arxiv: v3 [cs.sc] 17 Jun 2015

Size: px
Start display at page:

Download "arxiv: v3 [cs.sc] 17 Jun 2015"

Transcription

1 Probablstc analyss of Wedemann s algorthm for mnmal polynomal computaton arxv: v3 [cs.sc] 17 Jun 2015 Gavn Harrson Drexel Unversty Jeremy Johnson Drexel Unversty B. Davd Saunders Unversty of Delaware, do: /j.jsc c 2015, Elsever. Lcensed under the Creatve Commons Attrbuton-NonCommercal-NoDervatves 4.0 Internatonal Abstract Blackbox algorthms for lnear algebra problems start wth projecton of the sequence of powers of a matrx to a sequence of vectors (Lanczos), a sequence of scalars (Wedemann) or a sequence of smaller matrces (block methods). Such algorthms usually depend on the mnmal polynomal of the resultng sequence beng that of the gven matrx. Here exact formulas are gven for the probablty that ths occurs. They are based on the generalzed Jordan normal form (drect sum of companon matrces of the elementary dvsors) of the matrx. Sharp bounds follow from ths for matrces of unknown elementary dvsors. The bounds are vald for all fnte feld szes and show that a small blockng factor can gve hgh probablty of success for all cardnaltes and matrx dmensons. 1 Introducton The mnmal polynomal of a n n matrx A may be vewed as the mnmal scalar generatng polynomal of the lnearly recurrent sequence of powers of Ā = (A 0, A 1, A 2, A 3,...). Wedemann s algorthm (Wedemann, 1986) projects the matrx sequence to a scalar sequence s = (s 0, s 1, s 2,...), where s = u T A v. The vectors u, v are chosen at random. The algorthm contnues by computng the mnmal generatng polynomal of s whch, wth hgh probablty, s the mnmal polynomal of A. Block Wedemann algorthms (Coppersmth, 1995; Eberly et al., 2006; Kaltofen, 1995; Vllard, 1997, 1999) fatten u T to matrx U havng several rows and v to a matrx V havng multple columns, so that the projecton s to a sequence of smaller matrces, B = UĀV = (UA0 V, UA 1 V, UA 2 V,...), where, for chosen block sze b, U, V are unformly random matrces of shape b n and n b, respectvely. A block Berlekamp/Massey algorthm s then used to compute the matrx mnmal generatng polynomal of B (Kaltofen and Yuhasz, 2013; Gorg et al., 2003), and from t the mnmal scalar generatng polynomal. All of the algorthms based on these random projectons rely on preservaton of some propertes, ncludng at least the mnmal generatng polynomal. In ths paper we analyze the probablty of preservaton of mnmum polynomal under random projectons for a matrx over a fnte feld. Research supported by Natonal Scence Foundaton Grants CCF and CCF

2 Let A F n n q and let P q,b (A) denote the probablty that mnpoly(a) = mnpoly(uāv ) for unformly random U F b n q and V Fq n b. P q,b (A) s the focus of ths paper and ths notaton wll be used throughout. Our analyss proceeds by frst gvng exact formulas for P q,b (A) n terms of feld cardnalty q, projected dmenson b, and the elementary dvsors of A. Let P q,b (n) = mn({p q,b (A) A F n n q }), a functon of feld cardnalty, q, projected block sze, b, and the matrx dmenson, n. Buldng from our formula for P q,b (A), we gve a means to compute P q,b (n) precsely and hence to derve a sharp lower bound. Our bound s less pessmstc than earler ones such as (Kaltofen and Saunders, 1991; Kaltofen, 1995) whch prmarly apply when the feld s large. Even for cardnalty 2, we show that a modest block sze (such as b = 22) assures hgh probablty of preservng the mnmal polynomal. A key observaton s that when the cardnalty s small the number of low degree rreducble polynomals s also small. Wedemann (1986) used ths observaton to make a bound for probablty of mnmal polynomal preservaton n the non-blocked algorthm. Here, we have exact formulas for P q,b (A) whch are worst when the rreducbles n the elementary dvsors of A are as small as possble. Combnng that wth nformaton on the number of low degree rreducbles, we obtan a sharp lower bound for the probablty of mnmal polynomal preservaton for arbtrary n n matrx (when the elementary dvsors are not known a pror). Every square matrx, A, over a fnte feld F s smlar over F to ts generalzed Jordan normal form, J(A), a block dagonal drect sum of the Jordan blocks of ts elementary dvsors, whch are powers of rreducble polynomals n F[x]. A and J(A) have the same dstrbuton of random projectons. Thus we may focus attenton on matrces n Jordan form. After secton 2 on basc defntons concernng matrx structure and lnear recurrent sequences, the central result, theorem 16 s the culmnaton of secton 3 where probablty of preservng the mnmal polynomal for a matrx of gven elementary dvsors s analyzed. Examples mmedately followng theorem 16 llustrate the key ssues. The exact formulaton of the probablty of mnmal polynomal preservaton n terms of matrx, feld, and block szes s our man result, theorem 20, n secton 4. It s corollares provde some smplfed bounds. Secton 4.2, specfcally fgure 1, llustrates practcal applcablty. We fnsh wth concludng remarks, secton 5. 2 Defntons and Jordan blocks Let F m n be the vector space of m n matrces over F, and F m n the vector space of sequences of m n matrces over F. For a sequence S = (S 0, S 1, S 2,...) F m n and polynomal f(x) = d =0 f x F[x], defne f(s) as the sequence whose k-th term s d =o f S +k. Ths acton s a multplcatve group acton of F[x] on F m n, because (fg)(s) = f(g(s)) for f, g F[x] and f(s +αt ) = f(s)+αf(t ) for S, T F m n and α F. Further, f f(s) = 0 we say f annhlates S. In ths case, S s completely determned by f and ts leadng d coeffcent matrces S 0, S 1,..., S d 1. Then S s sad to be lnearly generated, and f(x) s also called a generator of S. Moreover, for gven S, the set of polynomals that generate S s an deal of F[x]. Its unque monc generator s called the mnmal generatng polynomal, or just mnmal polynomal of S and s denoted mnpoly(s). In partcular, the deal of the whole of F[x] s generated by 1 and, actng on sequences, generates only the zero sequence. For a square matrx A, the mnmal polynomal of the sequence Ā = (I, A, A2,...) s also called the mnmal polynomal of A. (mnpoly(a) = mnpoly(ā)). We wll consder the natural transforms of sequences by matrx multplcaton on ether 2

3 sde. For U F b m, US = (US 0, US 1, US 2,...) over F b n, and for V F n b, SV = (S 0 V, S 1 V, S 2 V,...) over F m b. For any polynomal g, t follows from the defntons that g(usv ) = Ug(S)V. It s easy to see that the generators of S also generate US and SV, so that mnpoly(u S) mnpoly(s), and mnpoly(u SV ) mnpoly(sv ) mnpoly(s). More specfcally, we are concerned wth random projectons, UĀV, of a square matrx A, where U, V are unformly random, U F b n, V F n b. By unformly random, we mean that each of the (fntely many) matrces of the gven shape s equally lkely. Lemma 1. Let A, B be smlar square matrces over F q and let b be any block sze. Then P q,b (A) = P q,b (B). In partcular, P q,b (A) = P q,b (J) where J s the generalzed Jordan form of A. Proof. Suppose A and B are smlar, so that B = W AW 1, for a nonsngular matrx W. The (U, V ) projecton of W AW 1 s the (UW, W 1 V ) projecton of A. But when U, V are unformly random varables, then so are UW and W 1 V, snce the multplcatons by W and W 1 are bjectons. Thus, wthout loss of generalty, n the rest of the paper we wll restrct attenton to matrces n generalzed Jordan normal form. We descrbe our notaton for Jordan forms next. The companon matrx of a monc polynomal f(x) = f 0 + f 1 x f d 1 x d 1 + x d of degree d s f 0 C f f 1 I C f C f = f 2 and J f e = 0 I C f f d I C f s the Jordan block correspondng to f e, a de de matrx. It s standard knowledge that the mnmal polynomal of J f e s f e. When e = 1, J f = C f. In partcular, we use these basc lnear algebra facts: For rreducble f, (1) f e 1 (J f e) s zero everywhere except n the lowest leftmost block where t s a nonsngular polynomal n C f (see, for example, Robnson (1970)), and (2) the Krylov matrx K Cf (v) = (v, C f v, Cf 2 v,..., Cd 1 f v) s nonsngular unless v = 0. Generalzed Jordan normal forms are (block dagonal) drect sums of prmary components, J = J e f,j, j where the f are dstnct rreducbles and the e,j are postve exponents, nonncreasng wth respect to j. Every matrx s smlar to a generalzed Jordan normal form, unque up to order of blocks. 3 Probablty Computaton, Matrx of Gven Structure Recall our defnton that, for A F n n q, P q,b (A) denotes the probablty that mnmal polynomal s preserved under projecton to b b,.e., mnpoly(a) = mnpoly(uāv ) for 3

