How is the melting point of a molecular compound affected by its structure?

Size: px
Start display at page:

Download "How is the melting point of a molecular compound affected by its structure?"

Transcription

1 How is the melting point of a molecular compound affected by its structure? Pre-experiment Questions (Please come to class prepared to discuss your answers to questions 1-4.) 1. Compile a table, Table 1, containing the structure and melting point for each of the following molecules: pentane, diethyl ether, butanol, dodecane, and icosane. (You may find the NIST Chemistry WebBook to be helpful.) 2. Examine the data in Table 1 and look for trends in melting points. At the molecular level, what structural parameters seem to affect the melting point, and how? Propose at least two parameters that could explain some of the variability in melting point. 3. Some of your parameters would have to be measured in a lab or computational experiment. Propose at least two numerical parameters that we could determine just by examining the Lewis structures of the molecules, and describe the effect of each parameter on the melting point. 4. We have been thinking about melting point at a molecular level. Let s scale up to the macroscopic world. How would the values of each of your parameters affect the thermodynamic function ΔfusH? 1

2 In class discussion 5. Summarize how you could use your parameters to predict the melting point of a molecule. 6. Derive an equation for melting temperature as a function of ΔfusH and use it to justify your model. Experiment: part one Suppose that you have: hexane, octane, decane, t-butanol, 2,2-dimethylpropanol, 1- butanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, cyclohexanol, 1,4- butanediol, 1,6-hexanediol, cis-1,4-cyclohexanediol, and 1,8-octanediol in the lab. 1. Propose two experiments to test your model from question 5. (Be sure to identify the parameters you are using to predict the melting point of a molecule.) On the whiteboard, write a one-sentence description of each experiment, its expected outcome, and how you will analyze your data. Check with your instructor before going on to step Look up the melting point for the compounds in your experiment. The NIST WebBook is an excellent source of data. Thinking About the Data 3. Below your description, draw the molecules involved. 4. Annotate the molecules with the values of their model parameters. 5. Annotate your structures with their melting points in kelvin. 6. Does the melting point data confirm the predictions? 2

3 7. Present your results to the class and discuss in what way your data either confirms or refutes your model. 8. Consider any outlying data point. In what way does it deviate from the trend? 9. Based on your model look up the appropriate thermodynamic property (preexperiment question 6) to see if it will explain any anomalous data. 10. Propose an additional structural property that would explain the data set. Justify your answer with the melting point equation. 11. In order to develop a quantity that correlates with this property, is there an equation that generally relates this additional parameter to the thermodynamic function that affects melting point? 12. Summarize the overall relationship between the structural parameter, the thermodynamic parameter, and melting point. Additional Information We can use Boltzmann s equation to calculate the entropy of a system: S = R ln W Here W is the number of microstates contained in a macrostate. Flexible molecules can adopt multiple conformations, generating entropy. Sconformation = R ln Wconformation The number of conformations is function of the number of rotatable bonds; this parameter is usually given the symbol τ. A bond is rotatable if it is a single bond that is not in a ring. (We are simplifying a bit here; bonds in large rings can rotate, and resonance can affect rotation. We will ignore those complications in this experiment.) Because hydrogen atoms are so light, the entropy generated by the rotation of a methyl group is negligible, so terminal bonds are not considered rotatable. 3

4 Consider the Newman projection of butane shown below. Butane has one non-terminal single bond, so τ = 1. Note that there are three conformers. This is true for all rotatable bonds, so we can calculate the total number of conformations from τ: Wconformation = 3 τ Thus, the conformational entropy is a function of the number of rotatable bonds: Sconformation = R ln (3 τ ) Thus, the conformational entropy is a linear function of τ: Sconformation = τ R ln (3) Experiment: part two Suppose that you have: methylcyclobutane, neopentane, 1,1-dimethylcyclopentane, bicyclo[3.1.0]hexane, trans-bicyclo[3.3.0]octane, and cubane in the lab. 1. Build each of these the molecules in Spartan, webmo, or another program and rotate them in 3-D. 2. Propose an experiment to test your model. (Be sure to identify the parameters you are using to predict the melting point of a molecule.) On the whiteboard, write a one-sentence description of your experiment and its expected outcome. Check with your instructor before going on to step Look up the melting point for the compounds in your experiment. Thinking About the Data 4. Below your description, draw the molecules involved. 5. Annotate the molecules with the values of their model parameters. 6. Annotate your structures with their melting points in kelvin. 7. Present your results to the class and discuss in what way your data either confirms or refutes your model. 4

5 8. Consider any outlying data. How does it deviate from the trend? 9. Propose an additional model parameter that would explain the data set. 10. Compare ΔfusH of two molecules to assess whether or not this thermodynamic function is consistent with the melting point for this additional parameter. 11. Based on the melting point data, what does this indicate about the difference in entropy of the solid and liquid state for a symmetric molecule? Explain. 12. Would a highly symmetric molecule have more orientations in the liquid state than an asymmetric molecule? Why or why not? 13. Would a highly symmetric molecule have more orientations in the solid state than an asymmetric molecule? Why or why not? 14. Summarize how your answers to questions 12 and 13 are consistent with your answer to question 11. 5

