HVP contributions to anomalous magnetic moments of all leptons from first principle

Size: px
Start display at page:

Download "HVP contributions to anomalous magnetic moments of all leptons from first principle"

Transcription

1 Introduction HVP contributions to anomalous magnetic moments of all leptons from first principle At Physical Point Mass with Full Systematics Kohtaroh Miura (CPT, Aix-Marseille Univ.) PPP 2017, YITP, 02 Aug Budapest-Marseille-Wuppertal Collaboration [hep-lat] and in preparation

2 Introduction Motivation Our Challenges Muon Anomalous Magnetic Moment a µ B Muon Strorage μ a µ gµ 2, (1) 2 e M = g µ S. (2) 2m µ p s a exp. µ = a SM µ?

3 a exp. µ vs. a SM µ Introduction Motivation Our Challenges SM contribution aµ contrib Ref. QED [5 loops] ± [Aoyama et al 12] HVP-LO (pheno.) ± 4.2 [Davier et al 11] ± 4.3 [Hagiwara et al 11] ± 4.2 [Benayoun et al 16] HVP-NLO 9.84 ± 0.07 [Hagiwara et al 11] [Kurz et al 11] HVP-NNLO 1.24 ± 0.01 [Kurz et al 11] HLbyL 10.5 ± 2.6 [Prades et al 09] Weak (2 loops) ± 0.10 [Gnendiger et al 13] SM tot [0.42 ppm] ± 4.9 [Davier et al 11] [0.43 ppm] ± 5.0 [Hagiwara et al 11] [0.51 ppm] ± 5.9 [Aoyama et al 12] Exp [0.54 ppm] ± 6.3 [Bennett et al 06] Exp SM 28.7 ± 8.0 [Davier et al 11] 26.1 ± 7.8 [Hagiwara et al 11] 24.9 ± 8.7 [Aoyama et al 12] FNAL E989 (2017): 0.14-ppm, J-PARC E34: 0.1-ppm

4 Motivation Introduction Motivation Our Challenges Really a exp. µ a SM µ? SUSY (MSSM, Padley et.al. 15)? Technicolor (Kurachi et.al. 13)?. A rigorous determination of a µ by SM is a necessary step to attacking BSM. A bottle-neck is Hadronic vacuum polarization (HVP) contribution due to its non-perturvative feature. In phenomenological estimates of a µ, the HVP is evaluated based on dispersion relations with experimental data inputs (e + e had. etc.) Some tension among expr. (BESIII, PLB 16). Purely theoretical estimates for HVP effects are demanded for a rigorous test of SM. The Lattice QCD meets the requirement. We (BMWc) are at the forefront of this approach. γ µ µ Technicolor KLOE 08 BaBar 09 KLOE 10 KLOE ± 0.4 ± 2.3 ± ± 2.0 ± ± 0.9 ± 2.3 ± ± 1.2 ± 2.4 ± 0.8 BESIII ± 2.5 ± ππ,lo -10 a µ ( MeV) [10 ]

5 Motivation Introduction Motivation Our Challenges Really a exp. µ a SM µ? SUSY (MSSM, Padley et.al. 15)? Technicolor (Kurachi et.al. 13)?. A rigorous determination of a µ by SM is a necessary step to attacking BSM. A bottle-neck is Hadronic vacuum polarization (HVP) contribution due to its non-perturvative feature. In phenomenological estimates of a µ, the HVP is evaluated based on dispersion relations with experimental data inputs (e + e had. etc.) Some tension among expr. (BESIII, PLB 16). Purely theoretical estimates for HVP effects are demanded for a rigorous test of SM. The Lattice QCD meets the requirement. We (BMWc) are at the forefront of this approach. γ µ µ Technicolor KLOE 08 BaBar 09 KLOE 10 KLOE ± 0.4 ± 2.3 ± ± 2.0 ± ± 0.9 ± 2.3 ± ± 1.2 ± 2.4 ± 0.8 BESIII ± 2.5 ± ππ,lo -10 a µ ( MeV) [10 ]

6 Motivation Introduction Motivation Our Challenges Really a exp. µ a SM µ? SUSY (MSSM, Padley et.al. 15)? Technicolor (Kurachi et.al. 13)?. A rigorous determination of a µ by SM is a necessary step to attacking BSM. A bottle-neck is Hadronic vacuum polarization (HVP) contribution due to its non-perturvative feature. In phenomenological estimates of a µ, the HVP is evaluated based on dispersion relations with experimental data inputs (e + e had. etc.) Some tension among expr. (BESIII, PLB 16). Purely theoretical estimates for HVP effects are demanded for a rigorous test of SM. The Lattice QCD meets the requirement. We (BMWc) are at the forefront of this approach. γ µ µ Technicolor KLOE 08 BaBar 09 KLOE 10 KLOE ± 0.4 ± 2.3 ± ± 2.0 ± ± 0.9 ± 2.3 ± ± 1.2 ± 2.4 ± 0.8 BESIII ± 2.5 ± ππ,lo -10 a µ ( MeV) [10 ]

7 Objective in This Work Introduction Motivation Our Challenges Leading-Order (LO) HVP contribution to anomalous magnetic moments for all leptons (A few % precision now, and a per-mil within few years): ( a LO-HVP,f α ) 2 l=e,µ,τ = π 0 dq 2 ω(q 2 /m 2 l)ˆπ f (Q 2 ). where suffix f stands for a flavor f = l(u, d), s, c, disc, and with ˆΠ f (Q 2 ) = Π f (Q 2 ) Π f (0) = t C f =l,s,c µν (t) = q 2 f =l,s,c C f =disc µν (t) = q 2 f =disc t 2 [1 jµ(x)j f ν(0) f conn, x ( sin(z/2) ) ] 2 z/2 z=qt ( lγ µl sγ µs)( lγ νl sγ νs) disc. x 1 3 µ µ HAD 3 i=1 γ C f ii (t), (3) Here, charge factors are given by (q 2 l, q 2 s, q 2 c, q 2 disc) = (5/9, 1/9, 4/9, 1/9).

8 Our Challenges Introduction Motivation Our Challenges The integrand kurnel ω(q 2 /m 2 µ) is known and makes a peak around Q 2 (m µ/2) 2 (0.05GeV ) 2 4fm: Our Lattice: (L, T ) (6, 9 12)fm. The Pion/Kaon dynamics precisely: Our simulations are performed with Physical Pion/Kaon Masses. Large distance signal: 10 4 Traj., 768 (9000) random sources for ud-conn. (uds-disc.) correlators. Need controled continuum limit: 15 lattice spacings (a fm). For a few % precision, we take account of: c quark w. matching onto perturb. theory. ω(q 2 /m 2 µ ) ^Π l (Q 2 ) x (m µ /2) Q 2 GeV 2

9 Simulation Setup Introduction Motivation Our Challenges Tree-level improved Symanzik gauge action. Nf=(2+1+1) stout-smeared staggered quarks (m c/m s = 11.85). Scale setting f π = MeV via scale w 0. 2M K 2 /Mπ 2-1 Rational Hybrid Monte Carlo M π /Fπ phys β a[fm] N t N s #traj. M π[mev] M K [MeV] #SRC (l,s,c,d) (768, 64, 64, 9000) (768, 64, 64, 6000) (768, 64, 64, 6144) (768, 64, 64, 3600) (768, 64, 64, 6144) (768, 64, 64, )

10 Table of Contents Introduction Motivation Our Challenges 1 Introduction Motivation Our Challenges 2 Long Distance Mng. for Light/Disc. Correlators Continuum Extrapolation Corrections: Perturb, FV, and Isospin Breaking Short Summary on a l and Discussion 3

11 Table of Contents Introduction Long Distance Mng. for Light/Disc. Correlators Continuum Extrapolation Corrections: Perturb, FV, and Isospin Breaking Short Summary on a l and Discussion 1 Introduction Motivation Our Challenges 2 Long Distance Mng. for Light/Disc. Correlators Continuum Extrapolation Corrections: Perturb, FV, and Isospin Breaking Short Summary on a l and Discussion 3

12 Introduction Long Distance Mng. for Light/Disc. Correlators Continuum Extrapolation Corrections: Perturb, FV, and Isospin Breaking Short Summary on a l and Discussion Light-Conn. (and Disc.) Correlator: An Example C l (t) 1.0e e e e e e e e e t fm Figure: C ud (t) = 5 9 x i=1 jud i ( x, t)ji ud (0) The connected-light correlator C ud (t) loses signal for t > 3fm. To control statistical error, consider C ud (t > t c) Cup/low(t, ud t c), where Cup(t, ud t c) = C ud (t c) ϕ(t)/ϕ(t c), Clow(t, ud t c) = 0.0, with ϕ(t) = cosh[e 2π(T /2 t)], and E 2π = 2(Mπ 2 + (2π/L) 2 ) 1/2. Similarly, C disc (t) C disc up/low(t, t c), C disc C disc up (t > t c) = 0.1C ud (t c) ϕ(t)/ϕ(t c), low (t > t c) = 0.0. C ud,disc low (t, t c) C ud,disc (t) Cup ud,disc (t, t c).