4 unformly random U F b n q and V F n b q. For the results of ths paper the characterstc of the feld s not mportant. However the cardnalty q s a key parameter n the results. For smplcty, we are restrctng to projecton to square blocks. It s straghtforward to adjust these formulas to the case of rectangular blockng. By lemma 1, we may assume that the gven matrx s n generalzed Jordan form, whch s a block dagonal matrx. The projectons of a block dagonal matrx are sums of ndependent projectons of the blocks. In other words, for the U, V projecton of A = A let U, V be the blocks of columns of U and rows of V conformal wth the block szes of the A. Then UĀV = U Ā V. In addtonto ths observaton the partcular structure of the Jordan form s utlzed. In subsecton 3.1 we show that the probablty P q,b (A) may be expressed n terms of P q,b (J(f)) for the prmary components, J(f) = j J f e j, assocated wth the dstnct rreducble factors of the mnmal polynomal of A. Ths s further reduced to the probablty for a drect sum of companon matrces C f n Fnally, the probablty for C f s calculated n by reducng t to the probablty that a sum of rank 1 matrces over the extenson feld F q [x]/ f(x) s zero. In consequence we obtan a formula for P q,b (A) n theorem 16. Examples Examples llustratng theorem 16 are gven n subsecton Reducton to Prmary Components Let A = j J f e,j F n n q, where the f F q [x] are dstnct rreducble polynomals and the e,j are postve exponents, nonncreasng wth respect to j. In ths secton, we show that P q,b (A) = P q,b j J f e,j. Lemma 2. Let S and T be lnearly generated matrx sequences. Then mnpoly(s + T ) lcm(mnpoly(s), mnpoly(t )). Proof. Let f = mnpoly(s), g = mnpoly(t ) and d = gcd(f, g). The lemma follows from the observaton that (fg/d)(s + T ) = (fg/d)(s) + (fg/d)(t ) = (g/d)(f(s)) + (f/d)(g(t )) = 0. As an mmedate corollary we get equalty when f and g are relatvely prme. Corollary 3. Let S and T be lnearly generated matrx sequences wth f = mnpoly(s) and g = mnpoly(t ) such that gcd(f, g) = 1. Then mnpoly(s + T ) = fg. Proof. By the prevous lemma, mnpoly(s + T ) = f 1 g 1 wth f 1 f and g 1 g. We show that f 1 = f and g 1 = g. Under our assumptons, 0 = fg 1 (S + T ) = fg 1 (S) + fg 1 (T ) = fg 1 (T ) so that fg 1 s a generator of T. But f g 1 s a proper dvsor of g, then fg 1 s not n the deal generated by g, a contradcton. Smlarly f 1 must equal f. Theorem 4. Let A = j J f e,j F n n q, where the f are dstnct rreducbles and the e,j are postve exponents, nonncreasng wth respect to j. Then, P q,b (A) = P q,b ( j J f e,j ). 4

5 Proof. Let S = UĀV, and S = U j J f e,j V, where U, V are blocks of U, V conformng to the dmensons of the blocks of A. Then, S = S. Let g = mnpoly (S ). Because g f e,1 and all f are unque rreducbles, then gcd(g, g j ) = 1 when j. Therefore, by corollary 3, mnpoly(s) = g. Therefore mnpoly(s) = mnpoly(a) f and only f mnpoly(s ) = f e,1 for all, and P q,b (A) = ( ) P q,b j J f e,j. 3.2 Probablty for a Prmary Component Next we calculate P q,b ( J f e ), where f F q [x] s an rreducble polynomal and e are postve ntegers. We begn wth the case of a sngle Jordan block before movng on to the case of a drect sum of several blocks. determned by an rreducble power, f e. P q,b (J) s ndependent of e. Thus, P q,b (J f e) = P q,b (C f ). Ths fact and P q,b (C f ) are the subject of the next lemma. Consder the Jordan block J F n n q Theorem 5. Gven a fnte feld F q, an rreducble polynomal f(x) F q [x] of degree d, an exponent e, and a block sze b, let J = J f e F de de q be the Jordan block of f e and let J be the sequence (I, J, J 2,...). For U F b de q and V F de b q the followng propertes of mnmal polynomals hold. 1. If the entres of V are unformly random n F q, then Prob(f e = mnpoly( JV )) = 1 1/q db. Note that the probablty s ndependent of e. 2. If V s fxed and the entres of U are unformly random n F q, then wth equalty f V 0. Prob(mnpoly( JV ) = mnpoly(u JV )) 1 1/q db, 3. If U and V are both unformly random, then P q,b (J) = Prob(f e = mnpoly(u JV )) = (1 1/q db ) 2 = P q,b (C f ). Proof. For parts 1 and 2, let M be the lower left d d block of f e 1 (J). M s nonzero and all other parts of f e 1 (J) are zero. Note that F q [C f ], the set of polynomals n the companon matrx C f, s somorphc to F q [x]/ f. Snce M s nonzero and a polynomal n C f, t s nonsngular. Snce for any polynomal g and matrx A one has g(ā) = Āg(A), the lower left blocks of the sequence f e 1 ( J) form the sequence (M, C f M, Cf 2M,...) = C f M. Part 1. f e 1 ( J)V s zero except n ts lower d rows whch are C f MV 1, where V 1 s the top d rows of V. Ths sequence s nonzero wth mnmal polynomal f unless V 1 = 0 whch has probablty 1/q db. Part 2. If V = 0 the nequalty s trvally true. For V 0, Uf e 1 ( J)V s zero except n ts lower left d d corner U ecf MV 1, where V 1 s the top d rows of V and U e s the rghtmost d columns of U. Snce M s nonsngular, MV 1 s unformly random and the queston s reduced to the case of projectng a companon matrx. Let C = C f for rreducble f of degree d. For nonzero V F d b, CV s nonzero and has mnpoly f. We must show that f U F b d s nonzero then U CV also has mnpoly f. Let 5

6 v be a nonzero column of V. The Krylov matrx K C (v) = (v, Cv, C 2 v,..., C d 1 v) has as t s columns the frst d vectors of the sequence Cv. Snce v s nonzero, ths Krylov matrx s nonsngular and uk C (v) = 0 mples u = 0. Thus, for any nonzero vector u, we have u Cv 0 so that, for nonzero U, the sequence U C f V s nonzero and has mnmal polynomal f as needed. Of the q db possble U, only U = 0 fals to preserve the mnmal polynomal. Part 3. By parts 1 and 2, we have (1 1/q db ) probablty of preservaton of mnmum polynomal f e, frst at rght reducton by V to the sequence JV and then agan the same probablty at the reducton by U to block sequence U JV. Therefore, P q,b (J) = (1 1/q db ) Reducton to a Drect Sum of Companon Matrces Consder the prmary component J = J f e, for rreducble f, and let e = max(e ). We reduce the queston of projectons preservng mnmal polynomal for J to the correspondng queston for drect sums of the companon matrx C f, whch s then addressed n the next secton. Lemma 6. Let J = J f e, where f F q [x] s rreducble, and e are postve ntegers. Let e = max(e ). Let s be the number of e equal to e. Then, ( s ) P q,b (J) = P q,b C f. =1 Proof. The mnmal polynomal of J s f e and that of f e 1 (J) s f. A projecton U JV preserves mnmal polynomal f e f and only f f e 1 (U JV ) has mnmal polynomal f. For all e < e we have f e 1 (J f e ) = 0, so t suffces to consder drect sums of Jordan blocks for a sngle (hghest) power f e. Let J e = J f e be the Jordan block for f e, and let A = s =1 J e. A projecton UĀV s successful f t has the same mnmal polynomal as A. Ths s the same as sayng the e 1 mnmal polynomal of f (UĀV ) s f. We have s e 1 f (UĀV ) = Ufe 1 (Ā)V = =1 U f e 1 ( J e )V = s =1 U,e Cf Ṽ,1. For the last expresson U,e s the rghtmost block of U and Ṽ,1 s the top block of MV. The equalty follows from the observaton n the proof of theorem 5 that f e 1 ( J) s the sequence that has C f M (M nonsngular) n the lower left block and zero elsewhere. Thus, P q,b (J) = P q,b ( s =1 C f ) Probablty for a Drect Sum of Companon Matrces Let f be rreducble of degree d. To determne the probablty that a block projecton of A = t =1 C f preserves the mnmal polynomal of A, we need to determne the probablty that U Cf V = 0. We show that ths s equvalent to the probablty that a sum of rank =1 one matrces over K = F q [x]/ f(x) s zero and we establsh a recurrence relaton for ths probablty n corollary 14. Ths may be consdered the heart of the paper. 6