6 Additional Information One way to quantify symmetry is the use the rotational symmetry number, σ. The value of σ is equal to the number of indistinguishable orientations. This is illustrated for twodimensional objects shown below. Symmetric objects can fit into a lattice in more than one way; in this case, the triangles have three-fold symmetry. Asymmetric objects may still be able to form a lattice, but each object can fit into the lattice in only one way; in this case, σ = 1. 6

7 Post-experiment Questions 1. What are the values for n, h, σ, and τ for cis-1,3-cyclobutanediol? 2. In many applications we need a compound to be a fluid; that is, a liquid or gas. For instance, we might need to move it through a pipeline. What features favor a molecule existing in a fluid state rather than the solid state? 3. Suppose we need a liquid with a wide working range: that is, we want large difference between the boiling point and the melting point. What molecular features would enable this? 4. Proteins that contain a large proportion of the amino acid proline can have unusually thermal stability; it takes a surprisingly high temperature to denature them. Explain why this is so. 7

8 References (1) Dannenfelser, R.-M.; Yalkowsky, S. H. Estimation of Entropy of Melting from Molecular Structure: A Non-Group Contribution Method. Ind. Eng. Chem. Res. 1996, 35 (4), (2) Gilson, M. K.; Irikura, K. K. Symmetry Numbers for Rigid, Flexible, and Fluxional Molecules: Theory and Applications. J. Phys. Chem. B 2010, 114 (49),

The Entropy of Fusion and Quantitative Structure-Property Relationship (QSPR)

The Entropy of Fusion and Quantitative Structure-Property Relationship (QSPR) The Entropy of Fusion and Quantitative Structure-Property Relationship (QSPR) Objectives You will use multiple linear regression to predict the value of the entropy of fusion of a compound based on its

More information

SUPPLEMENTAL HOMEWORK SOLUTIONS WEEK 10

SUPPLEMENTAL HOMEWORK SOLUTIONS WEEK 10 SUPPLEMENTAL OMEWORK SOLUTIONS WEEK 10 Assignment for Tuesday, March 21 st 9.105 a) ombustion reactions require oxygen (in addition to the hydrocarbon). b) The products are O 2 and 2 O (carbon dioxide

More information

Homework Problem Set 4 Solutions

Homework Problem Set 4 Solutions Chemistry 380.37 Dr. Jean M. Standard omework Problem Set 4 Solutions 1. A conformation search is carried out on a system and four low energy stable conformers are obtained. Using the MMFF force field,

More information

Ch. 10 in- Class Exercise

Ch. 10 in- Class Exercise Chemistry 123/125 Ch. 10 in- Class Exercise In a liquid, the molecules are very close to one another and are constantly moving and colliding. Molecules attract each other, and the force of attraction is

More information

ch03 Student: A. anti B. gauche C. skewed D. eclipsed 2. What is the IUPAC name of the compound shown in the following Newman projection?

ch03 Student: A. anti B. gauche C. skewed D. eclipsed 2. What is the IUPAC name of the compound shown in the following Newman projection? ch03 Student: 1. Identify the conformation of butane shown below. A. anti B. gauche C. skewed D. eclipsed 2. What is the IUPAC name of the compound shown in the following Newman projection? A. 1,1,2,2-tetramethylethane

More information

Chemistry EXAM 1 (Fall Dr. Robertson)

Chemistry EXAM 1 (Fall Dr. Robertson) Chemistry 210 -- EXAM 1 (Fall 2003 - Dr. Robertson) ***** BEFORE BEGINNING EXAM, PLEASE READ THE FOLLOWING ***** The exam consists of this cover sheet and fourteen problems, worth the amounts indicated.

More information

Isomerism in Alkanes, Haloalkanes, and Alkenes using Molecular Models

Isomerism in Alkanes, Haloalkanes, and Alkenes using Molecular Models EXPERIMENT 1 Isomerism in Alkanes, aloalkanes, and Alkenes using Molecular Models Materials Needed - Molecular model kit Relevant Textbook Reading Denniston, chap 11.2-11.4, 12.1-12.3 Background In uncharged,

More information

Proton Acidity. (b) For the following reaction, draw the arrowhead properly to indicate the position of the equilibrium: HA + K + B -

Proton Acidity. (b) For the following reaction, draw the arrowhead properly to indicate the position of the equilibrium: HA + K + B - Proton Acidity A01 Given that acid A has a pk a of 15 and acid B has a pk a of 10, then: (a) Which of the two acids is stronger? (b) For the following reaction, draw the arrowhead properly to indicate

More information

9. Which compound is an alcohol? A) methanol C) butane B) ethyne D) propanal

9. Which compound is an alcohol? A) methanol C) butane B) ethyne D) propanal 1. Given the structural formulas for two organic compounds: The differences in their physical and chemical properties are primarily due to their different A) number of hydrogen atoms B) number of carbon

More information

Exp 08: Organic Molecules

Exp 08: Organic Molecules Exp 08: Organic Molecules 109.5 109.5 Exp 08: Organic Molecules Part A: Representing Organic Molecules Part E: Functional Groups Formula to Model Explore different ways to draw and sketch, to represent

More information

Organic Nomenclature

Organic Nomenclature University of Puget Sound Department of Chemistry Chem 111 Spring, 2010 Organic Nomenclature LEARNING GOALS AND ASSESSMENTS 1. Be familiar with the structure and nomenclature of organic compounds. a. Identify

More information

Note: You must have your answers written in pen if you want a regrade!!!!

