&vjl/i f i ~ l,j~j( V;' '14 V;;; =

Size: px
Start display at page:

Download "&vjl/i f i ~ l,j~j( V;' '14 V;;; ="

Transcription

1 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currenti When a 20-Ib weight is suspended from a spring. the spring is stretched a distance of 4 in. Determine the natural frequency and the. period of vibration for a 10-1b weight attached to the same spring. 20 k == T = 60 Iblfl T2 V;;; = w. = fk~ 10 n.2 = radls 21T r =..., =0.452 s ru. J f = - =2.21 Hz r AIls AIls A spring has a stiffness of 600 N/m. If a 4-kg, block is attached to the spring, pushed 50 mm above its equilibrium position, and released from rest, determine the equation which describes the block's motion. Assume that positive displacement is measured downward. V;' '14 WI' = ~ == (WiS = rddls l' = O. X = m at, = 0 x = A sin lon' + Bcosw.' = 0+ B B = V = Aw" cos wnl - sin (1).1 o= A(12.25) - 0 A=O &vjl/i f i ~ l,j~j( f Thus. x = cos(l2.2r) mans When a 3-kg block is suspended from a spring. the spring is stretched a distance of 60 mm. Detennine the natural frequency and the period of vibration for a O.2-kg block attached to the same spring. F k = 6x = 3(9.8]) = N/m g /490.5 ((I. = - = -- = fad/s m 0.2 f = lon = = 7.88 Hz 2.."1' 2)T I I r = 7 = 7.88 = s Ans Ans 617

2 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currel *22-8. If the block in Prob :7 is given an upward velocity of 4 mls when it is displaced downward a distance of 60 mm from its equilibrium position. determine the equation which describes the motion. What is the amplitude of the motion? Assume that positive displacement is measured downward. Since F = tax, where Ax = 175 mm ~ = 8(9.81) "' N/m Ax If ~ Wn = V;;;" -8- = 7.49 radls v = -4mJs, x 0.06m att = B B = "' A(7,49) - 0 A Thus, x,. [-Q.534sin(7.49~ Ocos(7.49t)] m Ans c = IAZ + SZ,. {(-Q.534)2 + {O.(6)l = m Ans Determine the frequency ofvibration for the block. The springs are originally compressed fl. 4k x+-x =0 m -4kx =mx f=~ ~ 1r V;;,Ans 620

3 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently * The square plate has a mass m and is suspended at its corner by the pin O. Determine the natural period of vibration if it is displaced a small amount and released. Va 2 21r fa,=- =6.10 1= <u. Vg w The disk has a weight of 10 lb and rolls without slipping on the horizontal surface as it oscil1ates about its equilibrium position. If the disk: is displaced, by rolling it counterclockwise 0.4 cad, determine the equation which describes its oscillatory motion when it is released. to). 11(;=- I ( - (1)2+ 10 (/)2 O.465Sslug fr k = 100 lblft w. "" ';429.3 =: nulls 10lb Ift~T N f.i) =0, fj :: 0.4, I =0 0.4 ::0+ B B=0.4 (J) "" U= Aw. COSW"I- Bw,. sin"""l O=A"'n -0 Thus. (j =0.4oos(20.7t) ADs

4 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently 22-4L Use a block-and-spring model like that shown in Fig a but suspended from a vertical position and subjected to a periodic support displacement of 8 80 cos wet, determine the equation of motion for the system, and obtain its general solution. Define the displacement y measured from the static equilibrium position of the block when t O. Since W = ko,,; k kf)o Y +-Y -cosujol (1) m m Yc = A sin wny + B cos wny(general sol) YP C cos wot (Particular 801.) Substitute YP into Eq.(l) k C( _Wfj2 + -)cos Wot cos wot m m c Thus, Y = Yc + YP ~ Y A sin w,l + B cos W n! + k m 2 cos Wol Cn; -wo) AIlS The 20-1b block is attached to a spring having a stiffness of 20 lb/fl A force F =(6cos2t) lb, where t is in seconds, is applied to the block. Determine the maximum speed of the block after frictional forces cause the free vibrations to dampen out. Fu 1-(:r T c=., cv" = [f. = rjf = radls V'iii vl1 6cos2t 6 C = :iii,== 0343 ft 1- (,.6;4l r XI' == Ccos2t Xp == -C(2) sin 21 Maximum velocity is =C(2) =: 0.343(2) =0.685 rtis AIlS 636

