6.003: Signals and Systems

Size: px
Start display at page:

Download "6.003: Signals and Systems"

Transcription

1 6.003: Signals and Sysems Fourier Series November 1,

2 Las Time: Describing Signals by Frequency Conen Harmonic conen is naural way o describe some kinds of signals. Ex: musical insrumens (hp://heremin.music.uiowa.edu/mis.hml) piano piano violin violin k bassoon bassoon k 2 k

3 3 Las Time: Fourier Series Deermining harmonic componens of a periodic signal. a k = 1 j 2π k x()e T T T d ( analysis equaion) 0 x()= x( + T ) = k= a k e j 2π T k ( synhesis equaion) We can hink of Fourier series as an orhogonal decomposiion.

4 4 Orhogonal Decomposiions Vecor represenaion of 3-space: le r represen a vecor wih componens {x, y, and z} in he {xˆ, ŷ, and ẑ} direcions, respecively. x = r xˆ y = r ŷ z = r ẑ r = xxˆ + yŷ + zẑ ( analysis equaions) ( synhesis equaion) Fourier series: le x() represen a signal wih harmonic componens 2 j0 j 2 T π j π k {a 0, a 1,..., a k } for harmonics {e, e,..., e T } respecively. a k = 1 j 2π k x()e T T T d ( analysis equaion) 0 j 2 x()= x( + T ) = a k e T π k k= ( synhesis equaion)

5 5 Orhogonal Decomposiions Vecor represenaion of 3-space: le r represen a vecor wih componens {x, y, and z} in he {xˆ, ŷ, and ẑ} direcions, respecively. x = r xˆ y = r ŷ z = r ẑ ( analysis equaions) r = xˆ x + yŷ + zˆ z ( synhesis equaion) Fourier series: le x() represen a signal wih harmonic componens 2 j0 j 2 T π j π k {a 0, a 1,..., a k } for harmonics {e, e,..., e T } respecively. a k = 1 j 2π k x()e T T T d ( analysis equaion) x()= x( + T ) = 0 k= j a k e 2 T π k ( synhesis equaion)

6 6 Orhogonal Decomposiions Vecor represenaion of 3-space: le r represen a vecor wih componens {x, y, and z} in he {xˆ, ŷ, and ẑ} direcions, respecively. x = r ˆx y = r ŷ z = r ẑ r = xxˆ + yŷ + zẑ ( analysis equaions) ( synhesis equaion) Fourier series: le x() represen a signal wih harmonic componens 2 j0 j 2 T π j π k {a 0, a 1,..., a k } for harmonics {e, e,..., e T } respecively. a k = 1 j 2π x()e T k d T T ( analysis equaion) 0 j 2 x()= x( + T ) = a k e T π k k= ( synhesis equaion)

7 7 Orhogonal Decomposiions Inegraing over a period sifs ou he k h componen of he series. Sifing as a do produc: x = r xˆ r xˆ cos θ Sifing as an inner produc: j 2π k 1 j 2π k a k = e T x() x()e T d T T where 1 a() b() = a ()b()d. T T The complex conjugae ( ) makes he inner produc of he k h and m h componens equal o 1 iff k = m: 1 j 2π k j 2π m 1 j 2π k j 2π m 1 if k = m e T e T d = e T e T d = T T T T 0 oherwise

8 Check Yourself How many of he following pairs of funcions are orhogonal ( ) in T = 3? 1. cos 2π sin 2π? 2. cos 2π cos 4π? 3. cos 2π sin π? 4. cos 2π e j2π? 8

9 Check Yourself How many of he following are orhogonal ( ) in T = 3? cos 2π sin 2π? cos 2π sin 2π cos 2π sin 2π = 1 2 sin 4π 3 d = 0 herefore YES

10 Check Yourself How many of he following are orhogonal ( ) in T = 3? cos 2π cos 4π? cos 2π cos 4π cos 2π cos 4π = 1 2 cos 6π cos 2π 3 d = 0 herefore YES

11 Check Yourself How many of he following are orhogonal ( ) in T = 3? cos 2π sin π? cos 2π sin π cos 2π sin π = 1 2 sin 3π 1 2 sin π 3 d = 0 herefore NO

12 12 Check Yourself How many of he following are orhogonal ( ) in T = 3? cos 2π e 2π? e 2π = cos 2π + j sin 2π cos 2π sin 2π bu no cos 2π Therefore NO

13 Check Yourself How many of he following pairs of funcions are orhogonal ( ) in T = 3? 2 1. cos 2π sin 2π? 2. cos 2π cos 4π? 3. cos 2π sin π? X 4. cos 2π e j2π? X 13

