An Analog Analogue of a Digital Quantum Computation

Size: px
Start display at page:

Download "An Analog Analogue of a Digital Quantum Computation"

Transcription

1 An Analog Analogue of a Digital Quantum Computation arxiv:quant-ph/ v1 6 Dec 1996 Edard Farhi Center for Theoretical Physics Massachusetts Institute of Technology Cambridge, MA Sam Gutmann Department of Mathematics Northeastern University Boston, MA MIT-CTP-2593, quant-ph/ December 1996 Abstract We solve a problem, hich hile not fitting into the usual paradigm, can be vieed as a quantum computation. Suppose e are given a quantum system described by an N dimensional Hilbert space ith a Hamiltonian of the form E here is an unknon (normalized) state. We sho ho to discover by adding a Hamiltonian (independent of ) and evolving for a time proportional to N 1/2 /E. We sho that this time is optimally short. This process is an analog analogue to Grover s algorithm, a computation on a conventional (!) quantum computer hich locates a marked item from an unsorted list of N items in a number of steps proportional to N 1/2. This ork as supported in part by The Department of Energy under cooperative agreement DE-FC02-94ER40818 farhi@mitlns.mit.edu sgutm@nuhub.neu.edu 1

2 Although a quantum computer, beyond certain elementary gates, has not yet been constructed, a paradigm [1] for quantum computation is in place. A quantum computer is envisaged as acting on a collection of spin 1/2 particles sitting at specified sites. Each elementary operation is a unitary transformation hich acts on the spins at one or to sites. A quantum computer program, or algorithm, is a definite sequence of such unitary transformations. For a given initial spin state, the output of the program is the spin state after the sequence of transformations has acted. The length of the algorithm is equal to the number of elementary unitary transformations hich make up the algorithm. This frameork for quantum computation is general enough that any ordinary digital computer program can be turned into a quantum computer algorithm. (It is required that the ordinary program be reversible; hoever any ordinary computer program can be ritten in reversible code.) Quantum computers can go beyond ordinary computers hen they act on superpositions of states and take advantage of interference effects. An example of a quantum algorithm hich outperforms any classical algorithm designed to solve the same problem is the Grover algorithm [2]. Here e are given a function f(a) defined on the integers a from 1 to N. The function has the property that it takes the value 1 on just a single element of its domain,, and it has the value 0 for all a. With only the ability to call the function f, the task is to find. On a classical computer this requires, on average, N/2 calls of the function f. Hoever Grover shoed that ith a quantum computer can be found ith of order N 1/2 function calls. This remarkable speed-up illustrates the poer of quantum computation. (In the appendix e explain ho the Grover algorithm orks.) In this paper e consider quantum computation differently, as controlled Hamiltonian time evolution of a system, obeying the Schrodinger equation i d dt ψ = H(t) ψ, (1) hich is designed to solve a specified problem. We illustrate this ith an example. Suppose e are given a Hamiltonian in an N dimensional vector space and e are told that the Hamiltonian has one eigenvalue E 0 and all the others are 0. The task is to find the eigenvector hich has eigenvalue E. We no give a solution to this problem and then explain in hat sense it is optimal. We are given H = E (2) ith unspecified and = 1. Pick some normalized vector s hich of course does not depend on since e don t yet kno hat is. No add to H the driving Hamiltonian H D = E s s (3) so that the full Hamiltonian is H = H + H D. (4) We no calculate the time evolution of the state ψ, t hich at t = 0 is s, ψ, t = e iht s. (5) 2

3 It suffices to confine our attention to the to dimensional subspace spanned by s and. The vectors s and are (generally) not orthogonal and e call their inner product x, s = x (6) here x can be taken to be real and positive since any phase in s can ultimately be absorbed in s. We ill discuss the expected size of x shortly. No the vectors r = 1 ( s x ) (7) 1 x 2 and are orthonormal. In the, r basis the Hamiltonian (4) is H = E [ 1 + x 2 x 1 x 2 x 1 x 2 1 x 2 ] (8) and s = [ x 1 x 2 ] (9) No a simple calculation gives ψ, t = e iet [ x cos(ext) i sin(ext) 1 x2 cos(ext) ]. (10) Thus e see that at time t the probability of finding the state is P(t) = sin 2 (Ext) + x 2 cos 2 (Ext) (11) and that at a time t m given by the probability is one. t m = π 2Ex (12) Ho big do e expect x to be? In an N dimensional complex vector space, if you pick to normalized vectors at random (uniformly on the 2N-1 dimensional unit sphere), then the expected value of the inner product squared is 1/N so e kno that the expected value of x is of order N 1/2. Thus starting ith s, for the probability of finding to be appreciable e must ait a time of order N 1/2 /E. This is the analog analogue of the Grover algorithm result. Note that the eigenvalues of the Hamiltonian (8) are E(1 ± x). Thus the difference in eigenvalues is (2xE) hich is of order E/N 1/2. By the time-energy uncertainty principle, the time required to evolve substantially, that is from s to, must be of order N 1/2 /E hich is the time e found. You might think that by increasing the energy difference, that is for example, by using H D = E s s ith E E you could speed up the procedure for finding. Hoever the next result shos that this is not the case. We no sho that our procedure for finding, in a time hich gros like N 1/2 /E, is optimally short. The proof e give here is the analog analogue of the oracle proof [3] hich 3