5 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currel The instrument is centered uniformly on a platformp, which in turn is supported by four springs, each spring having a stiffness k = 130 N/m. If the floor is subjected to a vibration Wo = 7 Hz, having a vertical displacement amplitude Bo = 0.17 ft, determine the vertical displacement amplitude of the platfonn and instrument:the instrument and the platform have a total weight of 18 lb. k = 4(130) = 520lb/fl So = Wo= 7 Hz = 7('br) ::: mdls Using Eq , the arnpliti1d<'l is 1- (;~r Smce. (f)" = If- == fl20 Is =30.50 mdls m len, (xp ),,,,,. = I 1 = ft! (::~) (x p ),,,,,, = 1.89 in. 641

6 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently The 450-kg trailer is pulled with a constant speed over the surfaee ofa bumpy road, which may be approximated by a cosine curve having an amplitude of 50 mrn and wave length of 4 m. If the two springs s which support the trailer each have a stiffness of 800 N/m, determine the speed V which will cause the greatest vibration (resonanee) of the trailer. Neglect the weight of the wheels. The amplitude is 00 ~ 50 rnrn 0.05 m The wave length is it = 4 m k = 2(800) :: 1600 N/m w = II. == V1600 = 1.89 radls n V; = :: 'For maximum vibration of the trailel; resonance must occur, i.e., Thus, the trailer must travel it == 4 m, in.. = 3.33 s, so that it 4 v R "" - :=: - = 1.20 m/s ADs., Determine the amplitude of vibration of the trailer in Prob if the speed v 15 km/h. 15(1000) v = 15 krnjh:=: 3600 mls == 4.17 mis 8 0 = 0.05 m As shown in Prob , the velocity is inversely proponional to the peciod. 1 Since - =fthen 1I1e velocity is proportional off, w" and w() r. Hence, the amplitude of mooon is 642.

7 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they curren Detennine the angular velocity of the flywbeel in Prob which will produce an amplitude of vibration of 0.25 in. TIle constant value Fo of the periodic force is due to the centrifugal force of the unbalanced mass. 0.25) (10) Fe =lltan == 1IIr<»02 = ( wol =O.OO6470wJ F = O.00647Oc.!j sin("'ri' k f "" tl~ = 1800 Iblft Wn = If = Ii;::;; ::::: From Eq , the amplitlide of the steady stall:; motion is c= = Folk I-(:r O.OO6<no ( ~) l-c9~~57r wo = 19.7 cadis Ans The engine is mounted on a foundation block which is spring-supported. Describe the steady-state vibration of the system if the block and engine have a total weight of ]500 Ib and the engine, when running, creates an impressed force F = (50sin2t) lb. where t is in seconds.' Assume that the system vibrates only in the vertical direction, whit the positive displacement measured downward, and that the total stiffness of the springs can be represented as k = 2000 Ib/ft. The steady-slate vibration is defined by Eq Fo I-G:::) xi' = k 2 sinatu/ Since F = 50 sin 2t Then Fit =50 lb, Il>Q 2 I1IdIs k = 2000 lb/ft Ji ooo f!: =1500 = 6.55 radls UJ. == V;;; Hence, xi' ;; 2000 gin2! 2 )2 J - ( 6,55 XI' = ( sin 21) ft AM 644

8 2010 Pearson Education, Inc., Upper Saddle River. NJ. All rights reserved. This material is protected under all copyright laws as they currently * Determine the differential equation of motion for the damped vibratory system shown. What type of motion occurs? mg k(y + Yst) - 2ey = my loon/m my + ky + 2ey + kyst - mg 0 Equilibrium kysr - mg = 0 my + 2cy + ky 0 Here m = 25 kg k 100 Nlm e 2ooN slm 25y + 400y + 100y 0 (1) Y+ 16y + 4y = 0 Ans. By comparing Eq. (1) to Eq c 200N s/m m = 25 k 100 e = 400 Wn =.Ji = 2 rad/s Cc 2mw" 2(25)(2) = 100 N slm Since C > C e, the system will not vibrate. Therefore, it is overdamped. Ans.

Section 3.7: Mechanical and Electrical Vibrations

Section 3.7: Mechanical and Electrical Vibrations Section 3.7: Mechanical and Electrical Vibrations Second order linear equations with constant coefficients serve as mathematical models for mechanical and electrical oscillations. For example, the motion

More information

Applications of Second-Order Linear Differential Equations

Applications of Second-Order Linear Differential Equations CHAPTER 14 Applications of Second-Order Linear Differential Equations SPRING PROBLEMS The simple spring system shown in Fig. 14-! consists of a mass m attached lo the lower end of a spring that is itself

More information

Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Applications of Second-Order Differential Equations ymy/013 Building Intuition Even though there are an infinite number of differential equations, they all share common characteristics that allow intuition

More information

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums PHYS 101 Previous Exam Problems CHAPTER 15 Oscillations Simple harmonic motion Mass-spring system Energy in SHM Pendulums 1. The displacement of a particle oscillating along the x axis is given as a function

