Now we determine an by the following equations;

Size: px
Start display at page:

Download "Now we determine an by the following equations;"

Transcription

1 8. On a Power Series which has only Algebraic Singularities on its Convergence Circle. U. By Masatsugu TSUJI. (Received April 1, 1927.) Let f(x)= ƒ n=0anxn have the convergence radius 1, then Jentzch has proved that every point on the unit circle is the limiting point of roots of sections f(x)=a0+a1x+ c c+anxn. In my previous paper (1), I have investigated a class of power series which has no limiting points of roots outside its convergence circle, for example, the series for which an `Ank, where k is any real number, or when f(x)= ƒ n=0anxn has only one algebraic singular point on the unit circle, then an `Ank, so that there are no limiting points of roots of s ections outside the unit circle(2). I will here give an example of a power series with the convergence radius 1, such that every point outside the unit circle is the limiting point of roots of sections. Let all rational points outside x =1 be numbered so that x1, x2 c c xn, c c where and so on. In general Now we determine an by the following equations; (1) M. Tsuji, this journal, 2 (1926), (2) M. Tsuji, this journal, 3 (1926), 82.

2 From these equations we get,

3 ON A POWER SERIES WHICH HAS ONLY ALGEBRAIC SINGULARITIES. 51 On the other hand therefore Hence the convergence radius r of f(x)= (a0=1) is 1 and since every point outside x =1 is the limiting point of roots of sections, and f(x)_??_0. Accordingly r=1. This power series f(x)= has the requi red properties Now we will show that if has only algebraic singu lar points on x =1, there exists a domain outside x =1 near a certain singular point on x =1 in which limn= fn(x)= uniformly and consequently free from limiting points of roots of sections. Let the singular points on x =1 be 1/ą1, c c 1/ąk, then f(x) can be expanded about 1/ąr in the form: f(x)=b0(r)(1-Ěrx)m/pr+b1(r)(1-Ěrx)mr+1/pr+ c c where mr, pr are integers and pr>0 (r=1, 2, c ck), k being the number of singular points on x =1. Let br(r)(1-Ěrx)mr+vr/pr be the first term in the above expansion such that br(r) 0 and mr+vr/pr is neither zero nor a positive integer, and Đ be the minimum of mr+vr/pr (r=1, 2, 3, c c k). We number Ě so that

4 52 M. TSUJI I have already proved (3) n 0 uniformly for x r0>1 where we write cr=bƒër(r) (r=1, c ck1) cr 0 and r0 is any number greater than 1. Hence if there are only poles on x =1, then ƒê is the maximum order of poles on x=1 and 1/ƒÖ1, c c 1/ƒÖk1 are the poles of maximum order. Now if x lies outside x =1 and sufficiently near to 1/ƒÖ1, for example, we can determine a neighbourhood of 1/ƒÖ1 outside x =1 so that Hence so that limn= f(x)= uniformly in that neighbourhood. Hence there are no limiting points of roots of sections. As a special case we have, Theorem T. If f(x)= ƒ n=0anxn has the convergence radius 1 and no other singularities as poles on x=1, then limn= fn(x)= uniformly in a certain domain outside x =1 near every pole of maximuon order Again let f(x)= ƒ n=0anxn has only algebraic singularities on x =1, then as I have mentioned above, Now putting (3) M. Tsuji, l. c. Foot note (2) p. 80.

5 ON A POWER SERIES WHICH HAS ONLY ALGEBRAIC SINGULARITIES. 53 we can prove(4) that for any k1 consecutive ƒðn, ƒðn+1, c c ƒðn+k-1, there exists at least one r (n r n+k1-1) such th t where ƒã0 is an absolute constant so far as we consider the domain x r0>1, r0 being any number greater than 1. Hence we can find I can not prove whether this lower limit 2 is the true limit for all power series with the convergence radius 1, but if f(x) has only algebraic singularities on x=1, then as above this limit 2 can be reduced to 1. (4) M. Tsuji, l. c. Foot note (2) p. 70. (5) M. Tsuji, this Journal 1 (1925) 31.

6 54 M. TSUJI 4 where k is the number of singular points on x=1. From this follows that in any k consecutive terms an there is at lust one non-vanishing term., an+1, c can+k-1 Mr. G. Polya (7) and Mr. Narumi (on the annual meeting April 1927 of the Physico-mathematical Society of Japan) extended this theorem for functions with algebrico-logarithmic singularities of more general type. Mr. Ostrowski (8) investigated the same problem and remarked that in the above form, k can be taken as the number of poles of maximum multiplicity on x=1 when f(x) has only poles on x=1. Mr. Mandelbrojt (9) proved that if aĕ+nq (n=0, 1 c c c) vanish, then on x=1. Mr. Ostrowski (8) extending this theorem, proved that if aĕ1+nq=0, aĕ2+nq=0 c c aĕk+nq=0 (n=0, 1. 2 c c) and if q is a prime, then there exist at least k+1 singular points on x=1. I will prove that when f(x) has only algebrico-logarithmic singulari ties on x=1, we can find a suitable ĕ independent of q such that every sequence of number aĕ+nq (n=0, 1, 2 c c c) contains infinitely many nonvanishing terms, where q is any integer. algebrico-logarithmic singularities on x=1, k in number, then there exists suck a number ĕ independent of q that q being any positive integet. And such ĕ can be found in any k consecutive integers. (6) M. Tsuji l. c. Foot note (2) (7) G. Polya C, R 184 (28 Feb. 1927). (8) Ostrowski: Uber Singularitaten gewiseer mit Lucoken behatteten Potenzreihen Jahresbericht der D. M. V. 35 (1926) (9) These