7 Lemma 7. Let A = t =1 C f F n n q, where f F q [x] s rreducble of degree d. P q,b (A) s equal to the probablty that S = UĀV = U Cf V 0, where U Fq b n and V F n b q =1 are chosen unformly randomly, and U, V are blocks of U, V, respectvely, conformng to the dmensons of the blocks of A. Proof. Because mnpoly(s) mnpoly(a) and mnpoly(a) = f, then mnpoly(s) f. Because f s rreducble, t has just two dvsors: f and 1. The dvsor 1 generates only the zero sequence. Therefore, f S = 0 then mnpoly(s) = 1. Otherwse, mnpoly(s) = f. Thus P q,b (A) equals the probablty that S 0. The connecton between sums of sequences UC f V and sums of rank one matrces over the extenson feld K s obtaned through the observaton that for column vectors u, v, one has u T Cf v = u T ρ(v) where ρ s the regular matrx representaton of K,.e. ρ(v)u = vu n K. The vectors u and v can be nterpreted as elements of K by assocatng them wth the polynomals u(x) = d 1 =0 u x and v(x) = d 1 =0 v x. Moreover, f {1, x, x 2,..., x d 1 } s chosen as a bass for K over F, then ρ(x) = C f and ρ(v) = d 1 =0 v ρ(x) = d 1 =0 v Cf. Lettng C = C f, the ntal segment of u T Cf v s u T (v, Cv, C 2 v,..., C d 1 v), whch s u T K C (v), where K C (v) s the Krylov matrx whose columns are C v. The followng lemma shows that K C (v) = ρ(v) and establshes the connecton u T Cf v = u T ρ(v). Lemma 8. Let f be an rreducble polynomal and K = F[x]/ f be the extenson feld defned by f. Let ρ be the regular representaton of K and C = C f the companon matrx of f. Then ρ(v) = d 1 j=0 v jc j = K C (v). Proof. Let e j be the vector wth a one n the j-th locaton and zeros elsewhere. Then, abusng notaton, ρ(v)e j = v(x)x j (mod f) and K C (v)e j = C j v = x j v(x)(mod f). Snce ths s true for arbtrary j the lemma s proved. Let U and V be b d and d b matrces over F. Let u be the -th row of U and v j be j-th column of V. The sequence U CV of b b matrces can be vewed as a b b matrx of sequences whose (, j) element s equal, by the dscusson above, to u ρ(v j ) T. Ths matrx can be mapped to the b b matrx over K whose (, j) element s the product u v j = ρ(v j )u. Ths s the outer product UV T, wth U and V vewed as a column vector over K and a row vector over K respectvely. Hence t s a rank one matrx over K provded nether U nor V s zero. Snce any rank one matrx s an outer product, ths mappng can be nverted. There s a one to one assocaton of sequences U CV wth rank one matrces over K. To show that ths mappng relates rank to the probablty that the block projecton UĀV preserves the mnmum polynomal of A, we must show that f t k=1 U kc f V k = 0 then the correspondng sum of t rank one matrces over K s the zero matrx and vce versa. Ths wll be shown usng the fact that the transpose ρ(v) T s smlar to ρ(v). Whle t s well known that a matrx s smlar to ts transpose, we provde a proof n the followng lemma whch constructs the smlarty transformaton and shows that the same smlarty transformaton works ndependent of v. Lemma 9. Gven an rreducble monc polynomal f F q [x] of degree d, there exsts a symmetrc nonsngular matrx P such that P 1 ρ(v)p = ρ(v) T, for all v F d q. 7

8 Proof. We begn wth C f. Every matrx s smlar to t s transpose by a symmetrc transform (Taussky and Zassenhaus, 1959). Let P be a smlarty transform such that P 1 C f P = Cf T. Then P 1 ρ(v)p = d 1 k=0 v kp 1 Cf kp = d 1 k=0 v k(cf k)t = ρ(v) T. It may be nformatve to have an explct constructon of such a transform P. It can be done wth Hankel structure (equalty on antdagonals). Let H n (a 1, a 2..., a n, a n+1,..., a 2n 1 ) denote the n n Hankel matrx wth frst ( row ) (a 1, a 2,..., a n ) and a b last row (a n, a n+1,..., a 2n 1 ). For example H 2 (a, b, c) =. Then defne P as b c P = f 0 H d 1 (f 2, f 3,..., f d 1, 1, 0,..., 0). A straghtforward computaton verfes C f P = P Cf T. Lemma 10. Gven an rreducble monc polynomal f F q [x] and t s extenson feld K = F q [x]/ f(x), there exsts a one-to-one, onto mappng from the b b projectons of Cf to K b b that preserves zero sums,.e. U C f V = 0 ff φ( U C f V ) = φ(u C f V ) = 0. Proof. The prevous dscusson shows that the mappng UC f V UV T from b b projectons of Cf onto rank one matrces over K s one-to-one. Let u k, and v k,j be the -th row of U k and and the j-th column of V k, respectvely. Let P be a matrx, whose exstence follows from lemma 9, such that P 1 ρ(v)p = ρ(v) T. Assume t k=1 U kc f V k = 0. Then usng lemma 8 and propertes of ρ k=1 u T k, C f v k,j = 0 u T k,ρ(v k,j ) = 0 u T k,p P 1 ρ(v k,j )P P 1 = 0 k=1 u T k,p ρ(v k,j ) T P 1 = 0 k=1 k=1 (u T k,p )ρ(v k,j ) T = 0 k=1 ũ k, v k,j = 0, where ũ k, = (u T k,p ). k=1 Let Ũk be the vector whose -th row s ũ k, then the correspondng sum of outer projects t k=1 ŨkVk T = 0. Because P s nvertble, the argument can be done n reverse, and for any zero sum of rank one matrces over K we can construct the correspondng sum of projectons equal to zero. Thus the probablty that =1 U C f V = 0 s the probablty that randomly selected t-term outer products over K sum to zero. The next lemma on rank one updates provdes basc results leadng to these probabltes. Lemma 11. Let r, s 0 be gven and consder rank one updates to A = I r 0 s. For conformally blocked column vectors u = (u T 1, u T 2 ) T, v = (v1 T, v2 T ) T F r F s. we have that rank(a + uv T ) = r 1 f and only f u T 1 v 1 = 1 and u 2, v 2 are both zero, and rank(a + uv T ) = r + 1 f and only f u 2, v 2 are both nonzero. Proof. Wthout loss of generalty (orthogonal change of bass) we may restrct attenton to the case that u 1 = αe r and u 2 = βe r+1, where e s the -th unt vector, α = 0 f 8