Note: You must have your answers written in pen if you want a regrade!!!! NAME (Print): SIGNATURE: hemistry 310M/318M Dr. Brent Iverson 1st Midterm ctober 4, 2007 Please print the first three letters of your last name in the three boxes Please Note: This test may be a bit long,

More information

Thinking Like a Chemist About Phase Changes UNIT 5 DAY 3

Thinking Like a Chemist About Phase Changes UNIT 5 DAY 3 Thinking Like a Chemist About Phase Changes UNIT 5 DAY 3 What are we going to learn today? First day? Get a handout from a TA after class. Thinking Like a Chemist in the context of Phase Changes Vapor

More information

ORGANIC CHEMISTRY I MIDTERM TEST

ORGANIC CHEMISTRY I MIDTERM TEST Concordia University CEM 221 Winter 2005 Dr. C. Rogers, Section 02 --- MIDTERM TEST RGANIC CEMISTRY I MIDTERM TEST INSTRUCTINS: PLEASE READ TIS PAGE WILE WAITING T START YUR EXAM. This test paper includes

More information

Functional Groups SCH4C

Functional Groups SCH4C Functional Groups With the huge number of organic compounds in existence, it would be very difficult for you to memorize the properties of each compound separately. Fortunately the compounds fall into

More information

Intermolecular forces are classified into four major types.

Intermolecular forces are classified into four major types. Intermolecular forces are classified into four major types. 1. Ion-dipole: IMF s that occur between neighboring an ion solution and a polar molecule (dipole) also in solution. Na+ 2. Dipole-dipole: IMF

More information

CHEM 241 ALKANES AND CYCLOALKANES CHAP 3 ASSIGN H H

CHEM 241 ALKANES AND CYCLOALKANES CHAP 3 ASSIGN H H CEM 241 ALKANES AND CYCLOALKANES CAP 3 ASSIGN COMFORMATIONS AND cis-trans STEREOISOMERS 1. trans-1,2-dibromocyclohexane is represented by structure(s): D. II and III E. I and II 2. cis-1,3-dibromocyclohexane

More information

# C Name Structural Diagram The simplest hydrocarbon has one carbon atom.

# C Name Structural Diagram The simplest hydrocarbon has one carbon atom. Organic Chem Class notes name: 1. is the first atom of organic chemistry. 2. Carbon can make bonds to other carbon atoms. 3. There are metals in organic chem 4. Count out loud to ten in organic prefixes

More information

Alkanes and Cycloalkanes

Alkanes and Cycloalkanes Alkanes and Cycloalkanes Alkanes molecules consisting of carbons and hydrogens in the following ratio: C n H 2n+2 Therefore, an alkane having 4 carbons would have 2(4) + 2 hydrogens, which equals 10 hydrogens.

More information

unsaturated (one or more pi bonds) alkanes alkenes alkynes benzene naming alkanes C 4 H 10 C 5 H 12 C 6 H 14 C 7 H 16 C 8 H 18 C 9 H 20 C 10 H 22

unsaturated (one or more pi bonds) alkanes alkenes alkynes benzene naming alkanes C 4 H 10 C 5 H 12 C 6 H 14 C 7 H 16 C 8 H 18 C 9 H 20 C 10 H 22 hapter 4: Alkanes and ycloalkanes [Sections: 4.1-4.14] Basic Organic ompound Nomenclature hydrocarbons: comprised of just carbon and hydrogen saturated (no pi bonds) unsaturated (one or more pi bonds)

More information

Chem 3A - Practice Midterm I. Note: This is a slightly modified version of the first midterm exam from Chem 112A Fall 2012

Chem 3A - Practice Midterm I. Note: This is a slightly modified version of the first midterm exam from Chem 112A Fall 2012 Chem 3A - Practice Midterm I Note: This is a slightly modified version of the first midterm exam from Chem 112A Fall 2012 Please provide all answers in the space provided. You are not allowed to use a

More information

POGIL: Intermolecular Forces and Boiling Points

POGIL: Intermolecular Forces and Boiling Points Name Date Block POGIL: Intermolecular Forces and Boiling Points Model 1: Intermolecular Forces in Liquids and Gases Molecules attract each other, and the intermolecular force increases rapidly as the distance

More information

CH 3. Section Resources

CH 3. Section Resources 22.3 1 FOCUS Objectives 22.3.1 Explain why structural isomers have different properties. 22.3.2 Describe the conditions under which geometric isomers are possible. 22.3.3 Identify optical isomers. Guide

More information

Constitutional Isomers and Conformations of Alkanes & Cycloalkanes

Constitutional Isomers and Conformations of Alkanes & Cycloalkanes Discovering Molecular Models #1: Constitutional Isomers Conformations of Alkanes & Cycloalkanes There are no additional tutorial or laboratory notes. Read bring your course notes, as they provide all of

More information

CHEMISTRY MIDTERM # 1 answer key September 29, 2005

CHEMISTRY MIDTERM # 1 answer key September 29, 2005 CEMISTRY 313-01 MIDTERM # 1 answer key September 29, 2005 Statistics: Average: 75 pts (75%); ighest: 99 pts (99%); Lowest: 31 pts (31%) Number of students performing at or above average: 28 (57%) Number