7 ON A POWER SERIES WHICH HAS ONLY ALGEBRAIC SIXGULARITIES. 55 Hence any k consecutive ƒ ƒï+nq, ƒ ƒï+(n+1)q, c cƒ ƒï+(n+k-1)q, for n n0 whose indices form an arithmetic progression, contain at least one which is not zero. Proof. As I have proved (10) if f(x)= åƒ n=0anxn has only algebrico logarithmic singularities on x =1 where ƒê, cƒë, ƒöƒë have the same meaning as the last paragraphs. Now we put then Among ƒö1q, c ƒöqk1 some may be equal, say, We put then We consider k1 equations in c1ƒö1ƒï, cck1ƒöƒïk1: From this it follows that c1ƒö1ƒï= c=ck1ƒök1ƒï=0 or c1= c= ck1=0 which contradicts the hypothesis c1 0, c ck1 0. Hence there exists one such that Such ƒð is independent of q. Some of the brackets is therefore not zero, and without loss of generality we can suppose (10) M. Tsuji, l. c, Foot note (2) p. 77.

8 56 ON A POWER SERIES WHICH HAS ONLY ALGEBRAIC SINGULARITIES. We write p for ƒï+ƒð and get From this follows easily that Mathematical Institute, Imperial University, Tokyo.

7. On the Number of the Primes in an Arithmetic Progression.

7. On the Number of the Primes in an Arithmetic Progression. 7. On the Number of the Primes in an Arithmetic Progression. By Tikao TATUZAW A. (Received Jan. 20, 1951) Let ď( 3) be a positive integer. We denote by ę one of the ė(ď) Dirichlet's characters with

More information

Prime Factorization and GCF. In my own words

Prime Factorization and GCF. In my own words Warm- up Problem What is a prime number? A PRIME number is an INTEGER greater than 1 with EXACTLY 2 positive factors, 1 and the number ITSELF. Examples of prime numbers: 2, 3, 5, 7 What is a composite

More information

ON CONVERSE GAP THEOREMS

ON CONVERSE GAP THEOREMS ON CONVERSE GAP THEOREMS BY GEORGE PÖLYA 1. In what follows, I consider power series with preassigned vanishing coefficients. I write such a series in the form (1) aizxl + a2zx2 + + a zx» +. The numbers

More information

LECTURE 10: REVIEW OF POWER SERIES. 1. Motivation

LECTURE 10: REVIEW OF POWER SERIES. 1. Motivation LECTURE 10: REVIEW OF POWER SERIES By definition, a power series centered at x 0 is a series of the form where a 0, a 1,... and x 0 are constants. For convenience, we shall mostly be concerned with the

More information

Math 460: Complex Analysis MWF 11am, Fulton Hall 425 Homework 8 Solutions Please write neatly, and in complete sentences when possible.

Math 460: Complex Analysis MWF 11am, Fulton Hall 425 Homework 8 Solutions Please write neatly, and in complete sentences when possible. Math 460: Complex Analysis MWF am, Fulton Hall 45 Homework 8 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book:.4.,.4.0,.4.-.4.6, 4.., 4..,

More information

UNIIAMIFIED EXTENSIONS OF QUADRATIC NUMBER, FIELDS,

UNIIAMIFIED EXTENSIONS OF QUADRATIC NUMBER, FIELDS, Tohoku Math. Journ. 22(1970)9 220-224. UNIIAMIFIED EXTENSIONS OF QUADRATIC NUMBER, FIELDS, II KoJI UCHIDA (Received December 25,1909). We have studied equations of type Xn-aX + b =0, and have obtained

More information

of automorphisms (holomorphic isomorphisms) without fixed point of W. Hence we have a complex manifold

of automorphisms (holomorphic isomorphisms) without fixed point of W. Hence we have a complex manifold Tohoku Math. Journ. 26 (1974), 133-157. AUTOMORPHISM GROUPS OF HOPF SURFACES MAKOTO NAMBA (Received April 27, 1973) Introduction. Let GL(2, C) be the group of non-singular (2 ~2)- matrices. An element

More information

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India NPTEL web course on Complex Analysis A. Swaminathan I.I.T. Roorkee, India and V.K. Katiyar I.I.T. Roorkee, India A.Swaminathan and V.K.Katiyar (NPTEL) Complex Analysis 1 / 18 Complex Analysis Module: 5:

More information

UNCC 2001 Algebra II

UNCC 2001 Algebra II UNCC 2001 Algebra II March 5, 2001 1. Compute the sum of the roots of x 2 5x + 6 = 0. (A) 3 (B) 7/2 (C) 4 (D) 9/2 (E) 5 (E) The sum of the roots of the quadratic ax 2 + bx + c = 0 is b/a which, for this

More information

Arithmetic, Algebra, Number Theory

Arithmetic, Algebra, Number Theory Arithmetic, Algebra, Number Theory Peter Simon 21 April 2004 Types of Numbers Natural Numbers The counting numbers: 1, 2, 3,... Prime Number A natural number with exactly two factors: itself and 1. Examples:

More information

University of Toronto Faculty of Arts and Science Solutions to Final Examination, April 2017 MAT246H1S - Concepts in Abstract Mathematics