4 can be used to sho that the Grover algorithm is optimal for the problem it sets out to solve. Again e are given the Hamiltonian H = E and e ish to add some Hamiltonian H D (t) to it hich drives the system to a state hich allos us to determine. In an N dimensional vector space, there are N linearly independent choices for. We can pick these to be a basis for the vector space and e then have H = E = E. (13) The idea of the proof is this: Start ith some initial -independent state i and evolve it ith the Hamiltonian H = H + H D (t). (14) After a time t the state e get must be substantially different from hat e ould have gotten using H + H D (t) or else e can not tell from. Let ith i d dt ψ, t = (H + H D (t)) ψ, t (15) ψ, 0 = i. In order for ψ, t to differ sufficiently from ψ, t it is certainly necessary that, for all (but one), ψ, t differs sufficiently from any -independent vector. (If some of the ψ, t ere very close to a particular -independent vector, e could not tell them apart.) Let ψ, t evolve ith H D (t), that is, ith i d dt ψ, t = H D(t) ψ, t (16) ψ, 0 = i. We ill use ψ, t as a -independent vector hich the ψ, t must differ from. We require t to be large enough that ψ, t ψ, t 2 ε for some fixed ε hich implies ψ, t ψ, t 2 Nε. (17) No consider d ψ, t ψ, t 2 = 2Re d dt dt ψ, t ψ, t (18) hich upon using (15) and (16) gives d ψ, t ψ, t 2 = 2 Im ψ, t H ψ, t dt 2 ψ, t H ψ, t (19) 2H ψ, t. 4

5 We no sum on and use the fact that if N i=1 a i 2 = 1 then N i=1 a i N 1/2 along ith (13) to obtain d ψ, t ψ, t 2 2EN 1/2. (20) dt Since ψ, 0 = ψ, 0 e have Therefore in order to satisfy (17) e must have ψ, t ψ, t 2 2EN 1/2 t. (21) t εn1/2 2E. (22) This shos that the H D e have chosen allos us to determine as quickly as possible in terms of N. Appendix: The Grover Algorithm We are given a function f(a) ith a = 1,...N such that f() = 1 and f(a) = 0 for a. We assume that the function f(a) can be calculated using ordinary (reversible) computer code. The goal is to find. Classically this requires, on average, N/2 evaluations of the function f. We no explain ho the Grover algorithm solves this problem; see also [4]. The quantum computer acts on a vector space hich has an orthonormal basis a ith a = 1,...N. It is possible to rite a quantum computer algorithm hich implements the unitary transformation U f a = ( 1) f(a) a. (A1) Equivalently e can rite U f = 1 2 (A2) The quantum computer algorithm hich implements U f requires to evaluations of the function f because it is necessary to erase certain ork bits hich e have supressed. It is also assumed that the ordinary code hich is used to evaluate f has a length hich does not gro like N to a positive poer. Then the number of to bit quantum computer steps required to evaluate f ill also not gro as fast as N to a poer. No consider the vector s = 1 a. N 1/2 It is also possible to rite quantum computer code hich implements the unitary operator a (A3) U s = 2 s s 1. (A4) The number of to bit operations required to implement U s gros more sloly than N to any positive poer. 5

6 The Grover algorithm consists of letting the operator U s U f act k times on the vector s. To see hat happens e can restrict our attention to the to dimensional subspace spanned by s and. Let 1 r = a (A5) N 1 so that and r form an orthonormal basis for the relevant subspace. In the, r basis the operator U s U f takes the form [ ] cos θ sin θ U s U f = (A6) sin θ cos θ here cos θ = 1 2/N. This implies that [ ] cos(kθ) sin(kθ) (U s U f ) k =. (A7) sin(kθ) cos(kθ) No for N large θ 2N 1/2 so each application of U s U f is a rotation by an angle 2N 1/2. In the, r basis, the initial state s is [ N s = 1/2 ] (1 1 (A8) N )1/2 hich is very close to r. Hoever after k steps here kθ = π/2 the algorithm has rotated the initial state to lie (almost) along. This requires k πn 1/2 /4 steps. Each step actually requires to evaluations of f so the number of evaluations of f required to find gros like N 1/2. Accordingly the number of to bit operations required to implement the algorithm also gros like N 1/2. Acknoledgement E. F. ould like to thank the theory group at Università di Roma 1 for their hospitality and discussions as ell as the INFN for partial support. a References [1] For a summary and references see A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Phys. Rev. A 52, 3457 (1995). [2] L. K. Grover, A fast quantum mechanical algorithm for database search, quantph/ [3] C. H. Bennett, E. Bernstein, G. Brassard, and U. V. Vazirani, Strengths and eaknesses of quantum computing, SIAM Journal on Computing, to appear. [4] M. Boyer, G. Brassard, P. Hoeyer, and A. Tapp, Tight bounds on quantum searching, quant-ph/

Database Manipulation Operations on Quantum Systems

Database Manipulation Operations on Quantum Systems Quant Inf Rev, No, 9-7 (203) 9 Quantum Information Review An International Journal http://dxdoiorg/02785/qir/0002 Database Manipulation Operations on Quantum Systems Ahmed Younes Department of Mathematics

More information

arxiv:quant-ph/ v1 28 Jan 2000

arxiv:quant-ph/ v1 28 Jan 2000 Quantum Computation by Adiabatic Evolution Edward Farhi, Jeffrey Goldstone Center for Theoretical Physics Massachusetts Institute of Technology Cambridge, MA 039 arxiv:quant-ph/00006 v 8 Jan 000 Sam Gutmann

More information

arxiv:quant-ph/ v1 16 Jan 2003

arxiv:quant-ph/ v1 16 Jan 2003 Grover s Algorithm: Quantum Database Search arxiv:quant-ph/3179v1 16 Jan 3 C. Lavor Instituto de Matemática e Estatística Universidade do Estado do Rio de Janeiro - UERJ Rua São Francisco Xavier, 54, 6