More information

Constitutional Isomers and Conformations of Alkanes & Cycloalkanes

Constitutional Isomers and Conformations of Alkanes & Cycloalkanes Discovering Molecular Models #1: Constitutional Isomers Conformations of Alkanes & Cycloalkanes There are no additional tutorial or laboratory notes. Read bring your course notes, as they provide all of

More information

"Friendship is one mind in two bodies." Mencius

Friendship is one mind in two bodies. Mencius California State Polytechnic University, Pomona 1 Fall, 2014 Midterm Exam Chem 314 Beauchamp Chem 314 Name Problem Points Credit 1. Nomenclature 30 2. 2D Lewis structures 20 3. 3D Structures, Formal Charge

More information

Homework - Chapter 14 Chem 2320

Homework - Chapter 14 Chem 2320 omework - Chapter 14 Chem 2320 Name 1. Label each alcohol in the the following compounds as primary, secondary, tertiary, enol, or aryl. 2. Fill in the blanks in the following sentences. Enols are in equilibrium

More information

Sample Exercise 11.1 Identifying Substances That Can Form Hydrogen Bonds

Sample Exercise 11.1 Identifying Substances That Can Form Hydrogen Bonds Sample Exercise 11.1 Identifying Substances That Can Form Hydrogen Bonds In which of these substances is hydrogen bonding likely to play an important role in determining physical properties: methane (CH

More information

Introduction to Organic Chemistry: Hydrocarbons

Introduction to Organic Chemistry: Hydrocarbons Introduction to Organic Chemistry: Hydrocarbons Chapter 12 Chapter 12 12.1 Organic Compounds 12.2 Alkanes 12.3 Alkanes with Substituents 12.4 Properties of Alkanes 12.5 Alkenes and Alkynes 12.6 Cis-Trans

More information

Organic Compounds. Introduction to Organic Chemistry: Hydrocarbons. also contain other nonmetals such as oxygen, nitrogen,

Organic Compounds. Introduction to Organic Chemistry: Hydrocarbons. also contain other nonmetals such as oxygen, nitrogen, Introduction to Organic Chemistry: Hydrocarbons Chapter 12 12.1 Organic Compounds Identify properties characteristic of organic or inorganic compounds. Chapter 12 12.1 Organic Compounds 12.2 Alkanes 12.3

More information

CHEMISTRY MIDTERM # 1 answer key October 05, 2010

CHEMISTRY MIDTERM # 1 answer key October 05, 2010 CEMISTRY 313-03 MIDTERM # 1 answer key ctober 05, 2010 Statistics: Average: 73 pts (73%); ighest: 99 pts (99%); Lowest: 31 pts (31%) Number of students performing at or above average: 61 (52%) Number of

More information

EXAMINATION 1 Chemistry 3A

EXAMINATION 1 Chemistry 3A 1 EXAMINATION 1 Chemistry 3A Name: Key Print first name before second! Use capital letters! SID #: Peter Vollhardt February 18, 2016 GSI (if you are taking Chem 3AL): Please provide the following information

More information

General Chemistry (CHEM ) Intermolecular Forces, Phase Transitions, Solution Properties Dr. Bennett

General Chemistry (CHEM ) Intermolecular Forces, Phase Transitions, Solution Properties Dr. Bennett Name Slayter Box Hour Examination 1 January 29, 2003 General Chemistry (CHEM 122-01) Intermolecular Forces, Phase Transitions, Solution Properties Dr. Bennett Please do not open until instructed Chemistry

More information

Chapter 4: Alkanes and Cycloalkanes

Chapter 4: Alkanes and Cycloalkanes 1. Nomenclature hapter 4: lkanes and ycloalkanes hydrocarbons: comprised of just carbon and hydrogen saturated (no pi bonds) [Sections: 4.1-4.14] unsaturated (one or more pi bonds) alkanes alkenes alkynes

More information

5.3 ORGANIC COMPOUNDS

5.3 ORGANIC COMPOUNDS 5.3 ORGANIC COMPOUNDS ORGANIC CHEMISTRY The chemistry of CARBON containing compounds The majority of organic compounds include CARBON CARBON chains Most of the time HYDROGEN is present in organic molecules

More information

Organic Chemistry. Alkanes (2)

Organic Chemistry. Alkanes (2) For updated version, please click on http://ocw.ump.edu.my Organic Chemistry Alkanes (2) by Seema Zareen & Dr. Izan Izwan Misnon Faculty Industrial Science & Technology seema@ump.edu.my; iezwan@ump.edu.my

More information

National 5 Chemistry. Unit 2 Nature s Chemistry Summary Notes

National 5 Chemistry. Unit 2 Nature s Chemistry Summary Notes National 5 Chemistry Unit 2 Nature s Chemistry Summary Notes Success Criteria I am confident that I understand this and I can apply this to problems? I have some understanding but I need to revise this

More information

Chapter 5 Lesson 1 Notes

Chapter 5 Lesson 1 Notes Chapter 5 Lesson 1 Notes 5.1 How Atoms Form Compounds compound chemical formula molecule chemical bond ionic bond valence covalent bond What is a compound? 5.1 How Atoms Form Compounds A compound is a

More information

Basic Organic Chemistry Nomenclature CHEM 104 B

Basic Organic Chemistry Nomenclature CHEM 104 B Basic Organic Chemistry Nomenclature CHEM 104 B I have gone ahead and compiled all of the basic naming rules that we will be dealing with into one worksheet. I hope this will be helpful to you as you work

More information

1. Multiple Choice Questions (15 points) Please circle the best answer to each question. Lone pairs are generally not shown.