University of Toronto Faculty of Arts and Science Solutions to Final Examination, April 2017 MAT246H1S - Concepts in Abstract Mathematics University of Toronto Faculty of Arts and Science Solutions to Final Examination, April 2017 MAT246H1S - Concepts in Abstract Mathematics Examiners: D. Burbulla, P. Glynn-Adey, S. Homayouni Time: 7-10

More information

Test Codes : MIA (Objective Type) and MIB (Short Answer Type) 2007

Test Codes : MIA (Objective Type) and MIB (Short Answer Type) 2007 Test Codes : MIA (Objective Type) and MIB (Short Answer Type) 007 Questions will be set on the following and related topics. Algebra: Sets, operations on sets. Prime numbers, factorisation of integers

More information

Algebra 2 & Trigonometry Honors Midterm Review 2016

Algebra 2 & Trigonometry Honors Midterm Review 2016 Algebra & Trigonometry Honors Midterm Review 016 Solving Equations 1) Find all values of x that satisfy the equation, 5x 1 = x + 3 ) Solve the following by completing the square. Express your answer in

More information

Note on the Self-inductance of Small Circular Section.

Note on the Self-inductance of Small Circular Section. 84 K.TERAZAWA: [Ser, 2, Vol. 5, Note on the Self-inductance of Small Circular Section. of a Ring RY K. TRRAZAWA. [READ MAY 1, 1909.] The formultu for the self-inductance of a circular ring of sallm circular

More information

Circles & Interval & Set Notation.notebook. November 16, 2009 CIRCLES. OBJECTIVE Graph a Circle given the equation in standard form.

Circles & Interval & Set Notation.notebook. November 16, 2009 CIRCLES. OBJECTIVE Graph a Circle given the equation in standard form. OBJECTIVE Graph a Circle given the equation in standard form. Write the equation of a circle in standard form given a graph or two points (one being the center). Students will be able to write the domain

More information

Week 2: Sequences and Series

Week 2: Sequences and Series QF0: Quantitative Finance August 29, 207 Week 2: Sequences and Series Facilitator: Christopher Ting AY 207/208 Mathematicians have tried in vain to this day to discover some order in the sequence of prime

More information

FINAL EXAM MATH 220A, UCSD, AUTUMN 14. You have three hours.

FINAL EXAM MATH 220A, UCSD, AUTUMN 14. You have three hours. FINAL EXAM MATH 220A, UCSD, AUTUMN 4 You have three hours. Problem Points Score There are 6 problems, and the total number of points is 00. Show all your work. Please make your work as clear and easy to

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

Math 46 Final Exam Review Packet

Math 46 Final Exam Review Packet Math 46 Final Exam Review Packet Question 1. Perform the indicated operation. Simplify if possible. 7 x x 2 2x + 3 2 x Question 2. The sum of a number and its square is 72. Find the number. Question 3.

More information

Math 220A - Fall Final Exam Solutions

Math 220A - Fall Final Exam Solutions Math 22A - Fall 216 - Final Exam Solutions Problem 1. Let f be an entire function and let n 2. Show that there exists an entire function g with g n = f if and only if the orders of all zeroes of f are

More information

Direct Proof Divisibility

Direct Proof Divisibility Direct Proof Divisibility Lecture 15 Section 4.3 Robb T. Koether Hampden-Sydney College Fri, Feb 8, 2013 Robb T. Koether (Hampden-Sydney College) Direct Proof Divisibility Fri, Feb 8, 2013 1 / 20 1 Divisibility

More information

Direct Proof Divisibility

Direct Proof Divisibility Direct Proof Divisibility Lecture 15 Section 4.3 Robb T. Koether Hampden-Sydney College Fri, Feb 7, 2014 Robb T. Koether (Hampden-Sydney College) Direct Proof Divisibility Fri, Feb 7, 2014 1 / 23 1 Divisibility

More information

UNIT-II Z-TRANSFORM. This expression is also called a one sided z-transform. This non causal sequence produces positive powers of z in X (z).

UNIT-II Z-TRANSFORM. This expression is also called a one sided z-transform. This non causal sequence produces positive powers of z in X (z). Page no: 1 UNIT-II Z-TRANSFORM The Z-Transform The direct -transform, properties of the -transform, rational -transforms, inversion of the transform, analysis of linear time-invariant systems in the -

More information

Math Circle Beginners Group February 28, 2016 Euclid and Prime Numbers Solutions

Math Circle Beginners Group February 28, 2016 Euclid and Prime Numbers Solutions Math Circle Beginners Group February 28, 2016 Euclid and Prime Numbers Solutions Warm-up Problems 1. What is a prime number? Give an example of an even prime number and an odd prime number. A prime number

More information

Chapter 2 Non-linear Equations

Chapter 2 Non-linear Equations Chapter 2 Non-linear Equations 2.1 First Examples of Non-linear Ordinary Differential Equations Before describing some general properties of non-linear equations, we find it useful to present some well-known

More information

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 25, Time Allowed: 150 Minutes Maximum Marks: 30

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 25, Time Allowed: 150 Minutes Maximum Marks: 30 NATIONAL BOARD FOR HIGHER MATHEMATICS M. A. and M.Sc. Scholarship Test September 25, 2010 Time Allowed: 150 Minutes Maximum Marks: 30 Please read, carefully, the instructions on the following page 1 INSTRUCTIONS

