Learning in Gibbsian Fields: How Accurate and How Fast Can It Be?

Size: px
Start display at page:

Download "Learning in Gibbsian Fields: How Accurate and How Fast Can It Be?"

Transcription

1 IEEE TRANSACTIONS ON PATTERN ANAYSIS AND MACHINE INTEIGENCE, VO. 24, NO. 7, JUY earg Gbbsa Fels: Hw Accurate a Hw Fast Ca It Be? Sg Chu Zhu a Xuwe u AbstractÐGbbsa fels r Markv ram fels are wely use Bayesa mage aalyss, but learg Gbbs mels s cmputatally expesve. The cmputatal cmplexty s pruce by the recet mmax etrpy (FRAME) mels whch use large eghbrhs a hures f parameters [22]. I ths paper, we preset a cmm framewrk fr learg Gbbs mels. We etfy tw key factrs that eterme the accuracy a spee f learg Gbbs mels: The effcecy f lkelh fucts a the varace apprxmatg partt fucts usg Mte Carl tegrat. We prpse three ew algrthms. I partcular, we are tereste a maxmum satellte lkelh estmatr, whch makes use f a set f precmpute Gbbs mels calle ªsatelltesº t apprxmate lkelh fucts. Ths algrthm ca apprxmately estmate the mmax etrpy mel fr textures secs a HP wrkstat. The perfrmaces f varus learg algrthms are cmpare ur expermets. Iex TermsÐMarkv ram fels, mmax etrpy learg, texture melg, Markv cha Mte Carl, maxmum-lkelh estmate, mprtace samplg. INTRODUCTION æ GIBBSIAN fels r Markv ram fels (MRF) are wely use Bayesa mage aalyss fr characterzg stchastc patters r prr kwlege, but learg accurate Gbbs mels s cmputatally expesve. I the lterature, may learg algrthms are fcuse aut-mels, such as aut-bmal mels [7] a Gaussa Markv ram fels [5] whse parameters ca be cmpute aalytcally. Fr MRF mels bey the aut-mel famles, there are three algrthms. The frst s a maxmum pseulkelh estmatr (MPE) [4]. The sec s a stchastc graet algrthm [8], [2], [22]. The thr s Markv cha Mte Carl maxmum-lkelh estmatr (MCMCME) [2], [3], [9]. The sec a thr meths apprxmate partt fucts by mprtace samplg techquesða tpc stue extesvely the lterature [5], [6], [7], [8]. There are als meths [0], [] that estmate Gbbs parameters wth precmpute ervatves f lg-partt fucts. These algrthms were use prmarly fr learg MRF mels wth par clques, such as Isg mels a Ptts mels. The cmputatal cmplexty s pruce by the recet mmax etrpy mels (FRAME) fr texture [22] whch vlve large eghbrhs (e.g., flters wth ww szes f pxels) a large umber f parameters (e.g., ). Recetly, fur algrthms were prpse t speeup mmax etrpy learg wth mxe success:. A mutema mmax algrthm [6], 2. A varatal meth [2], [], 3. A meth f learg by ffus [9], a 4. A geeralze MPE (Prvate cmmucat wth Y.N. Wu). Beses the ew algrthms, a esemble equvalece therem eables the separat f the mel select prceure frm the parameter learg step [20].. S.C. Zhu s wth the Departmets f Statstcs a Cmputer Scece, Uversty f Calfra at s Ageles, s Ageles, CA E-mal: sczhu@stat.ucla.eu.. X.W. u s wth the Departmet f Cmputer Scece, Flra State Uversty, Tallahassee, F