1. Multiple Choice Questions (15 points) Please circle the best answer to each question. Lone pairs are generally not shown. Page 2 Name _ANSWER KEY_ 1. Multiple Choice Questions (15 points) Please circle the best answer to each question. Lone pairs are generally not shown. (i) The formal charges on the nitrogen and oxygen atoms

More information

Department of Chemistry University of Texas at Austin

Department of Chemistry University of Texas at Austin Physical Equilibria Unit Activity Thinking Like a Chemist KEY A major goal for this class is for you to learn the concept of macro/micro thinking or Thinking Like a Chemist. Thinking like a chemist is

More information

A. They all have a benzene ring structure in the molecule. B. They all have the same molecular formula. C. They all have carbon and hydrogen only

A. They all have a benzene ring structure in the molecule. B. They all have the same molecular formula. C. They all have carbon and hydrogen only Ch 21 G12 CoreI- Choose the best answer, then transfer your answers to page (1) [32 marks; 2 each] 1. What characteristic do all aromatic hydrocarbons share? A. They all have a benzene ring structure in

More information

All organic compounds contain carbon, however, not all carbon containing compounds are classified as organic. Organic compounds covalently bonded

All organic compounds contain carbon, however, not all carbon containing compounds are classified as organic. Organic compounds covalently bonded Chapter 20 All organic compounds contain carbon, however, not all carbon containing compounds are classified as organic. Organic compounds covalently bonded compounds containing carbon, excluding carbonates

More information

Organic Chemistry 1 CHM 2210 Exam 2 (October 10, 2001)

Organic Chemistry 1 CHM 2210 Exam 2 (October 10, 2001) Organic Chemistry 1 CM 2210 Exam 2 (October 10, 2001) Name (print): _ Signature: _ Student ID Number: _ There are 10 multiple choice problems (4 points each) on this exam. Record the answers to the multiple

More information

Name: Unit 11 Organic Chemistry

Name: Unit 11 Organic Chemistry 1. Which compound is a member of the same homologous series as C3H8? A) CH4 B) C4H8 C) C5H8 D) C5H10 2. Which formula represents an unsaturated hydrocarbon? 5. Which structural formula represents 2-pentyne?

More information

Class Activity 5A. Conformations of Alkanes Part A: Acyclic Compounds

Class Activity 5A. Conformations of Alkanes Part A: Acyclic Compounds Class Activity 5a Conformations of Alkanes Part A: Acyclic Compounds 1 Model 1: Isomers Class Activity 5A Conformations of Alkanes Part A: Acyclic Compounds C C O C C C C C C C O O A B C wedge, bond coming

More information

1. How do you account for the formation of ethane during chlorination of methane?

1. How do you account for the formation of ethane during chlorination of methane? 1. How do you account for the formation of ethane during chlorination of methane? The formation of ethane is due to the side reaction in termination step by the combination of two CH 3 free radicals. 2.

More information

Chemistry 2.5 AS WORKBOOK. Working to Excellence Working to Excellence

Chemistry 2.5 AS WORKBOOK. Working to Excellence Working to Excellence Chemistry 2.5 AS 91165 Demonstrate understanding of the properties of selected organic compounds WORKBOOK Working to Excellence Working to Excellence CONTENTS 1. Writing Excellence answers to Cis-Trans

More information

Alkanes and Cycloalkanes

Alkanes and Cycloalkanes Chapter 3 Alkanes and Cycloalkanes Two types Saturated hydrocarbons Unsaturated hydrocarbons 3.1 Alkanes Also referred as aliphatic hydrocarbons General formula: CnH2n+2 (straight chain) and CnH2n (cyclic)

More information

Chemistry 3719 Fall 2000 Exam 1 Name: KEY. Anti Gauche Eclipsed 1 Eclipsed 2

Chemistry 3719 Fall 2000 Exam 1 Name: KEY. Anti Gauche Eclipsed 1 Eclipsed 2 hemistry 3719 Fall 2000 Exam 1 Name: KEY This exam is worth 100 points and you have 50 minutes to complete it. You may use molecular models to help you with any of the problems. Good luck. 1. (8 pts) 1,2-Dibromoethane

More information

a. Does the model have a plane of symmetry? Yes No The central carbon is said to be a stereocenter, stereogenic center, or chiral carbon.

a. Does the model have a plane of symmetry? Yes No The central carbon is said to be a stereocenter, stereogenic center, or chiral carbon. Name: TA Name Lab Section: Day Time OPTICAL ISOMERISM 1. Construct a model that has a central carbon atom with 4 different colored spheres attached to it, representing four different atoms or groups. Draw

More information

Summary Chapter General, Organic, & Biological Chemistry Janice Gorzynski Smith

Summary Chapter General, Organic, & Biological Chemistry Janice Gorzynski Smith Summary Chapter 11-12 General, Organic, & Biological Chemistry Janice Gorzynski Smith Organic Chem Review: Valence Electrons Example: Determine the valence electrons of Selenium (Se): 1. Find Se on the

More information

1. Complete the template below to show the stereochemistry of (3R,4R) 3-chloro-4,5,5- trimethyl-hexane-1,4-diol.

1. Complete the template below to show the stereochemistry of (3R,4R) 3-chloro-4,5,5- trimethyl-hexane-1,4-diol. Chemistry 51 Exam 1, Fall 2004 This is a closed book exam. The exam lasts 50 minutes. All answers must appear on the answer sheet. Only the answer sheet will be collected. Put your name on the answer sheet

More information

Introduction to Alkanes

Introduction to Alkanes Introduction to Alkanes Alkanes do not react with most reagents for two reasons. First, carbon-carbon and carbon-hydrogen single bonds are very strong due to good orbital overlap. Second, the carbon-hydrogen

More information

Intermolecular Forces in Solids, Liquids, and Gases What Do You See?