More information

reader is comfortable with the meaning of expressions such as # g, f (g) >, and their

reader is comfortable with the meaning of expressions such as # g, f (g) >, and their The Abelian Hidden Subgroup Problem Stephen McAdam Department of Mathematics University of Texas at Austin mcadam@math.utexas.edu Introduction: The general Hidden Subgroup Problem is as follos. Let G be

More information

On the approximation of real powers of sparse, infinite, bounded and Hermitian matrices

On the approximation of real powers of sparse, infinite, bounded and Hermitian matrices On the approximation of real poers of sparse, infinite, bounded and Hermitian matrices Roman Werpachoski Center for Theoretical Physics, Al. Lotnikó 32/46 02-668 Warszaa, Poland Abstract We describe a

More information

Quantum Computing Lecture 6. Quantum Search

Quantum Computing Lecture 6. Quantum Search Quantum Computing Lecture 6 Quantum Search Maris Ozols Grover s search problem One of the two most important algorithms in quantum computing is Grover s search algorithm (invented by Lov Grover in 1996)

More information

A better lower bound for quantum algorithms searching an ordered list

A better lower bound for quantum algorithms searching an ordered list A better lower bound for quantum algorithms searching an ordered list Andris Ambainis Computer Science Division University of California Berkeley, CA 94720, e-mail: ambainis@cs.berkeley.edu Abstract We

More information

arxiv:quant-ph/ v5 6 Apr 2005

arxiv:quant-ph/ v5 6 Apr 2005 Nonunitary quantum circuit Hiroaki Terashima 1, and Masahito Ueda 1, arxiv:quant-ph/3461v5 6 Apr 5 1 Department of Physics, Tokyo Institute of Technology, Tokyo 15-8551, Japan CREST, Japan Science and

More information

Exponential algorithmic speedup by quantum walk

Exponential algorithmic speedup by quantum walk Exponential algorithmic speedup by quantum walk Andrew Childs MIT Center for Theoretical Physics joint work with Richard Cleve Enrico Deotto Eddie Farhi Sam Gutmann Dan Spielman quant-ph/0209131 Motivation

More information

α x x 0 α x x f(x) α x x α x ( 1) f(x) x f(x) x f(x) α x = α x x 2

α x x 0 α x x f(x) α x x α x ( 1) f(x) x f(x) x f(x) α x = α x x 2 Quadratic speedup for unstructured search - Grover s Al- CS 94- gorithm /8/07 Spring 007 Lecture 11 01 Unstructured Search Here s the problem: You are given an efficient boolean function f : {1,,} {0,1},

More information

Quantum search by local adiabatic evolution

Quantum search by local adiabatic evolution PHYSICAL REVIEW A, VOLUME 65, 042308 Quantum search by local adiabatic evolution Jérémie Roland 1 and Nicolas J. Cerf 1,2 1 Ecole Polytechnique, CP 165, Université Libre de Bruxelles, 1050 Brussels, Belgium

More information

A fast quantum mechanical algorithm for estimating the median

A fast quantum mechanical algorithm for estimating the median A fast quantum mechanical algorithm for estimating the median Lov K Grover 3C-404A Bell Labs 600 Mountain Avenue Murray Hill J 07974 lkg@mhcnetattcom Summary Consider the problem of estimating the median

More information

6.896 Quantum Complexity Theory October 2, Lecture 9

6.896 Quantum Complexity Theory October 2, Lecture 9 6896 Quantum Complexity heory October, 008 Lecturer: Scott Aaronson Lecture 9 In this class we discuss Grover s search algorithm as well as the BBBV proof that it is optimal 1 Grover s Algorithm 11 Setup

More information

Quantum algorithms for testing Boolean functions

Quantum algorithms for testing Boolean functions Quantum algorithms for testing Boolean functions Dominik F. Floess Erika Andersson SUPA, School of Engineering and Physical Sciences Heriot-Watt University, Edinburgh EH4 4AS, United Kingdom dominikfloess@gmx.de

More information

Quantum NP - Cont. Classical and Quantum Computation A.Yu Kitaev, A. Shen, M. N. Vyalyi 2002

Quantum NP - Cont. Classical and Quantum Computation A.Yu Kitaev, A. Shen, M. N. Vyalyi 2002 Quantum NP - Cont. Classical and Quantum Computation A.Yu Kitaev, A. Shen, M. N. Vyalyi 2002 1 QMA - the quantum analog to MA (and NP). Definition 1 QMA. The complexity class QMA is the class of all languages

More information

UC Berkeley Department of Electrical Engineering and Computer Sciences. EECS 126: Probability and Random Processes

UC Berkeley Department of Electrical Engineering and Computer Sciences. EECS 126: Probability and Random Processes UC Berkeley Department of Electrical Engineering and Computer Sciences EECS 26: Probability and Random Processes Problem Set Spring 209 Self-Graded Scores Due:.59 PM, Monday, February 4, 209 Submit your

More information

arxiv:quant-ph/ v1 15 Mar 2006

arxiv:quant-ph/ v1 15 Mar 2006 Quantum algorithms with fixed points: The case of database search arxiv:quant-ph/0603132v1 15 Mar 2006 Lov K. Grover Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, USA Apoorva Patel Centre

More information

Quantum computers can search arbitrarily large databases by a single query

Quantum computers can search arbitrarily large databases by a single query Quantum computers can search arbitrarily large databases by a single query Lov K. Grover, 3C-404A Bell Labs, 600 Mountain Avenue, Murray Hill J 07974 (lkgrover@bell-labs.com) Summary This paper shows that

More information

Logic Effort Revisited

Logic Effort Revisited Logic Effort Revisited Mark This note ill take another look at logical effort, first revieing the asic idea ehind logical effort, and then looking at some of the more sutle issues in sizing transistors..0

More information

Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum Computing University of Waterloo

Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum Computing University of Waterloo CS 497 Frontiers of Computer Science Introduction to Quantum Computing Lecture of http://www.cs.uwaterloo.ca/~cleve/cs497-f7 Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum

More information

How Powerful is Adiabatic Quantum Computation?