14 14 Speech Vowel sounds are quasi-periodic. ba bai be bee bi bie bough boa bu boo

15 15 Speech Harmonic conen is naural way o describe vowel sounds. ba bai be bee bi k bie k bough k boa k k bu k boo k k k k

16 16 Speech Harmonic conen is naural way o describe vowel sounds. ba ba bee bee k boo boo k k

17 Speech Producion Speech is generaed by he passage of air from he lungs, hrough he vocal cords, mouh, and nasal caviy. Nasal caviy Hard palae Sof palae (velum) Pharynx Epiglois Tongue Larynx Lips Esophogus Vocal cords (glois) Trachea Somach Lungs 17 Adaped from T.F. Weiss

18 Speech Producion Conrolled by complicaed muscles, vocal cords are se in vibraion by he passage of air from he lungs. Looking down he hroa: Vocal cords open Glois Vocal cords closed Vocal cords Gray's Anaomy Adaped from T.F. Weiss 18

19 Speech Producion Vibraions of he vocal cords are filered by he mouh and nasal caviies o generae speech. 19

20 Filering Noion of a filer. LTI sysems canno creae new frequencies. can only scale magniudes & shif phases of exising componens. Example: Low-Pass Filering wih an RC circui R + v + i v o C 20

21 Lowpass Filer Calculae he frequency response of an RC circui. R + v + i v o C 1 KVL: v i () = Ri() + v o () C: i() = Cv o() Solving: v i () = RC v o() + v o () V i (s) = (1 + src)v o (s) H(s) V o (s) 1 = = V i (s) 1 + src H(jω) H(jω) π ω 1/RC ω 1/RC

22 Lowpass Filering Le he inpu be a square wave jω x() = 0 k e ; jπk k odd 1 0 T 1 2 2π ω 0 = T X(jω) X(jω) π ω 1/RC ω 1/RC

23 Lowpass Filering Low frequency square wave: ω 0 << 1/RC jω x() = 0 k e ; jπk k odd 1 0 T 1 2 2π ω 0 = T H(jω) H(jω) π ω 1/RC ω 1/RC

24 Lowpass Filering Higher frequency square wave: ω 0 < 1/RC jω x() = 0 k e ; jπk k odd 1 0 T 1 2 2π ω 0 = T H(jω) H(jω) π ω 1/RC ω 1/RC

25 Lowpass Filering Sill higher frequency square wave: ω 0 = 1/RC jω x() = 0 k e ; jπk k odd 1 0 T 1 2 2π ω 0 = T H(jω) H(jω) π ω 1/RC ω 1/RC

26 Lowpass Filering High frequency square wave: ω 0 > 1/RC jω x() = 0 k e ; jπk k odd 1 0 T 1 2 2π ω 0 = T H(jω) H(jω) π ω 1/RC ω 1/RC

27 Source-Filer Model of Speech Producion Vibraions of he vocal cords are filered by he mouh and nasal caviies o generae speech. buzz from vocal cords hroa and nasal caviies 27 speech

28 28 Speech Producion X-ray movie showing speech in producion. Couresy of Kenneh N. Sevens. Used wih permission.

29 Demonsraion Arificial speech. buzz from vocal cords hroa and nasal caviies 29 speech

30 hp:// 30 Formans Resonan frequencies of he vocal rac. F1 F2 ampliude F3 frequency Forman heed head had hod haw d who d Men F F F Women F F F Children F F F

31 We deec changes in he filer funcion o recognize vowels. 31 Speech Producion Same glois signal + differen formans differen vowels. glois signal vocal rac filer vowel sound a k b k a k b k

32 Singing We deec changes in he filer funcion o recognize vowels... a leas someimes. Demonsraion. la scale. lore scale. loo scale. ler scale. lee scale. Low Frequency: la lore loo ler lee. High Frequency: la lore loo ler lee. hp:// 32

33 33 Speech Producion We deec changes in he filer funcion o recognize vowels. low inermediae high

34 34 Speech Producion We deec changes in he filer funcion o recognize vowels. low inermediae high

35 Coninuous-Time Fourier Series: Summary Fourier series represen signals by heir frequency conen. Represening a signal by is frequency conen is useful for many signals, e.g., music. Fourier series moivae a new represenaion of a sysem as a filer. Represening a sysem as a filer is useful for many sysems, e.g., speech synhesis. 35

36 MIT OpenCourseWare hp://ocw.mi.edu Signals and Sysems Fall 2011 For informaion abou ciing hese maerials or our Terms of Use, visi: hp://ocw.mi.edu/erms.