E-mal: lux@cs.fsu.eu. Mauscrpt receve Feb. 2000; revse 26 Feb. 200; accepte 29 Nv Recmmee fr acceptace by C. Buma. Fr frmat btag reprts f ths artcle, please se e-mal t: tpam@cmputer.rg, a referece IEEECS g Number 60. I ths paper, we stuy a cmm statstcal framewrk fr learg the parameters f Gbbs mels wth a emphass cmputatal effcecy. There are tw factrs that eterme the accuracy a spee f these learg algrthms. The frst s the effcecy f the frmulate lkelh fucts measure by the Fsher's frmat. The sec s the apprxmat f partt fucts by mprtace samplg. Ths aalyss leas t three ew learg algrthms:. A maxmum partal lkelh estmatr, 2. A maxmum patch lkelh estmatr, a 3. A maxmum satellte lkelh estmatr. Our emphass wll be the thr algrthm whch apprxmates partt fucts by a set f precmpute referece Gbbs mels a smlar sprt t [0], []. Ths algrthm ca apprxmately cmpute Gbbs mels abut 0 secs a HP wrkstat. The paper s rgaze as fllws: Sect 2 presets a cmm framewrk fr Gbbs learg. Sect 3 presets three ew algrthms. Sect 4 emstrates expermets texture sythess. We cclue wth a scuss Sect 5. 2 EARNING IN GIBBSIAN FIEDSÐA COMMON FRAMEWORK et I be a mage efe a lattce a I ts buary cts. s the eghbrh f. et h I be the feature statstcs f I uer buary cts Fr example, h s a vectr fr the hstgrams f fltere mages [23]. Wthut lss f geeralty, a Gbbs mel s f the fllwg frm (see [22]), p I ; ˆ Z ; exp f <; h I g: I (), s a vectr value parameter crrespg t the Julesz esemble fte mages [20] a t s varat t the szes a shapes f. S, ca be estmate a arbtrary. I learg Gbbs mels, we are gve a bserve mage I bs, where may have may scecte cmpets t accut fr multple bservats. Equally, we may break t smaller patches I bs ;ˆ ; 2;...;M lattces f arbtrary shapes a szes. These patches may verlap wth each ther. The, s leare by maxmzg a lg-lkelh, ˆ arg max G ; wth G ˆXM ˆ lg p I bs ; : 2 We shw that exstg Gbbs learg algrthms are ufe as M-estmatrs a they ffer the fllwg tw chces. Chce. The umber, szes, a shapes f the fregru patches ;ˆ ;...;M. Fg. splays fur typcal chces fr. The brght pxels are the fregru ;ˆ ; 2;...;M, whch are surrue by ark pxels the backgru ;ˆ ; 2;...;M. I the frst three cases, are square patches wth m m pxels. I e extreme, Fg. a chses e largest patch ete by,.e., M ˆ a m ˆ N 2w wth w beg the wth f the buary. G s calle the lg-lkelh, a t s apte by the stchastc graet [2], [22] a MCMCME [2], [3], [9] meths. I the ther extreme, Fg. c chses the mmum patch sze m ˆ a G s calle the lgpseulkelh, use the maxmum pseulkelh estmat (MPE) [4]. Fg. b s a example betwee the tw extremes a G s calle the lg-patch-lkelh. I the furth case, Fg. chses ly e (M ˆ ) rregular-shape patch, ete by, where s a set f ramly selecte pxels wth the rest f the pxels beg the a G s calle the lg-partal-lkelh. I Fgs. b a c, a fregru pxel may serve as backgru /02/$7.00 ß 2002 IEEE

