION PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 135, Number 11, November 007, Pages 3507 3514 S 000-9939(07)08883-1 Article electronically published on July 7, 007 AN ARITHMETIC FORMULA FOR THE

More information

Part II. Number Theory. Year

Part II. Number Theory. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 Paper 3, Section I 1G 70 Explain what is meant by an Euler pseudoprime and a strong pseudoprime. Show that 65 is an Euler

More information

Abstract In this paper I give an elementary proof of congruence identity p(11n + 6) 0(mod11).

Abstract In this paper I give an elementary proof of congruence identity p(11n + 6) 0(mod11). An Elementary Proof that p(11n + 6) 0(mod 11) By: Syrous Marivani, Ph.D. LSU Alexandria Mathematics Department 8100 HWY 71S Alexandria, LA 71302 Email: smarivani@lsua.edu Abstract In this paper I give

More information

An Additive Characterization of Fibers of Characters on F p

An Additive Characterization of Fibers of Characters on F p An Additive Characterization of Fibers of Characters on F p Chris Monico Texas Tech University Lubbock, TX c.monico@ttu.edu Michele Elia Politecnico di Torino Torino, Italy elia@polito.it January 30, 2009

More information

COMBINATORIAL APPLICATIONS OF MÖBIUS INVERSION

COMBINATORIAL APPLICATIONS OF MÖBIUS INVERSION PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 COMBINATORIAL APPLICATIONS OF MÖBIUS INVERSION MARIE JAMESON AND ROBERT P. SCHNEIDER (Communicated

More information

Ramanujan-type congruences for broken 2-diamond partitions modulo 3

Ramanujan-type congruences for broken 2-diamond partitions modulo 3 Progress of Projects Supported by NSFC. ARTICLES. SCIENCE CHINA Mathematics doi: 10.1007/s11425-014-4846-7 Ramanujan-type congruences for broken 2-diamond partitions modulo 3 CHEN William Y.C. 1, FAN Anna

More information

SOME CONGRUENCES FOR TRACES OF SINGULAR MODULI

SOME CONGRUENCES FOR TRACES OF SINGULAR MODULI SOME CONGRUENCES FOR TRACES OF SINGULAR MODULI P. GUERZHOY Abstract. We address a question posed by Ono [7, Problem 7.30], prove a general result for powers of an arbitrary prime, and provide an explanation

More information

Ternary Quadratic Forms and Eta Quotients

Ternary Quadratic Forms and Eta Quotients Canad. Math. Bull. Vol. 58 (4), 015 pp. 858 868 http://dx.doi.org/10.4153/cmb-015-044-3 Canadian Mathematical Society 015 Ternary Quadratic Forms and Eta Quotients Kenneth S. Williams Abstract. Let η(z)

More information

RANKIN-COHEN BRACKETS AND VAN DER POL-TYPE IDENTITIES FOR THE RAMANUJAN S TAU FUNCTION

RANKIN-COHEN BRACKETS AND VAN DER POL-TYPE IDENTITIES FOR THE RAMANUJAN S TAU FUNCTION RANKIN-COHEN BRACKETS AND VAN DER POL-TYPE IDENTITIES FOR THE RAMANUJAN S TAU FUNCTION B. RAMAKRISHNAN AND BRUNDABAN SAHU Abstract. We use Rankin-Cohen brackets for modular forms and quasimodular forms

More information

Binary quadratic forms and sums of triangular numbers

Binary quadratic forms and sums of triangular numbers Binary quadratic forms and sums of triangular numbers Zhi-Hong Sun( ) Huaiyin Normal University http://www.hytc.edu.cn/xsjl/szh Notation: Z the set of integers, N the set of positive integers, [x] the

More information

Mathematics for Cryptography

Mathematics for Cryptography Mathematics for Cryptography Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo Waterloo, Ontario, N2L 3G1, Canada March 15, 2016 1 Groups and Modular Arithmetic 1.1

More information

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q)

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q) CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ωq) AND νq) GEORGE E. ANDREWS, DONNY PASSARY, JAMES A. SELLERS, AND AE JA YEE Abstract. Recently, Andrews, Dixit and Yee introduced partition

More information

MATH 566, Final Project Alexandra Tcheng,

MATH 566, Final Project Alexandra Tcheng, MATH 566, Final Project Alexanra Tcheng, 60665 The unrestricte partition function pn counts the number of ways a positive integer n can be resse as a sum of positive integers n. For example: p 5, since

More information

REFINEMENTS OF SOME PARTITION INEQUALITIES

REFINEMENTS OF SOME PARTITION INEQUALITIES REFINEMENTS OF SOME PARTITION INEQUALITIES James Mc Laughlin Department of Mathematics, 25 University Avenue, West Chester University, West Chester, PA 9383 jmclaughlin2@wcupa.edu Received:, Revised:,

More information

20 The modular equation

20 The modular equation 18.783 Elliptic Curves Lecture #20 Spring 2017 04/26/2017 20 The modular equation In the previous lecture we defined modular curves as quotients of the extended upper half plane under the action of a congruence

More information

SHIMURA LIFTS OF HALF-INTEGRAL WEIGHT MODULAR FORMS ARISING FROM THETA FUNCTIONS

SHIMURA LIFTS OF HALF-INTEGRAL WEIGHT MODULAR FORMS ARISING FROM THETA FUNCTIONS SHIMURA LIFTS OF HALF-INTEGRAL WEIGHT MODULAR FORMS ARISING FROM THETA FUNCTIONS DAVID HANSEN AND YUSRA NAQVI Abstract In 1973, Shimura [8] introduced a family of correspondences between modular forms