6.003: Signals and Systems. Fourier Representations

6.003: Signals and Systems. Fourier Representations 6.003: Signals and Sysems Fourier Represenaions Ocober 27, 20 Fourier Represenaions Fourier series represen signals in erms of sinusoids. leads o a new represenaion for sysems as filers. Fourier Series

More information

6.003: Signals and Systems

6.003: Signals and Systems 6.3: Signals and Sysems Lecure 7 April 8, 6.3: Signals and Sysems C Fourier ransform C Fourier ransform Represening signals by heir frequency conen. X(j)= x()e j d ( analysis equaion) x()= π X(j)e j d

More information

6.003: Signals and Systems Lecture 20 November 17, 2011

6.003: Signals and Systems Lecture 20 November 17, 2011 6.3: Signals and Sysems Lecure November 7, 6.3: Signals and Sysems Applicaions of Fourier ransforms Filering Noion of a filer. LI sysems canno creae new frequencies. can only scale magniudes and shif phases

More information

6.003 Homework #9 Solutions

6.003 Homework #9 Solutions 6.00 Homework #9 Soluions Problems. Fourier varieies a. Deermine he Fourier series coefficiens of he following signal, which is periodic in 0. x () 0 0 a 0 5 a k sin πk 5 sin πk 5 πk for k 0 a k 0 πk j

More information

6.003 Homework #9 Solutions

6.003 Homework #9 Solutions 6.003 Homework #9 Soluions Problems. Fourier varieies a. Deermine he Fourier series coefficiens of he following signal, which is periodic in 0. x () 0 3 0 a 0 5 a k a k 0 πk j3 e 0 e j πk 0 jπk πk e 0

More information

6.003: Signals and Systems. Applications of Fourier Transforms

6.003: Signals and Systems. Applications of Fourier Transforms 6.003: Signals and Systems Applications of Fourier Transforms November 7, 20 Filtering Notion of a filter. LTI systems cannot create new frequencies. can only scale magnitudes and shift phases of existing

More information

6.003: Signals and Systems. CT Fourier Transform

6.003: Signals and Systems. CT Fourier Transform 6.003: Signals and Systems CT Fourier Transform April 8, 200 CT Fourier Transform Representing signals by their frequency content. X(jω)= x(t)e jωt dt ( analysis equation) x(t)= 2π X(jω)e jωt dω ( synthesis

More information

6.003: Signals and Systems

6.003: Signals and Systems 6.003: Signals and Sysems Relaions among Fourier Represenaions November 5, 20 Mid-erm Examinaion #3 Wednesday, November 6, 7:30-9:30pm, No reciaions on he day of he exam. Coverage: Lecures 8 Reciaions

More information

6.003: Signals and Systems. Relations among Fourier Representations

6.003: Signals and Systems. Relations among Fourier Representations 6.003: Signals and Sysems Relaions among Fourier Represenaions April 22, 200 Mid-erm Examinaion #3 W ednesday, April 28, 7:30-9:30pm. No reciaions on he day of he exam. Coverage: Lecures 20 Reciaions 20

More information

6.003: Signals and Systems. CT Fourier Transform

6.003: Signals and Systems. CT Fourier Transform 6.003: Signals and Systems CT Fourier Transform April 8, 200 CT Fourier Transform Representing signals by their frequency content. X(jω)= x(t)e jωt dt ( analysis equation) x(t)= X(jω)e jωt dω ( synthesis

More information

Representing a Signal. Continuous-Time Fourier Methods. Linearity and Superposition. Real and Complex Sinusoids. Jean Baptiste Joseph Fourier

Representing a Signal. Continuous-Time Fourier Methods. Linearity and Superposition. Real and Complex Sinusoids. Jean Baptiste Joseph Fourier Represening a Signal Coninuous-ime ourier Mehods he convoluion mehod for finding he response of a sysem o an exciaion aes advanage of he lineariy and imeinvariance of he sysem and represens he exciaion

More information

6.003 Homework #13 Solutions

6.003 Homework #13 Solutions 6.003 Homework #3 Soluions Problems. Transformaion Consider he following ransformaion from x() o y(): x() w () w () w 3 () + y() p() cos() where p() = δ( k). Deermine an expression for y() when x() = sin(/)/().