13 Introduction Long Distance Mng. for Light/Disc. Correlators Continuum Extrapolation Corrections: Perturb, FV, and Isospin Breaking Short Summary on a l and Discussion IR-CUT (t c ) Deps. of Light/Disc. Component: a LO-HVP l,ud/disc LO-HVP a µ, ud x LO-HVP -a µ, disc x pion zero avg t c [fm] Corresponding to C ud,disc up/low (tc), we obtain upper/lower bounds for g 2: a ud,disc l,up/low (tc). Two bounds meet around t c = 3fm. Consider the average of bounds: ā ud,disc l (t c) = 0.5(a ud,disc l,up + a ud,disc l,low )(tc), which is stable around t c = 3fm. We pick up such averages ā ud,disc l (t c) with 4 6 kinds of t c around 3fm. The average of average is adopted as a LO-HVP l,ud/disc to be analysed, and a fluctuation over selected t c is incorporated into the systematic error.

14 Introduction Long Distance Mng. for Light/Disc. Correlators Continuum Extrapolation Corrections: Perturb, FV, and Isospin Breaking Short Summary on a l and Discussion Continuum Extrap. of Light Conn. Component: a LO-HVP µ,ud LO-HVP a µ,l x data fit0 fit1 fit2 fit a 2 fm 2 F (aµ,ud LO-HVP, A, C π, ) = aµ,ud LO-HVP (1 + Aa 2 )+C π Mπ 2 +. a LO-HVP µ,ud = (8.10)(8.24), χ 2 /dof = 7.8/12 (fit1 case).

15 Introduction Long Distance Mng. for Light/Disc. Correlators Continuum Extrapolation Corrections: Perturb, FV, and Isospin Breaking Short Summary on a l and Discussion Continuum Extrap. of Strange Conn. Component: a LO-HVP µ,s LO-HVP a µ,s x dat fit0 fit1 fit2 fit a 2 fm 2 F (aµ,s LO-HVP, A, C K ) = aµ,s LO-HVP (1 + Aa 2 ) + C K MK 2. a LO-HVP µ,s = 53.60(05)(13), χ 2 /dof = 16.7/11 (fit1 case).

16 Introduction Long Distance Mng. for Light/Disc. Correlators Continuum Extrapolation Corrections: Perturb, FV, and Isospin Breaking Short Summary on a l and Discussion Continuum Extrap. of Charm Conn. Component: a LO-HVP µ,c 16.0 LO-HVP a µ,c x dat fit a 2 fm 2 F (aµ,c LO-HVP, A, C π,k,ηc ) = aµ,c LO-HVP (1 + Aa 2 ) + C π Mπ 2 + C M MK 2 + C ηc M ηc. a LO-HVP µ,c = 14.99(08)(08), χ 2 /dof = 1/7 (fit1 case).

17 Introduction Long Distance Mng. for Light/Disc. Correlators Continuum Extrapolation Corrections: Perturb, FV, and Isospin Breaking Short Summary on a l and Discussion Continuum Extrap. of Disc. Component: a LO-HVP µ,disc LO-HVP a µ,disc x dat fit0 fit1 fit a 2 fm 2 F (a LO-HVP µ,disc, A, C π, ) = a LO-HVP µ,disc (1 + Aa 2 )+C π M 2 π +. a LO-HVP µ,disc = 10.9(1.1)(0.7), χ 2 /dof = 2.4/10 (fit1 case).

18 Perturbative Corrections Introduction Long Distance Mng. for Light/Disc. Correlators Continuum Extrapolation Corrections: Perturb, FV, and Isospin Breaking Short Summary on a l and Discussion Consider separation of momentum integral range as where ( α ) 2 ( Q max al,f LO-HVP = + π 0 Q max ) dq ( Q 2 )ˆΠf ω (Q 2 ), (4) m l = al,f LO-HVP (Q Q max) + al,f LO-HVP (Q > Q max), (5) a LO-HVP l,f (Q Q max) : lattice simulations, investigated so far, a LO-HVP l,f (Q > Q max) : γ l (Q max)ˆπ f (Q max) + pert a LO-HVP l,f (Q > Q max). For muon and electron, a LO-HVP l=µ,e (Q > Q max) is small. For example, aµ LO-HVP Qmax =2GeV (Q > Q max) 0.678(1)(1), (0.1%). (6) m 2 l

19 Perturbative Corrections Introduction Long Distance Mng. for Light/Disc. Correlators Continuum Extrapolation Corrections: Perturb, FV, and Isospin Breaking Short Summary on a l and Discussion Consider separation of momentum integral range as where ( α ) 2 ( Q max al,f LO-HVP = + π 0 Q max ) dq ( Q 2 )ˆΠf ω (Q 2 ), (4) m l = al,f LO-HVP (Q Q max) + al,f LO-HVP (Q > Q max), (5) a LO-HVP l,f (Q Q max) : lattice simulations, investigated so far, a LO-HVP l,f (Q > Q max) : γ l (Q max)ˆπ f (Q max) + pert a LO-HVP l,f (Q > Q max). For muon and electron, a LO-HVP l=µ,e (Q > Q max) is small. For example, aµ LO-HVP Qmax =2GeV (Q > Q max) 0.678(1)(1), (0.1%). (6) m 2 l

20 Perturbative Corrections Introduction Long Distance Mng. for Light/Disc. Correlators Continuum Extrapolation Corrections: Perturb, FV, and Isospin Breaking Short Summary on a l and Discussion Consider separation of momentum integral range as where ( α ) 2 ( Q max al,f LO-HVP = + π 0 Q max ) dq ( Q 2 )ˆΠf ω (Q 2 ), (4) m l = al,f LO-HVP (Q Q max) + al,f LO-HVP (Q > Q max), (5) a LO-HVP l,f (Q Q max) : lattice simulations, investigated so far, a LO-HVP l,f (Q > Q max) : γ l (Q max)ˆπ f (Q max) + pert a LO-HVP l,f (Q > Q max). For muon and electron, a LO-HVP l=µ,e (Q > Q max) is small. For example, aµ LO-HVP Qmax =2GeV (Q > Q max) 0.678(1)(1), (0.1%). (6) m 2 l

21 Introduction Perturbative Corrections for tau a LO-HVP τ,f = aτ,f LO-HVP (Q Q max) + γ l (Q max)ˆπ f (Q max) + pert a LO-HVP τ,f (Q > Q max). For tau, Q > Q max effects are large, while the total is stable. The fluctuation over Q 2 max = GeV 2 are incorporated into systematic errors. Long Distance Mng. for Light/Disc. Correlators Continuum Extrapolation Corrections: Perturb, FV, and Isospin Breaking Short Summary on a l and Discussion LO-HVP a τ,ud x 10 8 LO-HVP a τ,s x 10 8 LO-HVP a τ,c x 10 8 LO-HVP a τ,disc x total lattice matching perturb Q max [GeV 2 ]

22 FV for a LO-HVP µ,ud by XPT Introduction Long Distance Mng. for Light/Disc. Correlators Continuum Extrapolation Corrections: Perturb, FV, and Isospin Breaking Short Summary on a l and Discussion The a LO-HVP µ comes from Euclidean mommenta; Exponentially suppressed FV with LM π 4 for L 6fm. We work with L fixed, and FV effects cannot be estimated from simulations and need model. Long-distance I = 1 (I = 0) contribution dominated by 2-pions (3-pions). The dominant FV in I = 1 channel could be estimated by XPT for π + π loop (Aubin et al 16). (L) ) x (16fm) - a µ LO-HVP,l ( a µ LO-HVP,l L fm (aµ,i LO-HVP =1 ( ) alo-hvp µ,i =1 (6fm)) XPT = 13.42(13.42) 10 10, (1.9%).

