The Method of Auxiliary Sources for the Thin Films Superimposed on the Dielectric Surface

Size: px
Start display at page:

Download "The Method of Auxiliary Sources for the Thin Films Superimposed on the Dielectric Surface"

Transcription

1 JAE, VOL. 7, NO., 05 JOURNAL OF APPLIED ELECTROMAGNETISM The Method of Auxiliary Sources for the Th Films Superimposed on the Dielectric Surface I. M. Petoev, V. A. Tabatadze, R. S. Zaridze Tbilisi State University, Laboratory of Applied Electrodynamics, 3, Chavchavadze Ave. Tbilisi, Georgia Abstract The diffraction problem of the time harmonic electromagnetic wave on the certa metal-dielectric structure was solved by means of the Method of Auxiliary Sources. The structure represents right parallelepiped dielectric. A lattice of th perfectly conductg films is superimposed on the surface of this dielectric. Selectg the parameters of this structure, case of resonance between the lattice elements and the dielectric, some terestg properties of the complex materials wide range of the frequency are revealed. A user friendly computer program has been created for numerical experiments of the stated problem; it gives ability to change the structures parameters and the cident wave order to study the properties of these kds of structures.. INTRODUCTION In the modern micro and nano-electronics, the devices with th films on the dielectric have wide applications. Therefore, theoretical and numerical study of such structures is a very important problem. In this article, the Method of Auxiliary Sources (MAS) is used, order to study electromagnetic properties of such structures. It is known, that MAS is efficient for solution of the diffraction problem on the volumous objects. The application of this method deduced to the construction of two auxiliary surfaces side and side of this object. These surfaces repeat the form of the object and are shifted from the surfaces at the certa distance. The auxiliary sources located on them describe the field the

2 THE METHOD OF AUXILIARY SOURCES I. M. PETOEV, V. A. TABATADZE, R. S. ZARIDZE opposite parts of divide space. In case of the th conductg films at the first glimpse the ability of the MAS is restricted, because it is not clear how to distribute the auxiliary surfaces. Accordg to the proposed algorithm the given film should be contued all direction by imagary surface at a certa distance. The size of this imagary surface is one of the auxiliary parameters, which fluence the exactness of the calculation. From the both sides of the obtaed figure, up and down, there are constructed auxiliary surfaces. Field on top of the film is described by lower auxiliary surface and under the film- by the upper one. The unknown amplitudes of the auxiliary sources on these surfaces are determed by the boundary condition satisfaction, as on the film, also on the imagary surface. On the both sides of the film tangential component of the total electric film must be zero. The boundary conditions on the imagary surface are: the tangential component of the electric and magnetic field must be contuous. Results of successful application of described algorithms are provided []. This article is the contuation of the mentioned work. Here, stead of the film the free media, there is considered a system of such perfectly conducted films, which are superimposed on the surface of an ordary dielectric. The motivation this article is also the will to extend the MAS ability to the solution of such kd of problems efficiently. On the other hand, usg the right selection of the resonant parameters of the system, it is desirable to get the effects of multiple resonances []. We are lookg such resonance frequencies, when both: the film s sizes and the films lattice parameters total are resonant together with the dielectric s geometric parameters. Exactly case of such resonances occur the terestg electromagnetic properties of the study structure, which correspond to the properties of the composite (complex) materials [3, 4, 5]. The numerical calculations were provided usg the created user friendly program package. There were found resonant parameters of the system, when it has the properties of the negative refractive dex and chirality, the certa frequency range of the cident field. The results were obtaed by parallel validation of the boundary condition satisfaction.

3 JAE, VOL. 7, NO., 05 JOURNAL OF APPLIED ELECTROMAGNETISM. THEORETICAL PART.. Problem statement. The structure under study represents dielectric parallelepiped with permittivity, on the surface of which is superimposed the lattice of the defed size rectangle conductg films (figure ). The corners and the vertices of this dielectric are replaced by the cyldrical and spherical surfaces with small radius of curvature, order to avoid the occurrence of undesirable currents and fields with the sgularities on the surfaces. This structure is illumated by a harmonic electromagnetic wave with 3 i t e dependence, polarized to the parallel of the films surface. The electromagnetic wave source can be located side of the studied structure on certa distance or side dielectric. Our aim is to fd the diffraction field side and side of the structure as well as the field the far zone. The problem consists the numerical analysis of this scattered field and the character of its polarization, as well as to study the terestg composite materials properties ability of this structure on the resonant frequencies. time.. Solution of the problem. A general algorithm for the problem solution is provided below. This algorithm can be used for the more complicate forms of dielectric and the conductg films. Together to the diffraction problem solution it can be considered also as an antenna problem, when the source of the cident field is side of this structure and we are terested radiated pattern far field. The problem is to fd the total ner E r, H r and er E r, H r scattered fields. If the source of cident field is located side of the structure, then, H r H r H r E r E r E r Figure. Considered structure and cident field orientation c, c

4 THE METHOD OF AUXILIARY SOURCES I. M. PETOEV, V. A. TABATADZE, R. S. ZARIDZE, H r H r E r E r If this source is located side of the structure, then: Here., H r H r E r E r,, H r H r H r E r E r E r c E r, H r and E r, H. r are the fields scattered by the structure side and side, respectively. Outer and ner total fields should satisfy the boundary conditions on the dielectric S surface and also on the surface of each conductg plate. On the S surface, total field tangential component contuity is required. From the both side of the conductg films there is required the condition, the tangential component of the total field must be zero. As the problem is 3D, these conditions should be satisfied for any tangential component on the dielectric and conductg surfaces. If they are satisfied along two orthogonal tangential and vectors, then it will be c satisfied along any other tangential (figure )). So: E rs E rs, H rs H rs, E rs E rs, H rs H rs. () Along the conductor surfaces total electric field s tangential component must be zero on the both sides of the pieces: E r 0 E r 0, () E r 0 E r 0 Figure. The MAS application 4