9 u 1 = 0 and α = 1 otherwse, and smlarly for β vs a vs u 2. Suppose that n ths bass v = (w 1,..., w r, z r+1,..., z n ) T. Then (I r 0) + uv T = αw αw r αz r+1... αz n βw 1... βw r βz r+1... βz n The rank of I r + u 1 v1 T s r 1 just n case u T 1 v 1 = 1 (Meyer, 2000). In our settng ths condton s that αw r = 1. We see that, for a rank of r 1, we must have that αw r = 1 and β, z both zero. For rank r + 1 t s clearly necessary that both( of β, z are nonzero. ) 1 + αwr αz It s also suffcent because for z 0 the order r + 1 mnor I r 1 has βw r βz determnant βz 0. These condtons translate nto the statements of the lemma before the change of bass. Corollary 12. Let A F n n q be of rank r, and let u, v be unformly random n F n q. Then, 1. the probablty that rank(a + uv T ) = r 1 s D(r) = qr 1 (q r 1) q 2n, 2. the probablty that rank(a + uv T ) = r + 1 s 3. the probablty that rank(a + uv T ) = r s wth equalty when r = 0. U(r) = (qn r 1) 2 q 2(n r), N(r) = 1 D(r) U(r) 2qn 1 q 2n, Proof. There exst nonsngular R, S such that RAS = I r 0 and R(A + uv T )S = I r 0 + (Ru)(S T v) T. Snce Ru and S T v are unformly random when u, v are, we may assume wthout loss of generalty that A = I r 0. For part 1, by corollary 12, the rank of I r 0 + uv T s less than r only f both u, v are zero n ther last n r rows and u T v = 1. For u, v F r q, u T v = 1 only when u 0 and we have, for the frst such that u 0, that v = u 1 j u jv j. Countng, there are q r 1 possble u and then q r 1 v s satsfyng the condtons. The stated probablty follows. For part 2, by the precedng lemma, the rank s ncreased only f the last n r rows of u and v are both nonzero. The probablty of ths s (qn r 1) 2. q 2(n r) For the part 3 nequalty, f the sgn s changed and 1 s added to both sdes, the nequalty becomes D(r) + U(r) ( q n 1 q n ) 2. Note that U(r) = ( q n q r q n ) 2 and D(r) ( q r 1 q n ) 2. Let 9

10 ( a = q n q r q n ) and b = ( q r 1 q n ). Note that a and b are postve. Thus, t s obvous that a 2 + b 2 (a + b) 2. That s, ( q n q r ) 2 ( q r ) 2 ( 1 q n ) 2 1 U(r) + D(r) +. Therefore, N(r) = 1 D(r) U(r) 2qn 1 q 2n. q n Defnton 13. For u, v unformly random n F b q, and A = t =1 u v T F n n q, let Q q,n,t (r) denote the probablty that rank(a) = r. Corollary 14. Let A = u v T, for unformly random u, v F n q, and let D(r), U(r), and =1 N(r) be defned as descrbed n corollary 12. Let Q t (r) = Q q,n,t (r) (defnton 13). Then, Q t (r) satsfes the recurrence relaton 0, f r < 0 or r > mn(t, n) Q t (r) = 1, f r = 0 and t = 0 φ t 1 (r), otherwse, where φ t (r) = Q t (r 1)U(r 1) + Q t (r)n(r) + Q t (r + 1)D(r + 1); and U(r), N(r), D(r) are defned as they are n corollary 12. Proof. The general recurrence s evdent from the fact that a rank one update can change the rank by at most one, and that Q 0 (0) = 1. The rank of the sum of t rank one matrces cannot be greater than ether t or n, nor less than zero. These probabltes apply as well to the premage of our mappng (block projectons of drect sums of companon matrces), whch leads to the next theorem. Theorem 15. Let f F q [x] be an rreducble polynomal of degree d, and let A = s =1 C f F n n q. Then, P q,b (A) = 1 Q s (0) 1 Q 1 (0), where Q s (r) = Q qd,b,s(r) (defnton 13). Proof. By lemmas 7 and 10, the probablty that a b b projecton of A fals s precsely Q s (0). For the nequalty, n all cases Q s (1) 1 Q s (0). Therefore, q n q n Let g(x) = x 2qdb q d q 2db Q s+1 (0) = Q s (0) 2qdb 1 q 2db + Q s (1) qd 1 q 2db Q s (0) 2qdb 1 q 2db + (1 Q s (0)) qd 1 q 2db = Q s (0) 2qdb q d q 2db + qd 1 q 2db. + qd 1 q 2db. Snce q, d, b are postve ntegers, g(x) s lnear wth postve slope. Probablty Q s (0) has range [0,1] and we have Q s+1 (0) g(q s (0)) g(1) = 2qdb 1 q 2db = Q 1 (0). Therefore, Q 1 (0) Q s (0), for all s 1. 10

11 Theorem 15 generalzes theorem 5. That s, P q,b (C f ) = 1 Q q d,b,1(0) = (1 1/q db ) 2, where f F q [x] s an rreducble polynomal of degree d. Theorem 15 makes clear that P q,b ( s =1 C f ) s mnmzed when there s a sngle block, s = 1. The followng theorem summarzes the exact computaton of the probablty that the mnmal polynomal of a matrx s preserved under projecton, n terms of the elementary dvsor structure of the matrx. Theorem 16. Let A F n n q be smlar to J = j J f e,j, where the f are dstnct rreducbles of degree d, and the e,j are postve exponents, nonncreasng wth respect to j. Let s be the number of e,j equal to e,1. Then, P q,b (A) = P q,b (J) = P q,b j J f e,j = ( s ) P q,b C f = (1 Q q d,b,s (0)). Proof. By lemma 1, P q,b (A) = P q,b (J). By theorem 4, P q,b (J) = ( ) P q,b j J f e,j. By ( ) lemma 6, P q,b j J f e,j = P q,b ( s k=1 C f ). Fnally, by theorem 15, P q,b ( s k=1 C f ) = 1 Q q d,b,s (0). Therefore, P q,b (A) = (1 Q q d,b,s (0)). 3.3 Examples Ths secton uses theorem 16 to compute P q,b (A) for several example matrces, and compares the probablty for matrces wth related but not dentcal nvarant factor lsts A 1 = , A = , A = , A 4 = , A 5 = k= where A F Let f(x) and g(x) be the rreducble polynomals (x 2 +3x+6) and (x+4) n F 7 [x]. Let F (A) denote the lst of nvarant factors of A ordered largest to smallest. Thus,, F (A 1 ) = {f(x)g(x), g(x), g(x)}, F (A 2 ) = {f(x) 2 g(x)}, F (A 3 ) = {f(x)g(x), f(x)}, F (A 4 ) = {f(x)g(x) 2, g(x)}, F (A 5 ) = {(x + 2)(x + 3)(x + 4)(x + 5)(x + 6)}. 11

12 By theorem 16, P 7,b (A 1 ) = P 7,b (C f )P 7,b (C g C g C g ) = (1 Q 72,b,1(0))(1 Q 7,b,3 (0)), P 7,b (A 2 ) = P 7,b (J f 2)P 7,b (C g ) = (1 Q 72,b,1(0))(1 Q 7,b,1 (0)), P 7,b (A 3 ) = P 7,b (C f C f )P 7,b (C g ) = (1 Q 72,b,2(0))(1 Q 7,b,1 (0)), P 7,b (A 4 ) = P 7,b (C f )P 7,b (J g 2 C g ) = (1 Q 72,b,1(0))(1 Q 7,b,1 (0)), P 7,b (A 5 ) = 5 5 P 7,b (C x +7 ) = (1 Q 7,b,1 (0)). =1 =1 Table 1: P 7,b (A ) vs b b=1 b=2 b=3 b=4 P 7,b (A 1 ) P 7,b (A 2 ) P 7,b (A 3 ) P 7,b (A 4 ) P 7,b (A 5 ) By part 3 of theorem 5, (1 Q 72,b,1(0)) = (1 1/7 2b ) 2 and (1 Q 7,b,1 (0)) = (1 1/7 b ) 2. Usng the recurrence relaton n corollary 14, we may compute Q 7,b,3 (0) and Q 72,b,2(0). Table 1 shows the resultng probabltes. Observe that P 7,b (A ) ncreases as b ncreases. These fve examples llustrate the effect of varyng matrx structure and block sze on P q,b (A ). By theorem 15, P 7,b (C g Cg Cg ) > P 7,b (C g ) and P 7,b (C f Cf ) > P 7,b (C f ). By theorem 16, P 7,b (J f 2) = P 7,b (C f ) and P 7,b (J g 2 Cg ) = P 7,b (C g ). Therefore, P 7,b (A 1 ) > P 7,b (A 2 ) and smlarly P 7,b (A 3 ) > P 7,b (A 2 ) = P 7,b (A 4 ). Fnally, snce (1 1/7 b ) 2 < 1 and (1 1/7 b ) 2 < (1 1/7 2b ) 2, P 7,b (C h1 Ch2 ) < P 7,b (C g ) and P 7,b (C h ) < P 7,b (C f ), for any lnear h 1 (x), h 2 (x), h(x) F 7 [x]. Therefore, P 7,b (A 5 ) has the mnmal probablty amongst the examples and n fact has the mnmal probablty for any 5 5 matrx. The worst case bound s explored further n the followng secton. 4 Probablty Bounds: Matrx of Unknown Structure Gven the probabltes determned n secton 3 of mnmum polynomal preservaton under projecton, t s ntutvely clear that the lowest probablty of success would occur when there are many elementary dvsors and the degrees of the rreducbles are as small as possble. Ths s true and s precsely stated n theorem 20 below. Frst we need several lemmas concernng drect sums of Jordan blocks. For A F n n q, as before, P q,b (A) denotes the probablty that mnpoly(a) = mnpoly(uāv ), where U Fb n q and V F n b q are unformly random. Lemma 17. Let f be an rreducble polynomal over F q, let e 1 =... = e s > e s+1... e t be a sequence of exponents for f, and let b be the projecton block sze. Then P q,b (J f e 1 + +e t ) P q,b (J f e 1 J f e t ) = P q,b (J f e 1 J f es ) 12