Intermolecular Forces in Solids, Liquids, and Gases What Do You See? Section 2 Intermolecular Forces in Solids, Liquids, and Gases What Do You See? Learning Outcomes In this section you will Describe how the size and shape of molecules affect their physical state. Classify

More information

Evaporation and Intermolecular Attractions

Evaporation and Intermolecular Attractions Evaporation and Intermolecular Attractions BACKGROUND A substance absorbs energy from its surroundings as it changes from the liquid to the gas phase. The absorption of heat by the evaporating substance

More information

1. When methane is photochlorinated a small amount of ethane is found in the product. Give a full mechanism to account for presence of the ethane.

1. When methane is photochlorinated a small amount of ethane is found in the product. Give a full mechanism to account for presence of the ethane. Chemistry 51 DS Quiz 2 1. When methane is photochlorinated a small amount of ethane is found in the product. Give a full mechanism to account for presence of the ethane. 2. When 2,3-dimethylbutane is monochlorinated

More information

Name: Unit 11 Organic Chemistry

Name: Unit 11 Organic Chemistry 1. Which compound is a member of the same homologous series as C3H8? A) CH4 B) C4H8 C) C5H8 D) C5H10 2. Which formula represents an unsaturated hydrocarbon? 5. Which structural formula represents 2-pentyne?

More information

Practice Hour Examination # 1-2

Practice Hour Examination # 1-2 CHEM 346 Organic Chemistry I Fall 2013 Practice Hour Examination # 1-2 Solutions Key Page 1 of 12 CHEM 346 Organic Chemistry I (for Majors) Instructor: Paul J. Bracher Practice Hour Examination # 1-2 Monday,

More information

Experiment 14. Intermolecular Forces rev 1/12

Experiment 14. Intermolecular Forces rev 1/12 Experiment 14 Intermolecular Forces rev 1/12 GAL: We will examine connections between molecular structure, intermolecular forces, and physical properties. BAKGRUND: Physical properties such as solubility,

More information

Experiment 10: Molecular Models

Experiment 10: Molecular Models B hemistry 162 Laboratory Manual Name Section Experiment 10: Molecular Models Modeling the shape of small organic molecules Previously we have considered molecules and ions for which one chemical formula

More information

Organic Chemistry. A. Introduction

Organic Chemistry. A. Introduction Organic Chemistry A. Introduction 1. Organic chemistry is defined as the chemistry of CARBON compounds. There are a huge number of organic compounds. This results from the fact that carbon forms chains

More information

Lab Workshop 1: Nomenclature of alkane and cycloalkanes

Lab Workshop 1: Nomenclature of alkane and cycloalkanes Lab Workshop 1: Nomenclature of alkane and cycloalkanes Each student work group choose a Leader (reads activity out loud, poses questions to group), Facilitator (makes sure everyone is participating equally,

More information

Chemistry 3719, Fall 2003 Exam 1 Name:

Chemistry 3719, Fall 2003 Exam 1 Name: Chemistry 3719, Fall 2003 Exam 1 Name: This exam is worth 100 points out of a total of 600 points for Chemistry 3719/3719L. You have 50 minutes to complete the exam and you may use molecular models as

More information

Materials Needed Today

Materials Needed Today Chapter 5 Lesson 1 Materials Needed Today Please take these materials out of your backpack. Pencil Hot Sync Thursday 1/23/14 Copy graph and Show all work on your hot sync. Periodic Table 5.1 How Atoms

More information

CHAPTER 2. Structure and Reactivity: Acids and Bases, Polar and Nonpolar Molecules

CHAPTER 2. Structure and Reactivity: Acids and Bases, Polar and Nonpolar Molecules CHAPTER 2 Structure and Reactivity: Acids and Bases, Polar and Nonpolar Molecules 2-1 Kinetics and Thermodynamics of Simple Chemical Processes Chemical thermodynamics: Is concerned with the extent that

More information

CHEM 2312 practice final. Version - II

CHEM 2312 practice final. Version - II EM 2312 practice final Version - II The following standardized final examination covers the entire introductory year of organic chemistry (EM 2311 and 2312 at Georgia Tech). The exam consists of 70 multiple

More information

Hour Examination # 1

Hour Examination # 1 CHEM 2410 Organic Chemistry 1 Fall 2017 Exam # 1 Problem Booklet Page 1 of 11 CHEM 2410 Organic Chemistry 1 Fall 2017 Exam Booklet No. Instructors: Paul Bracher & Erin Whitteck Hour Examination # 1 Wednesday,

More information

CHEMISTRY MIDTERM # 1 answer key February 12, 2009

CHEMISTRY MIDTERM # 1 answer key February 12, 2009 CEMSTRY 313-01 MDTERM # 1 answer key February 12, 2009 Statistics: Average: 78 pts (78%); ighest: 97 pts (97%); Lowest: 43 pts (43%) umber of students performing at or above average: 28 (62%) umber of