More information

The Z transform (2) Alexandra Branzan Albu ELEC 310-Spring 2009-Lecture 28 1

The Z transform (2) Alexandra Branzan Albu ELEC 310-Spring 2009-Lecture 28 1 The Z transform (2) Alexandra Branzan Albu ELEC 310-Spring 2009-Lecture 28 1 Outline Properties of the region of convergence (10.2) The inverse Z-transform (10.3) Definition Computational techniques Alexandra

More information

Holt McDougal Larson Algebra Common Core Edition correlated to the South Carolina High School Core-Area Standards Intermediate Algebra

Holt McDougal Larson Algebra Common Core Edition correlated to the South Carolina High School Core-Area Standards Intermediate Algebra Holt McDougal Larson 2012 Common Core Edition correlated to the South Carolina High School Core-Area Standards Intermediate Algebra Standard IA-1 The student will understand and utilize the mathematical

More information

Problem Set 5 Solution Set

Problem Set 5 Solution Set Problem Set 5 Solution Set Anthony Varilly Math 113: Complex Analysis, Fall 2002 1. (a) Let g(z) be a holomorphic function in a neighbourhood of z = a. Suppose that g(a) = 0. Prove that g(z)/(z a) extends

More information

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0 4 INUTES. If, ω, ω, -----, ω 9 are the th roots of unity, then ( + ω) ( + ω ) ----- ( + ω 9 ) is B) D) 5. i If - i = a + ib, then a =, b = B) a =, b = a =, b = D) a =, b= 3. Find the integral values for

More information

118 PU Ph D Mathematics

118 PU Ph D Mathematics 118 PU Ph D Mathematics 1 of 100 146 PU_2016_118_E The function fz = z is:- not differentiable anywhere differentiable on real axis differentiable only at the origin differentiable everywhere 2 of 100

More information

(c) n (d) n 2. (a) (b) (c) (d) (a) Null set (b) {P} (c) {P, Q, R} (d) {Q, R} (a) 2k (b) 7 (c) 2 (d) K (a) 1 (b) 3 (c) 3xyz (d) 27xyz

(c) n (d) n 2. (a) (b) (c) (d) (a) Null set (b) {P} (c) {P, Q, R} (d) {Q, R} (a) 2k (b) 7 (c) 2 (d) K (a) 1 (b) 3 (c) 3xyz (d) 27xyz 318 NDA Mathematics Practice Set 1. (1001)2 (101)2 (110)2 (100)2 2. z 1/z 2z z/2 3. The multiplication of the number (10101)2 by (1101)2 yields which one of the following? (100011001)2 (100010001)2 (110010011)2

More information

Yes zero is a rational number as it can be represented in the

Yes zero is a rational number as it can be represented in the 1 REAL NUMBERS EXERCISE 1.1 Q: 1 Is zero a rational number? Can you write it in the form 0?, where p and q are integers and q Yes zero is a rational number as it can be represented in the form, where p

More information

MATH10040: Numbers and Functions Homework 1: Solutions

MATH10040: Numbers and Functions Homework 1: Solutions MATH10040: Numbers and Functions Homework 1: Solutions 1. Prove that a Z and if 3 divides into a then 3 divides a. Solution: The statement to be proved is equivalent to the statement: For any a N, if 3

More information

Complex Analysis Homework 9: Solutions

Complex Analysis Homework 9: Solutions Complex Analysis Fall 2007 Homework 9: Solutions 3..4 (a) Let z C \ {ni : n Z}. Then /(n 2 + z 2 ) n /n 2 n 2 n n 2 + z 2. According to the it comparison test from calculus, the series n 2 + z 2 converges

More information

Arithmetic and Geometric Sequences and their Summation

Arithmetic and Geometric Sequences and their Summation 4 Arithmetic and Geometric Sequences and their Summation O-FOUDATIO 4F 4.4 Series 4.5 Arithmetic Series ame : Date : Mark : Key Concepts and Formulae Sum of the first n terms of an arithmetic series: na

More information

INSTRUCTIONS USEFUL FORMULAS

INSTRUCTIONS USEFUL FORMULAS MATH 1100 College Algebra Spring 18 Exam 1 February 15, 2018 Name Student ID Instructor Class time INSTRUCTIONS 1. Do not open until you are told to do so. 2. Do not ask questions during the exam. 3. CAREFULLY

More information

Topic 7 Notes Jeremy Orloff

Topic 7 Notes Jeremy Orloff Topic 7 Notes Jeremy Orloff 7 Taylor and Laurent series 7. Introduction We originally defined an analytic function as one where the derivative, defined as a limit of ratios, existed. We went on to prove

More information

SERIES

SERIES SERIES.... This chapter revisits sequences arithmetic then geometric to see how these ideas can be extended, and how they occur in other contexts. A sequence is a list of ordered numbers, whereas a series

More information

11-5. The Rational-Root Theorem. Lesson. Mental Math

11-5. The Rational-Root Theorem. Lesson. Mental Math Chapter 11 Lesson 11-5 The Rational-Root Theorem BIG IDEA The Rational-Root Theorem gives a criterion that any rational root of a polynomial equation must satisfy, and typically limits the number of rational

More information

D - E - F - G (1967 Jr.) Given that then find the number of real solutions ( ) of this equation.

D - E - F - G (1967 Jr.) Given that then find the number of real solutions ( ) of this equation. D - E - F - G - 18 1. (1975 Jr.) Given and. Two circles, with centres and, touch each other and also the sides of the rectangle at and. If the radius of the smaller circle is 2, then find the radius of

More information

14. Geometrical meanings of the inversion curvature. of a plane curve. Jusaku MAEDA. (Received January 10, 1940.) 1. Introduction.