13 Proof. Ths follows from part 3 of theorem 5, and theorems 15 and 16, snce P q,b (J f e 1 + +e t ) = 1 Q 1 (0) 1 Q s (0) = P q,b (J f e 1 J f e t ). Lemma 18. Let f be an rreducble polynomal over F q of degree d, let f 1,..., f e be dstnct rreducble polynomals of degree d over F q, and let b be the projecton block sze. Then P q,b (J f1 J fe ) P q,b (J f e). Proof. Ths follows from theorem 4 and part 3 of theorem 5, snce P q,b (J f1 J fe ) = e =1 P q,b(j f ) and P q,b (J f e) = P q,b (J f ) = (1 1/q db ) 2 < 1. Lemma 19. Let f 1 and f 2 be rreducble polynomals over F q of degree d 1 and d 2 respectvely and let b be any projecton block sze. Then, f d 1 d 2, P q,b (J f1 ) P q,b (J f2 ). Proof. The follows agan from Part 3 of theorem 5 snce (1 1/q d1b ) 2 (1 1/q d2b ) 2. Recall the defnton: P q,b (n) = mn({p q,b (A) A F n n q }). Ths s the worst case probablty that an n n matrx has mnmal polynomal preserved by unformly random projecton to a b b sequence. In vew of the above lemmata, for the lowest probablty of success we must look to matrces wth the maxmal number of elementary dvsors. Defne L q (m) to be the number of monc rreducble polynomals of degree m n F q [x]. By the well known formula of Gauss (1981), L q (m) = 1/m µ(m/d)q d, d m where µ s the Möbus functon. Asymptotcally L q (m) converges to q m /m. By defnton, µ(a) = ( 1) k for square free a wth k dstnct prme factors and µ(a) = 0 otherwse. The degree of the product of all the monc rreducble polynomals of degree d s then dl q (d). When we want to have a maxmal number of rreducble factors n a product of degree n, we wll use L q (1), L q (2),..., L q (m 1) etc., untl the contrbuton of L q (m) no longer fts wthn the degree n. In that case we fnsh wth as many of the degree m rreducbles as wll ft. For ths purpose we adopt the notaton ( m 1 r L q (n, m) := mn L q (m),, for r = n dl q (d). m ) Theorem 20. Let F = F q be the feld of cardnalty q. For the m such that m 1 d=1 dl q(d) n < m d=1 dl q(d), m P q,b (n) = (1 1/q db ) 2Lq(n,m). d=1 Let r = n m d=1 dl q(m, d). When r 0 (mod m), the mnmum occurs for those matrces whose elementary dvsors are rreducble (not powers thereof), dstnct, and wth degree as small as possble. When r 0 (mod m) the mnmum occurs when the elementary dvsors nvolve exactly the same rreducbles as n the r 0 (mod m) case, but wth some elementary dvsors beng powers so that that the total degree s brought to n. d=1 13

14 Proof. Let A F n n q and let f e1 1,..., f t et be rreducble powers equal to the nvarant factors of A. If P q,b (A) s mnmal, then by lemmas 17,18,19 we can assume that the f are dstnct and have as small degrees as possble. Snce m 1 d=1 dl q(d) n < m d=1 dl q(d), ths assumpton mples that all rreducbles of degree less than m have been exhausted. If addtonal polynomals of degree m can be added to obtan an n n matrx, ths wll lead to the mnmal probablty snce addng any rreducbles of hgher degree wll, by theorem 5, reduce the total probablty by a lesser amount. In ths case all of the exponents, e wll be equal to one. If r s not 0, then an n n matrx can be obtaned by ncreasng some of the exponents, e, wthout changng the probablty. Ths, agan by theorem 5, wll lead to a smaller probablty than those obtaned by removng smaller degree polynomals and addng a polynomal of degree m or hgher. 4.1 Approxmatons Theorem 20 can be smplfed usng the approxmatons L q (m) q m /m and (1 1/a) a 1/e. Corollary 21. For feld cardnalty q, matrx dmenson n, and projecton block dmenson b, P q,b (n) e 2 q b Hm, where H m s the m-th harmonc number. Also, for large prmes, the formula of theorem 20 smplfes qute a bt because there are plenty of small degree rreducbles. In the next corollary we consder (a) the case n whch there are n lnear rreducbles and (b) a stuaton n whch the worst case probablty wll be defned by lnear and quadratc rreducbles. Corollary 22. For feld cardnalty q, matrx dmenson n, and projecton block dmenson b, f q n then P q,b (n) = (1 1/q b ) 2n e 2n/qb. If n > q n 1/2 then P q,b (n) = (1 1/q b ) 2q (1 1/q 2b ) n q e (2/qb 1 +(n q)/q 2b). 4.2 Example Bound Calculatons and Comparson to Prevous Bounds When b = 1 and we are only concerned wth projecton on one sde, the frst formula of corrolary 22 smplfes to (1 1/q) n = (1 n/q +...). The bound gven by Kaltofen and Pan (Kaltofen and Pan, 1991; Kaltofen and Saunders, 1991) for the probablty of mnpoly(uāv) = mnpoly(āv) s the frst two terms of ths expanson, though developed wth a very dfferent proof. For small prmes, Wedemann (1986)(proposton 3) treats the case b = 1 and he fxes the projecton on one sde because he s nterested n lnear system solvng and thus n the sequence Āb, for fxed b. For small q, hs formula, 1/(6 log q(n)), computed wth some approxmaton, s nonetheless qute close to our exact formula. However as q approaches n the dscrepancy wth our exact formula ncreases. At the large/small crossover, q = n, 14

15 Kaltofen/Pan s lower bound s 0, Wedemann s s 1/6, and ours s 1/e. The Kaltofen/Pan probablty bound mproves as q grows larger from n. The Wedemann bound becomes more accurate as q goes down from n. But the area q n s of some practcal mportance. In nteger matrx algorthms where the fnte feld used s a choce of the algorthm, sometmes practcal consderatons of effcent feld arthmetc encourages the use of prmes n the vcnty of n. For nstance, exact arthmetc n double precson and usng BLAS (Dumas et al., 2008) works well wth q Sparse matrces of order n n that range are tractable. Our bound may help justfy the use of such prmes. Fgure 1: Probablty of Falure to Preserve Mnmal Polynomal (1 P q,b (10 8 )) vs Block Sze and Feld Cardnalty But the prmary value we see n our analyss here s the understandng t gves of the value of blockng, b > 1. Fgure 1 shows the bounds for the worst case probablty that a random projecton wll preserve the mnmal polynomal of a matrx A F q for varous felds and projecton block szes. It shows that the probablty of fndng the mnmal polynomal correctly under projecton converges rapdly to 1 as the projected block sze ncreases. 5 Concluson We have drawn a precse connecton between the elementary dvsors of a matrx and the probablty that a random projecton, as done n the (blocked or unblocked) Wedemann algorthms, preserves the mnmal polynomal. We provde sharp formulas both for the case where the elementary dvsor structure of the matrx s known (theorem 4 and theorem 16) 15