2 002 IEEE TRANSACTIONS ON PATTERN ANAYSIS AND MACHINE INTEIGENCE, VO. 24, NO. 7, JUY 2002 Fg.. Varus chces f, ˆ ; 2;...;M. The brght pxels are fregru whch are surrue by ark backgru pxels. (a) kelh, (b) patch lkelh (r satellte lkelh), (c) pseulkelh, a () partal lkelh. fferet patches. It s straghtfrwar t prve that maxmzg G leas t a csstet estmatr fr all fur chces [4]. The flexblty f lkelh fuct stgushes Gbbs learg frm the prblem f estmatg partt fucts [5], [6], [7]. The latter cmputes the ªpressureº a large lattce rer t vercme buary effects. Chce 2. The referece mels use fr estmatg the partt fucts. Fr a chse fregru a lg-lkelh fuct, the sec step s t apprxmate the partt fucts Z I bs ; fr each ;ˆ ;...;M by Mte Carl tegrat usg a referece mel at. Z I bs ; Z ˆ exp <; h I I ; Z I sy j ˆ Z ; Z I bs ; X jˆ exp < ; h I exp < ; h I sy j jibs p I ; : ;jˆ ; 2;...; are typcal samples frm the referece mel p I ; fr each patch ˆ ; 2;...;M. Sce Z ; ;ˆ ; 2;...M are epeet f, we ca maxmze the estmate lg-lkelh G by graet escet. Ths leas t t ˆ XM ˆ jˆ 3 ( X )! j h I sy j jibs h I bs : 4! j s the weght fr sample I sy j, exp < ; h I sy j jibs! j ˆ P : j 0ˆ exp < ; h I sy j 0 jibs The select f the referece mels p I ; epes the szes f the patches ;ˆ ;...;M. I geeral, mprtace samplg s ly val whe the tw strbuts p I ; a p I ; heavly verlap. I e extreme case m ˆ, the MPE meth [4] selects ˆ 0 a p I ; a ufrm strbut. I ths case, Z I bs ; ca be cmpute exactly. I the ther extreme case fr a large fregru m ˆ N 2w, the stchastc graet a the MCMCME meths have t chse ˆ rer t bta sesble apprxmats. Thus, bth meths must sample p I; teratvely startg frm 0 ˆ 0. Ths s the algrthm apte learg the FRAME mels [22]. T summarze, Fg. 2 llustrates tw factrs that eterme the accuracy a spee f learg. These curves are verfe thrugh expermets Sect 4 (see Fg. 7). The hrztal axs s the sze f a vual fregru lattce j j.. The varaces f ME r verse Fsher frmat. et ^ I bs be the estmatr maxmzg G a let be the ptmal slut. The ashe curve Fg. 2 llustrates the varace ^ I bs 2 ; E f where f I s a uerlyg strbut represetg the Julesz esemble. Fr chces shw Fg., f we fx the ttal umber f fregru pxels P M ˆ j j, the the varace (r estmat errr) ecreases as the patch sze (ameter f the hle) creases. 2. The varace f estmatg Z by Mte Carl tegrat E p ^Z Z 2 Š. Fr a gve referece mel ˆ ;ˆ ; 2;...;k (see sl curves Fg. 2), ths estmat errr creases wth the lattce szes. Therefre, fr very large patches, such as m ˆ 200, we must cstruct a sequece f referece mels t apprach, 0 ˆ 0!! 2!...;! k! : Ths s the majr reas why the stchastc graet algrthm was s slw FRAME [22]. 3 THREE NEW AGORITHMS The aalyss the prevus sect leas t three ew algrthms by selectg lkelhs that trae-ff betwee the tw factrs a the thr algrthm mprves accuracy by precmpute referece mels. Algrthm : Maxmzg partal lkelh. We chse a lattce shw Fg. by chsg at ram a certa Fg. 2. Estmat varaces fr varus selects f patch szes m m a referece mels. The ashe curve shws the verse Fsher's frmat whch ecreases as m m creases. The sl curves shw the varaces the mprtace samplg fr a sequece f mels apprachg.