How Powerful is Adiabatic Quantum Computation? How Powerful is Adiabatic Quantum Computation? Wim van Dam Michele Mosca Umesh Vazirani Abstract We analyze the computational power limitations of the recently proposed quantum adiabatic evolution algorithm

More information

Lecture 13: Lower Bounds using the Adversary Method. 2 The Super-Basic Adversary Method [Amb02]

Lecture 13: Lower Bounds using the Adversary Method. 2 The Super-Basic Adversary Method [Amb02] Quantum Computation (CMU 18-859BB, Fall 015) Lecture 13: Lower Bounds using the Adversary Method October 1, 015 Lecturer: Ryan O Donnell Scribe: Kumail Jaffer 1 Introduction There are a number of known

More information

Quantum search in a four-complex-dimensional subspace

Quantum search in a four-complex-dimensional subspace Quantum search in a four-complex-dimensional subspace Wenliang Jin July 24, 2013 Abstract For there to be M > 1 target items to be searched in an unsorted database of size N, with M/N 1 for a sufficiently

More information

Discrete quantum random walks

Discrete quantum random walks Quantum Information and Computation: Report Edin Husić edin.husic@ens-lyon.fr Discrete quantum random walks Abstract In this report, we present the ideas behind the notion of quantum random walks. We further

More information

Business Cycles: The Classical Approach

Business Cycles: The Classical Approach San Francisco State University ECON 302 Business Cycles: The Classical Approach Introduction Michael Bar Recall from the introduction that the output per capita in the U.S. is groing steady, but there

More information

Quantum Set Intersection and its Application to Associative Memory

Quantum Set Intersection and its Application to Associative Memory Journal of Machine Learning Research 3 202) 377-3206 Submitted /2; Revised 0/2; Published /2 Quantum Set Intersection and its Application to Associative Memory Tamer Salman Yoram Baram Department of Computer

More information

Quantum Counting. 1 Introduction. Gilles Brassard 1, Peter Høyer 2, and Alain Tapp 1

Quantum Counting. 1 Introduction. Gilles Brassard 1, Peter Høyer 2, and Alain Tapp 1 Quantum Counting Gilles Brassard 1, Peter Høyer 2, and Alain Tapp 1 1 Université de Montréal, {brassard,tappa}@iro.umontreal.ca 2 Odense University, u2pi@imada.ou.dk arxiv:quant-ph/9805082v1 27 May 1998

More information

Tight Bounds on Quantum Searching

Tight Bounds on Quantum Searching Tight Bounds on Quantum Searching Michel Boyer Gilles Brassard Peter Høyer Université de Montréal Université de Montréal Odense University Alain Tapp Université de Montréal Abstract We provide a tight

More information

Optimal Realizations of Controlled Unitary Gates

Optimal Realizations of Controlled Unitary Gates Optimal Realizations of Controlled nitary Gates Guang Song and Andreas Klappenecker Department of Computer Science Texas A&M niversity College Station, TX 77843-3112 {gsong,klappi}@cs.tamu.edu Abstract

More information

Lecture 4: Postulates of quantum mechanics

Lecture 4: Postulates of quantum mechanics Lecture 4: Postulates of quantum mechanics Rajat Mittal IIT Kanpur The postulates of quantum mechanics provide us the mathematical formalism over which the physical theory is developed. For people studying

More information

Lower Bounds of Quantum Search for Extreme Point

Lower Bounds of Quantum Search for Extreme Point arxiv:quant-ph/9806001v3 18 Dec 1998 Lower Bounds of Quantum Search for Extreme Point Yuri Ozhigov Abstract We show that Durr-Hoyer s quantum algorithm of searching for extreme point of integer function

More information

arxiv:quant-ph/ v1 16 Nov 1995

arxiv:quant-ph/ v1 16 Nov 1995 Quantum Networks for Elementary Arithmetic Operations Vlatko Vedral, Adriano Barenco and Artur Ekert Clarendon Laboratory, Department of Physics University of Oxford, Oxford, OX1 3PU, U.K. (Submitted to

More information

Quantum Searching. Robert-Jan Slager and Thomas Beuman. 24 november 2009

Quantum Searching. Robert-Jan Slager and Thomas Beuman. 24 november 2009 Quantum Searching Robert-Jan Slager and Thomas Beuman 24 november 2009 1 Introduction Quantum computers promise a significant speed-up over classical computers, since calculations can be done simultaneously.