14. Geometrical meanings of the inversion curvature. of a plane curve. Jusaku MAEDA. (Received January 10, 1940.) 1. Introduction. 14. Geometrical meanings of the inversion curvature of a plane curve. By Jusaku MAEDA. (Received January 10, 1940.) 1. Introduction. 1.1. Circular point-transformations. It is well known that any circular

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson JUST THE MATHS UNIT NUMBER.5 DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) by A.J.Hobson.5. Maclaurin s series.5. Standard series.5.3 Taylor s series.5.4 Exercises.5.5 Answers to exercises

More information

An Introduction to Proof-based Mathematics Harvard/MIT ESP: Summer HSSP Isabel Vogt

An Introduction to Proof-based Mathematics Harvard/MIT ESP: Summer HSSP Isabel Vogt An Introduction to Proof-based Mathematics Harvard/MIT ESP: Summer HSSP Isabel Vogt Class Objectives Field Axioms Finite Fields Field Extensions Class 5: Fields and Field Extensions 1 1. Axioms for a field

More information

UNIVERSITY OF NORTH CAROLINA CHARLOTTE 1995 HIGH SCHOOL MATHEMATICS CONTEST March 13, 1995 (C) 10 3 (D) = 1011 (10 1) 9

UNIVERSITY OF NORTH CAROLINA CHARLOTTE 1995 HIGH SCHOOL MATHEMATICS CONTEST March 13, 1995 (C) 10 3 (D) = 1011 (10 1) 9 UNIVERSITY OF NORTH CAROLINA CHARLOTTE 5 HIGH SCHOOL MATHEMATICS CONTEST March, 5. 0 2 0 = (A) (B) 0 (C) 0 (D) 0 (E) 0 (E) 0 2 0 = 0 (0 ) = 0 2. If z = x, what are all the values of y for which (x + y)

More information

Homework in Topology, Spring 2009.

Homework in Topology, Spring 2009. Homework in Topology, Spring 2009. Björn Gustafsson April 29, 2009 1 Generalities To pass the course you should hand in correct and well-written solutions of approximately 10-15 of the problems. For higher

More information

The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca Euclid Contest. Wednesday, April 15, 2015

The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca Euclid Contest. Wednesday, April 15, 2015 The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca 015 Euclid Contest Wednesday, April 15, 015 (in North America and South America) Thursday, April 16, 015 (outside of North America

More information

MY PUTNAM PROBLEMS. log(1 + x) dx = π2

MY PUTNAM PROBLEMS. log(1 + x) dx = π2 MY PUTNAM PROBLEMS These are the problems I proposed when I was on the Putnam Problem Committee for the 984 86 Putnam Exams. Problems intended to be A or B (and therefore relatively easy) are marked accordingly.

More information

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES Notes. x n+ = ax n has the general solution x n = x a n. 2. x n+ = x n + b has the general solution x n = x + (n )b. 3. x n+ = ax n + b (with a ) can be

More information

FUNCTIONS WITH AN ESSENTIAL SINGULARITY*

FUNCTIONS WITH AN ESSENTIAL SINGULARITY* 1925.] ESSENTIAL SINGULARITIES 157 FUNCTIONS WITH AN ESSENTIAL SINGULARITY* BY PHILIP FRANKLIN 1. Introduction. In this note we prove certain properties of functions possessing essential singularities.

More information

Solutions to Homework 2

Solutions to Homework 2 Solutions to Homewor Due Tuesday, July 6,. Chapter. Problem solution. If the series for ln+z and ln z both converge, +z then we can find the series for ln z by term-by-term subtraction of the two series:

More information

Advanced Number Theory Note #8: Dirichlet's theorem on primes in arithmetic progressions 29 August 2012 at 19:01

Advanced Number Theory Note #8: Dirichlet's theorem on primes in arithmetic progressions 29 August 2012 at 19:01 Advanced Number Theory Note #8: Dirichlet's theorem on primes in arithmetic progressions 29 August 2012 at 19:01 Public In this note, which is intended mainly as a technical memo for myself, I give a 'blow-by-blow'

More information

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Spring Semester 2015

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Spring Semester 2015 Department of Mathematics, University of California, Berkeley YOUR OR 2 DIGIT EXAM NUMBER GRADUATE PRELIMINARY EXAMINATION, Part A Spring Semester 205. Please write your - or 2-digit exam number on this

More information

not to be republished NCERT REAL NUMBERS CHAPTER 1 (A) Main Concepts and Results

not to be republished NCERT REAL NUMBERS CHAPTER 1 (A) Main Concepts and Results REAL NUMBERS CHAPTER 1 (A) Main Concepts and Results Euclid s Division Lemma : Given two positive integers a and b, there exist unique integers q and r satisfying a = bq + r, 0 r < b. Euclid s Division

More information

Algebra II Final Examination Mr. Pleacher Name (A) - 4 (B) 2 (C) 3 (D) What is the product of the polynomials (4c 1) and (3c + 5)?