More information

8. What is the period of a pendulum consisting of a 6-kg object oscillating on a 4-m string?

8. What is the period of a pendulum consisting of a 6-kg object oscillating on a 4-m string? 1. In the produce section of a supermarket, five pears are placed on a spring scale. The placement of the pears stretches the spring and causes the dial to move from zero to a reading of 2.0 kg. If the

More information

= m. 30 m. The angle that the tangent at B makes with the x axis is f = tan-1

= m. 30 m. The angle that the tangent at B makes with the x axis is f = tan-1 1 11. When the roller coaster is at B, it has a speed of 5 m>s, which is increasing at at = 3 m>s. Determine the magnitude of the acceleration of the roller coaster at this instant and the direction angle

More information

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th )

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th ) Conceptual Q: 4 (7), 7 (), 8 (6) Physics 4 HW Set Chapter 5 Serway 8 th ( 7 th ) Q4(7) Answer (c). The equilibrium position is 5 cm below the starting point. The motion is symmetric about the equilibrium

More information

Another Method to get a Sine Wave. X = A cos θ V = Acc =

Another Method to get a Sine Wave. X = A cos θ V = Acc = LAST NAME FIRST NAME DATE PER CJ Wave Assignment 10.3 Energy & Simple Harmonic Motion Conceptual Questions 3, 4, 6, 7, 9 page 313 6, 7, 33, 34 page 314-316 Tracing the movement of the mass on the end of

More information

Unit 2: Simple Harmonic Motion (SHM)

Unit 2: Simple Harmonic Motion (SHM) Unit 2: Simple Harmonic Motion (SHM) THE MOST COMMON FORM OF MOTION FALL 2015 Objectives: Define SHM specifically and give an example. Write and apply formulas for finding the frequency f, period T, w

More information

18.12 FORCED-DAMPED VIBRATIONS

18.12 FORCED-DAMPED VIBRATIONS 8. ORCED-DAMPED VIBRATIONS Vibrations A mass m is attached to a helical spring and is suspended from a fixed support as before. Damping is also provided in the system ith a dashpot (ig. 8.). Before the

More information

Unforced Mechanical Vibrations

Unforced Mechanical Vibrations Unforced Mechanical Vibrations Today we begin to consider applications of second order ordinary differential equations. 1. Spring-Mass Systems 2. Unforced Systems: Damped Motion 1 Spring-Mass Systems We

More information

KINEMATICS & DYNAMICS

KINEMATICS & DYNAMICS KINEMATICS & DYNAMICS BY ADVANCED DIFFERENTIAL EQUATIONS Question (**+) In this question take g = 0 ms. A particle of mass M kg is released from rest from a height H m, and allowed to fall down through

More information

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS Unit 2: Unit code: QCF Level: 4 Credit value: 5 Engineering Science L/60/404 OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS UNIT CONTENT OUTCOME 2 Be able to determine the behavioural characteristics of elements

More information

Chapter a. Spring constant, k : The change in the force per unit length change of the spring. b. Coefficient of subgrade reaction, k:

Chapter a. Spring constant, k : The change in the force per unit length change of the spring. b. Coefficient of subgrade reaction, k: Principles of Soil Dynamics 3rd Edition Das SOLUTIONS MANUAL Full clear download (no formatting errors) at: https://testbankreal.com/download/principles-soil-dynamics-3rd-editiondas-solutions-manual/ Chapter

More information

PROBLEM 16.4 SOLUTION

PROBLEM 16.4 SOLUTION PROBLEM 16.4 The motion of the.5-kg rod AB is guided b two small wheels which roll freel in horizontal slots. If a force P of magnitude 8 N is applied at B, determine (a) the acceleration of the rod, (b)

More information

Section 4.9; Section 5.6. June 30, Free Mechanical Vibrations/Couple Mass-Spring System

Section 4.9; Section 5.6. June 30, Free Mechanical Vibrations/Couple Mass-Spring System Section 4.9; Section 5.6 Free Mechanical Vibrations/Couple Mass-Spring System June 30, 2009 Today s Session Today s Session A Summary of This Session: Today s Session A Summary of This Session: (1) Free

More information

Chapter 5 Oscillatory Motion

Chapter 5 Oscillatory Motion Chapter 5 Oscillatory Motion Simple Harmonic Motion An object moves with simple harmonic motion whenever its acceleration is proportional to its displacement from some equilibrium position and is oppositely

More information

N - W = 0. + F = m a ; N = W. Fs = 0.7W r. Ans. r = 9.32 m

N - W = 0. + F = m a ; N = W. Fs = 0.7W r. Ans. r = 9.32 m 91962_05_R1_p0479-0512 6/5/09 3:53 PM Page 479 R1 1. The ball is thrown horizontally with a speed of 8 m>s. Find the equation of the path, y = f(x), and then determine the ball s velocity and the normal

More information

Kinematics, Dynamics, and Vibrations FE Review Session. Dr. David Herrin March 27, 2012

Kinematics, Dynamics, and Vibrations FE Review Session. Dr. David Herrin March 27, 2012 Kinematics, Dynamics, and Vibrations FE Review Session Dr. David Herrin March 7, 0 Example A 0 g ball is released vertically from a height of 0 m. The ball strikes a horizontal surface and bounces back.