More information

arxiv: v1 [quant-ph] 28 Jan 2014

arxiv: v1 [quant-ph] 28 Jan 2014 Different Strategies for Optimization Using the Quantum Adiabatic Algorithm Elizabeth Crosson,, 2 Edward Farhi, Cedric Yen-Yu Lin, Han-Hsuan Lin, and Peter Shor, 3 Center for Theoretical Physics, Massachusetts

More information

Extended Superposed Quantum State Initialization Using Disjoint Prime Implicants

Extended Superposed Quantum State Initialization Using Disjoint Prime Implicants Extended Superposed Quantum State Initialization Using Disjoint Prime Implicants David Rosenbaum, Marek Perkowski Portland State University, Department of Computer Science Portland State University, Department

More information

1 Mathematical preliminaries

1 Mathematical preliminaries 1 Mathematical preliminaries The mathematical language of quantum mechanics is that of vector spaces and linear algebra. In this preliminary section, we will collect the various definitions and mathematical

More information

A Systematic Algorithm for Quantum Boolean Circuits Construction

A Systematic Algorithm for Quantum Boolean Circuits Construction A Systematic Algorithm for Quantum Boolean Circuits Construction I.M. Tsai and S.Y. Kuo arxiv:quant-ph/0104037v2 19 Apr 2001 Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.

More information

arxiv:quant-ph/ v1 8 Aug 1997

arxiv:quant-ph/ v1 8 Aug 1997 Quantum Algorithms Revisited arxiv:quant-ph/9708016v1 8 Aug 1997 By R. Cleve 1, A. Ekert, C. Macchiavello,3 and M. Mosca,4 Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road,

More information

Chapter 10. Quantum algorithms

Chapter 10. Quantum algorithms Chapter 10. Quantum algorithms Complex numbers: a quick review Definition: C = { a + b i : a, b R } where i = 1. Polar form of z = a + b i is z = re iθ, where r = z = a 2 + b 2 and θ = tan 1 y x Alternatively,

More information

Grover Algorithm Applied to Four Qubits System

Grover Algorithm Applied to Four Qubits System www.ccsenet.org/cis Computer and Inormation Science Vol., No. ; May Grover Algorithm Applied to Four Qubits System Z. Sakhi (Corresponding author) Laboratory o Inormation Technology and Modelisation, and

More information

arxiv:quant-ph/ v1 29 May 2003

arxiv:quant-ph/ v1 29 May 2003 Quantum Lower Bounds for Collision and Element Distinctness with Small Range arxiv:quant-ph/0305179v1 29 May 2003 Andris Ambainis Abstract We give a general method for proving quantum lower bounds for

More information

Lecture 4: Elementary Quantum Algorithms

Lecture 4: Elementary Quantum Algorithms CS 880: Quantum Information Processing 9/13/010 Lecture 4: Elementary Quantum Algorithms Instructor: Dieter van Melkebeek Scribe: Kenneth Rudinger This lecture introduces several simple quantum algorithms.

More information

Quantum Algorithms for Evaluating Min-Max Trees

Quantum Algorithms for Evaluating Min-Max Trees Quantum Algorithms for Evaluating Min-Max Trees Richard Cleve 1,2,DmitryGavinsky 1, and D. L. Yonge-Mallo 1 1 David R. Cheriton School of Computer Science and Institute for Quantum Computing, University

More information

Quantum Search on Strongly Regular Graphs

Quantum Search on Strongly Regular Graphs Quantum Search on Strongly Regular Graphs Degree Project in Engineering Physics, Second Level by Jonatan Janmark at Department of Theoretical Physics Royal Institute of Technology (KTH) & Department of

More information

APPLYING QUANTUM COMPUTER FOR THE REALIZATION OF SPSA ALGORITHM Oleg Granichin, Alexey Wladimirovich

APPLYING QUANTUM COMPUTER FOR THE REALIZATION OF SPSA ALGORITHM Oleg Granichin, Alexey Wladimirovich APPLYING QUANTUM COMPUTER FOR THE REALIZATION OF SPSA ALGORITHM Oleg Granichin, Alexey Wladimirovich Department of Mathematics and Mechanics St. Petersburg State University Abstract The estimates of the

More information

Entanglement and Quantum Computation

Entanglement and Quantum Computation Appearing in Geometric Issues in the Foundations of Science eds. S. Huggett, L. Mason, K. P. Tod, S. T. Tsou and N. M. J. Woodhouse, Oxford University Press 1997. Entanglement and Quantum Computation Richard

More information

arxiv: v1 [quant-ph] 12 Aug 2013

arxiv: v1 [quant-ph] 12 Aug 2013 On quantum circuits employing roots of the Pauli matrices Mathias Soeen, 1 D. Michael Miller, and Rolf Drechsler 1 1 Institute of Computer Science, niversity of Bremen, Germany Department of Computer Science,

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture # 12 Scribe: Indraneel Mukherjee March 12, 2008

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture # 12 Scribe: Indraneel Mukherjee March 12, 2008 COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture # 12 Scribe: Indraneel Mukherjee March 12, 2008 In the previous lecture, e ere introduced to the SVM algorithm and its basic motivation

More information

1 Bernstein-Vazirani Algorithm

1 Bernstein-Vazirani Algorithm CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Yongshan Ding, Pranav Gokhale Scribe: Shankar G. Menon Lecture 08: More on Algorithms November 1, 018 1 Bernstein-Vazirani Algorithm

More information

Quantum parity algorithms as oracle calls, and application in Grover Database search

Quantum parity algorithms as oracle calls, and application in Grover Database search Abstract Quantum parity algorithms as oracle calls, and application in Grover Database search M. Z. Rashad Faculty of Computers and Information sciences, Mansoura University, Egypt Magdi_z2011@yahoo.com

More information

Math 215 HW #9 Solutions

Math 215 HW #9 Solutions Math 5 HW #9 Solutions. Problem 4.4.. If A is a 5 by 5 matrix with all a ij, then det A. Volumes or the big formula or pivots should give some upper bound on the determinant. Answer: Let v i be the ith