5 JAE, VOL. 7, NO., 05 JOURNAL OF APPLIED ELECTROMAGNETISM H The application of MAS order to fd the fields E r, H r and E r, r is more details described the works [, 6]. The scheme of auxiliary surfaces construction and the distribution of the auxiliary sources on them are presented on the figure. So, solution of the problem reduced to the solution of the lear algebraic equations to the unknown amplitudes of auxiliary sources. 3. RESULTS OF THE NUMERICAL EXPERIMENTS 3..Evaluation of the solution accuracy. Before we get some numerical results it is necessary to be sure that the solution is accurate and we have to determe the error of numerical calculation. For this reason, as examples, we estimate the deviation from the boundary condition satisfaction between the collocation pots on the 3 sides of the considered structure, the dimensions of which the unit of cident wave length is the given case (figure 3). Another 3 sides of the object are symmetrical, with the same values. In this case, ner and er auxiliary surfaces are shifted from the object surface on the distance and the unit of the wave length. The provided figures corresponds respectively 6 and 36 collocation pots on the squared wave length. It can be clearly seen that the crease of the collocation pots number decreases the solution error. Durg numerical experiments and all calculations were done when the boundary conditions deviation was not exceed the 3%, which can be the maximum of the numerical error. a) b) Figure 3. The deviation from the boundary condition satisfaction for a) 6 and b) 36 collocation pots per wavelength squared 5

6 THE METHOD OF AUXILIARY SOURCES I. M. PETOEV, V. A. TABATADZE, R. S. ZARIDZE 3.. The structure with the small number of the films. An image of the considered structure is presented on the Fig. 4. This structure represents a dielectric object with the permittivity 4, on two opposite sides of which there are superimposed 3 square shape conducted films. The cident field propagates along direction, which makes angle 450 to the X and Y axes, polarized to the parallel of the films surfaces, as it is shown on Fig. 5. Calculations were made to study multiple resonances and to defe optimal parameters for complex materials properties of the structure. Figure 4. Considered structure Figure 5. The cident field orientation Figure 6. Scattered field far zone Figure 7. The analysis of the polarization The numerical calculations showed that case of the dielectric dimension abc and the size of the film 0.5 ( the units of wavelength), which corresponds to the resonant values, the pattern of the scattered field appeared an additional lobe, the direction of which corresponds to the negative refraction (figure 6). 6

7 JAE, VOL. 7, NO., 05 JOURNAL OF APPLIED ELECTROMAGNETISM Respectively, the given structure with such parameters is similar to the material with negative refractive dex. The analysis of the polarization properties of the scattered field showed that along two ma lobes it has elliptical polarization with the opposite rotations direction (Fig. 7), which corresponds to the chiral metamaterials. The last one is better seen on the animation. The near total field distribution is given on the Fig. 8. Figure 8. The near total field distribution Figure 9. The dependence of the irradiated power on the cident field frequency Figure 0. Scattered field far zone In order to get the resonance wider frequency range, the irradiated power dependence on the cident field s frequency some range, for three different value of the structure s width has been studied. As it is shown on the Fig. 9, case of the width equal to.9 a wider resonance is observed. At that time the negative refracted lobe creased, which corresponds to the crease of this effect Fig. 0. Near field distribution 7

8 THE METHOD OF AUXILIARY SOURCES I. M. PETOEV, V. A. TABATADZE, R. S. ZARIDZE two mutual perpendicular sections is shown on the Fig. a) and b). It can be see the resonant (standg) near field side the structure (Fig. b). a) b) Figure. Scattered field far zone: a) XOY, b) XOZ planes 3.3. The structure with the big number of the film elements. In order to crease the effect of negative refraction and chirality, the structure with bigger amount of the film elements, than the previous case has been considered. On the upper side, as on the lower one we have already 9 films with same sizes and same distance between them (Fig. ). The dimensions of the dielectric parallelepiped the units of wavelength are abc0.35, which yet doesn t correspond to the multiple resonances. Besides this, here we see small lobe of the negative refraction, also the rotation of the polarization is small. The correspondg distribution of the far field pattern and near field two mutual-perpendicular sections are presented on figures 3, and 4 a), b). Figure. Considered structure Figure 3. The scattered field far zone 8

9 JAE, VOL. 7, NO., 05 JOURNAL OF APPLIED ELECTROMAGNETISM a) b) Figure 4. Near field distribution: a) XOY and b) XOZ planes After that there was considered multiple resonant parameters of the structure: abc ( the units of wavelength). In this case, the lobe of negative refraction significantly creased. The correspondg far field pattern and the near field distribution are presented on the Fig. 5 and 6 Figure 5. The scattered field far zone Figure 6. Near scattered field distribution The animation of the near field shows, that next to the right side of the structure there is the standg wave formed, which takes place case of multiple resonance. 4. CONCLUSION The teraction of the electromagnetic wave with the dielectric structures, superimposed by the conductg th plane films, has been studied. Selectg the parameters of the given structures, case of the resonance between the lattice elements 9

10 THE METHOD OF AUXILIARY SOURCES I. M. PETOEV, V. A. TABATADZE, R. S. ZARIDZE and the dielectric, there were exposed terestg properties of the negative refraction and the chirality comparatively wide frequency range. The crease of the film object number creases the resonant effects, which has creased the observed complex materials properties. The numerical calculation was conducted usg computer simulation by means of specially created user friendly program package. The method of the problem s numerical solution used the MAS. ACKOWLEDGMENT The work is done with the fancial support of the Shota Rustaveli National Science Foundation the Scope of the grant 5/5. REFERENCES [] I. Petoev, V. Tabatadze, D. Kakulia, R. Zaridze, application of the Method of Auxiliary Sources for the th films and open surfaces Journal of Communications Technology and Electronics, Moscow, 04, accepted for publication. [] I. Petoev, V. Tabatadze, R. Zaridze, The Double and Triple Resonances Investigation for the Cassi Lattice to the Dielectric. Journal of Applied Electromagnetism (JAE), Vol.5, No., 03, pp [3] N. Engheta, R. W. Ziolkowski, Metamaterials, Physics and Engeerg Explorations. John Wiley & Sons, Inc., 006. [4] G. V. Eleftheriades, K. G. Balma, Negative-Refraction Metamaterials. Fundamental Prciples and Applications. Hoboken: John Wiley & Sons, Inc., 005. [5] I.V. Ldell, A.H. Sihvola, S.A. Tretyakov, A.J. Viitanen, Electromagnetic Waves Chiral and Bi-Isotropic Media. Boston: Artech House, 994. [6] I. Petoev, V. Tabatadze, R. Zaridze, The Method of Auxiliary Sources Applied to Problems of Electromagnetic Wave Diffraction by Certa Metal Dielectric Structures. Journal of Communications Technology and Electronics, Vol. 58, No. 5, 03, pp