Algebra II Final Examination Mr. Pleacher Name (A) - 4 (B) 2 (C) 3 (D) What is the product of the polynomials (4c 1) and (3c + 5)? Algebra II Final Examination Mr. Pleacher Name I. Multiple Choice 1. If f( x) = x 1, then f ( 3) = (A) - 4 (B) (C) 3 (D) 4. What is the product of the polynomials (4c 1) and (3c + 5)? A) 7c 4 B) 1c + 17c

More information

Foundations for Functions Knowledge and Skills: Foundations for Functions Knowledge and Skills:

Foundations for Functions Knowledge and Skills: Foundations for Functions Knowledge and Skills: Texas University Interscholastic League Contest Event: Number Sense This 80-question mental math contest covers all high school mathematics curricula. All answers must be derived without using scratch

More information

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 17, Time Allowed: 150 Minutes Maximum Marks: 30

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 17, Time Allowed: 150 Minutes Maximum Marks: 30 NATIONAL BOARD FOR HIGHER MATHEMATICS M. A. and M.Sc. Scholarship Test September 17, 2016 Time Allowed: 150 Minutes Maximum Marks: 30 Please read, carefully, the instructions that follow INSTRUCTIONS TO

More information

MockTime.com. (b) 9/2 (c) 18 (d) 27

MockTime.com. (b) 9/2 (c) 18 (d) 27 212 NDA Mathematics Practice Set 1. Let X be any non-empty set containing n elements. Then what is the number of relations on X? 2 n 2 2n 2 2n n 2 2. Only 1 2 and 3 1 and 2 1 and 3 3. Consider the following

More information

(i) Represent discrete-time signals using transform. (ii) Understand the relationship between transform and discrete-time Fourier transform

(i) Represent discrete-time signals using transform. (ii) Understand the relationship between transform and discrete-time Fourier transform z Transform Chapter Intended Learning Outcomes: (i) Represent discrete-time signals using transform (ii) Understand the relationship between transform and discrete-time Fourier transform (iii) Understand

More information

INTEGER VALUED POLYNOMIALS AND LUBIN-TATE FORMAL GROUPS

INTEGER VALUED POLYNOMIALS AND LUBIN-TATE FORMAL GROUPS INTEGER VALUED POLYNOMIALS AND LUBIN-TATE FORMAL GROUPS EHUD DE SHALIT AND ERAN ICELAND Abstract. If R is an integral domain and K is its field of fractions, we let Int(R) stand for the subring of K[x]

More information

SOLUTIONS TO PROBLEM SET 1. Section = 2 3, 1. n n + 1. k(k + 1) k=1 k(k + 1) + 1 (n + 1)(n + 2) n + 2,

SOLUTIONS TO PROBLEM SET 1. Section = 2 3, 1. n n + 1. k(k + 1) k=1 k(k + 1) + 1 (n + 1)(n + 2) n + 2, SOLUTIONS TO PROBLEM SET 1 Section 1.3 Exercise 4. We see that 1 1 2 = 1 2, 1 1 2 + 1 2 3 = 2 3, 1 1 2 + 1 2 3 + 1 3 4 = 3 4, and is reasonable to conjecture n k=1 We will prove this formula by induction.

More information

Remember, you may not use a calculator when you take the assessment test.

Remember, you may not use a calculator when you take the assessment test. Elementary Algebra problems you can use for practice. Remember, you may not use a calculator when you take the assessment test. Use these problems to help you get up to speed. Perform the indicated operation.

More information

MTH4100 Calculus I. Lecture notes for Week 2. Thomas Calculus, Sections 1.3 to 1.5. Rainer Klages

MTH4100 Calculus I. Lecture notes for Week 2. Thomas Calculus, Sections 1.3 to 1.5. Rainer Klages MTH4100 Calculus I Lecture notes for Week 2 Thomas Calculus, Sections 1.3 to 1.5 Rainer Klages School of Mathematical Sciences Queen Mary University of London Autumn 2009 Reading Assignment: read Thomas

More information

Algebraic function fields

Algebraic function fields Algebraic function fields 1 Places Definition An algebraic function field F/K of one variable over K is an extension field F K such that F is a finite algebraic extension of K(x) for some element x F which

More information

Analytic Number Theory Solutions

Analytic Number Theory Solutions Analytic Number Theory Solutions Sean Li Cornell University sxl6@cornell.edu Jan. 03 Introduction This document is a work-in-progress solution manual for Tom Apostol s Introduction to Analytic Number Theory.

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journal of Inequalities in Pure and Applied Mathematics SOME NORMALITY CRITERIA INDRAJIT LAHIRI AND SHYAMALI DEWAN Department of Mathematics University of Kalyani West Bengal 741235, India. EMail: indrajit@cal2.vsnl.net.in

More information

College Algebra. Chapter 1 Review Created by: Lauren Atkinson. Math Coordinator, Mary Stangler Center for Academic Success

College Algebra. Chapter 1 Review Created by: Lauren Atkinson. Math Coordinator, Mary Stangler Center for Academic Success College Algebra Chapter 1 Review Created by: Lauren Atkinson Math Coordinator, Mary Stangler Center for Academic Success Note: This review is composed of questions from the chapter review at the end of

More information

SIGNALS AND SYSTEMS. Unit IV. Analysis of DT signals

SIGNALS AND SYSTEMS. Unit IV. Analysis of DT signals SIGNALS AND SYSTEMS Unit IV Analysis of DT signals Contents: 4.1 Discrete Time Fourier Transform 4.2 Discrete Fourier Transform 4.3 Z Transform 4.4 Properties of Z Transform 4.5 Relationship between Z

More information

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5 MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5.. The Arzela-Ascoli Theorem.. The Riemann mapping theorem Let X be a metric space, and let F be a family of continuous complex-valued functions on X. We have

More information

McGill University Math 354: Honors Analysis 3

McGill University Math 354: Honors Analysis 3 Practice problems McGill University Math 354: Honors Analysis 3 not for credit Problem 1. Determine whether the family of F = {f n } functions f n (x) = x n is uniformly equicontinuous. 1st Solution: The

More information

Algebra 2 - Semester 2 - Final Exam Review

Algebra 2 - Semester 2 - Final Exam Review Algebra 2 - Semester 2 - Final Exam Review Your final exam will be 60 multiple choice questions coving the following content. This review is intended to show examples of problems you may see on the final.