More information

6.01: Introduction to EECS I Lecture 8 March 29, 2011

6.01: Introduction to EECS I Lecture 8 March 29, 2011 6.01: Inroducion o EES I Lecure 8 March 29, 2011 6.01: Inroducion o EES I Op-Amps Las Time: The ircui Absracion ircuis represen sysems as connecions of elemens hrough which currens (hrough variables) flow

More information

6.003: Signal Processing

6.003: Signal Processing 6.003: Signal Processing Working wih Signals Overview of Subjec Signals: Definiions, Examples, and Operaions Basis Funcions and Transforms Sepember 6, 2018 Welcome o 6.003 Piloing a new version of 6.003

More information

III-A. Fourier Series Expansion

III-A. Fourier Series Expansion Summer 28 Signals & Sysems S.F. Hsieh III-A. Fourier Series Expansion Inroducion. Divide and conquer Signals can be decomposed as linear combinaions of: (a) shifed impulses: (sifing propery) Why? x() x()δ(

More information

6.302 Feedback Systems Recitation 4: Complex Variables and the s-plane Prof. Joel L. Dawson

6.302 Feedback Systems Recitation 4: Complex Variables and the s-plane Prof. Joel L. Dawson Number 1 quesion: Why deal wih imaginary and complex numbers a all? One answer is ha, as an analyical echnique, hey make our lives easier. Consider passing a cosine hrough an LTI filer wih impulse response

More information

Lecture #11: Wavepacket Dynamics for Harmonic Oscillator

Lecture #11: Wavepacket Dynamics for Harmonic Oscillator Lecure #11: Wavepacke Dynamics for Harmonic Oscillaor and PIB Las ime: Time Dependen Schrödinger Equaion Ψ HHΨ = iħ Express Ψ in complee basis se of eigenfuncions of ime independen H H {ψ n (x), E n }

More information

6.003: Signal Processing

6.003: Signal Processing 6.003: Signal Processing Coninuous-Time Fourier Transform Definiion Examples Properies Relaion o Fourier Series Sepember 5, 08 Quiz Thursday, Ocober 4, from 3pm o 5pm. No lecure on Ocober 4. The exam is

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008 [E5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 008 EEE/ISE PART II MEng BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: :00 hours There are FOUR quesions

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

6.003 Homework 1. Problems. Due at the beginning of recitation on Wednesday, February 10, 2010.

6.003 Homework 1. Problems. Due at the beginning of recitation on Wednesday, February 10, 2010. 6.003 Homework Due a he beginning of reciaion on Wednesday, February 0, 200. Problems. Independen and Dependen Variables Assume ha he heigh of a waer wave is given by g(x v) where x is disance, v is velociy,

More information

Laplace Transform and its Relation to Fourier Transform

Laplace Transform and its Relation to Fourier Transform Chaper 6 Laplace Transform and is Relaion o Fourier Transform (A Brief Summary) Gis of he Maer 2 Domains of Represenaion Represenaion of signals and sysems Time Domain Coninuous Discree Time Time () [n]

More information

From Particles to Rigid Bodies

From Particles to Rigid Bodies Rigid Body Dynamics From Paricles o Rigid Bodies Paricles No roaions Linear velociy v only Rigid bodies Body roaions Linear velociy v Angular velociy ω Rigid Bodies Rigid bodies have boh a posiion and

More information

ES.1803 Topic 22 Notes Jeremy Orloff

ES.1803 Topic 22 Notes Jeremy Orloff ES.83 Topic Noes Jeremy Orloff Fourier series inroducion: coninued. Goals. Be able o compue he Fourier coefficiens of even or odd periodic funcion using he simplified formulas.. Be able o wrie and graph

More information

Outline Chapter 2: Signals and Systems

Outline Chapter 2: Signals and Systems Ouline Chaper 2: Signals and Sysems Signals Basics abou Signal Descripion Fourier Transform Harmonic Decomposiion of Periodic Waveforms (Fourier Analysis) Definiion and Properies of Fourier Transform Imporan

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mar Fowler Noe Se #1 C-T Signals: Circuis wih Periodic Sources 1/1 Solving Circuis wih Periodic Sources FS maes i easy o find he response of an RLC circui o a periodic source!