More information

Chem. 27 Section 1 Conformational Analysis Week of Feb. 6, TF: Walter E. Kowtoniuk Mallinckrodt 303 Liu Laboratory

Chem. 27 Section 1 Conformational Analysis Week of Feb. 6, TF: Walter E. Kowtoniuk Mallinckrodt 303 Liu Laboratory Chem. 27 Section 1 Conformational Analysis TF: Walter E. Kowtoniuk wekowton@fas.harvard.edu Mallinckrodt 303 Liu Laboratory ffice hours are: Monday and Wednesday 3:00-4:00pm in Mallinckrodt 303 Course

More information

2. Which of the following statements is false concerning the structure of histidine?

2. Which of the following statements is false concerning the structure of histidine? Page 1 MULTIPLE CHOICE - Three (3) points each. Histidine, one of the 20 naturally occurring amino acids, has the following skeletal structure. Complete a Lewis structure for histidine and answer the following

More information

Homework - Review of Chem 2310

Homework - Review of Chem 2310 omework - Review of Chem 2310 Chapter 1 - Atoms and Molecules Name 1. What is organic chemistry? 2. Why is there an entire one year course devoted to the study of organic compounds? 3. Give 4 examples

More information

Experiment 3 Molecular Models and Isomers

Experiment 3 Molecular Models and Isomers Experiment 3 Molecular Models Isomers For beginning students in organic chemistry, it usually takes some practice to visualize molecules in three dimensions. It also takes practice to recognize underst

More information

1 An Experimental and Computational Investigation of the Dehydration of 2-Butanol

1 An Experimental and Computational Investigation of the Dehydration of 2-Butanol 1 An Experimental and Computational Investigation of the Dehydration of 2-Butanol Summary. 2-Butanol will be dehydrated to a mixture of 1-butene and cis- and trans-2-butene using the method described in

More information

Practice Packet Unit 11: Organic Chemistry

Practice Packet Unit 11: Organic Chemistry Regents Chemistry: Mr. Palermo Practice Packet Unit 11: Organic Chemistry www.mrpalermo.com 1 LESSON 1: Introduction to Organic Chemistry 1. How many times does carbon bond and why? 2. A student investigated

More information

Chemistry 104 Test #2D October 13, Please follow these instructions

Chemistry 104 Test #2D October 13, Please follow these instructions hemistry 104 Test #2D ctober 13, 2009 Please follow these instructions 1. There is only 1 correct answer for Multiple-choice questions (choose the best answer) 2. Please remember that only the answer sheets

More information

Name (printed): Signature:

Name (printed): Signature: CHEM Lab Section Number: Name (printed): Signature: This exam consists of 36 questions all of equal value for a total of 225 points. Make sure that your test has all of the pages. Please read each problem

More information

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound?

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound? EM 331: hapter 1/2: Structures (Atoms, Molecules, Bonding) 1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound? N 2 N 2 N 1 2 3 4 2. What hybrid orbitals are used to

More information

Literature values: ΔH f, gas = % error Source: ΔH f, solid = % error. For comparison, your experimental value was ΔH f = phase:

Literature values: ΔH f, gas = % error Source: ΔH f, solid = % error. For comparison, your experimental value was ΔH f = phase: 1 Molecular Calculations Lab: Some guideline given at the bottom of page 3. 1. Use the semi-empirical AM1 method to calculate ΔH f for the compound you used in the heat of combustion experiment. Be sure

More information

Chapter 6 Principles of Stereochemistry

Chapter 6 Principles of Stereochemistry 6.1 (a) This compound is chiral. Methane is achiral. Instructor Supplemental Solutions to Problems 2010 Roberts and Company Publishers Chapter 6 Principles of Stereochemistry Solutions to In-Text Problems

More information

More Tutorial at

More Tutorial at 1. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) When a small amount of hexanoic acid [CH3(CH2)4CO2H, pka~4.8], is 1) added to a separatory funnel

More information

Unit 5: Organic Chemistry

Unit 5: Organic Chemistry Unit 5: Organic Chemistry Organic chemistry: discipline in chemistry focussing strictly on the study of hydrocarbons compounds made up of carbon & hydrogen Organic compounds can contain other elements

More information

Lattice protein models

Lattice protein models Lattice protein models Marc R. Roussel epartment of Chemistry and Biochemistry University of Lethbridge March 5, 2009 1 Model and assumptions The ideas developed in the last few lectures can be applied

More information

Professor K. Intermolecular forces

Professor K. Intermolecular forces Professor K Intermolecular forces We've studied chemical bonds which are INTRAmolecular forces... We now explore the forces between molecules, or INTERmolecular forces which you might rightly assume to

More information

Chapter 27: Structure and Bonding

Chapter 27: Structure and Bonding Chapter 27: Structure and Bonding 1 Atomic Orbitals: Wave functions that represent the probability of finding electrons in a specific region of space s, p, d, f orbitals In organic chemistry, need to concentrate

More information

Chapter 2. Skeletal Structures

Chapter 2. Skeletal Structures Chapter 2 Basic nomenclature/definition of alkanes Nomenclature of alkyl groups Nomenclature of more complicated alkanes Nomenclature & structure of alkane derivatives: Alkyl halides Ethers Alcohols Amines