16 and for the worst case (theorem 20). As ndcated n fgure 1 for the worst case, a blockng sze of 22 assures probablty of success greater than for all fnte felds and all matrx dmensons up to The probablty decreases very slowly as matrx dmenson grows and, n fact, further probablty computatons show that the one n a mllon bound on falure apples to blockng sze 22 wth much larger matrx dmensons as well. Lookng forward, t would be worthwhle to extend the analyss to apply to the determnaton of addtonal nvarant factors. Blockng s known to be useful for fndng and explotng them. For example, some rank and Frobenus form algorthms are based on block Wedemann (Eberly, 2000a,b). Also, we have not addressed precondtoners. The precondtoners such as dagonal, Toepltz, butterfly (Chen et al., 2002), ether apply only for large felds or have only large feld analyses. One can generally use an extenson feld to get the requste cardnalty, but the computatonal cost s hgh. Block algorthms hold much promse here and analyss to support them over small felds wll be valuable. References Chen, L., Eberly, W., Kaltofen, E., Turner, W., Saunders, B. D., Vllard, G., Effcent matrx precondtoners for black box lnear algebra. LAA , 2002, Coppersmth, D., Solvng homegeneous lnear equatons over GF (2) va block Wedemann algorthm. Mathematcs of Computaton 62 (205), Dumas, J.-G., Gorg, P., Pernet, C., Dense lnear algebra over word-sze prme felds: the FFLAS and FFPACK packages. ACM Trans. Math. Softw. 35 (3), Eberly, W., 2000a. Asymptotcally effcent algorthms for the Frobenus form. Techncal report, Department of Computer Scence, Unversty of Calgary. Eberly, W., 2000b. Black box Frobenus decompostons over small felds. In: ISSAC 00. ACM Press, pp Proc. of Eberly, W., Gesbrecht, M., Gorg, P., Storjohann, A., Vllard, G., Solvng sparse ratonal lnear systems. In: Proc. of ISSAC 06. ACM Press, pp Gauss, C. F., Untersuchungen Chelsea. Über Höhere Arthmetk, second edton, reprnted. Gorg, P., Jeannerod, C.-P., Vllard, G., On the complexty of polynomal matrx computatons. In: Proc. of ISSAC 03. pp Kaltofen, E., Analyss of Coppersmth s block Wedemann algorthm for the parallel soluton of sparse lnear systems. Mathematcs of Computaton 64 (210), Kaltofen, E., Pan, V., Processor effcent parallel soluton of lnear systems over an abstract feld. In: Thrd annual ACM Symposum on Parallel Algorthms and Archtectures. ACM Press, pp Kaltofen, E., Saunders, B. D., On Wedemann s method of solvng sparse lnear systems. In: Proc. AAECC-9. Vol. 539 of Lect. Notes Comput. Sc. Sprnger Verlag, pp

17 Kaltofen, E., Yuhasz, G., Oct On the matrx berlekamp-massey algorthm. ACM Trans. Algorthms 9 (4), 33:1 33:24. URL Meyer, C. D. (Ed.), Matrx analyss and appled lnear algebra. Socety for Industral and Appled Mathematcs, Phladelpha, PA, USA. Robnson, D. W., The generalzed jordan canoncal form. The Amercan Mathematcal Monthly 77 (4), , contrbutor:. URL Taussky, O., Zassenhaus, H., On the smlarty transformaton between a matrx and ts transpose. Pacfc J. Math. 9 (3), URL Vllard, G., Further analyss of Coppersmth s block Wedemann algorthm for the soluton of sparse lnear systems. In: Internatonal Symposum on Symbolc and Algebrac Computaton. ACM Press, pp Vllard, G., Block soluton of sparse lnear systems over GF(q): the sngular case. SIGSAM Bulletn 32 (4), Wedemann, D., Solvng sparse lnear equatons over fnte felds. IEEE Trans. Inform. Theory 32,

5 The Rational Canonical Form

5 The Rational Canonical Form 5 The Ratonal Canoncal Form Here p s a monc rreducble factor of the mnmum polynomal m T and s not necessarly of degree one Let F p denote the feld constructed earler n the course, consstng of all matrces

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP C O L L O Q U I U M M A T H E M A T I C U M VOL. 80 1999 NO. 1 FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP BY FLORIAN K A I N R A T H (GRAZ) Abstract. Let H be a Krull monod wth nfnte class

More information

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization DISCRIMINANTS AND RAMIFIED PRIMES KEITH CONRAD 1. Introducton A prme number p s sad to be ramfed n a number feld K f the prme deal factorzaton (1.1) (p) = po K = p e 1 1 peg g has some e greater than 1.

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

Homework Notes Week 7

Homework Notes Week 7 Homework Notes Week 7 Math 4 Sprng 4 #4 (a Complete the proof n example 5 that s an nner product (the Frobenus nner product on M n n (F In the example propertes (a and (d have already been verfed so we

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

MTH 819 Algebra I S13. Homework 1/ Solutions. 1 if p n b and p n+1 b 0 otherwise ) = 0 if p q or n m. W i = rw i

MTH 819 Algebra I S13. Homework 1/ Solutions. 1 if p n b and p n+1 b 0 otherwise ) = 0 if p q or n m. W i = rw i MTH 819 Algebra I S13 Homework 1/ Solutons Defnton A. Let R be PID and V a untary R-module. Let p be a prme n R and n Z +. Then d p,n (V) = dm R/Rp p n 1 Ann V (p n )/p n Ann V (p n+1 ) Note here that

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

a b a In case b 0, a being divisible by b is the same as to say that

a b a In case b 0, a being divisible by b is the same as to say that Secton 6.2 Dvsblty among the ntegers An nteger a ε s dvsble by b ε f there s an nteger c ε such that a = bc. Note that s dvsble by any nteger b, snce = b. On the other hand, a s dvsble by only f a = :

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

Deriving the X-Z Identity from Auxiliary Space Method

Deriving the X-Z Identity from Auxiliary Space Method Dervng the X-Z Identty from Auxlary Space Method Long Chen Department of Mathematcs, Unversty of Calforna at Irvne, Irvne, CA 92697 chenlong@math.uc.edu 1 Iteratve Methods In ths paper we dscuss teratve

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra MEM 255 Introducton to Control Systems Revew: Bascs of Lnear Algebra Harry G. Kwatny Department of Mechancal Engneerng & Mechancs Drexel Unversty Outlne Vectors Matrces MATLAB Advanced Topcs Vectors A

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS BOUNDEDNESS OF THE IESZ TANSFOM WITH MATIX A WEIGHTS Introducton Let L = L ( n, be the functon space wth norm (ˆ f L = f(x C dx d < For a d d matrx valued functon W : wth W (x postve sem-defnte for all

More information

NOTES ON SIMPLIFICATION OF MATRICES

NOTES ON SIMPLIFICATION OF MATRICES NOTES ON SIMPLIFICATION OF MATRICES JONATHAN LUK These notes dscuss how to smplfy an (n n) matrx In partcular, we expand on some of the materal from the textbook (wth some repetton) Part of the exposton

More information

Short running title: A generating function approach A GENERATING FUNCTION APPROACH TO COUNTING THEOREMS FOR SQUARE-FREE POLYNOMIALS AND MAXIMAL TORI

Short running title: A generating function approach A GENERATING FUNCTION APPROACH TO COUNTING THEOREMS FOR SQUARE-FREE POLYNOMIALS AND MAXIMAL TORI Short runnng ttle: A generatng functon approach A GENERATING FUNCTION APPROACH TO COUNTING THEOREMS FOR SQUARE-FREE POLYNOMIALS AND MAXIMAL TORI JASON FULMAN Abstract. A recent paper of Church, Ellenberg,