More information

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response Review Capaciors/Inducors Volage/curren relaionship Sored Energy s Order Circuis RL / RC circuis Seady Sae / Transien response Naural / Sep response EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Lecure

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

Chapter One Fourier Series and Fourier Transform

Chapter One Fourier Series and Fourier Transform Chaper One I. Fourier Series Represenaion of Periodic Signals -Trigonomeric Fourier Series: The rigonomeric Fourier series represenaion of a periodic signal x() x( + T0 ) wih fundamenal period T0 is given

More information

System Processes input signal (excitation) and produces output signal (response)

System Processes input signal (excitation) and produces output signal (response) Signal A funcion of ime Sysem Processes inpu signal (exciaion) and produces oupu signal (response) Exciaion Inpu Sysem Oupu Response 1. Types of signals 2. Going from analog o digial world 3. An example

More information

EECS20n, Solution to Midterm 2, 11/17/00

EECS20n, Solution to Midterm 2, 11/17/00 EECS20n, Soluion o Miderm 2, /7/00. 0 poins Wrie he following in Caresian coordinaes (i.e. in he form x + jy) (a) 2 poins j 3 j 2 + j += j ++j +=2 (b) 2 poins ( j)/( + j) = j (c) 2 poins cos π/4+jsin π/4

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

Lecture 2: Optics / C2: Quantum Information and Laser Science

Lecture 2: Optics / C2: Quantum Information and Laser Science Lecure : Opics / C: Quanum Informaion and Laser Science Ocober 9, 8 1 Fourier analysis This branch of analysis is exremely useful in dealing wih linear sysems (e.g. Maxwell s equaions for he mos par),

More information

Examples of Dynamic Programming Problems

Examples of Dynamic Programming Problems M.I.T. 5.450-Fall 00 Sloan School of Managemen Professor Leonid Kogan Examples of Dynamic Programming Problems Problem A given quaniy X of a single resource is o be allocaed opimally among N producion

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode.

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode. ECE 445 Analysis and Design of Power Elecronic Circuis Problem Se 7 Soluions Problem PS7.1 Erickson, Problem 5.1 Soluion (a) Firs, recall he operaion of he buck-boos converer in he coninuous conducion

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : 0. ND_NW_EE_Signal & Sysems_4068 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkaa Pana Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTRICAL ENGINEERING

More information

Notes 04 largely plagiarized by %khc

Notes 04 largely plagiarized by %khc Noes 04 largely plagiarized by %khc Convoluion Recap Some ricks: x() () =x() x() (, 0 )=x(, 0 ) R ț x() u() = x( )d x() () =ẋ() This hen ells us ha an inegraor has impulse response h() =u(), and ha a differeniaor

More information

h[n] is the impulse response of the discrete-time system:

h[n] is the impulse response of the discrete-time system: Definiion Examples Properies Memory Inveribiliy Causaliy Sabiliy Time Invariance Lineariy Sysems Fundamenals Overview Definiion of a Sysem x() h() y() x[n] h[n] Sysem: a process in which inpu signals are

More information

k The function Ψ(x) is called wavelet function and shows band-pass behavior. The wavelet coefficients d a,b

k The function Ψ(x) is called wavelet function and shows band-pass behavior. The wavelet coefficients d a,b Wavele Transform Wavele Transform The wavele ransform corresponds o he decomposiion of a quadraic inegrable funcion sx ε L 2 R in a family of scaled and ranslaed funcions Ψ,l, ψ, l 1/2 = ψ l The funcion

More information

Signals and Systems Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin

Signals and Systems Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin EE 345S Real-Time Digial Signal Processing Lab Spring 26 Signals and Sysems Prof. Brian L. Evans Dep. of Elecrical and Compuer Engineering The Universiy of Texas a Ausin Review Signals As Funcions of Time

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

V The Fourier Transform

V The Fourier Transform V he Fourier ransform Lecure noes by Assaf al 1. Moivaion Imagine playing hree noes on he piano, recording hem (soring hem as a.wav or.mp3 file), and hen ploing he resuling waveform on he compuer: 100Hz

More information

ME 452 Fourier Series and Fourier Transform

ME 452 Fourier Series and Fourier Transform ME 452 Fourier Series and Fourier ransform Fourier series From Joseph Fourier in 87 as a resul of his sudy on he flow of hea. If f() is almos any periodic funcion i can be wrien as an infinie sum of sines

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se #2 Wha are Coninuous-Time Signals??? Reading Assignmen: Secion. of Kamen and Heck /22 Course Flow Diagram The arrows here show concepual flow beween ideas.