3 IEEE TRANSACTIONS ON PATTERN ANAYSIS AND MACHINE INTEIGENCE, VO. 24, NO. 7, JUY Fg. 3. The shaw areas aru llustrate the varace f the estmate r effcecy f the lg-lkelh fucts. (a) Stchastc graet a Algrthms a 2 geerate a sequece f satelltes le t apprach clsely, m ca be small r large. (b) The maxmum satellte lkelh estmatr uses a geeral set f satelltes cmpute ffle a ca be upate cremetally. Ths ca be use fr small sze m. (c) MPE uses a sgle satellte: ˆ 0. percetage (say, 30 percet) f pxels as fregru a the rest are treate as backgru. We efe a lg-partal-lkelh G ˆlg p I bs ; : Maxmzg G by graet escet, we upate teratvely. t ˆ E p I ; h h I h I bs : 5 Ths algrthm fllws the same prceure as the rgal meth FRAME [22]. It traes ff betwee accuracy a spee a better way tha the rgal algrthm FRAME [22]. The lgpartal-lkelh has lwer Fsher frmat tha the lg-lkelh; hwever, ur expermets emstrate that t s abut 25 tmes faster tha the rgal mmax learg meth wthut lsg much accuracy. We bserve that the reas fr ths speeup s that the rgal samplg meth [22] spes a majr prt f ts tme sytheszg I sy uer ªtypcalº buary cts startg wth whte se mages. I ctrast, the ew algrthm wrks typcal buary ct I bs where the prbablty mass f the Gbbs mel p I; s fcuse. The spee appears t be ece by the ameter f the fregru lattce measure by the maxmum crcle that ca ft the fregru lattce. Algrthm 2. Maxmzg patch lkelh. Algrthm 2 chses a set f M verlappg patches frm I bs a ªgsº a hle each patch, as Fg. b shws. Thus, we efe a patch lg-lkelh G 2 ˆXM ˆ lg p I bs ; : Maxmzg G 2 by graet escet, we upate teratvely as Algrthm es. t ˆ XM ˆ XM h I sy = ˆ h I bs = : 6 I cmpars wth Algrthm, the ameters f the lattces are evely ctrlle. Algrthm has smlar perfrmace as Algrthm. Algrthm 3. Maxmzg satellte lkelh. Bth Algrthms a 2 stll ee t sythesze mages le, whch s a cmputatally tesve task. Nw, we prpse a thr algrthm whch may apprxmately cmpute the spee f a few secs wthut sytheszg mages le. We select a set f referece mels the expetal famly t whch the Gbbs mel p I; belgs, Rˆ p I; j : j 2 ;jˆ ; 2;...;s: We sample (r sythesze) e large typcal mage I sy j p I; j fr each referece mel ffle. These referece mels estmate frm fferet ªvewg agles.º By aalgy t the glbal pstg system, we call the referece mels the ªsatelltes.º The lg-satellte-lkelh s efe as G 3 ˆG 3 ; G 2 3 ; 2 G s 3 ; s ; 7 where each satellte ctrbutes e lg-lkelh apprxmat, G j 3 ; j ˆXM ˆ lg ^Z j exp <; h I bs : 8 Fllwg the mprtace samplg meth (3), we estmate Z I bs ; by Mte Carl tegrat. ^Z j ˆ Z Ibs ; j X `ˆ exp < j ; h I sy j` jibs : 9 Ntce that, fr every hle a fr every referece mel p I; j, we have a set f sythesze patches I sy j` t fll the hle: H sy j ˆ I sy ; ` ˆ ; 2;...;;8; j : There are tw ways fr geeratg H sy j.. Samplg I sy j` j` p I ; j Ðusg the ctal strbut. Ths s expesve a has t be cmpute le. 2. Samplg I sy j` p I ; j Ðusg the margal strbut. I practce, ths s just t fll the hles wth ramly selecte patches frm the sythesze mage I sy j cmpute ffle. I ur expermets, we tre bth cases a we fu that ffereces are very lttle fr mle szes m m lattces, say 4 m 3. Maxmzg G 3 by graet ascet, we have, t ˆ Xs jˆ ( X M X )! j h I sy j` jibs h I bs ˆ `ˆ! j s the weght fr sample I sy j`, exp < j ; h I sy j` jibs! j` ˆ P : `0ˆ exp < j ; h I sy j`0 jibs 0 Equat (0) cverges the spee f secs fr a average texture mel. Hwever, we shul be aware f the rsk that the lg-satelltelkelh G 3 may t be upper bue. It s almst surely t upper bue fr the MCMCME meth. Ths case ccurs whe h I bs cat be escrbe by a lear cmbat f the statstcs f the sample patches P `ˆ! jh I sy j` jibs. Whe ths ccurs, es t cverge. We hale ths prblem by clug the bserve patch I bs H sy j ; therefre, the satellte lkelh s always upper bue. Itutvely, let I sy j ˆ Ibs, s leare s that the ctal prbabltes! j! a! j`! 0; 8` 6ˆ.