23 Introduction Isospin breaking effects (Preliminary) Long Distance Mng. for Light/Disc. Correlators Continuum Extrapolation Corrections: Perturb, FV, and Isospin Breaking Short Summary on a l and Discussion Get missing effects from phenomenology Effect corr. to aµ LO-HVP ρ ω mix ± 1.36 FSR 4.22 ± 2.11 M π M π± 4.47 ± 4.47 π 0 γ 4.64 ± 0.04 ηγ 0.65 ± 0.01 Total 7.8 ± 5.1 Thanks to F.Jegerlehner (& M. Benayoun) for correspondance and numbers The ρ ω and FSR based on Gounaris-Sakurai fit to e + e, from 2M π to 1 GeV, ascribed conservative 50% error. EM modes from M. Benayoun et al 12 Correction by M π M π± from XPT: given 100% error to account for other missing effects. Thus: IB a LO-HVP µ = (7.8 ± 5.6) (Preliminary)

24 Introduction Summary on a LO-HVP µ (Preliminary) Long Distance Mng. for Light/Disc. Correlators Continuum Extrapolation Corrections: Perturb, FV, and Isospin Breaking Short Summary on a l and Discussion a LO-HVP µ BMWc, Preliminary I = 1 I = 0 total 584(8) st(8) acut(0) tcut(0) qcut(13) fv 121(4) st(4) acut(0) tcut(0) qcut 713(9) st(9) acut(0) tcut(0) qcut(13) fv (5) iso Total error is 2.6%, dominated FV effects. Our results are consistent with both No New Physics and Dispersive Method. There is some tension with HPQCD 16.

25 More detailed comparison Introduction Long Distance Mng. for Light/Disc. Correlators Continuum Extrapolation Corrections: Perturb, FV, and Isospin Breaking Short Summary on a l and Discussion LO-HVP 10 a µ,ud. 10 LO-HVP a µ,s N f = N f = Mainz 17 (TMR+FV) HPQCD 16 This work N f = N f = 2+1 N f = 2 Mainz 17 (TMR) RBC/UKQCD 16 HPQCD 14 This work BMWc 17 ud contribution is signficantly larger than other Nf=2+1+1 results difference with HPQCD 14/Mainz 17 is 2.4/1.5σ. BMWc 17 c contribution is slightly smaller than other Nf=2+1+1 results BMWc 17 is only calculation performed directly at physical quark masses with 6 β s to fully control continuum extrapolation. BMWc 17 δa LO-HVP µ, disc = contributes only 0.2% to error on a LO-HVP µ. N f = N f = 2 N f = N f = LO-HVP a µ,c Mainz 17 (TMR) HPQCD 14 This work LO-HVP 10 a µ,disc. 10 This work RBC/UKQCD 15

26 Summary on a LO-HVP e,τ Introduction (Preliminary) Long Distance Mng. for Light/Disc. Correlators Continuum Extrapolation Corrections: Perturb, FV, and Isospin Breaking Short Summary on a l and Discussion a LO-HVP e BMWc, Preliminary I = 1 I = 0 total 157.0(2.8) st(2.3) acut(0.0) tcut(0.0) qcut(4.6) fv 30.8(1.4) st(1.2) acut(0.1) tcut(0.0) qcut 189.0(3.1) st(2.6) acut(0.1) tcut(0.0) qcut(4.6) fv (1.0) iso a LO-HVP τ BMWc, Preliminary I = 1 I = 0 total 253(1) st(2) acut(0) tcut(0) qcut(2) fv 85(0) st(1) acut(0) tcut(1) qcut 342(1) st(2) acut(0) tcut(1) qcut(2) fv (1) iso Burger et.al.( 15): ae LO-HVP = 178.2(6.4)(8.6), aτ LO-HVP = 341(8)(6) HPQCD ( 16): ae LO-HVP = 177.9(3.9) Jeherlehner( 16): ae LO-HVP = (1.24). Eidelman et.al.( 07): aτ LO-HVP = 338(4).

27 Table of Contents Introduction 1 Introduction Motivation Our Challenges 2 Long Distance Mng. for Light/Disc. Correlators Continuum Extrapolation Corrections: Perturb, FV, and Isospin Breaking Short Summary on a l and Discussion 3

28 Introduction Summary of We have obtained a LO-HVP µ (as well as slope/curvature of ˆΠ(Q 2 = 0), [hep-lat]) directly at physical point masses. Full controlled continuum extrapolation and matching to perturbation theory. Model/pheno. assumptions are put on only for small corrections from FV, QED and isospin breaking. Our results are consistent with both No New Physics and Dispersive Methods with a conservative systematic errors. There is some tension with HPQCD 16 on aµ,ud LO-HVP. Total error is 2.6%, dominated by FV effects. Need 0.2% precision to match forthcoming experiments!! 1 increase statistics by times. 2 control FV effects directly with simulations. 3 simulations with QED and isospin breaking corrections taken account.

29 Backups Table of Contents 4 Backups

30 Backups Continuum Extrap. of Light Component: a LO-HVP µ,ud BMWc HPQCD (no corr.) HPQCD LO-HVP a µ,l x a 2 fm 2 Figure: Red-squares = Our data. Blue-triangles = HPQCD, a LO-HVP µ,ud = (8.10)(8.24), χ 2 /d.o.f. = 7.8/12 (fit1 case).

31 Backups Continuum Extrapolation of Π l n=1 I our data Π l n=1 GeV a 2 fm 2 F (C (2) Π, A, B, C M π, C MK ) = C (2) Π 1 + Aa 2 + ( ) 1 + a 2 1+Ba 2 CMπ M π + C MK M K. + Π l n=1 a 2 0 = (31), χ 2 /d.o.f. = 24.3/20

32 Backups Continuum Extrapolation of Π l n= our data Π l n=2 GeV a 2 fm 2 F (C (4) Π, A, B, C M π, C MK ) = C (4) Π 1 + Aa 2 + ( ) 1 + a 4 1+Ba 2 CMπ M π + C MK M K. + Π l n=2 a 2 0 = 0.306(23).

33 Backups Continuum Extrapolation of Π s n=1, our data, w. M K crr. our data, wo. M K crr. hpqcd Π s n=1 GeV Π s n=2 GeV our data, w. M K crr. our data, wo. M K crr. hpqcd a 2 fm a 2 fm 2 Figure: Red-squares = Our data. Green-triangles = HPQCD, F (C (2,4) Π, A, B, C Mπ, C MK ) = C Π 1 + Aa 2 + ( ) 1 + a 2,4 1+Ba 2 CMπ M π + C MK M K. + Π s n=1 a 2 0 = (1), Π s n=2 a 2 0 = (2), χ 2 /d.o.f. = 20.9/18

34 Backups Continuum Extrapolation of Π c n=1, our data, w. M K crr. our data, wo. M K crr. hpqcd our data, w. M K crr. our data, wo. M K crr. hpqcd Π c n=1 GeV Π c n=2 GeV a 2 fm a 2 fm 2 Figure: Red-squares = Our data. Green-triangles = HPQCD, F (C (2,4) Π, A, B, C Mπ, C MK ) = C Π 1 + Aa 2 + ( ) 1 + a 2,4 1+Ba 2 CMπ M π + C MK M K. + Π c n=1 a 2 0 = (2), Π c n=2 a 2 0 = 2.73(2) 10 4.

35 Backups Disconnected Contributions Figure: From Presentaion of T.Kawanai in Lattice Π disc 1 = 1.5(2)(1) 10 3 GeV 2, (7) Π disc 2 = 4.6(1.0)(0.4) 10 3 GeV 4. (8)

36 Backups Summary Table of Moments (Preliminary) Π 1[GeV 2 ] Π 2[GeV 4 ] light (16)(18) 0.297(10)(05) strange 6.57(1)(2) (1)(3) 10 2 charm 4.04(1)(1) (1)(4) 10 4 disconnected 1.5(2)(1) (1.0)(0.4) 10 2 I = (2)(2) 0.017(1)(1) I = (8)(9) 0.148(5)(2) total (9)(10) 0.166(6)(3) Table: Preliminary results on the first two moments of the HVP function. TOTAL ERROR: 1.4% for Π 1, and 4.0% for Π 2.