More information

H 3 C. staggered H 2 C

H 3 C. staggered H 2 C EMISTRY 104 elp Sheet #3 Organic-Part II: ISOMERS (Text: h 2: 2.9, h 6: 6.11, 6.5, h 7: 7.2f) Do topics appropriate for your lecture Prepared by Dr. Tony Jacob http://www.chem.wisc.edu/areas/clc (Resource

More information

A- Determination Of Boiling point B- Distillation

A- Determination Of Boiling point B- Distillation EXP. NO. 2 A- Determination Of Boiling point B- Distillation The boiling point of a liquid is the temperature at which its vapor pressure is equal to the surrounding atmospheric pressure. The normal boiling

More information

1. Use appropriate curved arrows to indicate the complete mechanism of each of these reactions. KH (1 equiv.) + KCl THF. + HBr.

1. Use appropriate curved arrows to indicate the complete mechanism of each of these reactions. KH (1 equiv.) + KCl THF. + HBr. 1. Use appropriate curved arrows to indicate the complete mechanism of each of these reactions. K (1 equiv.) TF K 3 2 2 3 enantiomer While writing the mechanism, justify both the regiochemistry the relative

More information

Carbon Bonding Isomers Naming Reference Tables Functional Groups. Reactions

Carbon Bonding Isomers Naming Reference Tables Functional Groups. Reactions arbon Bonding Isomers Naming Reference Tables Functional Groups 2 Reactions Not electrolytes; they do not generally conduct electricity. Low melting points; they are nonpolar with weak forces of attraction.

More information

Alkanes and Cycloalkanes

Alkanes and Cycloalkanes Alkanes and Cycloalkanes Families of Organic Compounds Organic compounds can be grouped into families by their common structural features We shall survey the nature of the compounds in a tour of the families

More information

FUNCTIONAL GROUPS Functional Group Suffix Formula Other Info O. Ester. Amide --- R C N R' or R(CO)NR R

FUNCTIONAL GROUPS Functional Group Suffix Formula Other Info O. Ester. Amide --- R C N R' or R(CO)NR R EMISTRY 10 elp Sheet # rganic (Part III hapters.7 (condensed, structural drawings, 6.3 (line drawings, 6.9a (benzene, 7.e (hybrid orbitals in organic structures, and Appendix E (functional groups Do topics

More information

Chemistry 201. MW 12pm 1:15pm Examination #1 July 22 nd Bronco ID. Question Score Possible Points. 1 (10pts) 2 (24pts) 3 (14pts) 4...

Chemistry 201. MW 12pm 1:15pm Examination #1 July 22 nd Bronco ID. Question Score Possible Points. 1 (10pts) 2 (24pts) 3 (14pts) 4... Chemistry 201 MW 12pm 1:15pm Examination #1 July 22 nd 2015 Name Bronco ID. Question Score Possible Points 1 (10pts) 2 (24pts) 3 (14pts) 4... (22pts) 5 (30pts). Total (100pts) 1. Read each question carefully.

More information

Investigation 5: Infrared Spectroscopy and Molecular Modeling

Investigation 5: Infrared Spectroscopy and Molecular Modeling 2014 Chemistry 120 and Chem110/IR&Modeling/Procedure 1 Investigation 5: Infrared Spectroscopy and Molecular Modeling Question: What do molecules look like and how do they move? How can we make them vibrate?

More information

Lab: Model Building with Covalent Compounds - Introduction

Lab: Model Building with Covalent Compounds - Introduction Name Date Period # Lab: Model Building with Covalent Compounds - Introduction Most of our learning is in two dimensions. We see pictures in books and on walls and chalkboards. We often draw representations

More information

Funsheet 10.0 [REPRESENTING ORGANIC MOLECULES] Gu 2015

Funsheet 10.0 [REPRESENTING ORGANIC MOLECULES] Gu 2015 Funsheet 10.0 [REPRESENTING ORGANIC MOLECULES] Gu 2015 1. Draw the complete structural formula for the following organic molecules. a) CH 3 CH 2 CH 3 b) Funsheet 10.0 [REPRESENTING ORGANIC MOLECULES] Gu

More information

Lab Workshop 1: Alkane and cycloalkane conformations

Lab Workshop 1: Alkane and cycloalkane conformations Lab Workshop : lkane and cycloalkane conformations ach student work group choose a Leader (reads activity out loud, poses questions to group), Facilitator (makes sure everyone is participating equally,

More information

MOLECULER MODELS/ISOMERS ORGANIC STRUCTURES AND NAMING

MOLECULER MODELS/ISOMERS ORGANIC STRUCTURES AND NAMING REVISED 10/14 EMISTRY 1101L MOLEULER MODELS/ISOMERS ORGANI STRUTURES AND NAMING NOTE: This lab does not require safety glasses or lab coats. INTRODUTION Electron Dot Structures: Electron dot structures,

More information

Chapter 2: Alkanes MULTIPLE CHOICE

Chapter 2: Alkanes MULTIPLE CHOICE Chapter 2: Alkanes MULTIPLE CHOICE 1. Which of the following orbitals is properly described as an antibonding orbital? a. sp + 1s d. sp 2 1s b. sp 2 + 1s e. sp 2 + sp 2 sp 3 + 1s D DIF: Easy REF: 2.2 2.

More information