More information

SOLUTION a. Since the applied force is equal to the person s weight, the spring constant is 670 N m ( )( )

SOLUTION a. Since the applied force is equal to the person s weight, the spring constant is 670 N m ( )( ) 5. ssm A person who weighs 670 N steps onto a spring scale in the bathroom, and the spring compresses by 0.79 cm. (a) What is the spring constant? (b) What is the weight of another person who compresses

More information

Concept of Force Challenge Problem Solutions

Concept of Force Challenge Problem Solutions Concept of Force Challenge Problem Solutions Problem 1: Force Applied to Two Blocks Two blocks sitting on a frictionless table are pushed from the left by a horizontal force F, as shown below. a) Draw

More information

Simple Harmonic Motion

Simple Harmonic Motion 3/5/07 Simple Harmonic Motion 0. The Ideal Spring and Simple Harmonic Motion HOOKE S AW: RESTORING FORCE OF AN IDEA SPRING The restoring force on an ideal spring is F x k x spring constant Units: N/m 3/5/07

More information

Chapter 13. F =!kx. Vibrations and Waves. ! = 2" f = 2" T. Hooke s Law Reviewed. Sinusoidal Oscillation Graphing x vs. t. Phases.

Chapter 13. F =!kx. Vibrations and Waves. ! = 2 f = 2 T. Hooke s Law Reviewed. Sinusoidal Oscillation Graphing x vs. t. Phases. Chapter 13 Vibrations and Waves Hooke s Law Reviewed F =!k When is positive, F is negative ; When at equilibrium (=0, F = 0 ; When is negative, F is positive ; 1 2 Sinusoidal Oscillation Graphing vs. t

More information

Chapter 13. Simple Harmonic Motion

Chapter 13. Simple Harmonic Motion Chapter 13 Simple Harmonic Motion Hooke s Law F s = - k x F s is the spring force k is the spring constant It is a measure of the stiffness of the spring A large k indicates a stiff spring and a small

More information

Kinetics of Particles

Kinetics of Particles Kinetics of Particles A- Force, Mass, and Acceleration Newton s Second Law of Motion: Kinetics is a branch of dynamics that deals with the relationship between the change in motion of a body and the forces

More information

Use the following to answer question 1:

Use the following to answer question 1: Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to

More information

( : + ) -4 = 8-0.6(v) Ans. v A = v B + v A>B. ( : + ) v A = 8-20(0.3) Ans. v A = 2 ft>s : Also, -4i = 8i + (vk) * (0.6j) -4 = 8-0.6v. Ans.

( : + ) -4 = 8-0.6(v) Ans. v A = v B + v A>B. ( : + ) v A = 8-20(0.3) Ans. v A = 2 ft>s : Also, -4i = 8i + (vk) * (0.6j) -4 = 8-0.6v. Ans. 16 55. Pinion gear A rolls on the gear racks B and C. If B is moving to the right at 8 ft>s and C is moving to the left at 4 ft>s, determine the angular velocity of the pinion gear and the velocity of

More information

Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow)

Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow) Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow) Name (printed) Lab Section(+2 pts) Name (signed as on ID) Multiple choice Section. Circle the correct answer. No work need be shown and no partial

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 4.8-kg block attached to a spring executes simple harmonic motion on a frictionless

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations 14-1 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The

More information

The maximum kinetic energy is directly proportional to the frequency. The time for one oscillation is directly proportional to the frequency.

The maximum kinetic energy is directly proportional to the frequency. The time for one oscillation is directly proportional to the frequency. Q1.For a body performing simple harmonic motion, which one of the following statements is correct? The maximum kinetic energy is directly proportional to the frequency. The time for one oscillation is

More information

11. Some applications of second order differential

11. Some applications of second order differential October 3, 2011 11-1 11. Some applications of second order differential equations The first application we consider is the motion of a mass on a spring. Consider an object of mass m on a spring suspended

More information

OSCILLATIONS ABOUT EQUILIBRIUM

OSCILLATIONS ABOUT EQUILIBRIUM OSCILLATIONS ABOUT EQUILIBRIUM Chapter 13 Units of Chapter 13 Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system is a

More information

Name: Fall 2014 CLOSED BOOK

Name: Fall 2014 CLOSED BOOK Name: Fall 2014 1. Rod AB with weight W = 40 lb is pinned at A to a vertical axle which rotates with constant angular velocity ω =15 rad/s. The rod position is maintained by a horizontal wire BC. Determine

More information

M D P L sin x FN L sin C W L sin C fl cos D 0.