37 Backups FV via Box Asymmetry, XPT Estimate for Various L I c.f. Aubin et.al., PRD (2016) M π = 135 MeV, T = 1.5L 0.05 M π = 135 MeV, T = 1.5L (6fm) 0.02 (6fm) 0 lat ( )) / Π n = 1 xpt (L) - Π n = lat ( )) / Π n = 2 xpt (L) - Π n = xpt (Π n = ss ts st L fm xpt (Π n = ss ts st L fm i n=1,2(l) = [ Π xpt,i n=1,2 (L) Πxpt n=1,2 ( )], i = ss, ts, st, { i n(l = 6fm) 2% (for the 1st moment, n = 1), Π lat,i n 10% (for the 2nd moment, n = 2). (9)

38 Backups FV via Box Asymmetry, XPT Estimate for Various L II c.f. Aubin et.al., PRD (2016) M π = 135 MeV, T = 1.5L 0.05 M π = 135 MeV, T = 1.5L (6fm) 0.02 (6fm) 0 lat ( )) / Π n = 1 xpt (L) - Π n = lat ( )) / Π n = 2 xpt (L) - Π n = xpt (Π n = ss ts st L fm xpt (Π n = ss ts st L fm i n=1,2(l) = [ Π xpt,i n=1,2 (L) Πxpt n=1,2 ( )], i = ss, ts, st, FV.(L) ± dfv.(l) = [ max{ i } + min{ i } ] /2 ± [ max{ i } min{ i } ] /2 { (22) (for the 1st moment, n = 1), L 6fm 0.015(19) (for the 2nd moment, n = 2). (10)

39 Backups Summary Table of Moments with FV I (Preliminary) Π 1[GeV 2 ] Π 2[GeV 4 ] light (16)(18) 0.297(10)(05) strange 6.57(1)(2) (1)(3) 10 2 charm 4.04(1)(1) (1)(4) 10 4 disconnected 1.5(2)(1) (1.0)(0.4) 10 2 I = (2)(2) 0.017(1)(1) I = (8)(9) 0.148(5)(2) total (9)(10) 0.166(6)(3) I = 1 FV corr (23) 0.015(10) I = 1 + FV corr (8)(9)(23) 0.164(5)(2)(10) total + FV corr (9)(10)(23) 0.182(6)(3)(10) Table: Preliminary results on the first two moments of the HVP function. c.f. HPQCD(arXiv: and PRD2014): Π l 1 = (25) GeV 2, Π l 2 = 0.368(16) GeV 4, Π s 1 = (74) GeV 2, Π s 2 = (11) GeV 4.

40 Backups Summary Table of Moments with FV II (Preliminary) Π 1[GeV 2 ] Π 2[GeV 4 ] light (16)(18) 0.297(10)(05) strange 6.57(1)(2) (1)(3) 10 2 charm 4.04(1)(1) (1)(4) 10 4 disconnected 1.5(2)(1) (1.0)(0.4) 10 2 I = (2)(2) 0.017(1)(1) I = (8)(9) 0.148(5)(2) total (9)(10) 0.166(6)(3) I = 1 FV corr (23) 0.015(10) I = 1 + FV corr (8)(9)(23) 0.164(5)(2)(10) total + FV corr (9)(10)(23) 0.182(6)(3)(10) Table: Preliminary results on the first two moments of the HVP function. c.f. Phenomenology(Benayoun et.al ): Π 1 = 0.990(7) GeV 2, Π 2 = 0.206(2) GeV 4.

41 Backups Why ˆΠ f? ( α ) 2 ( Q max ) dq ( Q 2 al,f LO-HVP = + ω (Q 2 ), π 0 Q max m l ml 2 (11) = al,f LO-HVP (Q Q max) + al,f LO-HVP (Q > Q max), (12) al,f LO-HVP (Q Q max) : computed by lattice simulations, a LO-HVP l,f (Q > Q max) : computed by lattice ˆΠ f (Q max) and perturbations.

42 Backups Why ˆΠ f? ( α ) 2 ( Q max ) dq ( Q 2 al,f LO-HVP = + ω (Q 2 ), π 0 Q max m l ml 2 (11) = al,f LO-HVP (Q Q max) + al,f LO-HVP (Q > Q max), (12) al,f LO-HVP (Q Q max) : computed by lattice simulations, a LO-HVP l,f (Q > Q max) : computed by lattice ˆΠ f (Q max) and perturbations.

43 Backups Why ˆΠ f? ( α ) 2 dq al,f LO-HVP (Q > Q max) = π Q max ( α ) 2 ( Q 2 π = Q max ( α ) 2 = π Q max [( α ) 2 + π dq m l ω dq m l ω Q max m 2 l ( Q 2 m 2 l dq ( Q 2 ω m l ( Q 2 ω )ˆΠ f (Q 2 ), (13) m l ml 2 ) [ (Π 4π 2 qf 2 f (Q 2 ) Π f (Qmax) 2 ) + ( Π f (Qmax) 2 Π f (0) )], ) 4π 2 qf 2 ( Π f (Q 2 ) Π f (Qmax) 2 ) ( al,f LO-HVP ) m 2 l )] (Π f (Q 2 max) Π f (0) ) ( γ l (Q 2 max)ˆπ f (Q 2 max)).(14)

44 Backups Why ˆΠ f? ( α ) 2 dq al,f LO-HVP (Q > Q max) = π Q max ( α ) 2 ( Q 2 π = Q max ( α ) 2 = π Q max [( α ) 2 + π dq m l ω dq m l ω Q max m 2 l ( Q 2 m 2 l dq ( Q 2 ω m l ( Q 2 ω )ˆΠ f (Q 2 ), (13) m l ml 2 ) [ (Π 4π 2 qf 2 f (Q 2 ) Π f (Qmax) 2 ) + ( Π f (Qmax) 2 Π f (0) )], ) 4π 2 qf 2 ( Π f (Q 2 ) Π f (Qmax) 2 ) ( al,f LO-HVP ) m 2 l )] (Π f (Q 2 max) Π f (0) ) ( γ l (Q 2 max)ˆπ f (Q 2 max)).(14)

45 Backups Why ˆΠ f? ( α ) 2 dq al,f LO-HVP (Q > Q max) = π Q max ( α ) 2 ( Q 2 π = Q max ( α ) 2 = π Q max [( α ) 2 + π dq m l ω dq m l ω Q max m 2 l ( Q 2 m 2 l dq ( Q 2 ω m l ( Q 2 ω )ˆΠ f (Q 2 ), (13) m l ml 2 ) [ (Π 4π 2 qf 2 f (Q 2 ) Π f (Qmax) 2 ) + ( Π f (Qmax) 2 Π f (0) )], ) 4π 2 qf 2 ( Π f (Q 2 ) Π f (Qmax) 2 ) ( al,f LO-HVP ) m 2 l )] (Π f (Q 2 max) Π f (0) ) ( γ l (Q 2 max)ˆπ f (Q 2 max)).(14)

46 Backups Continuum Extrap. of Light Component: ˆΠ l ^Πl (2 GeV 2 ) data fit0 fit1 fit2 fit a 2 fm 2 F (ˆΠ l, A, B, C Mπ, C MK ) = ˆΠ l 1 + Aa 2 + ( ) Ba 2 CMπ M π + C MK M K. + ˆΠ l = (42)(60), χ 2 /d.o.f. = 8.2/12 (fit1 case).

47 Backups Continuum Extrap. of Strange Component: ˆΠ s data fit0 fit1 fit2 fit3 ^Πs (2 GeV 2 ) a 2 fm 2 F (ˆΠ s, A, B, C Mπ, C MK ) = ˆΠ s 1 + Aa 2 + ( ) Ba 2 CMπ M π + C MK M K. + ˆΠ s = (1)(2), χ 2 /d.o.f. = 13.6/11 (fit1 case).

48 Backups Continuum Extrap. of Charm Component: ˆΠ c ^Πc (2 GeV 2 ) data fit0 fit1 fit2 fit a 2 fm 2 F (ˆΠ c, A, B, C Mπ, C MK ) = ˆΠ c 1 + Aa 2 + ( ) Ba 2 CMπ M π + C MK M K. + ˆΠ c = (9)(7), χ 2 /d.o.f. = 26.1/9 (fit1 case).

49 Backups Continuum Extrap. of Disc. Component: ˆΠ d ^Πd (2 GeV 2 ) data fit0 fit1 fit a 2 fm 2 F (ˆΠ d, A, B, C Mπ, C MK ) = ˆΠ d 1 + Aa 2 + ( ) Ba 2 CMπ M π + C MK M K. + ˆΠ d = (6)(7), χ 2 /d.o.f. = 3.5/9 (fit1 case).