More information

SL n (F ) Equals its Own Derived Group

SL n (F ) Equals its Own Derived Group Internatonal Journal of Algebra, Vol. 2, 2008, no. 12, 585-594 SL n (F ) Equals ts Own Derved Group Jorge Macel BMCC-The Cty Unversty of New York, CUNY 199 Chambers street, New York, NY 10007, USA macel@cms.nyu.edu

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

DIFFERENTIAL FORMS BRIAN OSSERMAN

DIFFERENTIAL FORMS BRIAN OSSERMAN DIFFERENTIAL FORMS BRIAN OSSERMAN Dfferentals are an mportant topc n algebrac geometry, allowng the use of some classcal geometrc arguments n the context of varetes over any feld. We wll use them to defne

More information

Lecture 5 Decoding Binary BCH Codes

Lecture 5 Decoding Binary BCH Codes Lecture 5 Decodng Bnary BCH Codes In ths class, we wll ntroduce dfferent methods for decodng BCH codes 51 Decodng the [15, 7, 5] 2 -BCH Code Consder the [15, 7, 5] 2 -code C we ntroduced n the last lecture

More information

9 Characteristic classes

9 Characteristic classes THEODORE VORONOV DIFFERENTIAL GEOMETRY. Sprng 2009 [under constructon] 9 Characterstc classes 9.1 The frst Chern class of a lne bundle Consder a complex vector bundle E B of rank p. We shall construct

More information

ALGEBRA HW 7 CLAY SHONKWILER

ALGEBRA HW 7 CLAY SHONKWILER ALGEBRA HW 7 CLAY SHONKWILER 1 Whch of the followng rngs R are dscrete valuaton rngs? For those that are, fnd the fracton feld K = frac R, the resdue feld k = R/m (where m) s the maxmal deal), and a unformzer

More information

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA. 4. Tensor product

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA. 4. Tensor product 12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA Here s an outlne of what I dd: (1) categorcal defnton (2) constructon (3) lst of basc propertes (4) dstrbutve property (5) rght exactness (6) localzaton

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Perron Vectors of an Irreducible Nonnegative Interval Matrix Perron Vectors of an Irreducble Nonnegatve Interval Matrx Jr Rohn August 4 2005 Abstract As s well known an rreducble nonnegatve matrx possesses a unquely determned Perron vector. As the man result of

More information

= z 20 z n. (k 20) + 4 z k = 4

= z 20 z n. (k 20) + 4 z k = 4 Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

The internal structure of natural numbers and one method for the definition of large prime numbers

The internal structure of natural numbers and one method for the definition of large prime numbers The nternal structure of natural numbers and one method for the defnton of large prme numbers Emmanul Manousos APM Insttute for the Advancement of Physcs and Mathematcs 3 Poulou str. 53 Athens Greece Abstract

More information

Ballot Paths Avoiding Depth Zero Patterns

Ballot Paths Avoiding Depth Zero Patterns Ballot Paths Avodng Depth Zero Patterns Henrch Nederhausen and Shaun Sullvan Florda Atlantc Unversty, Boca Raton, Florda nederha@fauedu, ssull21@fauedu 1 Introducton In a paper by Sapounaks, Tasoulas,

More information

Finding Primitive Roots Pseudo-Deterministically

Finding Primitive Roots Pseudo-Deterministically Electronc Colloquum on Computatonal Complexty, Report No 207 (205) Fndng Prmtve Roots Pseudo-Determnstcally Ofer Grossman December 22, 205 Abstract Pseudo-determnstc algorthms are randomzed search algorthms

More information

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN FINITELY-GENERTED MODULES OVER PRINCIPL IDEL DOMIN EMMNUEL KOWLSKI Throughout ths note, s a prncpal deal doman. We recall the classfcaton theorem: Theorem 1. Let M be a fntely-generated -module. (1) There

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Edge Isoperimetric Inequalities

Edge Isoperimetric Inequalities November 7, 2005 Ross M. Rchardson Edge Isopermetrc Inequaltes 1 Four Questons Recall that n the last lecture we looked at the problem of sopermetrc nequaltes n the hypercube, Q n. Our noton of boundary

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

REGULAR POSITIVE TERNARY QUADRATIC FORMS. 1. Introduction

REGULAR POSITIVE TERNARY QUADRATIC FORMS. 1. Introduction REGULAR POSITIVE TERNARY QUADRATIC FORMS BYEONG-KWEON OH Abstract. A postve defnte quadratc form f s sad to be regular f t globally represents all ntegers that are represented by the genus of f. In 997

More information

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS These are nformal notes whch cover some of the materal whch s not n the course book. The man purpose s to gve a number of nontrval examples

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

NOTES FOR QUANTUM GROUPS, CRYSTAL BASES AND REALIZATION OF ŝl(n)-modules

NOTES FOR QUANTUM GROUPS, CRYSTAL BASES AND REALIZATION OF ŝl(n)-modules NOTES FOR QUANTUM GROUPS, CRYSTAL BASES AND REALIZATION OF ŝl(n)-modules EVAN WILSON Quantum groups Consder the Le algebra sl(n), whch s the Le algebra over C of n n trace matrces together wth the commutator

More information

A new construction of 3-separable matrices via an improved decoding of Macula s construction

A new construction of 3-separable matrices via an improved decoding of Macula s construction Dscrete Optmzaton 5 008 700 704 Contents lsts avalable at ScenceDrect Dscrete Optmzaton journal homepage: wwwelsevercom/locate/dsopt A new constructon of 3-separable matrces va an mproved decodng of Macula

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Lecture 4: Universal Hash Functions/Streaming Cont d

Lecture 4: Universal Hash Functions/Streaming Cont d CSE 5: Desgn and Analyss of Algorthms I Sprng 06 Lecture 4: Unversal Hash Functons/Streamng Cont d Lecturer: Shayan Oves Gharan Aprl 6th Scrbe: Jacob Schreber Dsclamer: These notes have not been subjected

More information

Lecture 2: Gram-Schmidt Vectors and the LLL Algorithm

Lecture 2: Gram-Schmidt Vectors and the LLL Algorithm NYU, Fall 2016 Lattces Mn Course Lecture 2: Gram-Schmdt Vectors and the LLL Algorthm Lecturer: Noah Stephens-Davdowtz 2.1 The Shortest Vector Problem In our last lecture, we consdered short solutons to

More information

Fixed points of IA-endomorphisms of a free metabelian Lie algebra

Fixed points of IA-endomorphisms of a free metabelian Lie algebra Proc. Indan Acad. Sc. (Math. Sc.) Vol. 121, No. 4, November 2011, pp. 405 416. c Indan Academy of Scences Fxed ponts of IA-endomorphsms of a free metabelan Le algebra NAIME EKICI 1 and DEMET PARLAK SÖNMEZ

More information

The lower and upper bounds on Perron root of nonnegative irreducible matrices

The lower and upper bounds on Perron root of nonnegative irreducible matrices Journal of Computatonal Appled Mathematcs 217 (2008) 259 267 wwwelsevercom/locate/cam The lower upper bounds on Perron root of nonnegatve rreducble matrces Guang-Xn Huang a,, Feng Yn b,keguo a a College

More information

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD Matrx Approxmaton va Samplng, Subspace Embeddng Lecturer: Anup Rao Scrbe: Rashth Sharma, Peng Zhang 0/01/016 1 Solvng Lnear Systems Usng SVD Two applcatons of SVD have been covered so far. Today we loo

More information

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence Remarks on the Propertes of a Quas-Fbonacc-lke Polynomal Sequence Brce Merwne LIU Brooklyn Ilan Wenschelbaum Wesleyan Unversty Abstract Consder the Quas-Fbonacc-lke Polynomal Sequence gven by F 0 = 1,

More information

Restricted divisor sums

Restricted divisor sums ACTA ARITHMETICA 02 2002) Restrcted dvsor sums by Kevn A Broughan Hamlton) Introducton There s a body of work n the lterature on varous restrcted sums of the number of dvsors of an nteger functon ncludng

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

Volume 18 Figure 1. Notation 1. Notation 2. Observation 1. Remark 1. Remark 2. Remark 3. Remark 4. Remark 5. Remark 6. Theorem A [2]. Theorem B [2].