More information

arxiv: v1 [quant-ph] 6 Feb 2013

arxiv: v1 [quant-ph] 6 Feb 2013 Exact quantum query complexity of EXACT and THRESHOLD arxiv:302.235v [quant-ph] 6 Feb 203 Andris Ambainis Jānis Iraids Juris Smotrovs University of Latvia, Raiņa bulvāris 9, Riga, LV-586, Latvia February

More information

An Investigation of the use of Spatial Derivatives in Active Structural Acoustic Control

An Investigation of the use of Spatial Derivatives in Active Structural Acoustic Control An Investigation of the use of Spatial Derivatives in Active Structural Acoustic Control Brigham Young University Abstract-- A ne parameter as recently developed by Jeffery M. Fisher (M.S.) for use in

More information

Adaptive Noise Cancellation

Adaptive Noise Cancellation Adaptive Noise Cancellation P. Comon and V. Zarzoso January 5, 2010 1 Introduction In numerous application areas, including biomedical engineering, radar, sonar and digital communications, the goal is

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

Complex numbers: a quick review. Chapter 10. Quantum algorithms. Definition: where i = 1. Polar form of z = a + b i is z = re iθ, where

Complex numbers: a quick review. Chapter 10. Quantum algorithms. Definition: where i = 1. Polar form of z = a + b i is z = re iθ, where Chapter 0 Quantum algorithms Complex numbers: a quick review / 4 / 4 Definition: C = { a + b i : a, b R } where i = Polar form of z = a + b i is z = re iθ, where r = z = a + b and θ = tan y x Alternatively,

More information

Quantum Computation, NP-Completeness and physical reality [1] [2] [3]

Quantum Computation, NP-Completeness and physical reality [1] [2] [3] Quantum Computation, NP-Completeness and physical reality [1] [2] [3] Compiled by Saman Zarandioon samanz@rutgers.edu 1 Introduction The NP versus P question is one of the most fundamental questions in

More information

Introduction To Resonant. Circuits. Resonance in series & parallel RLC circuits

Introduction To Resonant. Circuits. Resonance in series & parallel RLC circuits Introduction To esonant Circuits esonance in series & parallel C circuits Basic Electrical Engineering (EE-0) esonance In Electric Circuits Any passive electric circuit ill resonate if it has an inductor

More information

PHY 335 Data Analysis for Physicists

PHY 335 Data Analysis for Physicists PHY 335 Data Analysis or Physicists Instructor: Kok Wai Ng Oice CP 171 Telephone 7 1782 e mail: kng@uky.edu Oice hour: Thursday 11:00 12:00 a.m. or by appointment Time: Tuesday and Thursday 9:30 10:45

More information

LECTURE NOTES ON QUANTUM COMPUTATION. Cornell University, Physics , CS 483; Spring, 2005 c 2006, N. David Mermin

LECTURE NOTES ON QUANTUM COMPUTATION. Cornell University, Physics , CS 483; Spring, 2005 c 2006, N. David Mermin LECTURE NOTES ON QUANTUM COMPUTATION Cornell University, Physics 481-681, CS 483; Spring, 2005 c 2006, N. David Mermin IV. Searching with a Quantum Computer Last revised 3/30/06 Suppose you know that eactly

More information

Speedup of Iterated Quantum Search by Parallel Performance

Speedup of Iterated Quantum Search by Parallel Performance Speedup of Iterated Quantum Search by Parallel Performance Yuri Ozhigov Department of Applied Mathematics, Moscow State University of Technology Stankin, Vadkovsky per. 3a, 101472, Moscow, Russia Given

More information

Ch. 2 Math Preliminaries for Lossless Compression. Section 2.4 Coding

Ch. 2 Math Preliminaries for Lossless Compression. Section 2.4 Coding Ch. 2 Math Preliminaries for Lossless Compression Section 2.4 Coding Some General Considerations Definition: An Instantaneous Code maps each symbol into a codeord Notation: a i φ (a i ) Ex. : a 0 For Ex.

More information

Bounds for Error Reduction with Few Quantum Queries

Bounds for Error Reduction with Few Quantum Queries Bounds for Error Reduction with Few Quantum Queries Sourav Chakraborty, Jaikumar Radhakrishnan 2,3, and andakumar Raghunathan Department of Computer Science, University of Chicago, Chicago, IL 60637, USA

More information

Some Introductory Notes on Quantum Computing

Some Introductory Notes on Quantum Computing Some Introductory Notes on Quantum Computing Markus G. Kuhn http://www.cl.cam.ac.uk/~mgk25/ Computer Laboratory University of Cambridge 2000-04-07 1 Quantum Computing Notation Quantum Computing is best

More information

be a deterministic function that satisfies x( t) dt. Then its Fourier

be a deterministic function that satisfies x( t) dt. Then its Fourier Lecture Fourier ransforms and Applications Definition Let ( t) ; t (, ) be a deterministic function that satisfies ( t) dt hen its Fourier it ransform is defined as X ( ) ( t) e dt ( )( ) heorem he inverse

More information

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar Quantum Computing Lecture 3 Principles of Quantum Mechanics Anuj Dawar What is Quantum Mechanics? Quantum Mechanics is a framework for the development of physical theories. It is not itself a physical

More information

Why do Golf Balls have Dimples on Their Surfaces?