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Represenaion of Signals in Terms of Frequency Componens Chaper 4 The Fourier Series and Fourier Transform Consider he CT signal defined by x () = Acos( ω + θ ), = The frequencies `presen in he signal are

More information

Echocardiography Project and Finite Fourier Series

Echocardiography Project and Finite Fourier Series Echocardiography Projec and Finie Fourier Series 1 U M An echocardiagram is a plo of how a porion of he hear moves as he funcion of ime over he one or more hearbea cycles If he hearbea repeas iself every

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

Lecture Notes 2. The Hilbert Space Approach to Time Series

Lecture Notes 2. The Hilbert Space Approach to Time Series Time Series Seven N. Durlauf Universiy of Wisconsin. Basic ideas Lecure Noes. The Hilber Space Approach o Time Series The Hilber space framework provides a very powerful language for discussing he relaionship

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Hilbert Inner Product Space (2B) Young Won Lim 2/23/12

Hilbert Inner Product Space (2B) Young Won Lim 2/23/12 Hilber nner Produc Space (2B) Copyrigh (c) 2009-2011 Young W. Lim. Permission is graned o copy, disribue and/or modify his documen under he erms of he GNU Free Documenaion License, Version 1.2 or any laer

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

Q1) [20 points] answer for the following questions (ON THIS SHEET):

Q1) [20 points] answer for the following questions (ON THIS SHEET): Dr. Anas Al Tarabsheh The Hashemie Universiy Elecrical and Compuer Engineering Deparmen (Makeup Exam) Signals and Sysems Firs Semeser 011/01 Final Exam Dae: 1/06/01 Exam Duraion: hours Noe: means convoluion

More information

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler MULTIVARIATE TIME SERIES ANALYSIS AND FORECASTING Manfred Deisler E O S Economerics and Sysems Theory Insiue for Mahemaical Mehods in Economics Universiy of Technology Vienna Singapore, May 2004 Inroducion

More information

Chapter 3: Signal Transmission and Filtering. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies

Chapter 3: Signal Transmission and Filtering. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies Communicaion Sysems, 5e Chaper 3: Signal Transmission and Filering A. Bruce Carlson Paul B. Crilly 00 The McGraw-Hill Companies Chaper 3: Signal Transmission and Filering Response of LTI sysems Signal

More information

KEEE313(03) Signals and Systems. Chang-Su Kim

KEEE313(03) Signals and Systems. Chang-Su Kim KEEE313(03) Signals and Sysems Chang-Su Kim Course Informaion Course homepage hp://mcl.korea.ac.kr Lecurer Chang-Su Kim Office: Engineering Bldg, Rm 508 E-mail: changsukim@korea.ac.kr Tuor 허육 (yukheo@mcl.korea.ac.kr)

More information

6.003 Homework #8 Solutions

6.003 Homework #8 Solutions 6.003 Homework #8 Soluions Problems. Fourier Series Deermine he Fourier series coefficiens a k for x () shown below. x ()= x ( + 0) 0 a 0 = 0 a k = e /0 sin(/0) for k 0 a k = π x()e k d = 0 0 π e 0 k d

More information

IV. Transport Phenomena. Lecture 19: Transient Diffusion. 1 Response to a Current Step. MIT Student. 1.1 Sand s Time

IV. Transport Phenomena. Lecture 19: Transient Diffusion. 1 Response to a Current Step. MIT Student. 1.1 Sand s Time IV. Transpor Phenomena Lecure 19: Transien iffusion MIT Suden In his lecure we show how o use simple scaling argumens o approximae he soluion o ransien diffusion problems, which arise in elecrochemical

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal?

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal? EE 35 Noes Gürdal Arslan CLASS (Secions.-.2) Wha is a signal? In his class, a signal is some funcion of ime and i represens how some physical quaniy changes over some window of ime. Examples: velociy of

More information

Accurate RMS Calculations for Periodic Signals by. Trapezoidal Rule with the Least Data Amount

Accurate RMS Calculations for Periodic Signals by. Trapezoidal Rule with the Least Data Amount Adv. Sudies Theor. Phys., Vol. 7, 3, no., 3-33 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/.988/asp.3.3999 Accurae RS Calculaions for Periodic Signals by Trapezoidal Rule wih he Leas Daa Amoun Sompop Poomjan,

More information

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB EECS 6 Winer 7 Laboraory 3 Fourier series, Fourier ransform and Bode Plos in MATLAB Inroducion: The objecives of his lab are o use MATLAB:. To plo periodic signals wih Fourier series represenaion. To obain

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x,

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x, Laplace Transforms Definiion. An ordinary differenial equaion is an equaion ha conains one or several derivaives of an unknown funcion which we call y and which we wan o deermine from he equaion. The equaion

More information

Chapter 2 : Fourier Series. Chapter 3 : Fourier Series

Chapter 2 : Fourier Series. Chapter 3 : Fourier Series Chaper 2 : Fourier Series.0 Inroducion Fourier Series : represenaion of periodic signals as weighed sums of harmonically relaed frequencies. If a signal x() is periodic signal, hen x() can be represened