4 004 Fg. 4. Sythesze texture mages usg IEEE TRANSACTIONS ON PATTERN ANAYSIS AND MACHINE INTEIGENCE, VO. 24, NO. 7, JUY 2002 leare frm varus algrthms. Fr each clum frm left t rght: : stchastc graet algrthm as the gru truth, 2: pseulkelh, 3: satellte lkelh, 4: patch lkelh, 5: partal lkelh. Sce ` s fte very large, say ` 20, ag e extra sample wll t srt the sample set. T summarze, we cmpare exstg algrthms a the ewly prpse algrthms frm the perspectve f estmatg, a ve them t three grups. Fg. 3 llustrates the cmpars where the ellpse stas fr the space a each Gbbs mel s represete by a sgle pt. Grup. As Fg. 3a llustrates, the maxmum lkelh estmatrs (clug stchastc graet a MCMCME) a the maxmum partal/patch lkelh estmatrs geerate a sample a sequece f ªsatelltesº 0 ; ;... ; k le. These satelltes get clser a clser t (suppse truth). The shaw area aru represets the ucertaty cmputg, whse sze ca be measure by the Fsher frmat. Grup 2. As Fg. 3c shws, the maxmum pseulkelh estmatr uses a ufrm mel 0 as a ªsatellteº t estmate ay mel a, thus, has large varace. Grup 3. The maxmum satellte lkelh estmatrs Fg. 3b use a geeral set f satelltes whch are precmpute a sample ffle. T save tme, e may select a small subset f satelltes fr cmputg a gve mel. Oe ca chse satelltes base the bs. The smaller the ffereces are, the ffereces h Isy j a h I clser the satellte s t the estmate mel a, thus, better apprxmat. Ather crter s that these satellte shul be strbute evely aru t bta g estmat. 4 EXPERIMENTS I ths sect, we evaluate the perfrmace f varus algrthms the ctext f learg Gbbs mels fr textures. We use 2 flters clug a testy flter, tw graet flters, three aplaca f Gaussa flters, a sx Gabr flters at a fxe scale a fferet retats. Thus, h I clues 2 hstgrams f flter respses a each hstgram has 2 bs. S, has 2 free parameters. We chse 5 atural texture mages. Fr each texture, we use the stchastc graet algrthm [22] t lear whch s treate as gru truth fr cmpars. I ths way, we als btae 5 satelltes wth 5 sythesze mages Isy cmpute ffle. j