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11638 TITLE: Scattering and Absorption Problems Solution Upon the 3-D Chiral and Biisotropic Objects DISTRIBUTION: Approved

More information

SELF-CONSISTENT APPROACH TO THE ELECTRODY- NAMIC ANALYSIS OF THE CHIRAL STRUCTURES

SELF-CONSISTENT APPROACH TO THE ELECTRODY- NAMIC ANALYSIS OF THE CHIRAL STRUCTURES Progress In Electromagnetics Research M, Vol. 12, 107 113, 2010 SELF-CONSISTENT APPROACH TO THE ELECTRODY- NAMIC ANALYSIS OF THE CHIRAL STRUCTURES V. A. Neganov, D. P. Tabakov, and I. M. Gradinar Povolzhskiy

More information

SCATTERING CROSS SECTION OF A META-SPHERE

SCATTERING CROSS SECTION OF A META-SPHERE Progress In Electromagnetics Research Letters, Vol. 9, 85 91, 009 SCATTERING CROSS SECTION OF A META-SPHERE A. Alexopoulos Electronic Warfare and Radar Division Defence Science and Technology Organisation

More information

EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity

EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity Daniel Sjöberg Department of Electrical and Information Technology Spring 2018 Outline 1 Basic reflection physics 2 Radar cross section definition

More information

SPHERICAL RESONATOR WITH DB-BOUNDARY CON- DITIONS

SPHERICAL RESONATOR WITH DB-BOUNDARY CON- DITIONS Progress In Electromagnetics Research Letters, Vol. 6, 3 37, 2009 SPHERICAL RESONATOR WITH DB-BOUNDARY CON- DITIONS I. V. Lindell and A. H. Sihvola Electromagnetics Group Department of Radio Science and

More information

Supplementary Fig. 1: Light propagation simulation in the human retina. (a) Müller cell

Supplementary Fig. 1: Light propagation simulation in the human retina. (a) Müller cell Supplementary Fig. 1: Light propagation simulation the human reta. (a) Müller cell refractive dex distribution (red) along the cell s length (130 µm), and the refractive profile of the surroundg area (blue).

More information

PEMC PARABOLOIDAL REFLECTOR IN CHIRAL MEDIUM SUPPORTING POSITIVE PHASE VELOC- ITY AND NEGATIVE PHASE VELOCITY SIMULTANE- OUSLY

PEMC PARABOLOIDAL REFLECTOR IN CHIRAL MEDIUM SUPPORTING POSITIVE PHASE VELOC- ITY AND NEGATIVE PHASE VELOCITY SIMULTANE- OUSLY Progress In Electromagnetics Research Letters, Vol. 10, 77 86, 2009 PEMC PARABOLOIDAL REFLECTOR IN CHIRAL MEDIUM SUPPORTING POSITIVE PHASE VELOC- ITY AND NEGATIVE PHASE VELOCITY SIMULTANE- OUSLY T. Rahim

More information

PRINCIPLES OF PHYSICAL OPTICS

PRINCIPLES OF PHYSICAL OPTICS PRINCIPLES OF PHYSICAL OPTICS C. A. Bennett University of North Carolina At Asheville WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Preface 1 The Physics of Waves 1 1.1 Introduction

More information

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron.

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Physics II we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Particle Symbol Charge (e) Mass (kg) Proton P +1 1.67

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Second Edition With 280 Figures and 13 Tables 4u Springer Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

Publication II Wiley Periodicals. Reprinted by permission of John Wiley & Sons.

Publication II Wiley Periodicals. Reprinted by permission of John Wiley & Sons. Publication II Ilkka Laakso and Tero Uusitupa. 2008. Alternative approach for modeling material interfaces in FDTD. Microwave and Optical Technology Letters, volume 50, number 5, pages 1211-1214. 2008

More information

Mechanical thermal expansion correction design for an ultrasonic flow meter

Mechanical thermal expansion correction design for an ultrasonic flow meter Mechanical thermal expansion correction design for an ultrasonic flow meter Emil Martson* and Jerker Delsg EISLAB, Dept. of Computer Science and Electrical Engeerg, Luleå University of Technology, SE-97

More information

USAGE OF NUMERICAL METHODS FOR ELECTROMAGNETIC SHIELDS OPTIMIZATION

USAGE OF NUMERICAL METHODS FOR ELECTROMAGNETIC SHIELDS OPTIMIZATION October 4-6, 2007 - Chiinu, Rep.Moldova USAGE OF NUMERICAL METHODS FOR ELECTROMAGNETIC SHIELDS OPTIMIZATION Ionu- P. NICA, Valeriu Gh. DAVID, /tefan URSACHE Gh. Asachi Technical University Iai, Faculty

More information

A Novel Design of Photonic Crystal Lens Based on Negative Refractive Index

A Novel Design of Photonic Crystal Lens Based on Negative Refractive Index PIERS ONLINE, VOL. 4, NO. 2, 2008 296 A Novel Design of Photonic Crystal Lens Based on Negative Refractive Index S. Haxha 1 and F. AbdelMalek 2 1 Photonics Group, Department of Electronics, University