More information

Probabilistic Robotics SLAM

Probabilistic Robotics SLAM Probabilisic Roboics SLAM The SLAM Problem SLAM is he process by which a robo builds a map of he environmen and, a he same ime, uses his map o compue is locaion Localizaion: inferring locaion given a map

More information

Mon Apr 9 EP 7.6 Convolutions and Laplace transforms. Announcements: Warm-up Exercise:

Mon Apr 9 EP 7.6 Convolutions and Laplace transforms. Announcements: Warm-up Exercise: Mah 225-4 Week 3 April 9-3 EP 7.6 - convoluions; 6.-6.2 - eigenvalues, eigenvecors and diagonalizabiliy; 7. - sysems of differenial equaions. Mon Apr 9 EP 7.6 Convoluions and Laplace ransforms. Announcemens:

More information

Lecture #7. EECS490: Digital Image Processing. Image Processing Example Fuzzy logic. Fourier Transform. Basics Image processing examples

Lecture #7. EECS490: Digital Image Processing. Image Processing Example Fuzzy logic. Fourier Transform. Basics Image processing examples Lecure #7 Image Processing Example Fuzzy logic Basics Image processing examples Fourier Transorm Inner produc, basis uncions Fourier series Image Processing Example original image Laplacian o image (c)

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Spring Ammar Abu-Hudrouss Islamic University Gaza

Spring Ammar Abu-Hudrouss Islamic University Gaza Chaper 7 Reed-Solomon Code Spring 9 Ammar Abu-Hudrouss Islamic Universiy Gaza ١ Inroducion A Reed Solomon code is a special case of a BCH code in which he lengh of he code is one less han he size of he

More information

Wave Motion Sections 1,2,4,5, I. Outlook II. What is wave? III.Kinematics & Examples IV. Equation of motion Wave equations V.

Wave Motion Sections 1,2,4,5, I. Outlook II. What is wave? III.Kinematics & Examples IV. Equation of motion Wave equations V. Secions 1,,4,5, I. Oulook II. Wha is wave? III.Kinemaics & Eamples IV. Equaion of moion Wave equaions V. Eamples Oulook Translaional and Roaional Moions wih Several phsics quaniies Energ (E) Momenum (p)

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information

Proposal of atomic clock in motion: Time in moving clock

Proposal of atomic clock in motion: Time in moving clock Proposal of aomic clock in moion: Time in moving clock Masanori Sao Honda Elecronics Co., d., 0 Oyamazuka, Oiwa-cho, Toyohashi, ichi 441-3193, Japan E-mail: msao@honda-el.co.jp bsrac: The ime in an aomic

More information

Homework 2: Kinematics and Dynamics of Particles Due Friday Feb 8, 2019

Homework 2: Kinematics and Dynamics of Particles Due Friday Feb 8, 2019 EN4: Dynamics and Vibraions Homework : Kinemaics and Dynamics of Paricles Due Friday Feb 8, 19 School of Engineering Brown Universiy 1. Sraigh Line Moion wih consan acceleraion. Virgin Hyperloop One is

More information

Elements of Stochastic Processes Lecture II Hamid R. Rabiee

Elements of Stochastic Processes Lecture II Hamid R. Rabiee Sochasic Processes Elemens of Sochasic Processes Lecure II Hamid R. Rabiee Overview Reading Assignmen Chaper 9 of exbook Furher Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A Firs Course

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

BEng (Hons) Telecommunications. Examinations for / Semester 2

BEng (Hons) Telecommunications. Examinations for / Semester 2 BEng (Hons) Telecommunicaions Cohor: BTEL/14/FT Examinaions for 2015-2016 / Semeser 2 MODULE: ELECTROMAGNETIC THEORY MODULE CODE: ASE2103 Duraion: 2 ½ Hours Insrucions o Candidaes: 1. Answer ALL 4 (FOUR)

More information

Ch.1. Group Work Units. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

Ch.1. Group Work Units. Continuum Mechanics Course (MMC) - ETSECCPB - UPC Ch.. Group Work Unis Coninuum Mechanics Course (MMC) - ETSECCPB - UPC Uni 2 Jusify wheher he following saemens are rue or false: a) Two sreamlines, corresponding o a same insan of ime, can never inersec

More information

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers A ircuis A ircui wih only A circui wih only A circui wih only A circui wih phasors esonance Transformers Phys 435: hap 31, Pg 1 A ircuis New Topic Phys : hap. 6, Pg Physics Moivaion as ime we discovered

More information

Relaxation. T1 Values. Longitudinal Relaxation. dm z dt. = " M z T 1. (1" e "t /T 1 ) M z. (t) = M 0