M D P L sin x FN L sin C W L sin C fl cos D 0. 789 roblem 9.26 he masses of the ladder and person are 18 kg and 90 kg, respectively. he center of mass of the 4-m ladder is at its midpoint. If D 30, what is the minimum coefficient of static friction

More information

2. Determine whether the following pair of functions are linearly dependent, or linearly independent:

2. Determine whether the following pair of functions are linearly dependent, or linearly independent: Topics to be covered on the exam include: Recognizing, and verifying solutions to homogeneous second-order linear differential equations, and their corresponding Initial Value Problems Recognizing and

More information

spring magnet Fig. 7.1 One end of the magnet hangs inside a coil of wire. The coil is connected in series with a resistor R.

spring magnet Fig. 7.1 One end of the magnet hangs inside a coil of wire. The coil is connected in series with a resistor R. 1 A magnet is suspended vertically from a fixed point by means of a spring, as shown in Fig. 7.1. spring magnet coil R Fig. 7.1 One end of the magnet hangs inside a coil of wire. The coil is connected

More information

SOLUTION. ill Principle of Impulse and Momentum: Referring to Fig. b, 75(0) + 75(9.81)(3) - T(3) = 75vA. vb = T (1) From Fig.

SOLUTION. ill Principle of Impulse and Momentum: Referring to Fig. b, 75(0) + 75(9.81)(3) - T(3) = 75vA. vb = T (1) From Fig. 15 30. The crate B and cylinder A have a mass of 200 kg and 75 kg, respectively. If the system is released from rest, determine the speed of the crate and cylinder when t = 3 s. Neglect the mass of the

More information

Chapter 14 Preview Looking Ahead

Chapter 14 Preview Looking Ahead Chapter 14 Preview Looking Ahead Text: p. 438 Slide 14-1 Chapter 14 Preview Looking Back: Springs and Restoring Forces In Chapter 8, you learned that a stretched spring exerts a restoring force proportional

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator Simple Harmonic Motion Related to Uniform Circular Motion The Simple Pendulum The Physical

More information

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true? Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

More information

Application of Second Order Linear ODEs: Mechanical Vibrations

Application of Second Order Linear ODEs: Mechanical Vibrations Application of Second Order Linear ODEs: October 23 27, 2017 Application of Second Order Linear ODEs Consider a vertical spring of original length l > 0 [m or ft] that exhibits a stiffness of κ > 0 [N/m

More information

Chapter 15. Oscillatory Motion

Chapter 15. Oscillatory Motion Chapter 15 Oscillatory Motion Part 2 Oscillations and Mechanical Waves Periodic motion is the repeating motion of an object in which it continues to return to a given position after a fixed time interval.

More information

Chapter 14 (Oscillations) Key concept: Downloaded from

Chapter 14 (Oscillations) Key concept: Downloaded from Chapter 14 (Oscillations) Multiple Choice Questions Single Correct Answer Type Q1. The displacement of a particle is represented by the equation. The motion of the particle is (a) simple harmonic with

More information

Outline. Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves

Outline. Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves Outline Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves Hooke s Law Force is directly proportional to the displacement of the object from the equilibrium

More information

Midterm 3 Review (Ch 9-14)

Midterm 3 Review (Ch 9-14) Midterm 3 Review (Ch 9-14) PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Copyright 2008 Pearson Education Inc., publishing as Pearson

More information

Week 9 solutions. k = mg/l = /5 = 3920 g/s 2. 20u + 400u u = 0,

Week 9 solutions. k = mg/l = /5 = 3920 g/s 2. 20u + 400u u = 0, Week 9 solutions ASSIGNMENT 20. (Assignment 19 had no hand-graded component.) 3.7.9. A mass of 20 g stretches a spring 5 cm. Suppose that the mass is also attached to a viscous damper with a damping constant

More information

Chapter 14 Periodic Motion

Chapter 14 Periodic Motion Chapter 14 Periodic Motion 1 Describing Oscillation First, we want to describe the kinematical and dynamical quantities associated with Simple Harmonic Motion (SHM), for example, x, v x, a x, and F x.