5 IEEE TRANSACTIONS ON PATTERN ANAYSIS AND MACHINE INTEIGENCE, VO. 24, NO. 7, JUY Fg. 5. Perfrmace evaluat f the satellte algrthm. (a) Observe texture mage. (b) Sythesze mage usg leare wthut buary cts. (c) Sythesze mage usg leare wth buary cts. () Sythesze mage usg leare by stchastc graet. Expermet. Cmpars f fve algrthms. I the frst expermet, we cmpare the perfrmace f fve algrthms texture sythess. Fg. 4 emstrates 6 texture patters f pxels. Fr each rw, the frst clum s the sythesze mage (gru truth) usg a stchastc graet meth use the FRAME mel [22], the ther fur mages are, respectvely, sythesze mages usg maxmum pseulkelh, maxmum satellte lkelh, maxmum patch lkelh, a maxmum partal lkelh. Fr the last three algrthms, we fxe the ttal umber f fregru pxels t 5; 000. The patch sze s fxe t 5 5 pxels fr patch lkelhs a satellte lkelhs. We select 5 satelltes ut f the rest f the 4 precmpute mels fr each texture. Sce fr fferet textures the mel p I; may be mre sestve t sme elemets f (such as tal bs) tha t the rest f the parameters a the vectrs are hghly crrelate betwee ts cmpets, t s t very meagful t cmpare the accuracy f the leare usg a errr measure j j. Istea, we sample each leare mel I sy p I; a cmpare the hstgram errrs f the sythesze mage agast the bserve,.e., jh I sy h I bs j, summe ver 2 pars f hstgrams each beg rmalze t. The table belw shws the errrs fr each algrthms fr the sythesze mages Fg. 4. The umbers are subject t sme cmputatal fluctuats clug the samplg prcess. The expermetal results shw that the fur algrthms wrk reasably well. I cmpars, the satellte meth s fte clse t the patch a partal lkelh meths. Thugh t smetmes may yel slghtly better results tha ther meths epeg the smlarty betwee the referece mels a the mel t be leare. The pseulkelh meth ca als capture sme large mage features. I partcular, t wrks well fr textures f stchastc ature. Fr example, the three textures Fgs. 4, 4e, a 4f. I terms f cmputatal cmplexty, the satellte algrthm s the fastest, a t cmputes the rer f 0 secs a HP-wrkstat. The sec fastest s the pseulkelh. It takes a few mutes. Hwever, the pseulkelh meth csumes a large amut f memry, as t ees t remember all the k hstgrams fr the g gray levels N N pxels. The space cmplexty s O N 2 g k B wth B beg the umber f bs. It fte ees mre tha e Ggabyte f memry. The partal lkelh a patch lkelh are very smlar t the stchastc graet algrthm [22]. Sce the tal buary ct s typcal, these tw estmatrs take ly, geeral, /0th f the umber f sweeps t cvergece. I at, ly a prt f pxels ee t be sythesze, whch ca save further cmputat. The cmputat tme s ly abut /20th f the stchastc graet algrthm. Expermet 2. Aalyss f the maxmum satellte lkelh estmatr. I the sec expermet, we stuy hw the perfrmace f the satellte algrthm s fluece by ) the buary ct, a 2) the sze f patch m m.. Ifluece f buary cts. Fg. 5a splays a texture mage as I bs. We ru three algrthms fr cmpars. Fg. 5 s a result frm the FRAME (stchastc graet meth). Fgs. 5b a 5c are results usg the satellte algrthms. The fferece s that Fg. 5c uses bserve buary ct fr each patch a es le samplg, whle Fg. 5b gres the buary ct. Fr all the fllwg results f satellte lkelh meth (Algrthm 3), H sy j are geerate frm the margal prbabltes wthut le samplg. 2. Iflueces f the hle sze m m. We fx the ttal umber f fregru pxels P j j a stuy the perfrmace f satellte algrthm wth fferece hle szes m. Fgs. 6a, 6b, a 6c shw three sythesze mages usg leare by satellte algrthm wth fferet hle szes m ˆ 2; 6; 9, respectvely. It s clear frm Fgs. 6a, 6b, a 6c that the hle sze wth 6 6 pxels gves better result. T expla why the hle sze f m ˆ 6 gves better satellte apprxmat, we cmpute the tw key factrs that eterme perfrmace. Fg. 7a shws the umerc results crrespece t the theretcal aalyss splaye Fg. 2. Whe the hle sze s small, the partt fuct ca be estmate accurately as shw by the small E p ^Z Z 2 Š sl, ash-tte, a ashe curves Fg. 7. Hwever, the varace E f ^ 2 Š s large fr small hles, whch s shw by the tte curve Fg. 7a. The ptmal chce f the hle sze thus s apprxmately the tersect f the tw curves. Sce the referece mels that we use are clse t the ash-tte le shw Fg. 7a, we prect ptmal hle sze s betwee 5 5 a 6 6. Fg. 7b shws the average errr betwee the statstcs f sythesze mage I sy p I; a the bserve statstcs err ˆ 2 jh Ibs h I sy j, where s leare usg the satellte meth fr m ˆ ; 2;...; 9. Here, the hle sze f 6 6 pxels gves better result. 5 CONCUSION T cclue ur stuy, we qualtatvely cmpare 0 Gbbs learg algrthms Fg. 8 alg three factrs (r mess): Fg. 6. Sythesze mages usg leare by the satellte meth wth fferet hle szes. (a) m ˆ 2. (b)m ˆ 6. (c) m ˆ 9.