Why do Golf Balls have Dimples on Their Surfaces? Name: Partner(s): 1101 Section: Desk # Date: Why do Golf Balls have Dimples on Their Surfaces? Purpose: To study the drag force on objects ith different surfaces, ith the help of a ind tunnel. Overvie

More information

Econ 201: Problem Set 3 Answers

Econ 201: Problem Set 3 Answers Econ 20: Problem Set 3 Ansers Instructor: Alexandre Sollaci T.A.: Ryan Hughes Winter 208 Question a) The firm s fixed cost is F C = a and variable costs are T V Cq) = 2 bq2. b) As seen in class, the optimal

More information

Regression coefficients may even have a different sign from the expected.

Regression coefficients may even have a different sign from the expected. Multicolinearity Diagnostics : Some of the diagnostics e have just discussed are sensitive to multicolinearity. For example, e kno that ith multicolinearity, additions and deletions of data cause shifts

More information

Error tolerance in an NMR Implementation of Grover s Fixed-Point Quantum Search Algorithm

Error tolerance in an NMR Implementation of Grover s Fixed-Point Quantum Search Algorithm Error tolerance in an NMR Implementation of Grover s Fixed-Point Quantum Search Algorithm Li Xiao and Jonathan A. Jones Centre for Quantum Computation, Clarendon Laboratory, University of Oxford, Parks

More information

Log-mod-finding: A New Idea for Implementation of Shor's Algorithm

Log-mod-finding: A New Idea for Implementation of Shor's Algorithm 2012 International Conference on Networks and Information (ICNI 2012) IPCSIT vol. 57 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V57.11 Log-mod-finding: A New Idea for Implementation

More information

CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION. From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum

CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION. From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum 1997 19 CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION 3.0. Introduction

More information

INTRODUCTORY NOTES ON QUANTUM COMPUTATION

INTRODUCTORY NOTES ON QUANTUM COMPUTATION INTRODUCTORY NOTES ON QUANTUM COMPUTATION Keith Hannabuss Balliol College, Oxford Hilary Term 2009 Notation. In these notes we shall often use the physicists bra-ket notation, writing ψ for a vector ψ

More information

arxiv:quant-ph/ v2 25 Oct 1998

arxiv:quant-ph/ v2 25 Oct 1998 The maximum speed of dynamical evolution Norman Margolus 1 arxiv:quant-ph/9710043v 5 Oct 1998 Abstract Boston University Center for Computational Science and MIT Artificial Intelligence Laboratory Lev

More information

Early & Quick COSMIC-FFP Analysis using Analytic Hierarchy Process

Early & Quick COSMIC-FFP Analysis using Analytic Hierarchy Process Early & Quick COSMIC-FFP Analysis using Analytic Hierarchy Process uca Santillo (luca.santillo@gmail.com) Abstract COSMIC-FFP is a rigorous measurement method that makes possible to measure the functional

More information

arxiv:quant-ph/ v1 29 Mar 2003

arxiv:quant-ph/ v1 29 Mar 2003 Finite-Dimensional PT -Symmetric Hamiltonians arxiv:quant-ph/0303174v1 29 Mar 2003 Carl M. Bender, Peter N. Meisinger, and Qinghai Wang Department of Physics, Washington University, St. Louis, MO 63130,

More information

y(x) = x w + ε(x), (1)

y(x) = x w + ε(x), (1) Linear regression We are ready to consider our first machine-learning problem: linear regression. Suppose that e are interested in the values of a function y(x): R d R, here x is a d-dimensional vector-valued

More information

The Stern-Gerlach experiment and spin

The Stern-Gerlach experiment and spin The Stern-Gerlach experiment and spin Experiments in the early 1920s discovered a new aspect of nature, and at the same time found the simplest quantum system in existence. In the Stern-Gerlach experiment,

More information

Bivariate Uniqueness in the Logistic Recursive Distributional Equation

Bivariate Uniqueness in the Logistic Recursive Distributional Equation Bivariate Uniqueness in the Logistic Recursive Distributional Equation Antar Bandyopadhyay Technical Report # 629 University of California Department of Statistics 367 Evans Hall # 3860 Berkeley CA 94720-3860

More information

How behavior of systems with sparse spectrum can be predicted on a quantum computer

How behavior of systems with sparse spectrum can be predicted on a quantum computer How behavior of systems with sparse spectrum can be predicted on a quantum computer arxiv:quant-ph/0004021v2 26 Jun 2000 Yuri Ozhigov Abstract Call a spectrum of Hamiltonian sparse if each eigenvalue can

More information

A new universal and fault-tolerant quantum basis

A new universal and fault-tolerant quantum basis Information Processing Letters 75 000 101 107 A new universal and fault-tolerant quantum basis P. Oscar Boykin a,talmor a,b, Matthew Pulver a, Vwani Roychowdhury a, Farrokh Vatan a, a Electrical Engineering

More information

C/CS/Phys C191 Grover s Quantum Search Algorithm 11/06/07 Fall 2007 Lecture 21

C/CS/Phys C191 Grover s Quantum Search Algorithm 11/06/07 Fall 2007 Lecture 21 C/CS/Phys C191 Grover s Quantum Search Algorithm 11/06/07 Fall 2007 Lecture 21 1 Readings Benenti et al, Ch 310 Stolze and Suter, Quantum Computing, Ch 84 ielsen and Chuang, Quantum Computation and Quantum

More information

CHAPTER V MULTIPLE SCALES..? # w. 5?œ% 0 a?ß?ß%.?.? # %?œ!.>#.>

CHAPTER V MULTIPLE SCALES..? # w. 5?œ% 0 a?ß?ß%.?.? # %?œ!.>#.> CHAPTER V MULTIPLE SCALES This chapter and the next concern initial value prolems of oscillatory type on long intervals of time. Until Chapter VII e ill study autonomous oscillatory second order initial

More information

Investigating the Complexity of Various Quantum Incrementer Circuits. Presented by: Carlos Manuel Torres Jr. Mentor: Dr.