More information

Ch 3.7: Mechanical & Electrical Vibrations

Ch 3.7: Mechanical & Electrical Vibrations Ch 3.7: Mechanical & Electrical Vibrations Two important areas of application for second order linear equations with constant coefficients are in modeling mechanical and electrical oscillations. We will

More information

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Plane Motion of Rigid Bodies: Energy and Momentum Methods. Tenth Edition CHAPTER

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Plane Motion of Rigid Bodies: Energy and Momentum Methods. Tenth Edition CHAPTER Tenth E CHAPTER 7 VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Ferdinand P. Beer E. Russell Johnston, Jr. Phillip J. Cornwell Lecture Notes: Brian P. Self California State Polytechnic University Plane Motion

More information

Mass on a Horizontal Spring

Mass on a Horizontal Spring Course- B.Sc. Applied Physical Science (Computer Science) Year- IInd, Sem- IVth Subject Physics Paper- XIVth, Electromagnetic Theory Lecture No. 22, Simple Harmonic Motion Introduction Hello friends in

More information

Oscillations and Waves

Oscillations and Waves Oscillations and Waves Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring Energy Conservation in Oscillatory

More information

CHAPTER 11 VIBRATIONS AND WAVES

CHAPTER 11 VIBRATIONS AND WAVES CHAPTER 11 VIBRATIONS AND WAVES http://www.physicsclassroom.com/class/waves/u10l1a.html UNITS Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Period and Sinusoidal Nature of SHM The

More information

Oscillations. Phys101 Lectures 28, 29. Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum

Oscillations. Phys101 Lectures 28, 29. Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum Phys101 Lectures 8, 9 Oscillations Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum Ref: 11-1,,3,4. Page 1 Oscillations of a Spring If an object oscillates

More information

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011 PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this

More information

3.7 Spring Systems 253

3.7 Spring Systems 253 3.7 Spring Systems 253 The resulting amplification of vibration eventually becomes large enough to destroy the mechanical system. This is a manifestation of resonance discussed further in Section??. Exercises

More information

Vibrations Qualifying Exam Study Material

Vibrations Qualifying Exam Study Material Vibrations Qualifying Exam Study Material The candidate is expected to have a thorough understanding of engineering vibrations topics. These topics are listed below for clarification. Not all instructors

More information

Simple Harmonic Motion Test Tuesday 11/7

Simple Harmonic Motion Test Tuesday 11/7 Simple Harmonic Motion Test Tuesday 11/7 Chapter 11 Vibrations and Waves 1 If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is

More information

PHYSICS 1 Simple Harmonic Motion

PHYSICS 1 Simple Harmonic Motion Advanced Placement PHYSICS 1 Simple Harmonic Motion Student 014-015 What I Absolutely Have to Know to Survive the AP* Exam Whenever the acceleration of an object is proportional to its displacement and

More information

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y.

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y. 014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently 9 7. Determine the normal stress and shear stress acting

More information

A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion

A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion 1. Simple harmonic motion and the greenhouse effect (a) A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion. 1. 2. (b) In a simple model

More information

Physics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating

Physics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating Physics 1. Exam III Spring 003 The situation below refers to the next three questions: A solid cylinder of radius R and mass M with initial velocity v 0 rolls without slipping up the inclined plane. N

More information

Chapter 15 Periodic Motion

Chapter 15 Periodic Motion Chapter 15 Periodic Motion Slide 1-1 Chapter 15 Periodic Motion Concepts Slide 1-2 Section 15.1: Periodic motion and energy Section Goals You will learn to Define the concepts of periodic motion, vibration,

More information

VTU-NPTEL-NMEICT Project

VTU-NPTEL-NMEICT Project MODULE-II --- SINGLE DOF FREE S VTU-NPTEL-NMEICT Project Progress Report The Project on Development of Remaining Three Quadrants to NPTEL Phase-I under grant in aid NMEICT, MHRD, New Delhi SME Name : Course

More information

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2.

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2. Coordinator: Dr. W. Al-Basheer Thursday, July 30, 2015 Page: 1 Q1. A constant force F ( 7.0ˆ i 2.0 ˆj ) N acts on a 2.0 kg block, initially at rest, on a frictionless horizontal surface. If the force causes

More information

= y(x, t) =A cos (!t + kx)

= y(x, t) =A cos (!t + kx) A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8

More information

Final Exam April 30, 2013

Final Exam April 30, 2013 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic

More information

Q1. A) 46 m/s B) 21 m/s C) 17 m/s D) 52 m/s E) 82 m/s. Ans: v = ( ( 9 8) ( 98)

Q1. A) 46 m/s B) 21 m/s C) 17 m/s D) 52 m/s E) 82 m/s. Ans: v = ( ( 9 8) ( 98) Coordinator: Dr. Kunwar S. Wednesday, May 24, 207 Page: Q. A hot-air balloon is ascending (going up) at the rate of 4 m/s and when the balloon is 98 m above the ground a package is dropped from it, vertically