6 006 IEEE TRANSACTIONS ON PATTERN ANAYSIS AND MACHINE INTEIGENCE, VO. 24, NO. 7, JUY 2002 Fg. 8. A cmm framewrk fr learg Gbbs mels. The hrztal axs s the sze f fregru patches whch s prprtal t Fsher's frmat. The vertcal axs s the accuracy estmatg lg Z. The brghtess f the ellpses mples the learg spee, a arker s slwer. Ths fgure s tee ly fr a qualtatve cmpars. Fg. 7. The x-axes are the hle sze m 2. (a) Dtte curve s E f ^ 2 Š pltte agast the hle sze m 2. The sl, ash-tte, a ashe curves are E p ^Z Z 2 Š fr three fferet referece mels. (b) Average sythess errr per flter wth respect t the hle sze m 2.. Accuracy apprxmatg lg Z. 2. The ameter f fregru lattces a, thus, effcecy f the lkelh. 3. Cmputatal cmplexty. The 0 algrthms are:. Stchastc graet ME [22], 2. Maxmum pseulkelh (MPE) [3], [4], 3. MCMCME [2], [3], [9], [6], 4. Maxmum patch lkelh, 5. Maxmum partal lkelh, 6. Maxmum satellte lkelh, 7. Mutema mmax [6], 8. Varatal meth [2], [], 9. earg by ffus [2], 0. Geeralze maxmum pseulkelh (Y.N. Wu, prvate cmmucat). ACKNOWEDGMENTS The prject was supprte by a US Natal Scece Fuat grat NSF a a US Natal Scece Fuat Career awar IIS S.C. Zhu wul lke t thak Yga Wu fr valuable scusss. A earler vers f ths paper appear the Prceegs f Cmputer Vs a Patter Recgt, REFERENCES [] M.P. Almea a B. Gas, ªA Varatal Meth fr Estmatg the Parameters f MRF frm Cmplete a Icmplete Data,º The Aals f Apple Statstcs, vl. 3, pp , 993. [2] C.H. Aers a W.D. ager, ªStatstcal Mels f Image Texture,º Upublshe preprt, Washgt Uv., St us, M., 996. [3] J. Besag, ªSpatal Iteract a the Statstcal Aalyss f attce Systems (wth scuss),º J. Ryal Statstcal Sc. B, vl. 36, pp , 973. [4] J. Besag, ªEffcecy f Pseu-kelh Estmat fr Smple Gaussa Fels, º Bmetrka, vl. 64, pp , 977. [5] R. Chellappa a A.K. Ja, Markv Ram Fels: Thery a Applcats. Acaemc Press, 993. [6] J. Cughla a A.. Yulle, ªMutemax: A Fast Apprxmat fr Mmax earg,º Prc. Neural Ifrmat Prcessg Systems, 998. [7] G.R. Crss a A.K. Ja, ªMarkv Ram Fel Texture Mels,º IEEE Tras. Patter Aalyss a Mache Itellgece, vl. 5, pp , 983. [8] H. Der a H. Elltt, ªMelg a Segmetat f Nsy a Texture Images Usg Gbbs Ram Fels,º IEEE Tras. Patter Aalyss a Mache Itellgece, vl. 9,., pp , 987. [9] X. Descmbes, R. Mrrs, J. Zeruba, a M. Berth, ªMaxmum kelh Estmat f Markv Ram Fel Parameters Usg Markv Cha Mte Carl Algrthms,º Prc. It'l Cf. Eergy Mmzat Meths Cmputer Vs a Patter Recgt, May 997. [0] S. Gema a D. McClure, ºBayesa Images Aalyss: A Applcat t Sgle Pht Emss Tmgraphy,º Prc. Statstcal Cmputer Sect Am. Statstcal Assc., pp. 2-8, 985. [] S. Gema a D. McClure, ºStatstcal Meths fr Tmgraphc Image Recstruct,º Bull. It'l Statstcal Ist., vl. II-4, pp. 5-2, 987. [2] C.J. Geyer a E.A. Thmps, ªCstrae Mte Carl Maxmum kelh fr Depeet Data,º J. Ryal Statstcal Sc. B, vl. 54, pp , 992. [3] C.J. Geyer, ªO the Cvergece f Mte Carl Maxmum kelh Calculats,º J. Ryal Statstcal Sc. B, vl. 56, pp , 994. [4] B. Gas, ªCsstecy f Maxmum kelh a Pseu-kelh Estmatrs fr Gbbs Dstrbuts,º Stchastc Dfferetal Systems, Stchastc Ctrl Thery a Applcats, W. Flemg a P.. s, es., New Yrk: Sprger, 988. [5] M. Jerrum a A. Sclar, ªPlymal-Tme Apprxmat Algrthms fr the Isg Mel,º SIAM J. Cmputg, vl. 22, pp , 993. [6] G.G. Ptamas a J.K. Gutsas, ªPartt Fuct Estmat f Gbbs Ram Fel Images Usg Mte Carl Smulats,º IEEE Tras. Ifrmat Thery, vl. 39, pp , 993. [7] G.G. Ptamas a J. Gutsas, ªStchastc Apprxmat Algrthms fr Partt Fuct Estmat f Gbbs Ram Fels,º IEEE Tras. Ifrmat Thery, vl. 43, pp , 997. [8] H. Rbbs a S. Mr, ªA Stchastc Apprxmat Meth,º Aals Math. Statstcs, vl. 22, pp , 95. [9] J. Shah, ªMmax Etrpy a earg by Dffus,º Prc. Cmputer Vs a Patter Recgt, 998. [20] Y.N. Wu, S.C. Zhu, a X.W. u, ªEquvalece f Gbbs a Julesz Esembles,º Prc. It'l Cf. Cmputer Vs, 999. [2]. Yues, ªEstmat a Aealg fr Gbbsa Fels,º Aales e l'isttut Her Pcare, Sect B, Calcul es Prbabltes et Statstque, vl. 24, pp , 988. [22] S.C. Zhu, Y.N. Wu, a D.B. Mumfr, ªMmax Etrpy Prcple a Its Applcat t Texture Melg,º Neural Cmputat, vl. 9,. 8, Nv [23] S.C. Zhu, X.W. u, a Y.N. Wu, ªExplrg Julesz Esembles by Effcet Markv Cha Mte Carl,º IEEE Tras. Patter Aalyss a Mache Itellgece, vl. 22,. 6, pp , Jue 2000.