Muon g 2 Hadronic Vacuum Polarization from flavors of sea quarks using the HISQ action

Muon g 2 Hadronic Vacuum Polarization from flavors of sea quarks using the HISQ action Muon g 2 Hadronic Vacuum Polarization from 2+1+1 flavors of sea quarks using the HISQ action Jack Laiho Syracuse University April 31, 2015 Motivation The muon anomalous magnetic moment is currently measured

More information

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = 2 + 1 + 1 twisted mass fermions Grit Hotzel 1 in collaboration with Florian Burger 1, Xu Feng 2, Karl Jansen

More information

Lattice calculation of hadronic light-by-light scattering contribu

Lattice calculation of hadronic light-by-light scattering contribu Lattice calculation of hadronic light-by-light scattering contribution to the muon g-2 Lepton Moments, Cape Cod July 10, 2014 Based on arxiv:1407.2923, TB, Saumitra Chowdhury, Masashi Hayakawa, and Taku

More information

Hadronic light-by-light from Dyson-Schwinger equations

Hadronic light-by-light from Dyson-Schwinger equations Hadronic light-by-light from Dyson-Schwinger equations Christian S. Fischer Justus Liebig Universität Gießen 23rd of October 2014 Together with Richard Williams, Gernot Eichmann, Tobias Goecke, Jan Haas

More information

arxiv: v1 [hep-lat] 28 Oct 2017

arxiv: v1 [hep-lat] 28 Oct 2017 arxiv:1710.10512v1 [hep-lat] 28 Oct 2017 Pion mass dependence of the HVP contribution to muon g 2 Maarten Golterman 1,, Kim Maltman 2,3, and Santiago Peris 4 1 Department of Physics and Astronomy, San

More information

Pion Form Factor Measurement at BESIII

Pion Form Factor Measurement at BESIII Pion Form Factor Measurement at BESIII Martin Ripka on behalf of the BESIII colaboration EINN - November, 2015 1 / 17 Motivation: Why Form Factor Measurements at BESIII? Muon anomalous magnetic moment

More information

Light hadrons in 2+1 flavor lattice QCD

Light hadrons in 2+1 flavor lattice QCD Light hadrons..., Lattice seminar, KITP, Jan 26, 2005. U.M. Heller p. 1/42 Light hadrons in 2+1 flavor lattice QCD Urs M. Heller American Physical Society & BNL Modern Challenges for Lattice Field Theory

More information

Light pseudoscalar masses and decay constants with a mixed action

Light pseudoscalar masses and decay constants with a mixed action Light pseudoscalar masses and decay constants with a mixed action Jack Laiho Washington University Christopher Aubin and Ruth Van de Water Lattice 2008 July 15, 2008 William + Mary, July 15, 2008 p.1/21

More information

Hadronic contributions to the muon g-2

Hadronic contributions to the muon g-2 Hadronic contributions to the muon g-2 RICHARD WILLIAMS (HIRSCHEGG 2014) 1 Overview Introduction Hadronic Vacuum Polarisation Hadronic Light-by-Light Scattering Conclusions 2 Overview Introduction Hadronic

More information

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Peter Stoffer in collaboration with G. Colangelo, M. Hoferichter and M. Procura JHEP 09 (2015) 074 [arxiv:1506.01386 [hep-ph]] JHEP

More information

Light hadrons at e+e- colliders

Light hadrons at e+e- colliders Light hadrons at e+e- colliders Andrzej Kupsc Experiment: e+e- colliders Dispersive methods for hadronic contribution to muon g-2 Two hadrons: Pion form factor / η,η -> π+π-γ Three hadrons: Dalitz Plot

More information

Hadronic Cross Section Measurements with ISR and the Implications on g µ 2

Hadronic Cross Section Measurements with ISR and the Implications on g µ 2 Hadronic Cross Section Measurements with ISR and the Implications on g µ 2 Konrad Griessinger on behalf of the BABAR Collaboration Institut for Nuclear Physics Mainz University Determination of Fundamental

More information

e + e results from BaBar, status of muon (g-2) prediction and τ mass measurement at BESIII

e + e results from BaBar, status of muon (g-2) prediction and τ mass measurement at BESIII e + e results from BaBar, status of muon (g-2) prediction and τ mass measurement at BESIII (IHEP-LAL collaboration) Liangliang WANG Outline Introduction to hadronic vacuum polarization ee hadrons results

More information

The Muon g 2 Challenging e+e and Tau Spectral Functions

The Muon g 2 Challenging e+e and Tau Spectral Functions γ The Muon g 2 Chenging e+e and Tau Spectral Functions Andreas Hoecker(*) (CERN) Moriond QCD and High Energy Interactions, La Thuile, Italy, 8 15 March, 2008 γ γ hadrons μ A. Hoecker: Muon g 2: Tau and

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

Nonperturbative QCD corrections to electroweak observables. Dru Renner Jefferson Lab (JLab)

Nonperturbative QCD corrections to electroweak observables. Dru Renner Jefferson Lab (JLab) Nonperturbative QCD corrections to electroweak observables Dru Renner Jefferson Lab (JLab) work with Xu Feng (KEK), Grit Hotzel (Humboldt U.) Karl Jansen (DESY) and Marcus Petschlies (Cyprus Institute)

More information

PoS(LATTICE 2015)263. The leading hadronic contribution to γ-z mixing. Vera Gülpers 1, Harvey Meyer 1,2, Georg von Hippel 1, Hartmut Wittig 1,2

PoS(LATTICE 2015)263. The leading hadronic contribution to γ-z mixing. Vera Gülpers 1, Harvey Meyer 1,2, Georg von Hippel 1, Hartmut Wittig 1,2 , Harvey Meyer,2, Georg von Hippel, Hartmut Wittig,2 PRISMA Cluster of Excellence, Institut für Kernphysik, Johannes Gutenberg Universität Mainz, 5599 Mainz, Germany 2 Helmholtz Institute Mainz, Johannes

More information

The MSSM confronts the precision electroweak data and muon g 2. Daisuke Nomura

The MSSM confronts the precision electroweak data and muon g 2. Daisuke Nomura The MSSM confronts the precision electroweak data and muon g 2 (KEK, JSPS Research Fellow) I. Overview/Introduction II. Muon g 2 vs MSSM III. EW data vs MSSM IV. Summary Based on K. Hagiwara, A.D. Martin,

More information

Effective field theory estimates of the hadronic contribution to g 2

Effective field theory estimates of the hadronic contribution to g 2 Effective field theory estimates of the hadronic contribution to g 2 Fred Jegerlehner fjeger@physik.hu-berlin.de Work in collaboration with Maurice Benayoun et al EPJ C 72 (2012) 1848 and extension RMC

More information

Hadronic light-by-light contribution to the muon g-2 from lattice QCD+QED

Hadronic light-by-light contribution to the muon g-2 from lattice QCD+QED Hadronic light-by-light contribution to the muon g-2 from lattice QCD+QED Tom Blum (University of Connecticut, RIKEN BNL Research Center) with Christopher Aubin (Fordham) Saumitra Chowdhury (UConn) Masashi

More information

Erice Hadronic contribution. muon g 2 from a Dyson-Schwinger perspective. Tobias Göcke yo

Erice Hadronic contribution. muon g 2 from a Dyson-Schwinger perspective. Tobias Göcke yo Erice 2011 1. Introduction Hadronic contribution to the muon g 2 from a Dyson-Schwinger perspective 4. Summary and Outlook Tobias Göcke yo 2. A Together with C. Functional S. Fischer (JLU) and R. Williams

More information

Charged Pion Polarizability & Muon g-2

Charged Pion Polarizability & Muon g-2 Charged Pion Polarizability & Muon g-2 M.J. Ramsey-Musolf U Mass Amherst Amherst Center for Fundamental Interactions http://www.physics.umass.edu/acfi/ ACFI-J Lab Workshop! March 2014! 1 Outline I. Intro

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

Measurement of e + e hadrons cross sections at BABAR, and implications for the muon g 2

Measurement of e + e hadrons cross sections at BABAR, and implications for the muon g 2 Measurement of e + e hadrons cross sections at BABAR, and implications for the muon g 2 Ray F. Cowan Representing the BABAR Collaboration Ft. Lauderdale, Florida USA 12 18 December 2013 Outline Introduction

More information

PoS(LATTICE 2013)487. Vacuum polarization function in N f = 2+1 domain-wall fermion. Eigo Shintani. Hyung-Jin Kim

PoS(LATTICE 2013)487. Vacuum polarization function in N f = 2+1 domain-wall fermion. Eigo Shintani. Hyung-Jin Kim Vacuum polarization function in N f = 2+1 domain-wall fermion PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institute Mainz, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany

More information

QCD matter with isospin-asymmetry. Gergely Endrődi. Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer

QCD matter with isospin-asymmetry. Gergely Endrődi. Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer QCD matter with isospin-asymmetry Gergely Endrődi Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer SIGN 2017 22. March 2017 Outline introduction: QCD with isospin

More information

The light hadron spectrum from lattice QCD

The light hadron spectrum from lattice QCD Ch. Hoelbling with S. Durr Z. Fodor J. Frison S. Katz S. Krieg T. Kurth L. Lellouch Th. Lippert K. Szabo G. Vulvert The Budapest-Marseille-Wuppertal collaboration Rab 2008 Outline 1 Motivation 2 Setup

More information

Open problems in g-2 and related topics.