More information

Solutions to Complex Analysis Prelims Ben Strasser

Solutions to Complex Analysis Prelims Ben Strasser Solutions to Complex Analysis Prelims Ben Strasser In preparation for the complex analysis prelim, I typed up solutions to some old exams. This document includes complete solutions to both exams in 23,

More information

On the Interpolation of series *

On the Interpolation of series * On the Interpolation of series * Leonhard Euler 389 A series is said to be interpolated, if its terms are assigned which correspond to fractional or even surdic indices. Therefore, if the general term

More information

Existence of a Limit on a Dense Set, and. Construction of Continuous Functions on Special Sets

Existence of a Limit on a Dense Set, and. Construction of Continuous Functions on Special Sets Existence of a Limit on a Dense Set, and Construction of Continuous Functions on Special Sets REU 2012 Recap: Definitions Definition Given a real-valued function f, the limit of f exists at a point c R

More information

Later Faber2 established necessary and His theorem is the following: The latter condition is more restrictive than the former.

Later Faber2 established necessary and His theorem is the following: The latter condition is more restrictive than the former. VI11 FUNCTIONS HAVING ONLY ONE SINGULARITY 40. An important problem in the theory of Taylor's series is that of determining the conditions to be satisfied by the coefficients in order that the function

More information

Solving Systems of Linear Equations. Classification by Number of Solutions

Solving Systems of Linear Equations. Classification by Number of Solutions Solving Systems of Linear Equations Case 1: One Solution Case : No Solution Case 3: Infinite Solutions Independent System Inconsistent System Dependent System x = 4 y = Classification by Number of Solutions

More information

(c1) k characteristic roots of the constant matrix A have negative real

(c1) k characteristic roots of the constant matrix A have negative real Tohoku Math. Journ. Vol. 19, No. 1, 1967 ON THE EXISTENCE OF O-CURVES*) JUNJI KATO (Received September 20, 1966) Introduction. In early this century, Perron [5] (also, cf. [1]) has shown the followings

More information

CHAPTER 1 REAL NUMBERS KEY POINTS

CHAPTER 1 REAL NUMBERS KEY POINTS CHAPTER 1 REAL NUMBERS 1. Euclid s division lemma : KEY POINTS For given positive integers a and b there exist unique whole numbers q and r satisfying the relation a = bq + r, 0 r < b. 2. Euclid s division

More information

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer.

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer. Math 22 - Review for Exam 3. Answer each of the following questions as either True or False. Circle the correct answer. (a) True/False: If a n > 0 and a n 0, the series a n converges. Soln: False: Let

More information

Dirichlet s Theorem. Martin Orr. August 21, The aim of this article is to prove Dirichlet s theorem on primes in arithmetic progressions:

Dirichlet s Theorem. Martin Orr. August 21, The aim of this article is to prove Dirichlet s theorem on primes in arithmetic progressions: Dirichlet s Theorem Martin Orr August 1, 009 1 Introduction The aim of this article is to prove Dirichlet s theorem on primes in arithmetic progressions: Theorem 1.1. If m, a N are coprime, then there

More information

Markoff process with an enumerable infinite number of possible states. 49

Markoff process with an enumerable infinite number of possible states. 49 Markoff process with an enumerable infinite number of possible states. 49 Analogously we have, from ƒ k=1q(n)ik Epkj-q(n)ij= 1/n(p(n+1)ij-pij) 2/n Since q(n)ik and pkj are all non-negative, we have, by

More information

CmSc 250 Intro to Algorithms. Mathematical Review. 1. Basic Algebra. (a + b) 2 = a 2 + 2ab + b 2 (a - b) 2 = a 2-2ab + b 2 a 2 - b 2 = (a + b)(a - b)

CmSc 250 Intro to Algorithms. Mathematical Review. 1. Basic Algebra. (a + b) 2 = a 2 + 2ab + b 2 (a - b) 2 = a 2-2ab + b 2 a 2 - b 2 = (a + b)(a - b) CmSc 250 Intro to Algorithms Mathematical Review 1. Basic Algebra (a + b) 2 = a 2 + 2ab + b 2 (a - b) 2 = a 2-2ab + b 2 a 2 - b 2 = (a + b)(a - b) a/x + b/y = (ay + bx)/xy 2. Exponents X n = XXX..X, n

More information

ARITHMETIC PROGRESSIONS OF THREE SQUARES

ARITHMETIC PROGRESSIONS OF THREE SQUARES ARITHMETIC PROGRESSIONS OF THREE SQUARES KEITH CONRAD 1. Introduction Here are the first 10 perfect squares (ignoring 0): 1, 4, 9, 16, 25, 36, 49, 64, 81, 100. In this list there is an arithmetic progression:

More information

AP Calculus Testbank (Chapter 9) (Mr. Surowski)

AP Calculus Testbank (Chapter 9) (Mr. Surowski) AP Calculus Testbank (Chapter 9) (Mr. Surowski) Part I. Multiple-Choice Questions n 1 1. The series will converge, provided that n 1+p + n + 1 (A) p > 1 (B) p > 2 (C) p >.5 (D) p 0 2. The series