More information

Fractal Spheres as Molecules for Artificial Dielectric Metamaterials

Fractal Spheres as Molecules for Artificial Dielectric Metamaterials Electromagnetics, 26:289 300, 2006 Copyright Taylor & Francis Group, LLC ISSN: 0272-6343 print/1532-527x online DOI: 10.1080/02726340600570351 Fractal Spheres as Molecules for Artificial Dielectric Metamaterials

More information

WAVEGUIDES FILLED WITH BILAYERS OF DOUBLE- NEGATIVE (DNG) AND DOUBLE-POSITIVE (DPS) METAMATERIALS

WAVEGUIDES FILLED WITH BILAYERS OF DOUBLE- NEGATIVE (DNG) AND DOUBLE-POSITIVE (DPS) METAMATERIALS Progress In Electromagnetics Research B, Vol., 75 9, WAVEGUIDES FILLED WITH BILAYERS OF DOUBLE- NEGATIVE (DNG) AND DOUBLE-POSITIVE (DPS) METAMATERIALS E. Cojocaru * Department of Theoretical Physics, Horia

More information

ANALYTICAL MODEL OF A METASURFACE CONSIST- ING OF A REGULAR ARRAY OF SUB-WAVELENGTH CIRCULAR HOLES IN A METAL SHEET

ANALYTICAL MODEL OF A METASURFACE CONSIST- ING OF A REGULAR ARRAY OF SUB-WAVELENGTH CIRCULAR HOLES IN A METAL SHEET Progress In Electromagnetics Research M, Vol. 18, 209 219, 2011 ANALYTICAL MODEL OF A METASURFACE CONSIST- ING OF A REGULAR ARRAY OF SUB-WAVELENGTH CIRCULAR HOLES IN A METAL SHEET D. Ramaccia *, F. Bilotti,

More information

arxiv: v2 [cond-mat.other] 20 Nov 2008

arxiv: v2 [cond-mat.other] 20 Nov 2008 arxiv:8.2666v2 [cond-mat.other] 2 Nov 28 Subwavelength internal imaging by means of the wire medium Yan Zhao, Pavel Belov and Yang Hao School of Electronic Engineering and Computer Science, Queen Mary,

More information

SIMPLE SKEWON MEDIUM REALIZATION OF DB BOUNDARY CONDITIONS

SIMPLE SKEWON MEDIUM REALIZATION OF DB BOUNDARY CONDITIONS Progress In Electromagnetics Research Letters, Vol. 30, 29 39, 2012 SIMPLE SKEWON MEDIUM REALIZATION OF DB BOUNDARY CONDITIONS I. V. Lindell * and A. Sihvola Department of Radio Science and Engineering,

More information

Extinction properties of a sphere with negative permittivity and permeability

Extinction properties of a sphere with negative permittivity and permeability PERGAMON Solid State Communications 116 (2000) 411 415 www.elsevier.com/locate/ssc Extinction properties of a sphere with negative permittivity and permeability R. Ruppin* Department of Physics and Applied

More information

Electromagnetic Implosion Using a Lens

Electromagnetic Implosion Using a Lens Sensor and Simulation Notes Note 516 July 2006 Electromagnetic Implosion Using a Lens Carl E. Baum University of New Mexico Department of Electrical and Computer Engineering Albuquerque New Mexico 87131

More information

Light Localization in Left-Handed Media

Light Localization in Left-Handed Media Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 4 Proceedings of the 3rd Workshop on Quantum Chaos and Localisation Phenomena Warsaw, Poland, May 25 27, 2007 Light Localization in Left-Handed Media M. Rusek,

More information

Electromagnetic Wave Propagation in the Finite Periodically Layered Chiral Medium

Electromagnetic Wave Propagation in the Finite Periodically Layered Chiral Medium Progress In Electromagnetics Research M, Vol. 38, 185 192, 2014 Electromagnetic Wave Propagation in the Finite Periodically Layered Chiral Medium Nikolai N. Beletskii, Sergey Yu. Polevoy *, and Sergey

More information

Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks

Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks Zhigang Chen, Xu Li, Allen Taflove, and Vadim Backman We report what we believe to be a novel backscattering

More information

Light Scattering Group

Light Scattering Group Light Scattering Inversion Light Scattering Group A method of inverting the Mie light scattering equation of spherical homogeneous particles of real and complex argument is being investigated The aims

More information

A MATLAB GUI FOR SIMULATING THE PROPAGATION OF THE ELECTROMAGNETIC FIELD IN A 2-D INFINITE SPACE

A MATLAB GUI FOR SIMULATING THE PROPAGATION OF THE ELECTROMAGNETIC FIELD IN A 2-D INFINITE SPACE A MATLAB GUI FOR SIMULATING THE PROPAGATION OF THE ELECTROMAGNETIC FIELD IN A 2-D INFINITE SPACE Ioana SĂRĂCUŢ Victor POPESCU Marina Dana ŢOPA Technical University of Cluj-Napoca, G. Bariţiu Street 26-28,

More information

DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr

DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr SET: 1 General Instructions:- DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr All questions are compulsory. There are 30 questions in total. Questions 1 to 8 carry

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Maxwell s equations predict the propagation of electromagnetic energy away from time-varying sources (current and charge) in the form of waves. Consider a linear, homogeneous, isotropic

More information

Fundamentals on light scattering, absorption and thermal radiation, and its relation to the vector radiative transfer equation

Fundamentals on light scattering, absorption and thermal radiation, and its relation to the vector radiative transfer equation Fundamentals on light scattering, absorption and thermal radiation, and its relation to the vector radiative transfer equation Klaus Jockers November 11, 2014 Max-Planck-Institut für Sonnensystemforschung

More information

THE SCATTERING FROM AN ELLIPTIC CYLINDER IRRADIATED BY AN ELECTROMAGNETIC WAVE WITH ARBITRARY DIRECTION AND POLARIZATION

THE SCATTERING FROM AN ELLIPTIC CYLINDER IRRADIATED BY AN ELECTROMAGNETIC WAVE WITH ARBITRARY DIRECTION AND POLARIZATION Progress In Electromagnetics Research Letters, Vol. 5, 137 149, 2008 THE SCATTERING FROM AN ELLIPTIC CYLINDER IRRADIATED BY AN ELECTROMAGNETIC WAVE WITH ARBITRARY DIRECTION AND POLARIZATION Y.-L. Li, M.-J.