Relaxation. T1 Values. Longitudinal Relaxation. dm z dt. =  M z T 1. (1 e t /T 1 ) M z. (t) = M 0 Relaxaion Bioengineering 28A Principles of Biomedical Imaging Fall Quarer 21 MRI Lecure 2 An exciaion pulse roaes he magneiaion vecor away from is equilibrium sae (purely longiudinal). The resuling vecor

More information

Probabilistic Robotics SLAM

Probabilistic Robotics SLAM Probabilisic Roboics SLAM The SLAM Problem SLAM is he process by which a robo builds a map of he environmen and, a he same ime, uses his map o compue is locaion Localizaion: inferring locaion given a map

More information

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition EE 224 Signals and Sysems I Complex numbers sinusodal signals Complex exponenials e jω phasor addiion 1/28 Complex Numbers Recangular Polar y z r z θ x Good for addiion/subracion Good for muliplicaion/division

More information

Signals and Systems Linear Time-Invariant (LTI) Systems

Signals and Systems Linear Time-Invariant (LTI) Systems Signals and Sysems Linear Time-Invarian (LTI) Sysems Chang-Su Kim Discree-Time LTI Sysems Represening Signals in Terms of Impulses Sifing propery 0 x[ n] x[ k] [ n k] k x[ 2] [ n 2] x[ 1] [ n1] x[0] [

More information

For example, the comb filter generated from. ( ) has a transfer function. e ) has L notches at ω = (2k+1)π/L and L peaks at ω = 2π k/l,

For example, the comb filter generated from. ( ) has a transfer function. e ) has L notches at ω = (2k+1)π/L and L peaks at ω = 2π k/l, Comb Filers The simple filers discussed so far are characeried eiher by a single passband and/or a single sopband There are applicaions where filers wih muliple passbands and sopbands are required The

More information

Block Diagram of a DCS in 411

Block Diagram of a DCS in 411 Informaion source Forma A/D From oher sources Pulse modu. Muliplex Bandpass modu. X M h: channel impulse response m i g i s i Digial inpu Digial oupu iming and synchronizaion Digial baseband/ bandpass

More information

A Bayesian Approach to Spectral Analysis

A Bayesian Approach to Spectral Analysis Chirped Signals A Bayesian Approach o Specral Analysis Chirped signals are oscillaing signals wih ime variable frequencies, usually wih a linear variaion of frequency wih ime. E.g. f() = A cos(ω + α 2

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mark Fowler Noe Se #1 C-T Sysems: Convoluion Represenaion Reading Assignmen: Secion 2.6 of Kamen and Heck 1/11 Course Flow Diagram The arrows here show concepual flow beween

More information

(1) (2) Differentiation of (1) and then substitution of (3) leads to. Therefore, we will simply consider the second-order linear system given by (4)

(1) (2) Differentiation of (1) and then substitution of (3) leads to. Therefore, we will simply consider the second-order linear system given by (4) Phase Plane Analysis of Linear Sysems Adaped from Applied Nonlinear Conrol by Sloine and Li The general form of a linear second-order sysem is a c b d From and b bc d a Differeniaion of and hen subsiuion

More information

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page Assignmen 1 MATH 2270 SOLUTION Please wrie ou complee soluions for each of he following 6 problems (one more will sill be added). You may, of course, consul wih your classmaes, he exbook or oher resources,

More information

AN603 APPLICATION NOTE

AN603 APPLICATION NOTE AN603 APPLICAION NOE URBOSWICH IN A PFC BOOS CONVERER INRODUCION SMicroelecronics offers wo families of 600V ulrafas diodes (URBOSWICH"A" and "B" ) having differen compromises beween he forward characerisics

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 1 Solutions

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 1 Solutions 8-90 Signals and Sysems Profs. Byron Yu and Pulki Grover Fall 07 Miderm Soluions Name: Andrew ID: Problem Score Max 0 8 4 6 5 0 6 0 7 8 9 0 6 Toal 00 Miderm Soluions. (0 poins) Deermine wheher he following

More information

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction /9/ Coninuous Time Linear Time Invarian (LTI) Sysems Why LTI? Inroducion Many physical sysems. Easy o solve mahemaically Available informaion abou analysis and design. We can apply superposiion LTI Sysem

More information

Section 7.4 Modeling Changing Amplitude and Midline

Section 7.4 Modeling Changing Amplitude and Midline 488 Chaper 7 Secion 7.4 Modeling Changing Ampliude and Midline While sinusoidal funcions can model a variey of behaviors, i is ofen necessary o combine sinusoidal funcions wih linear and exponenial curves

More information