More information

Lectures Chapter 10 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 10 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Simple Harmonic Motion Lectures 24-25 Chapter 10 (Cutnell & Johnson, Physics 7 th edition) 1 The Ideal Spring Springs are objects that exhibit elastic behavior. It will return back

More information

Harmonic Oscillator. Mass-Spring Oscillator Resonance The Pendulum. Physics 109 Experiment Number 12

Harmonic Oscillator. Mass-Spring Oscillator Resonance The Pendulum. Physics 109 Experiment Number 12 Harmonic Oscillator Mass-Spring Oscillator Resonance The Pendulum Physics 109 Experiment Number 12 Outline Simple harmonic motion The vertical mass-spring system Driven oscillations and resonance The pendulum

More information

C7047. PART A Answer all questions, each carries 5 marks.

C7047. PART A Answer all questions, each carries 5 marks. 7047 Reg No.: Total Pages: 3 Name: Max. Marks: 100 PJ DUL KLM TEHNOLOGIL UNIVERSITY FIRST SEMESTER.TEH DEGREE EXMINTION, DEEMER 2017 ourse ode: E100 ourse Name: ENGINEERING MEHNIS PRT nswer all questions,

More information

AP Physics. Harmonic Motion. Multiple Choice. Test E

AP Physics. Harmonic Motion. Multiple Choice. Test E AP Physics Harmonic Motion Multiple Choice Test E A 0.10-Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.

More information

Chapter 15 Oscillations

Chapter 15 Oscillations Chapter 15 Oscillations Summary Simple harmonic motion Hook s Law Energy F = kx Pendulums: Simple. Physical, Meter stick Simple Picture of an Oscillation x Frictionless surface F = -kx x SHM in vertical

More information

Introduction to Vibration. Professor Mike Brennan

Introduction to Vibration. Professor Mike Brennan Introduction to Vibration Professor Mie Brennan Introduction to Vibration Nature of vibration of mechanical systems Free and forced vibrations Frequency response functions Fundamentals For free vibration

More information

General Physics 1. School of Science, University of Tehran Fall Exercises (set 07)

General Physics 1. School of Science, University of Tehran Fall Exercises (set 07) General Physics 1 School of Science, University of Tehran Fall 1396-97 Exercises (set 07) 1. In Fig., wheel A of radius r A 10cm is coupled by belt B to wheel C of radius r C 25 cm. The angular speed of

More information

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM)

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM) Chapter 6: Oscillatory Motion and Waves Hooke s Law (revisited) F = - k x Tthe elastic potential energy of a stretched or compressed spring is PE elastic = kx / Spring-block Note: To consider the potential

More information

PHYSICS - CLUTCH CH 15: PERIODIC MOTION (OSCILLATIONS)

PHYSICS - CLUTCH CH 15: PERIODIC MOTION (OSCILLATIONS) !! www.clutchprep.com REVIEW SPRINGS When you push/pull against a spring with FA, the spring pushes back (Newton s Law): - x = ( or ). - NOT the spring s length, but its change x =. - k is the spring s

More information

Faculty of Computers and Information. Basic Science Department

Faculty of Computers and Information. Basic Science Department 18--018 FCI 1 Faculty of Computers and Information Basic Science Department 017-018 Prof. Nabila.M.Hassan 18--018 FCI Aims of Course: The graduates have to know the nature of vibration wave motions with

More information

TOPIC E: OSCILLATIONS EXAMPLES SPRING Q1. Find general solutions for the following differential equations:

TOPIC E: OSCILLATIONS EXAMPLES SPRING Q1. Find general solutions for the following differential equations: TOPIC E: OSCILLATIONS EXAMPLES SPRING 2019 Mathematics of Oscillating Systems Q1. Find general solutions for the following differential equations: Undamped Free Vibration Q2. A 4 g mass is suspended by

More information

Thursday, August 4, 2011

Thursday, August 4, 2011 Chapter 16 Thursday, August 4, 2011 16.1 Springs in Motion: Hooke s Law and the Second-Order ODE We have seen alrealdy that differential equations are powerful tools for understanding mechanics and electro-magnetism.