Open problems in g-2 and related topics. Open problems in g-2 and related topics. F. JEGERLEHNER DESY Zeuthen Humboldt-Universität zu Berlin Euridice Coll. Meeting, Feb 8-11, 2005, LNF, Frascati (Italy) supported by EU network EURIDICE Outline

More information

Review of ISR physics at BABAR

Review of ISR physics at BABAR Review of ISR physics at BABAR Konrad Griessinger on behalf of the BABAR Collaboration Institute for Nuclear Physics Mainz University Hadronic Physics with Lepton and Hadron Beams, Jefferson Lab, September

More information

B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks

B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks RBC and UKQCD collaborations Oliver Witzel Center for Computational Science Lattice 2013, Mainz,

More information

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Meifeng Lin for the RBC and UKQCD Collaborations Department of Physics Columbia University July 29 - August 4, 2007 / Lattice 2007 @ Regensburg

More information

How far can you go? Surprises & pitfalls in three-flavour chiral extrapolations

How far can you go? Surprises & pitfalls in three-flavour chiral extrapolations How far can you go? Surprises & pitfalls in three-flavour chiral extrapolations Sébastien Descotes-Genon Laboratoire de Physique Théorique CNRS & Université Paris-Sud 11, 91405 Orsay, France July 31 2007

More information

Lattice QCD Calculation of Nucleon Tensor Charge

Lattice QCD Calculation of Nucleon Tensor Charge 1 / 36 Lattice QCD Calculation of Nucleon ensor Charge. Bhattacharya, V. Cirigliano, R. Gupta, H. Lin, B. Yoon PNDME Collaboration Los Alamos National Laboratory Jan 22, 2015 2 / 36 Neutron EDM, Quark

More information

Meson Baryon Scattering

Meson Baryon Scattering Meson Baryon Scattering Aaron Torok Department of Physics, Indiana University May 31, 2010 Meson Baryon Scattering in Lattice QCD Calculation of the π + Σ +, and π + Ξ 0 scattering lengths Aaron Torok

More information

Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions

Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions Sergey N. Syritsyn Lawrence Berkeley National Laboratory Nuclear Science Division INT Workshop Orbital angular momentum in QCD

More information

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab N and (1232) masses and the γn transition Marc Vanderhaeghen College of William & Mary / Jefferson Lab Hadron Structure using lattice QCD, INT, April 4, 2006 Outline 1) N and masses : relativistic chiral

More information

τ Physics at B-factories.

τ Physics at B-factories. τ Physics at B-factories. University of Oregon March, 006 B-factories are τ-factories Standard Model tests Analysis of hadronic τ decays Searches for lepton flavour violating τ decays τ physics at Υ(4S)

More information

BABAR Results on Hadronic Cross Sections with Initial State Radiation (ISR)

BABAR Results on Hadronic Cross Sections with Initial State Radiation (ISR) 1 International Workshop on e+e- Collisions from Phi to Psi (PHIPSI08) Laboratori Nazionali di Frascati April 7-10, 2008 Results on Hadronic Cross Sections with Initial State Radiation (ISR) Johannes Gutenberg-Universität

More information

MILC results and the convergence of the chiral expansion

MILC results and the convergence of the chiral expansion MILC results and the convergence of the chiral expansion MILC Collaboration + (for part) HPQCD, UKQCD Collaborations Benasque Center for Science, July 27, 2004 p.1 Collaborators MILC Collaboration: C.

More information

The Radiative Return at Φ- and B-Meson Factories

The Radiative Return at Φ- and B-Meson Factories The Radiative Return at Φ- and B-Meson Factories KARLSRUHE KATOWICE VALENCIA J. H. Kühn I II III IV V Basic Idea Monte Carlo Generators: Status & Perspectives Charge Asymmetry and Radiative Φ-Decays (

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

Hadronic and e e spectra, contribution to (g-2) and QCD studies

Hadronic and e e spectra, contribution to (g-2) and QCD studies Hadronic and e e spectra, contribution to (g-2) and QCD studies Bogdan MALAESCU LPNHE Paris In collaboration with M. Davier, S. Descotes-Genon, A. Hoecker, Z. Zhang 19/03/2013 1 Outlook Introduction: the

More information

QCD Thermodynamics Péter Petreczky

QCD Thermodynamics Péter Petreczky QCD Thermodynamics Péter Petreczky What is deconfinement in QCD? What is the nature of the deconfined matter? Tools: screening of color charges, EoS, fluctuation of conserved quantum numbers QGP: state

More information

Flavor Twisting for Isovector Form Factors

Flavor Twisting for Isovector Form Factors Flavor Twisting for Isovector Form Factors Brian C. Tiburzi Duke University LHP2006, August 1 st TwBCs & Form Factors p.1 Outline Flavor Twisted Boundary Conditions and Isovector Form Factors Quantized

More information

Nucleon form factors and moments of GPDs in twisted mass lattice QCD

Nucleon form factors and moments of GPDs in twisted mass lattice QCD Nucleon form factors and moments of GPDs in twisted mass lattice QCD European Collab ora tion M. Constantinou, C. Alexandrou, M. Brinet, J. Carbonell P. Harraud, P. Guichon, K. Jansen, C. Kallidonis, T.

More information

Quark Physics from Lattice QCD

Quark Physics from Lattice QCD Quark Physics from Lattice QCD K. Szabo published in NIC Symposium 2018 K. Binder, M. Müller, A. Trautmann (Editors) Forschungszentrum Jülich GmbH, John von Neumann Institute for Computing (NIC), Schriften

More information

The muon g-2 recent progress

The muon g-2 recent progress The muon g-2 recent progress Massimo Passera INFN Padova New Vistas in Low-Energy Precision Physics Mainz 4-7 April 2016 Theory of the g-2: the beginning Kusch and Foley 1948: µ exp e = e~ 2mc (1.00119

More information

The QCD Equation of State at μ B > 0 from Lattice QCD

The QCD Equation of State at μ B > 0 from Lattice QCD The QCD Equation of State at μ B > 0 from Lattice QCD Hiroshi Ohno (BNL-Bielefeld-CCNU Collaboration) CCS, University of Tsukuba Brookhaven National Laboratory arxiv:1701.04325 [hep-lat] 7 th Workshop

More information

The hadronic vacuum polarisation contribution to the muon g 2

The hadronic vacuum polarisation contribution to the muon g 2 The hadronic vacuum polarisation contribution to the muon g 2 Alex Keshavarzi (in collaboration with Daisuke Nomura & Thomas Teubner [KNT17]) LFC17: Old and New Strong Interactions from LHC to Future Colliders

More information

The Future of V ub. Antonio Limosani JSPS Fellow (KEK-IPNS JAPAN) BMN BNM Tsukuba (KEK) Sep Antonio Limosani KEK Slide 1

The Future of V ub. Antonio Limosani JSPS Fellow (KEK-IPNS JAPAN) BMN BNM Tsukuba (KEK) Sep Antonio Limosani KEK Slide 1 The Future of V ub Antonio Limosani JSPS Fellow (KEK-IPNS JAPAN) 2010 2006 BMN 2006 BNM Tsukuba (KEK) Sep 13-14 2006 Antonio Limosani KEK Slide 1 Motivation Fundamental parameter in SM L SM =...+ gw µ

More information

The Radiative Return at Φ- and B-Meson Factories

The Radiative Return at Φ- and B-Meson Factories The Radiative Return at Φ- and B-Meson Factories J.H. KÜHN INSTITUT FÜR THEORETISCHE TEILCHENPHYSIK KARLSRUHER INSTITUT FÜR TECHNOLOGIE I II Basic Idea Monte Carlo Generators: Status & Perspectives III