More information

Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur

Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur Lecture 08 Wave propagation in anisotropic media Now, we will discuss the propagation of electromagnetic

More information

Evanescent modes stored in cavity resonators with backward-wave slabs

Evanescent modes stored in cavity resonators with backward-wave slabs arxiv:cond-mat/0212392v1 17 Dec 2002 Evanescent modes stored in cavity resonators with backward-wave slabs S.A. Tretyakov, S.I. Maslovski, I.S. Nefedov, M.K. Kärkkäinen Radio Laboratory, Helsinki University

More information

arxiv: v1 [math-ph] 8 Mar 2013

arxiv: v1 [math-ph] 8 Mar 2013 Effects of Planar Periodic Stratified Chiral Nihility Structures on Reflected and Transmitted Powers arxiv:133.1891v1 [math-ph] 8 Mar 13 Nayyar Abbas Shah 1, Faiz Ahmad 2, Aqeel A. Syed 3, Qaisar A. Naqvi

More information

Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur

Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur Lecture 09 Wave propagation in anisotropic media (Contd.) So, we have seen the various aspects of

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Translated by authors With 259 Figures Springer Contents 1 Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

ABSORBING PROPERTIES OF A NEGATIVE PERMITTIVITY LAYER PLACED ON A REFLECTING GRATING

ABSORBING PROPERTIES OF A NEGATIVE PERMITTIVITY LAYER PLACED ON A REFLECTING GRATING Progress In Electromagnetics Research, PIER 64, 135 148, 2006 ABSORBING PROPERTIES OF A NEGATIVE PERMITTIVITY LAYER PLACED ON A REFLECTING GRATING O. P. Kusaykin, P. N. Melezhik, A. Ye. Poyedynchuk and

More information

Finite Element Method (FEM)

Finite Element Method (FEM) Finite Element Method (FEM) The finite element method (FEM) is the oldest numerical technique applied to engineering problems. FEM itself is not rigorous, but when combined with integral equation techniques

More information

Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Scattering Introduction - Consider a localized object that contains charges

More information

A THEORETICAL ANALYSIS AND CFD SIMULATION ON THE CERAMIC MONOLITH HEAT EXCHANGER

A THEORETICAL ANALYSIS AND CFD SIMULATION ON THE CERAMIC MONOLITH HEAT EXCHANGER A THEORETICAL ANALYSIS AND CFD SIMULATION ON THE CERAMIC MONOLITH HEAT EXCHANGER Young Hwan Yoon 1, J Gi Paeng 2 and Ki Chul Kim 3 ABSTRACT A ceramic monolith heat exchanger is studied to fd the performance

More information

Enhancing and suppressing radiation with some permeability-near-zero structures

Enhancing and suppressing radiation with some permeability-near-zero structures Enhancing and suppressing radiation with some permeability-near-zero structures Yi Jin 1,2 and Sailing He 1,2,3,* 1 Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical

More information

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 1. a. Find the capacitance of a spherical capacitor with inner radius l i and outer radius l 0 filled with dielectric

More information

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES Igor Zozouleno Solid State Electronics Department of Science and Technology Linöping University Sweden igozo@itn.liu.se http://www.itn.liu.se/meso-phot

More information

Classical Electrodynamics

Classical Electrodynamics Classical Electrodynamics Third Edition John David Jackson Professor Emeritus of Physics, University of California, Berkeley JOHN WILEY & SONS, INC. Contents Introduction and Survey 1 I.1 Maxwell Equations

More information

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES Tomáš Váry, Juraj Chlpík, Peter Markoš ÚJFI, FEI STU, Bratislava E-mail: tomas.vary@stuba.sk Received xx April 2012; accepted xx May 2012. 1.

More information

arxiv: v1 [physics.class-ph] 10 Feb 2009

arxiv: v1 [physics.class-ph] 10 Feb 2009 Ground-Plane Quasi-Cloaking for Free Space Efthymios Kallos, Christos Argyropoulos, and Yang Hao School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Road, London,

More information

4. Circular Dichroism - Spectroscopy

4. Circular Dichroism - Spectroscopy 4. Circular Dichroism - Spectroscopy The optical rotatory dispersion (ORD) and the circular dichroism (CD) are special variations of absorption spectroscopy in the UV and VIS region of the spectrum. The

More information

NON LINEAR ANOMALOUS SKIN EFFECT IN METALS

NON LINEAR ANOMALOUS SKIN EFFECT IN METALS www.arpapress.com/volumes/vol7issue3/ijrras_7_3_14.pdf NON LINEAR ANOMALOUS SKIN EFFECT IN METALS Arthur Ekpekpo Department of Physics, Delta State University, Abraka, Nigeria E-mail: arthurekpekpo@yahoo.com

More information

Electrodynamics Qualifier Examination

Electrodynamics Qualifier Examination Electrodynamics Qualifier Examination August 15, 2007 General Instructions: In all cases, be sure to state your system of units. Show all your work, write only on one side of the designated paper, and

More information

New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과

New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과 New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과 Metamaterial Near field Configuration in Periodic Structures New Material Material and Metamaterial Material Metamaterial

More information

Electromagnetic energy in a dispersive metamaterial

Electromagnetic energy in a dispersive metamaterial Electromagnetic energy in a dispersive metamaterial Boardman, AD and Marinov, K http://dx.doi.org/10.1103/physrevb.73.165110 Title Authors Type URL Electromagnetic energy in a dispersive metamaterial Boardman,