More information

Chapter Intended Learning Outcomes: (i) Understanding the relationship between transform and the Fourier transform for discrete-time signals

Chapter Intended Learning Outcomes: (i) Understanding the relationship between transform and the Fourier transform for discrete-time signals z Transform Chapter Intended Learning Outcomes: (i) Understanding the relationship between transform and the Fourier transform for discrete-time signals (ii) Understanding the characteristics and properties

More information

Test 2. Monday, November 12, 2018

Test 2. Monday, November 12, 2018 Test 2 Monday, November 12, 2018 Instructions. The only aids allowed are a hand-held calculator and one cheat sheet, i.e. an 8.5 11 sheet with information written on one side in your own handwriting. No

More information

arxiv: v1 [math.nt] 10 Dec 2009

arxiv: v1 [math.nt] 10 Dec 2009 Ford circles, continued fractions, and best approximation of the second kind arxiv:092.997v [math.nt] 0 Dec 2009 Ian Short Centre for Mathematical Sciences Wilberforce Road Cambridge CB3 0WB United Kingdom

More information

Mathematics Review for Business PhD Students Lecture Notes

Mathematics Review for Business PhD Students Lecture Notes Mathematics Review for Business PhD Students Lecture Notes Anthony M. Marino Department of Finance and Business Economics Marshall School of Business University of Southern California Los Angeles, CA 90089-0804

More information

DIFFERENTIATION OF SEQUENCES*

DIFFERENTIATION OF SEQUENCES* T935-1 DIFFERENTIATION OF SEQUENCES 553 DIFFERENTIATION OF SEQUENCES* BY ORRIN FRINK, JR. Conditions under which one may differentiate term by term a convergent sequence of functions are to be found in

More information

POWER SERIES AND ANALYTIC CONTINUATION

POWER SERIES AND ANALYTIC CONTINUATION POWER SERIES AND ANALYTIC CONTINUATION 1. Analytic functions Definition 1.1. A function f : Ω C C is complex-analytic if for each z 0 Ω there exists a power series f z0 (z) := a n (z z 0 ) n which converges

More information

Class IX Chapter 1 Number Sustems Maths

Class IX Chapter 1 Number Sustems Maths Class IX Chapter 1 Number Sustems Maths Exercise 1.1 Question Is zero a rational number? Can you write it in the form 0? and q, where p and q are integers Yes. Zero is a rational number as it can be represented

More information

Chapter 2. Polynomial and Rational Functions. 2.5 Zeros of Polynomial Functions

Chapter 2. Polynomial and Rational Functions. 2.5 Zeros of Polynomial Functions Chapter 2 Polynomial and Rational Functions 2.5 Zeros of Polynomial Functions 1 / 33 23 Chapter 2 Homework 2.5 p335 6, 8, 10, 12, 16, 20, 24, 28, 32, 34, 38, 42, 46, 50, 52 2 / 33 23 3 / 33 23 Objectives:

More information

COMP Intro to Logic for Computer Scientists. Lecture 15

COMP Intro to Logic for Computer Scientists. Lecture 15 COMP 1002 Intro to Logic for Computer Scientists Lecture 15 B 5 2 J Types of proofs Direct proof of x F x Show that F x holds for arbitrary x, then use universal generalization. Often, F x is of the form

More information

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination I (Spring 2008)

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination I (Spring 2008) Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination I (Spring 2008) Problem 1: Suppose A, B, C and D are arbitrary sets.

More information

A REMARK ON THE GEOMETRY OF SPACES OF FUNCTIONS WITH PRIME FREQUENCIES.

A REMARK ON THE GEOMETRY OF SPACES OF FUNCTIONS WITH PRIME FREQUENCIES. 1 A REMARK ON THE GEOMETRY OF SPACES OF FUNCTIONS WITH PRIME FREQUENCIES. P. LEFÈVRE, E. MATHERON, AND O. RAMARÉ Abstract. For any positive integer r, denote by P r the set of all integers γ Z having at

More information

(3) Let Y be a totally bounded subset of a metric space X. Then the closure Y of Y

(3) Let Y be a totally bounded subset of a metric space X. Then the closure Y of Y () Consider A = { q Q : q 2 2} as a subset of the metric space (Q, d), where d(x, y) = x y. Then A is A) closed but not open in Q B) open but not closed in Q C) neither open nor closed in Q D) both open

More information

Part IB. Further Analysis. Year

Part IB. Further Analysis. Year Year 2004 2003 2002 2001 10 2004 2/I/4E Let τ be the topology on N consisting of the empty set and all sets X N such that N \ X is finite. Let σ be the usual topology on R, and let ρ be the topology on

More information

Some Fun with Divergent Series

Some Fun with Divergent Series Some Fun with Divergent Series 1. Preliminary Results We begin by examining the (divergent) infinite series S 1 = 1 + 2 + 3 + 4 + 5 + 6 + = k=1 k S 2 = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + = k=1 k 2 (i)

More information

From the definition of a surface, each point has a neighbourhood U and a homeomorphism. U : ϕ U(U U ) ϕ U (U U )

From the definition of a surface, each point has a neighbourhood U and a homeomorphism. U : ϕ U(U U ) ϕ U (U U ) 3 Riemann surfaces 3.1 Definitions and examples From the definition of a surface, each point has a neighbourhood U and a homeomorphism ϕ U from U to an open set V in R 2. If two such neighbourhoods U,

More information