Investigating the Complexity of Various Quantum Incrementer Circuits. Presented by: Carlos Manuel Torres Jr. Mentor: Dr. Investigating the Complexity of Various Quantum Incrementer Circuits Presented by: Carlos Manuel Torres Jr. Mentor: Dr. Selman Hershfield Department of Physics University of Florida Gainesville, FL Abstract:

More information

The Postulates of Quantum Mechanics

The Postulates of Quantum Mechanics p. 1/23 The Postulates of Quantum Mechanics We have reviewed the mathematics (complex linear algebra) necessary to understand quantum mechanics. We will now see how the physics of quantum mechanics fits

More information

Adiabatic quantum computation a tutorial for computer scientists

Adiabatic quantum computation a tutorial for computer scientists Adiabatic quantum computation a tutorial for computer scientists Itay Hen Dept. of Physics, UCSC Advanced Machine Learning class UCSC June 6 th 2012 Outline introduction I: what is a quantum computer?

More information

The query register and working memory together form the accessible memory, denoted H A. Thus the state of the algorithm is described by a vector

The query register and working memory together form the accessible memory, denoted H A. Thus the state of the algorithm is described by a vector 1 Query model In the quantum query model we wish to compute some function f and we access the input through queries. The complexity of f is the number of queries needed to compute f on a worst-case input

More information

Quantum Computers. Todd A. Brun Communication Sciences Institute USC

Quantum Computers. Todd A. Brun Communication Sciences Institute USC Quantum Computers Todd A. Brun Communication Sciences Institute USC Quantum computers are in the news Quantum computers represent a new paradigm for computing devices: computers whose components are individual

More information

Chapter Eight The Formal Structure of Quantum Mechanical Function Spaces

Chapter Eight The Formal Structure of Quantum Mechanical Function Spaces Chapter Eight The Formal Structure of Quantum Mechanical Function Spaces Introduction In this chapter, e introduce the formal structure of quantum theory. This formal structure is based primarily on the

More information

BERNSTEIN-SZEGŐ MEASURES ON THE TWO DIMENSIONAL TORUS

BERNSTEIN-SZEGŐ MEASURES ON THE TWO DIMENSIONAL TORUS BERNSTEIN-SEGŐ MEASURES ON THE TO DIMENSIONAL TORUS GREG KNESE Abstract. e present a ne viepoint (namely reproducing kernels and ne proofs for several recent results of J. Geronimo and H. oerdeman on orthogonal

More information

Information quantique, calcul quantique :

Information quantique, calcul quantique : Séminaire LARIS, 8 juillet 2014. Information quantique, calcul quantique : des rudiments à la recherche (en 45min!). François Chapeau-Blondeau LARIS, Université d Angers, France. 1/25 Motivations pour

More information

3 - Vector Spaces Definition vector space linear space u, v,

3 - Vector Spaces Definition vector space linear space u, v, 3 - Vector Spaces Vectors in R and R 3 are essentially matrices. They can be vieed either as column vectors (matrices of size and 3, respectively) or ro vectors ( and 3 matrices). The addition and scalar

More information

arxiv:quant-ph/ v1 23 May 1996

arxiv:quant-ph/ v1 23 May 1996 arxiv:quant-ph/9605034v 3 May 996 PhysComp96 Full paper Draft, 0 May 996 Introduction Tight bounds on quantum searching Michel Boyer Université de Montréal Gilles Brassard, frsc Université de Montréal

More information

Homework Set 2 Solutions

Homework Set 2 Solutions MATH 667-010 Introduction to Mathematical Finance Prof. D. A. Edards Due: Feb. 28, 2018 Homeork Set 2 Solutions 1. Consider the ruin problem. Suppose that a gambler starts ith ealth, and plays a game here

More information

Secrets of Quantum Information Science

Secrets of Quantum Information Science Secrets of Quantum Information Science Todd A. Brun Communication Sciences Institute USC Quantum computers are in the news Quantum computers represent a new paradigm for computing devices: computers whose

More information

arxiv: v1 [quant-ph] 14 Nov 2014

arxiv: v1 [quant-ph] 14 Nov 2014 MIT-CTP/4610 A Quantum Approximate Optimization Algorithm Edward Farhi and Jeffrey Goldstone Center for Theoretical Physics Massachusetts Institute of Technology Cambridge, MA 02139 arxiv:1411.4028v1 [quant-ph]

More information

Flocks of Quantum Clones: Multiple Copying of Qubits

Flocks of Quantum Clones: Multiple Copying of Qubits Fortschr. Phys. 46 (998) 4 ±5, 5 ±5 Flocks of Quantum Clones: Multiple Copying of Qubits V. BuzÏek ;, M. Hillery and P. L. Knight 4 Institute of Physics, Slovak Academy of Sciences, DuÂbravska cesta 9,

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

A Generalization of a result of Catlin: 2-factors in line graphs

A Generalization of a result of Catlin: 2-factors in line graphs AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 72(2) (2018), Pages 164 184 A Generalization of a result of Catlin: 2-factors in line graphs Ronald J. Gould Emory University Atlanta, Georgia U.S.A. rg@mathcs.emory.edu

More information

Quantum Algorithms for Element Distinctness

Quantum Algorithms for Element Distinctness Quantum Algorithms for Element Distinctness Harry Buhrman Christoph Dürr Mark Heiligman Peter Høyer Frédéric Magniez Miklos Santha Ronald de Wolf Abstract We present several applications of quantum amplitude

More information