More information

COLLOCATED SIBC-FDTD METHOD FOR COATED CONDUCTORS AT OBLIQUE INCIDENCE

COLLOCATED SIBC-FDTD METHOD FOR COATED CONDUCTORS AT OBLIQUE INCIDENCE Progress In Electromagnetics Research M, Vol. 3, 239 252, 213 COLLOCATED SIBC-FDTD METHOD FOR COATED CONDUCTORS AT OBLIQUE INCIDENCE Lijuan Shi 1, 3, Lixia Yang 2, *, Hui Ma 2, and Jianning Ding 3 1 School

More information

Lecture 19 Optical MEMS (1)

Lecture 19 Optical MEMS (1) EEL6935 Advanced MEMS (Spring 5) Instructor: Dr. Huikai Xie Lecture 19 Optical MEMS (1) Agenda: Optics Review EEL6935 Advanced MEMS 5 H. Xie 3/8/5 1 Optics Review Nature of Light Reflection and Refraction

More information

Comparative Analysis of Techniques for Source Radiation in Cylindrical EBG with and without Periodic Discontinuities

Comparative Analysis of Techniques for Source Radiation in Cylindrical EBG with and without Periodic Discontinuities 1398 Progress In Electromagnetics Research Symposium Abstracts, St Petersburg, Russia, 22 25 May 2017 Comparative Analysis of Techniques for Source Radiation in Cylindrical EBG with and without Periodic

More information

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0. Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.6 H 0.4 colloids. The standard derivation is 4.4 %. Supplementary

More information

About zone structure of a stack of a cholesteric liquid crystal and isotropic medium layers

About zone structure of a stack of a cholesteric liquid crystal and isotropic medium layers Journal of Physics: Conference Series OPEN ACCESS About zone structure of a stack of a cholesteric liquid crystal and isotropic medium layers To cite this article: A H Gevorgyan et al 04 J. Phys.: Conf.

More information

ELECTROMAGNETIC SCATTERING FROM A CHIRAL- COATED NIHILITY CYLINDER

ELECTROMAGNETIC SCATTERING FROM A CHIRAL- COATED NIHILITY CYLINDER Progress In Electromagnetics Research Letters, Vol. 18, 41 5, 21 ELECTROMAGNETIC SCATTERING FROM A CHIRAL- COATED NIHILITY CYLINDER S. Ahmed and Q. A. Naqvi Department of Electronics Quaid-i-Azam University

More information

Dispersion Relation of Defect Structure Containing Negative Index Materials

Dispersion Relation of Defect Structure Containing Negative Index Materials Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 8 (2013), pp. 965-970 Research India Publications http://www.ripublication.com/aeee.htm Dispersion Relation of Defect Structure

More information

MATERIAL STUDY IN GHZ FREQUENCY DOMAIN OF A DIVALENT LIQUID CRYSTAL

MATERIAL STUDY IN GHZ FREQUENCY DOMAIN OF A DIVALENT LIQUID CRYSTAL 8 th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS S u c e a v a, R o m a n i a, M a y 5 7, 0 0 6 MATERIAL STUDY IN 7.8-1.4 GHZ FREQUENCY DOMAIN OF A DIVALENT LIQUID CRYSTAL Daniela IONESCU

More information

arxiv: v1 [physics.class-ph] 22 May 2018

arxiv: v1 [physics.class-ph] 22 May 2018 APS/123-QED Resonances in small scatterers with impedance boundary Ari Sihvola, Dimitrios C. Tzarouchis, Pasi Ylä-Oijala, Henrik Wallén, and Beibei Kong Aalto University School of Electrical Engineering

More information

CLASS OF BI-QUADRATIC (BQ) ELECTROMAGNETIC MEDIA

CLASS OF BI-QUADRATIC (BQ) ELECTROMAGNETIC MEDIA Progress In Electromagnetics Research B, Vol. 7, 281 297, 2008 CLASS OF BI-QUADRATIC (BQ) ELECTROMAGNETIC MEDIA I. V. Lindell Electromagnetics Group Department of Radio Science and Engineering Helsinki

More information

EPFL Latsis Symposium Negative refraction: revisiting electromagnetics from microwaves to optics, Lausanne,

EPFL Latsis Symposium Negative refraction: revisiting electromagnetics from microwaves to optics, Lausanne, EPFL Latsis Symposium 2005. Negative refraction: revisiting electromagnetics from microwaves to optics, Lausanne, 28.2 2.03.2005 Research on negative refraction and backward-wave media: A historical perspective

More information

Finite element simulation of surface plasmon-polaritons: generation by edge effects, and resonance

Finite element simulation of surface plasmon-polaritons: generation by edge effects, and resonance 1 Matthias Maier May 18, Finite2017 element simulation of SPPs: edge effects and resonance Finite element simulation of surface plasmon-polaritons: generation by edge effects, and resonance Matthias Maier

More information

07/7001 METAMATERIALS FOR SPACE APPLICATIONS

07/7001 METAMATERIALS FOR SPACE APPLICATIONS 07/7001 METAMATERIALS FOR SPACE APPLICATIONS Type of activity: Medium Study (4 months, 25 KEUR) Background and Motivation Brief description of the Metamaterial concept Metamaterials could be considered

More information

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L.