More information

The Muon g-2 Theory Initiative. Aida X. El-Khadra (University of Illinois and Fermilab)

The Muon g-2 Theory Initiative. Aida X. El-Khadra (University of Illinois and Fermilab) The Muon g-2 Theory Initiative Aida X. El-Khadra (University of Illinois and Fermilab) HC2NP workshop Puerto de la Cruz, Tenerife, 26-30 Sep 2016 Muon g-2 Theory Initiative Steering Committee: Gilberto

More information

Hadronic Inputs to the (g-2)µ Puzzle

Hadronic Inputs to the (g-2)µ Puzzle Hadronic Inputs to the (g-2)µ Puzzle Christoph Florian Redmer 2nd International Workshop on High Intensity Electron Positron Accelerator at China Yanqihu Campus, UCAS (g-2)µ Magnetic moment of µ : Dirac

More information

Search for Dark Particles at Belle and Belle II

Search for Dark Particles at Belle and Belle II Search for Dark Particles at Belle and Belle II Igal Jaegle University of Florida for the Belle and Belle II Collaborations International Workshop on ee collisions from Phi to Psi June 6 3, 17 Mainz, Germany

More information

QCD in an external magnetic field

QCD in an external magnetic field QCD in an external magnetic field Gunnar Bali Universität Regensburg TIFR Mumbai, 20.2.12 Contents Lattice QCD The QCD phase structure QCD in U(1) magnetic fields The B-T phase diagram Summary and Outlook

More information

Preliminary Update on the HVP Determination

Preliminary Update on the HVP Determination Preliminary Update on the HVP Determination M. Davier, A. Hoecker, B. Malaecu, Z. Zhang Overview Reult Summary Zhiqing Zhang (LAL, Oray) 1 /17 Overview 650 700 750 a Had µ [ x ] GR 1969 BEG 1972 BLO 1975

More information

The Lambda parameter and strange quark mass in two-flavor QCD

The Lambda parameter and strange quark mass in two-flavor QCD The Lambda parameter and strange quark mass in two-flavor QCD Patrick Fritzsch Institut für Physik, Humboldt-Universität zu Berlin, Germany talk based on [arxiv:1205.5380] in collaboration with F.Knechtli,

More information

e e with ISR and the Rb Scan at BaBar

e e with ISR and the Rb Scan at BaBar e e with ISR and the Rb Scan at BaBar + + Francesco Renga Università di Roma La Sapienza & INFN Roma on behalf of the BaBar Collaboration 1 Introduction B Factories showed an exciting capability for improving

More information

Tau Physics: Status and Prospects. George Lafferty The University of Manchester

Tau Physics: Status and Prospects. George Lafferty The University of Manchester Tau Physics: Status and Prospects George Lafferty The University of Manchester Seminar at RAL, 10 th March 2010 1 Content The tau in the Standard Model Production of taus Decays of taus in the Standard

More information

Finite volume effects for masses and decay constants

Finite volume effects for masses and decay constants Finite volume effects for masses and decay constants Christoph Haefeli University of Bern Exploration of Hadron Structure and Spectroscopy using Lattice QCD Seattle, March 27th, 2006 Introduction/Motivation

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Thermodynamics of (2+1)-flavor QCD from the lattice

Thermodynamics of (2+1)-flavor QCD from the lattice INT Seattle, December 7, 2006 Thermodynamics of (2+1)-flavor QCD from the lattice Christian Schmidt for the RBC-Bielefeld Collaboration --- results from QCDOC --RIKEN BNL Saumen Datta Frithjof Karsch Chulwoo

More information

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations Charmonium, D s and D s from overlap fermion on domain wall fermion configurations,, Y. Chen, A. Alexandru, S.J. Dong, T. Draper, M. Gong,, F.X. Lee, A. Li, 4 K.F. Liu, Z. Liu, M. Lujan, and N. Mathur

More information

Light Meson Decays at BESIII

Light Meson Decays at BESIII Light Meson Decays at BESIII Liqing QIN (for the Collaboration ) Shandong University XVI International Conference on Hadron Spectroscopy Sep. 13-18, 2015, Newport News, VA OUTLINE n Introduction n Recent

More information

Test of the Standard Model with Kaon decays. Barbara Sciascia LNF-INFN for the Kaon WG, FlaviaNet PhiPsi08 - LNF, 7 April 2008

Test of the Standard Model with Kaon decays. Barbara Sciascia LNF-INFN for the Kaon WG, FlaviaNet PhiPsi08 - LNF, 7 April 2008 Test of the Standard Model with Kaon decays Barbara Sciascia LNF-INFN for the Kaon WG, FlaviaNet PhiPsi08 - LNF, 7 April 2008 1 FlaviaNet: WG on precise SM tests in K decays B. Sciascia PhiPsi08, LNF,

More information

The Hadronic Contribution to (g 2) μ

The Hadronic Contribution to (g 2) μ γ The Hadronic Contribution to (g 2) μ Michel Davier Laboratoire de l Accélérateur Linéaire, Orsay Lepton Moments Workshop 2006 June 19-22, 2006, Cape Cod, USA γ γ hadrons davier@lal.in2p3.fr Lepton Moments,

More information

Lattice QCD calculation of nucleon charges g A, g S and g T for nedm and beta decay

Lattice QCD calculation of nucleon charges g A, g S and g T for nedm and beta decay 1 / 49 Lattice QCD calculation of nucleon charges g A, g S and g for nedm and beta decay Boram Yoon Los Alamos National Laboratory with. Bhattacharya, V. Cirigliano, R. Gupta, H. Lin PNDME Collaboration

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

The Conformal Window in SU(3) Yang-Mills

The Conformal Window in SU(3) Yang-Mills The Conformal Window in SU(3) Yang-Mills Ethan T. Neil ethan.neil@yale.edu Department of Physics Yale University Lattice 2008 Williamsburg, VA July 15, 2008 Ethan Neil (Yale) Conformal Window in Yang-Mills

More information

Results on Tau Physics from BaBar

Results on Tau Physics from BaBar Results on Tau Physics from BaBar Eric Torrence University of Oregon Search for Lepton Flavor Violation Study of τ 3h 2h + ν τ (5 prong) Tau Lifetime The BaBar Experiment Integrated Luminosity (fb -1 )

More information

Update on the hadronic light-by-light contribution to the muon g 2 and inclusion of dynamically charged sea quarks

Update on the hadronic light-by-light contribution to the muon g 2 and inclusion of dynamically charged sea quarks Update on the hadronic light-by-light contribution to the muon g 2 and inclusion of dynamically charged sea quarks T. Blum University of Connecticut and RIKEN BNL Research Center E-mail: tblum@phys.uconn.edu

More information

Lattice QCD determination of quark masses and

Lattice QCD determination of quark masses and Lattice QCD determination of quark masses and s Christine Davies University of Glasgow HPQCD collaboration APS GHP2017 Washington Jan 2017 Quark masses and strong coupling are fundamental parameters of

More information

Hadronic light-by-light scattering in the muon g 2

Hadronic light-by-light scattering in the muon g 2 Hadronic light-by-light scattering in the muon g 2 Andreas Nyffeler PRISMA Cluster of Excellence, Institut für Kernphysik, Helmholtz-Institut Mainz Johannes Gutenberg Universität Mainz, Germany nyffeler@kph.uni-mainz.de

More information

Danny van Dyk. B Workshop Neckarzimmern February 19th, Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35

Danny van Dyk. B Workshop Neckarzimmern February 19th, Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35 News on B K µ + µ Danny van Dyk B Workshop Neckarzimmern February 19th, 2010 Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35 The Goal 15 1 10 0.8 5 0.6 C10 0-5 0.4-10 0.2-15 -15-10 -5 0 5 10 15 C

More information

Weakly coupled QGP? Péter Petreczky

Weakly coupled QGP? Péter Petreczky Weakly coupled QGP? Péter Petreczky QGP is expected to be strongly coupled around T c : how does this features manifest itself in terms of different quantities, how do we observe it on lattice? QGP: state

More information

Muon g-2 Hadronic Vacuum Polarization

Muon g-2 Hadronic Vacuum Polarization Muon g-2 Hadronic Vacuum Polarization Christoph Lehner (BNL) RBC and UKQCD Collaborations May 18, 216 TUM The anomalous magnetic moment Potential of particle in magnetic field with V (x) = µ B(x) (1) µ

More information

Recent results and perspectives on pseudo-scalar mesons and form factors at BES III