Volume 18 Figure 1. Notation 1. Notation 2. Observation 1. Remark 1. Remark 2. Remark 3. Remark 4. Remark 5. Remark 6. Theorem A [2]. Theorem B [2]. Bulletn of Mathematcal Scences and Applcatons Submtted: 016-04-07 ISSN: 78-9634, Vol. 18, pp 1-10 Revsed: 016-09-08 do:10.1805/www.scpress.com/bmsa.18.1 Accepted: 016-10-13 017 ScPress Ltd., Swtzerland

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

On the size of quotient of two subsets of positive integers.

On the size of quotient of two subsets of positive integers. arxv:1706.04101v1 [math.nt] 13 Jun 2017 On the sze of quotent of two subsets of postve ntegers. Yur Shtenkov Abstract We obtan non-trval lower bound for the set A/A, where A s a subset of the nterval [1,

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

MEM633 Lectures 7&8. Chapter 4. Descriptions of MIMO Systems 4-1 Direct Realizations. (i) x u. y x

MEM633 Lectures 7&8. Chapter 4. Descriptions of MIMO Systems 4-1 Direct Realizations. (i) x u. y x MEM633 Lectures 7&8 Chapter 4 Descrptons of MIMO Systems 4- Drect ealzatons y() s s su() s y () s u () s ( s)( s) s y() s u (), s y() s u() s s s y() s u(), s y() s u() s ( s)( s) s () ( s ) y ( s) u (

More information

Polynomials. 1 More properties of polynomials

Polynomials. 1 More properties of polynomials Polynomals 1 More propertes of polynomals Recall that, for R a commutatve rng wth unty (as wth all rngs n ths course unless otherwse noted), we defne R[x] to be the set of expressons n =0 a x, where a

More information

The Second Anti-Mathima on Game Theory

The Second Anti-Mathima on Game Theory The Second Ant-Mathma on Game Theory Ath. Kehagas December 1 2006 1 Introducton In ths note we wll examne the noton of game equlbrum for three types of games 1. 2-player 2-acton zero-sum games 2. 2-player

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

On the partial orthogonality of faithful characters. Gregory M. Constantine 1,2

On the partial orthogonality of faithful characters. Gregory M. Constantine 1,2 On the partal orthogonalty of fathful characters by Gregory M. Constantne 1,2 ABSTRACT For conjugacy classes C and D we obtan an expresson for χ(c) χ(d), where the sum extends only over the fathful rreducble

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

Games of Threats. Elon Kohlberg Abraham Neyman. Working Paper

Games of Threats. Elon Kohlberg Abraham Neyman. Working Paper Games of Threats Elon Kohlberg Abraham Neyman Workng Paper 18-023 Games of Threats Elon Kohlberg Harvard Busness School Abraham Neyman The Hebrew Unversty of Jerusalem Workng Paper 18-023 Copyrght 2017

More information

On the correction of the h-index for career length

On the correction of the h-index for career length 1 On the correcton of the h-ndex for career length by L. Egghe Unverstet Hasselt (UHasselt), Campus Depenbeek, Agoralaan, B-3590 Depenbeek, Belgum 1 and Unverstet Antwerpen (UA), IBW, Stadscampus, Venusstraat

More information

CSCE 790S Background Results

CSCE 790S Background Results CSCE 790S Background Results Stephen A. Fenner September 8, 011 Abstract These results are background to the course CSCE 790S/CSCE 790B, Quantum Computaton and Informaton (Sprng 007 and Fall 011). Each

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

Christian Aebi Collège Calvin, Geneva, Switzerland

Christian Aebi Collège Calvin, Geneva, Switzerland #A7 INTEGERS 12 (2012) A PROPERTY OF TWIN PRIMES Chrstan Aeb Collège Calvn, Geneva, Swtzerland chrstan.aeb@edu.ge.ch Grant Carns Department of Mathematcs, La Trobe Unversty, Melbourne, Australa G.Carns@latrobe.edu.au

More information

Math 261 Exercise sheet 2

Math 261 Exercise sheet 2 Math 261 Exercse sheet 2 http://staff.aub.edu.lb/~nm116/teachng/2017/math261/ndex.html Verson: September 25, 2017 Answers are due for Monday 25 September, 11AM. The use of calculators s allowed. Exercse

More information

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES SVANTE JANSON Abstract. We gve explct bounds for the tal probabltes for sums of ndependent geometrc or exponental varables, possbly wth dfferent

More information

A p-adic PERRON-FROBENIUS THEOREM

A p-adic PERRON-FROBENIUS THEOREM A p-adic PERRON-FROBENIUS THEOREM ROBERT COSTA AND PATRICK DYNES Advsor: Clayton Petsche Oregon State Unversty Abstract We prove a result for square matrces over the p-adc numbers akn to the Perron-Frobenus

More information

THE CLASS NUMBER THEOREM

THE CLASS NUMBER THEOREM THE CLASS NUMBER THEOREM TIMUR AKMAN-DUFFY Abstract. In basc number theory we encounter the class group (also known as the deal class group). Ths group measures the extent that a rng fals to be a prncpal

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Restricted Lie Algebras. Jared Warner

Restricted Lie Algebras. Jared Warner Restrcted Le Algebras Jared Warner 1. Defntons and Examples Defnton 1.1. Let k be a feld of characterstc p. A restrcted Le algebra (g, ( ) [p] ) s a Le algebra g over k and a map ( ) [p] : g g called

More information

Randić Energy and Randić Estrada Index of a Graph

Randić Energy and Randić Estrada Index of a Graph EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 5, No., 202, 88-96 ISSN 307-5543 www.ejpam.com SPECIAL ISSUE FOR THE INTERNATIONAL CONFERENCE ON APPLIED ANALYSIS AND ALGEBRA 29 JUNE -02JULY 20, ISTANBUL

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Lnear Algebra and ts Applcatons 4 (00) 5 56 Contents lsts avalable at ScenceDrect Lnear Algebra and ts Applcatons journal homepage: wwwelsevercom/locate/laa Notes on Hlbert and Cauchy matrces Mroslav Fedler

More information

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0 Bézer curves Mchael S. Floater September 1, 215 These notes provde an ntroducton to Bézer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of

More information

Notes on Frequency Estimation in Data Streams

Notes on Frequency Estimation in Data Streams Notes on Frequency Estmaton n Data Streams In (one of) the data streamng model(s), the data s a sequence of arrvals a 1, a 2,..., a m of the form a j = (, v) where s the dentty of the tem and belongs to

More information

Anti-van der Waerden numbers of 3-term arithmetic progressions.

Anti-van der Waerden numbers of 3-term arithmetic progressions. Ant-van der Waerden numbers of 3-term arthmetc progressons. Zhanar Berkkyzy, Alex Schulte, and Mchael Young Aprl 24, 2016 Abstract The ant-van der Waerden number, denoted by aw([n], k), s the smallest

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Dirichlet s Theorem In Arithmetic Progressions

Dirichlet s Theorem In Arithmetic Progressions Drchlet s Theorem In Arthmetc Progressons Parsa Kavkan Hang Wang The Unversty of Adelade February 26, 205 Abstract The am of ths paper s to ntroduce and prove Drchlet s theorem n arthmetc progressons,

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede Fall 0 Analyss of Expermental easurements B. Esensten/rev. S. Errede We now reformulate the lnear Least Squares ethod n more general terms, sutable for (eventually extendng to the non-lnear case, and also

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

HMMT February 2016 February 20, 2016

HMMT February 2016 February 20, 2016 HMMT February 016 February 0, 016 Combnatorcs 1. For postve ntegers n, let S n be the set of ntegers x such that n dstnct lnes, no three concurrent, can dvde a plane nto x regons (for example, S = {3,

More information

The Ramanujan-Nagell Theorem: Understanding the Proof By Spencer De Chenne

The Ramanujan-Nagell Theorem: Understanding the Proof By Spencer De Chenne The Ramanujan-Nagell Theorem: Understandng the Proof By Spencer De Chenne 1 Introducton The Ramanujan-Nagell Theorem, frst proposed as a conjecture by Srnvasa Ramanujan n 1943 and later proven by Trygve

More information