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L. Optical Science and Engineering 2013 Advanced Optics Exam Answer all questions. Begin each question on a new blank page. Put your banner ID at the top of each page. Please staple all pages for each individual

More information

Producing Large Transient Electromagnetic Fields in a Small Region: An Electromagnetic Implosion

Producing Large Transient Electromagnetic Fields in a Small Region: An Electromagnetic Implosion Sensor and Simulation Notes Note 501 August 2005 Producing Large Transient Electromagnetic Fields in a Small Region: An Electromagnetic Implosion Carl E. Baum University of New Mexico Department of Electrical

More information

EPSILON-NEAR-ZERO (ENZ) AND MU-NEAR-ZERO (MNZ) MATERIALS

EPSILON-NEAR-ZERO (ENZ) AND MU-NEAR-ZERO (MNZ) MATERIALS EPSILON-NEAR-ZERO (ENZ) AND MU-NEAR-ZERO (MNZ) MATERIALS SARAH NAHAR CHOWDHURY PURDUE UNIVERSITY 1 Basics Design ENZ Materials Lumped circuit elements Basics Decoupling Direction emission Tunneling Basics

More information

EE485 Introduction to Photonics. Introduction

EE485 Introduction to Photonics. Introduction EE485 Introduction to Photonics Introduction Nature of Light They could but make the best of it and went around with woebegone faces, sadly complaining that on Mondays, Wednesdays, and Fridays, they must

More information

ELECTRODYNAMICS OF CONTINUOUS MEDIA

ELECTRODYNAMICS OF CONTINUOUS MEDIA ELECTRODYNAMICS OF CONTINUOUS MEDIA by L. D. LANDAU and E. M. LIFSHITZ Institute of Physical Problems, USSR Academy of Sciences Volume 8 of Course of Theoretical Physics Translated from the Russian by

More information

Supplementary Figure 1. Schematics of light transmission and reflection from a slab confined between

Supplementary Figure 1. Schematics of light transmission and reflection from a slab confined between Supplementary Figures: Supplementary Figure. Schematics of light transmission and reflection from a slab confined between two infinite media. Supplementary Figure. Reflectivity of a magneto-electric slab

More information

Electromagnetic Waves & Polarization

Electromagnetic Waves & Polarization Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@utep.edu EE 4347 Applied Electromagnetics Topic 3a Electromagnetic Waves & Polarization Electromagnetic These

More information

Homogenous Optic-Null Medium Performs as Optical Surface Transformation

Homogenous Optic-Null Medium Performs as Optical Surface Transformation Progress In Electromagnetics Research, Vol. 151, 169 173, 2015 Homogenous Optic-Null Medium Performs as Optical Surface Transformation Fei Sun 1 and Sailing He1, 2, * Abstract An optical surface transformation

More information

Accumulated Gouy phase shift in Gaussian beam propagation through first-order optical systems

Accumulated Gouy phase shift in Gaussian beam propagation through first-order optical systems 90 J. Opt. Soc. Am. A/Vol. 4, No. 9/September 997 M. F. Erden and H. M. Ozaktas Accumulated Gouy phase shift Gaussian beam propagation through first-order optical systems M. Fatih Erden and Haldun M. Ozaktas

More information

Lecture notes 1: ECEN 489

Lecture notes 1: ECEN 489 Lecture notes : ECEN 489 Power Management Circuits and Systems Department of Electrical & Computer Engeerg Texas A&M University Jose Silva-Martez January 207 Copyright Texas A&M University. All rights

More information

REALIZATION OF GENERALIZED SOFT-AND-HARD BOUNDARY

REALIZATION OF GENERALIZED SOFT-AND-HARD BOUNDARY Progress In Electromagnetics Research, PIER 64, 317 333, 006 REALIZATION OF GENERALIZED SOFT-AND-HARD BOUNDARY I. Hänninen, I. V. Lindell, and A. H. Sihvola Electromagnetics laboratory Helsinki University

More information

ELECTROMAGNETIC FIELDS AND WAVES

ELECTROMAGNETIC FIELDS AND WAVES ELECTROMAGNETIC FIELDS AND WAVES MAGDY F. ISKANDER Professor of Electrical Engineering University of Utah Englewood Cliffs, New Jersey 07632 CONTENTS PREFACE VECTOR ANALYSIS AND MAXWELL'S EQUATIONS IN

More information

Singular Nano-Photonics: hydrodynamics-inspired light trapping & routing Svetlana V. Boriskina

Singular Nano-Photonics: hydrodynamics-inspired light trapping & routing Svetlana V. Boriskina Singular Nano-Photonics: hydrodynamics-inspired light trapping & routing Svetlana V. Boriskina Department of Mechanical Engineering Massachusetts Institute of Technology 2 Cat. F5 tornado (Manitoba, Canada,

More information

Low Losses Left Handed Materials Using Metallic Magnetic Cylinders.

Low Losses Left Handed Materials Using Metallic Magnetic Cylinders. Low Losses Left Handed Materials Using Metallic Magnetic Cylinders. N. García and E.V. Ponizovskaia Laboratorio de Física de Sistemas Pequeños y Nanotecnología, Consejo Superior de Investigaciones Científicas,

More information

SCATTERING BY DIELECTRIC ARRAYS ANALYSIS USING THE EXTENDED METHOD OF AUXILIARY SOURCES EMAS IN CONJUNCTION WITH GLOBAL AND PARTIAL COUPLING

SCATTERING BY DIELECTRIC ARRAYS ANALYSIS USING THE EXTENDED METHOD OF AUXILIARY SOURCES EMAS IN CONJUNCTION WITH GLOBAL AND PARTIAL COUPLING IJCSI International Journal of Computer Science Issues Vol. 10 Issue 6 No 2 November 2013 ISSN Print: 16940814 ISSN Online: 16940784 www.ijcsi.org 244 SCATTERING BY DIELECTRIC ARRAYS ANALYSIS USING THE

More information

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester ELECTROMAGNETISM Second Edition I. S. Grant W. R. Phillips Department of Physics University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Flow diagram inside front cover

More information

Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique

Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique Zhigang Chen and Allen Taflove Department of Electrical and Computer

More information

MUDRA PHYSICAL SCIENCES

MUDRA PHYSICAL SCIENCES MUDRA PHYSICAL SCIENCES VOLUME- PART B & C MODEL QUESTION BANK FOR THE TOPICS:. Electromagnetic Theory UNIT-I UNIT-II 7 4. Quantum Physics & Application UNIT-I 8 UNIT-II 97 (MCQs) Part B & C Vol- . Electromagnetic

More information

Backward wave propagation in left-handed media with isotropic and anisotropic permittivity tensors

Backward wave propagation in left-handed media with isotropic and anisotropic permittivity tensors J. Woodley and M. Mojahedi Vol. 23, No. 11/November 2006/ J. Opt. Soc. Am. B 2377 Backward wave propagation in left-handed media with isotropic and anisotropic permittivity tensors Jonathan Woodley and