More information

MATH 246: Chapter 2 Section 8 Motion Justin Wyss-Gallifent

MATH 246: Chapter 2 Section 8 Motion Justin Wyss-Gallifent MATH 46: Chapter Section 8 Motion Justin Wyss-Gallifent 1. Introduction Important: Positive is up and negative is down. Imagine a spring hanging with no weight on it. We then attach a mass m which stretches

More information

Basics of rotordynamics 2

Basics of rotordynamics 2 Basics of rotordynamics Jeffcott rotor 3 M A O a rigid rotor disk rotates at angular frequency W massless shaft acts as a spring restoring displacements disk can move only in the plane defined by axes

More information

Section Mass Spring Systems

Section Mass Spring Systems Asst. Prof. Hottovy SM212-Section 3.1. Section 5.1-2 Mass Spring Systems Name: Purpose: To investigate the mass spring systems in Chapter 5. Procedure: Work on the following activity with 2-3 other students

More information

APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS

APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration

More information

Sample paper 10. Question 1. Which of the following is correct in respect to acceleration?

Sample paper 10. Question 1. Which of the following is correct in respect to acceleration? Sample paper 10 Question 1 Which of the following is correct in respect to acceleration? A. Body does not require any force to accelerate B. Body s velocity should be zero C. Body should be at rest D.

More information

Fr h mg rh h. h 2( m)( m) ( (0.800 kg)(9.80 m/s )

Fr h mg rh h. h 2( m)( m) ( (0.800 kg)(9.80 m/s ) 5. We consider the wheel as it leaves the lower floor. The floor no longer exerts a force on the wheel, and the only forces acting are the force F applied horizontally at the axle, the force of gravity

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx Chapter 1 Lecture Notes Chapter 1 Oscillatory Motion Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx When the mass is released, the spring will pull

More information

4.9 Free Mechanical Vibrations

4.9 Free Mechanical Vibrations 4.9 Free Mechanical Vibrations Spring-Mass Oscillator When the spring is not stretched and the mass m is at rest, the system is at equilibrium. Forces Acting in the System When the mass m is displaced

More information

AP Physics C: Work, Energy, and Power Practice

AP Physics C: Work, Energy, and Power Practice AP Physics C: Work, Energy, and Power Practice 1981M2. A swing seat of mass M is connected to a fixed point P by a massless cord of length L. A child also of mass M sits on the seat and begins to swing

More information

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 10 NATURAL VIBRATIONS ONE DEGREE OF FREEDOM

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 10 NATURAL VIBRATIONS ONE DEGREE OF FREEDOM ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D5 TUTORIAL 0 NATURAL VIBRATIONS ONE DEGREE OF FREEDOM On completion of this tutorial you should be able to do the following. Explain the meaning of degrees

More information

ELASTICITY. values for the mass m and smaller values for the spring constant k lead to greater values for the period.

ELASTICITY. values for the mass m and smaller values for the spring constant k lead to greater values for the period. CHAPTER 0 SIMPLE HARMONIC MOTION AND ELASTICITY ANSWERS TO FOCUS ON CONCEPTS QUESTIONS. 0. m. (c) The restoring force is given by Equation 0. as F = kx, where k is the spring constant (positive). The graph

More information

KINETIC ENERGY AND WORK

KINETIC ENERGY AND WORK Chapter 7: KINETIC ENERGY AND WORK 1 Which of the following is NOT a correct unit for work? A erg B ft lb C watt D newton meter E joule 2 Which of the following groups does NOT contain a scalar quantity?

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves Raymond A. Serway Chris Vuille Chapter Thirteen Vibrations and Waves Periodic Motion and Waves Periodic motion is one of the most important kinds of physical behavior Will include a closer look at Hooke

More information

Wheel and Axle. Author: Joseph Harrison. Research Ans Aerospace Engineering 1 Expert, Monash University

Wheel and Axle. Author: Joseph Harrison. Research Ans Aerospace Engineering 1 Expert, Monash University Wheel and Axle Author: Joseph Harrison British Middle-East Center for studies & Research info@bmcsr.com http:// bmcsr.com Research Ans Aerospace Engineering 1 Expert, Monash University Introduction A solid

More information

1. [30] Y&F a) Assuming a small angle displacement θ max < 0.1 rad, the period is very nearly

1. [30] Y&F a) Assuming a small angle displacement θ max < 0.1 rad, the period is very nearly PH1140 D09 Homework 3 Solution 1. [30] Y&F 13.48. a) Assuming a small angle displacement θ max < 0.1 rad, the period is very nearly T = π L =.84 s. g b) For the displacement θ max = 30 = 0.54 rad we use

More information

Summer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.

Summer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope

More information

2016 AP Physics Unit 6 Oscillations and Waves.notebook December 09, 2016

2016 AP Physics Unit 6 Oscillations and Waves.notebook December 09, 2016 AP Physics Unit Six Oscillations and Waves 1 2 A. Dynamics of SHM 1. Force a. since the block is accelerating, there must be a force acting on it b. Hooke's Law F = kx F = force k = spring constant x =

More information