Recent results and perspectives on pseudo-scalar mesons and form factors at BES III Meson Physics in Low-Energy QCD Workshop on Meson Transition Form Factors Recent results and perspectives on pseudo-scalar mesons and form factors at BES III Elisabetta Prencipe Johannes Gutenberg University

More information

Stephane Ghozzi and Fred Jegerlehner Deutsches Elektronen Synchrotron Platanenallee 6, D Zeuthen, Germany. Abstract

Stephane Ghozzi and Fred Jegerlehner Deutsches Elektronen Synchrotron Platanenallee 6, D Zeuthen, Germany. Abstract DESY 03-155 SFB/CPP-03-47 October 15, 2003 Iso spin violating effects in e + e vs. τ measurements of the pion form factor F π 2 (s). Stephane Ghozzi and Fred Jegerlehner Deutsches Elektronen Synchrotron

More information

The role of σ hadronic. for future precision physics

The role of σ hadronic. for future precision physics The role of σ hadronic for future precision physics F. JEGERLEHNER DESY Zeuthen Humboldt-Universität zu Berlin Seminar, December 7, 2005, LNF, Fracsati (Italy) supported by EU projects TARI and EURIDICE

More information

Lattice QCD. Steven Gottlieb, Indiana University. Fermilab Users Group Meeting June 1-2, 2011

Lattice QCD. Steven Gottlieb, Indiana University. Fermilab Users Group Meeting June 1-2, 2011 Lattice QCD Steven Gottlieb, Indiana University Fermilab Users Group Meeting June 1-2, 2011 Caveats I will borrow (shamelessly). 3 Lattice field theory is very active so there is not enough time to review

More information

Search for Resonant Slepton Production with the DØ-Experiment

Search for Resonant Slepton Production with the DØ-Experiment Overview Search for Resonant Slepton Production with the DØ-Experiment Christian Autermann, III. Phys. Inst. A R-parity violating Supersymmetry Resonant Slepton Production and Neutralino Decay Data selection

More information

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD Huey-Wen Lin University of Washington 1 Outline Lattice QCD Overview Nucleon Structure PDF, form factors, GPDs Hyperons Axial coupling constants, charge radii... Summary

More information

Theory overview on rare eta decays

Theory overview on rare eta decays Theory overview on rare eta decays WASA Jose L. Goity Hampton/JLab BES III KLOE Hadronic Probes of Fundamental Symmetries Joint ACFI-Jefferson Lab Workshop March 6-8, 2014!UMass Amherst Motivation Main

More information

Recent Progress on. Tau Lepton Physics. ν τ. A. Pich IFIC, Valencia. Euroflavour 08, IPPP, Durham September 2008

Recent Progress on. Tau Lepton Physics. ν τ. A. Pich IFIC, Valencia. Euroflavour 08, IPPP, Durham September 2008 Recent Progress on Tau Lepton Physics ν e, μ W, ν, ν μ, e d θ u A. Pich IFIC, Valencia Euroflavour 08, IPPP, Durham -6 September 8 ν 5 GF m Γ( ν lνl ) = f( m / ) 3 l m r 19π EW W e e, μ ν, ν μ 3 4 f (

More information

Origin of Nucleon Mass in Lattice QCD

Origin of Nucleon Mass in Lattice QCD Origin of Nucleon Mass in Lattice QCD Quark and glue components of hadron mass Decomposition of meson masses πn σ term, strangeness and charmness Decomposition of nucleon mass c QCD Collaboration Trento,

More information

Measurements of f D + and f Ds

Measurements of f D + and f Ds Measurements of f D + and f Ds Jim Libby (University of Oxford) With thanks to S. Stone, L. Zhang and D. Asner 1 Outline Introduction and motivation f D + determination at CLEO-c f Ds determinations at:

More information

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster The Lattice QCD Program at Jefferson Lab Huey-Wen Lin JLab 7n cluster 1 Theoretical Support for Our Experimental Agenda 2 Theoretical Support for Our Experimental Agenda JLab Staff Joint appointments and

More information

Muon g 2. Physics 403 Advanced Modern Physics Laboratory Matthias Grosse Perdekamp. Slides adapted from Jörg Pretz RWTH Aachen/ FZ Jülich

Muon g 2. Physics 403 Advanced Modern Physics Laboratory Matthias Grosse Perdekamp. Slides adapted from Jörg Pretz RWTH Aachen/ FZ Jülich Muon g 2 Physics 403 Advanced Modern Physics Laboratory 4-16-2013 Matthias Grosse Perdekamp Slides adapted from Jörg Pretz RWTH Aachen/ FZ Jülich 1 /53 Outline Introduction & Motivation Method Experiment

More information

Measurements of the W Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron

Measurements of the W Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron Measurements of the Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron John Ellison University of California, Riverside, USA Selection of and Z events Measurement of the mass Tests of the gauge

More information

Lattice QCD and transport coefficients

Lattice QCD and transport coefficients International Nuclear Physics Conference, Adelaide, Australia, 13 Sep. 2016 Cluster of Excellence Institute for Nuclear Physics Helmholtz Institute Mainz Plan Strongly interacting matter at temperatures

More information

Hadron structure from lattice QCD

Hadron structure from lattice QCD Hadron structure from lattice QCD Giannis Koutsou Computation-based Science and Technology Research Centre () The Cyprus Institute EINN2015, 5th Nov. 2015, Pafos Outline Short introduction to lattice calculations

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

arxiv: v1 [hep-lat] 30 Oct 2018

arxiv: v1 [hep-lat] 30 Oct 2018 E-mail: genwang27@uky.edu arxiv:1810.12824v1 [hep-lat] 30 Oct 2018 Jian Liang E-mail: jian.liang@uky.edu Terrence Draper E-mail: draper@pa.uky.edu Keh-Fei Liu E-mail: liu@pa.uky.edu Yi-Bo Yang Institute

More information

The QCD equation of state at high temperatures

The QCD equation of state at high temperatures The QCD equation of state at high temperatures Alexei Bazavov (in collaboration with P. Petreczky, J. Weber et al.) Michigan State University Feb 1, 2017 A. Bazavov (MSU) GHP2017 Feb 1, 2017 1 / 16 Introduction

More information

PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD. Yasumichi Aoki RIKEN BNL Research Center. 9/23/09 LBV09 at Madison

PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD. Yasumichi Aoki RIKEN BNL Research Center. 9/23/09 LBV09 at Madison PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD Yasumichi Aoki RIKEN BNL Research Center 9/23/09 LBV09 at Madison Plan low energy matrix elements for N PS,l GUT QCD relation what is exactly needed to calculate

More information

Unquenched spectroscopy with dynamical up, down and strange quarks

Unquenched spectroscopy with dynamical up, down and strange quarks Unquenched spectroscopy with dynamical up, down and strange quarks CP-PACS and JLQCD Collaborations Tomomi Ishikawa Center for Computational Sciences, Univ. of Tsukuba tomomi@ccs.tsukuba.ac.jp 4th ILFTN

More information

Final Results of the Muon g-2 Experiment at BNL

Final Results of the Muon g-2 Experiment at BNL Final Results of the Muon g-2 Experiment at BNL Petr Shagin on behalf of E821 Collaboration SLAC Summer Institute, August 10th, 2004 2004 SLAC Summer Institute Petr Shagin p.1/34 Overview Introduction

More information

Large scale separation and hadronic resonances from a new strongly interacting sector

Large scale separation and hadronic resonances from a new strongly interacting sector Large scale separation and hadronic resonances from a new strongly interacting sector Oliver Witzel Higgs Centre for Theoretical Physics Boston, MA, April 20, 2017 1 / 20 based on R. Brower, A. Hasenfratz,

More information

Hadronic Contributions to

Hadronic Contributions to Hadronic Contributions to (g-) µ Yuping Guo INSTITUT FÜR KERNPHYSIK JOHANNES GUTENBERG-UNIVERSITÄT MAINZ New Vistas in Low-Energy Precision Physics Mainz, 4-7 April 016 Muon Anomaly: a µ = (g-) µ / Experimental:

More information

Dirac and Pauli form factors from N f = 2 Clover-fermion simulations

Dirac and Pauli form factors from N f = 2 Clover-fermion simulations Mitglied der Helmholtz-Gemeinschaft Dirac and Pauli form factors from N f = 2 Clover-fermion simulations 20.1011 Dirk Pleiter JSC & University of Regensburg Outline 20.1011 Dirk Pleiter JSC & University

More information