More information

APPLICATION OF CHIRAL LAYERS AND METAMATE- RIALS FOR THE REDUCTION OF RADAR CROSS SEC- TION

APPLICATION OF CHIRAL LAYERS AND METAMATE- RIALS FOR THE REDUCTION OF RADAR CROSS SEC- TION Progress In Electromagnetics Research, Vol. 37, 759 773, 23 APPLICATION OF CHIRAL LAYERS AND METAMATE- RIALS FOR THE REDUCTION OF RADAR CROSS SEC- TION Kimia Nikooei Tehrani *, Ali Abdolali, Davoud Zarifi,

More information

Left-handed and right-handed metamaterials composed of split ring resonators and strip wires

Left-handed and right-handed metamaterials composed of split ring resonators and strip wires Left-handed and right-handed metamaterials composed of split ring resonators and strip wires J. F. Woodley, M. S. Wheeler, and M. Mojahedi Electromagnetics Group, Edward S. Rogers Sr. Department of Electrical

More information

Medical Physics & Science Applications

Medical Physics & Science Applications Power Conversion & Electromechanical Devices Medical Physics & Science Applications Transportation Power Systems 1-5: Introduction to the Finite Element Method Introduction Finite Element Method is used

More information

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules AC/DC Module Electromagnetics in COMSOL Multiphysics is extended by add-on Modules 1) Start Here 2) Add Modules based upon your needs 3) Additional Modules extend the physics you can address 4) Interface

More information

Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders an overview

Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders an overview Appl Phys A (2011) 103: 789 793 DOI 10.1007/s00339-010-6219-6 Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders an overview A. Dirksen S. Arslanagic O. Breinbjerg Received:

More information

Module 5 : Plane Waves at Media Interface. Lecture 36 : Reflection & Refraction from Dielectric Interface (Contd.) Objectives

Module 5 : Plane Waves at Media Interface. Lecture 36 : Reflection & Refraction from Dielectric Interface (Contd.) Objectives Objectives In this course you will learn the following Reflection and Refraction with Parallel Polarization. Reflection and Refraction for Normal Incidence. Lossy Media Interface. Reflection and Refraction

More information

Electromagnetic fields and waves

Electromagnetic fields and waves Electromagnetic fields and waves Maxwell s rainbow Outline Maxwell s equations Plane waves Pulses and group velocity Polarization of light Transmission and reflection at an interface Macroscopic Maxwell

More information

Chapter 5. Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice

Chapter 5. Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice Chapter 5 Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice In chapter 3 and 4, we have demonstrated that the deformed rods, rotational rods and perturbation

More information

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Name Electro Dynamic Instructions: Use SI units. Short answers! No derivations here, just state your responses clearly. 1. (2) Write an

More information

Outline of College Physics OpenStax Book

Outline of College Physics OpenStax Book Outline of College Physics OpenStax Book Taken from the online version of the book Dec. 27, 2017 18. Electric Charge and Electric Field 18.1. Static Electricity and Charge: Conservation of Charge Define

More information

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

Nanoscale optical circuits: controlling light using localized surface plasmon resonances Nanoscale optical circuits: controlling light using localized surface plasmon resonances T. J. Davis, D. E. Gómez and K. C. Vernon CSIRO Materials Science and Engineering Localized surface plasmon (LSP)

More information

SECOND LAW ANALYSIS OF LAMINAR FORCED CONVECTION IN A ROTATING CURVED DUCT

SECOND LAW ANALYSIS OF LAMINAR FORCED CONVECTION IN A ROTATING CURVED DUCT HERMAL SCIENCE, Year 2015, Vol. 19, No. 1, pp. 95-107 95 SECOND LAW ANALYSIS OF LAMINAR FORCED CONVECION IN A ROAING CURVED DUC by Seyed Esmail RAZAVI a, Hosseali SOLANIPOUR b, and Parisa CHOUPANI a a

More information

Plasmonic metamaterial cloaking at optical frequencies

Plasmonic metamaterial cloaking at optical frequencies Plasmonic metamaterial cloaking at optical frequencies F. Bilotti *, S. Tricarico, and L. Vegni Department of Applied Electronics, University Roma Tre Via della Vasca Navale 84, Rome 146, ITALY * Corresponding

More information

Power Absorption of Near Field of Elementary Radiators in Proximity of a Composite Layer

Power Absorption of Near Field of Elementary Radiators in Proximity of a Composite Layer Power Absorption of Near Field of Elementary Radiators in Proximity of a Composite Layer M. Y. Koledintseva, P. C. Ravva, J. Y. Huang, and J. L. Drewniak University of Missouri-Rolla, USA M. Sabirov, V.

More information

Contents. 1 Basic Equations 1. Acknowledgment. 1.1 The Maxwell Equations Constitutive Relations 11

Contents. 1 Basic Equations 1. Acknowledgment. 1.1 The Maxwell Equations Constitutive Relations 11 Preface Foreword Acknowledgment xvi xviii xix 1 Basic Equations 1 1.1 The Maxwell Equations 1 1.1.1 Boundary Conditions at Interfaces 4 1.1.2 Energy Conservation and Poynting s Theorem 9 1.2 Constitutive

More information

Electronics Lecture 8 AC circuit analysis using phasors

Electronics Lecture 8 AC circuit analysis using phasors Electronics Lecture 8 A circuit analysis usg phasors 8. Introduction The preious lecture discussed the transient response of an circuit to a step oltage by switchg a battery. This lecture will estigate

More information

Electric field enhancement in metallic and multilayer dielectric gratings

Electric field enhancement in metallic and multilayer dielectric gratings Electric field enhancement in metallic and multilayer dielectric gratings B. W. Shore, M. D. Feit, M. D. Perry, R. D. Boyd, J. A. Britten, R. Chow, G. E. Loomis Lawrence Livermore National Laboratory,

More information