More information

ON THE TAYLOR COEFFICIENTS OF THE HURWITZ ZETA FUNCTION

ON THE TAYLOR COEFFICIENTS OF THE HURWITZ ZETA FUNCTION ON THE TAYLOR COEFFICIENTS OF THE HURWITZ ZETA FUNCTION Khristo N. Boyadzhiev Department of Mathematics, Ohio Northern University, Ada, Ohio, 45810 k-boyadzhiev@onu.edu Abstract. We find a representation

More information

Colloq. Math. 145(2016), no. 1, ON SOME UNIVERSAL SUMS OF GENERALIZED POLYGONAL NUMBERS. 1. Introduction. x(x 1) (1.1) p m (x) = (m 2) + x.

Colloq. Math. 145(2016), no. 1, ON SOME UNIVERSAL SUMS OF GENERALIZED POLYGONAL NUMBERS. 1. Introduction. x(x 1) (1.1) p m (x) = (m 2) + x. Colloq. Math. 145(016), no. 1, 149-155. ON SOME UNIVERSAL SUMS OF GENERALIZED POLYGONAL NUMBERS FAN GE AND ZHI-WEI SUN Abstract. For m = 3, 4,... those p m (x) = (m )x(x 1)/ + x with x Z are called generalized

More information

CONGRUENCES FOR GENERALIZED FROBENIUS PARTITIONS WITH AN ARBITRARILY LARGE NUMBER OF COLORS

CONGRUENCES FOR GENERALIZED FROBENIUS PARTITIONS WITH AN ARBITRARILY LARGE NUMBER OF COLORS #A7 INTEGERS 14 (2014) CONGRUENCES FOR GENERALIZED FROBENIUS PARTITIONS WITH AN ARBITRARILY LARGE NUMBER OF COLORS Frank G. Garvan Department of Mathematics, University of Florida, Gainesville, Florida

More information

CHIRANJIT RAY AND RUPAM BARMAN

CHIRANJIT RAY AND RUPAM BARMAN ON ANDREWS INTEGER PARTITIONS WITH EVEN PARTS BELOW ODD PARTS arxiv:1812.08702v1 [math.nt] 20 Dec 2018 CHIRANJIT RAY AND RUPAM BARMAN Abstract. Recently, Andrews defined a partition function EOn) which

More information

MODULAR FORMS ARISING FROM Q(n) AND DYSON S RANK

MODULAR FORMS ARISING FROM Q(n) AND DYSON S RANK MODULAR FORMS ARISING FROM Q(n) AND DYSON S RANK MARIA MONKS AND KEN ONO Abstract Let R(w; q) be Dyson s generating function for partition ranks For roots of unity ζ it is known that R(ζ; q) and R(ζ; /q)

More information

Efficient implementation of the Hardy-Ramanujan-Rademacher formula

Efficient implementation of the Hardy-Ramanujan-Rademacher formula Efficient implementation of the Hardy-Ramanujan-Rademacher formula or: Partitions in the quintillions Fredrik Johansson RISC-Linz July 10, 2013 2013 SIAM Annual Meeting San Diego, CA Supported by Austrian

More information

On a certain vector crank modulo 7

On a certain vector crank modulo 7 On a certain vector crank modulo 7 Michael D Hirschhorn School of Mathematics and Statistics University of New South Wales Sydney, NSW, 2052, Australia mhirschhorn@unsweduau Pee Choon Toh Mathematics &

More information

The Jacobi Symbol. q q 1 q 2 q n

The Jacobi Symbol. q q 1 q 2 q n The Jacobi Symbol It s a little inconvenient that the Legendre symbol a is only defined when the bottom is an odd p prime You can extend the definition to allow an odd positive number on the bottom using

More information

On the number of representations of n by ax 2 + by(y 1)/2, ax 2 + by(3y 1)/2 and ax(x 1)/2 + by(3y 1)/2

On the number of representations of n by ax 2 + by(y 1)/2, ax 2 + by(3y 1)/2 and ax(x 1)/2 + by(3y 1)/2 ACTA ARITHMETICA 1471 011 On the number of representations of n by ax + byy 1/, ax + by3y 1/ and axx 1/ + by3y 1/ by Zhi-Hong Sun Huaian 1 Introduction For 3, 4,, the -gonal numbers are given by p n n

More information

SOME VARIANTS OF LAGRANGE S FOUR SQUARES THEOREM

SOME VARIANTS OF LAGRANGE S FOUR SQUARES THEOREM Acta Arith. 183(018), no. 4, 339 36. SOME VARIANTS OF LAGRANGE S FOUR SQUARES THEOREM YU-CHEN SUN AND ZHI-WEI SUN Abstract. Lagrange s four squares theorem is a classical theorem in number theory. Recently,

More information

SOME CONGRUENCES FOR PARTITIONS THAT ARE p-cores. Frank G. Garvan

SOME CONGRUENCES FOR PARTITIONS THAT ARE p-cores. Frank G. Garvan SOME CONGRUENCES FOR PARTITIONS THAT ARE p-cores Frank G. Garvan Department of Mathematics Statistics & Computing Science Dalhousie University Halifax, Nova Scotia Canada B3H 3J5 October 18, 1991 Abstract.

More information