Data Mining: Concepts and Techniques

Data Mining: Concepts and Techniques Data Mg: cepts ad Techques 3 rd ed. hapter 10 1 Evaluat f lusterg lusterg evaluat assesses the feasblty f clusterg aalyss a data set ad the qualty f the results geerated by a clusterg methd. Three mar

More information

Basics of heteroskedasticity

Basics of heteroskedasticity Sect 8 Heterskedastcty ascs f heterskedastcty We have assumed up t w ( ur SR ad MR assumpts) that the varace f the errr term was cstat acrss bservats Ths s urealstc may r mst ecmetrc applcats, especally

More information

The Simple Linear Regression Model: Theory

The Simple Linear Regression Model: Theory Chapter 3 The mple Lear Regress Mdel: Ther 3. The mdel 3.. The data bservats respse varable eplaatr varable : : Plttg the data.. Fgure 3.: Dsplag the cable data csdered b Che at al (993). There are 79

More information

Block Cipher Cryptanalysis - Part 1

Block Cipher Cryptanalysis - Part 1 Blck Cpher Cryptaalyss - Part 1 Alessar Baregh Departmet f Electrcs, Ifrmat a Begeerg (DEIB) Pltecc Mla alessar.baregh - at - plm.t G. Pels, A. Baregh (DEIB) Blck Cpher Cryptaalyss - Part 1 1 / 37 Overvew

More information

Goal of the Lecture. Lecture Structure. FWF 410: Analysis of Habitat Data I: Definitions and Descriptive Statistics

Goal of the Lecture. Lecture Structure. FWF 410: Analysis of Habitat Data I: Definitions and Descriptive Statistics FWF : Aalyss f Habtat Data I: Defts ad Descrptve tatstcs Number f Cveys A A B Bur Dsk Bur/Dsk Habtat Treatmet Matthew J. Gray, Ph.D. Cllege f Agrcultural ceces ad Natural Resurces Uversty f Teessee-Kvlle

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

PY3101 Optics. Learning objectives. Wave propagation in anisotropic media Poynting walk-off The index ellipsoid Birefringence. The Index Ellipsoid

PY3101 Optics. Learning objectives. Wave propagation in anisotropic media Poynting walk-off The index ellipsoid Birefringence. The Index Ellipsoid The Ide Ellpsd M.P. Vaugha Learg bjectves Wave prpagat astrpc meda Ptg walk-ff The de ellpsd Brefrgece 1 Wave prpagat astrpc meda The wave equat Relatve permttvt I E. Assumg free charges r currets E. Substtutg

More information

KLT Tracker. Alignment. 1. Detect Harris corners in the first frame. 2. For each Harris corner compute motion between consecutive frames

KLT Tracker. Alignment. 1. Detect Harris corners in the first frame. 2. For each Harris corner compute motion between consecutive frames KLT Tracker Tracker. Detect Harrs corers the frst frame 2. For each Harrs corer compute moto betwee cosecutve frames (Algmet). 3. Lk moto vectors successve frames to get a track 4. Itroduce ew Harrs pots

More information

Maximum Walk Entropy Implies Walk Regularity

Maximum Walk Entropy Implies Walk Regularity Maxmum Walk Etropy Imples Walk Regularty Eresto Estraa, a José. e la Peña Departmet of Mathematcs a Statstcs, Uversty of Strathclye, Glasgow G XH, U.K., CIMT, Guaajuato, Mexco BSTRCT: The oto of walk etropy

More information

Intermediate Division Solutions

Intermediate Division Solutions Itermediate Divisi Slutis 1. Cmpute the largest 4-digit umber f the frm ABBA which is exactly divisible by 7. Sluti ABBA 1000A + 100B +10B+A 1001A + 110B 1001 is divisible by 7 (1001 7 143), s 1001A is

More information

Comparing Different Estimators of three Parameters for Transmuted Weibull Distribution

Comparing Different Estimators of three Parameters for Transmuted Weibull Distribution Global Joural of Pure ad Appled Mathematcs. ISSN 0973-768 Volume 3, Number 9 (207), pp. 55-528 Research Ida Publcatos http://www.rpublcato.com Comparg Dfferet Estmators of three Parameters for Trasmuted

More information

Lecture 2. Basic Semiconductor Physics

Lecture 2. Basic Semiconductor Physics Lecture Basc Semcductr Physcs I ths lecture yu wll lear: What are semcductrs? Basc crystal structure f semcductrs Electrs ad hles semcductrs Itrsc semcductrs Extrsc semcductrs -ded ad -ded semcductrs Semcductrs

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information Malaysa Joural of Mathematcal Sceces (): 97- (9) Bayes Estmator for Expoetal Dstrbuto wth Exteso of Jeffery Pror Iformato Hadeel Salm Al-Kutub ad Noor Akma Ibrahm Isttute for Mathematcal Research, Uverst

More information

= 2. Statistic - function that doesn't depend on any of the known parameters; examples:

= 2. Statistic - function that doesn't depend on any of the known parameters; examples: of Samplg Theory amples - uemploymet househol cosumpto survey Raom sample - set of rv's... ; 's have ot strbuto [ ] f f s vector of parameters e.g. Statstc - fucto that oes't epe o ay of the ow parameters;

More information

Non-Cooperative Games

Non-Cooperative Games N-Cperatve Games a ucerta evrmet Rger J-B Wets rbwets@ucavs.eu Uverst Calra, Davs ONR-MURI, Jul 2002 p.1/?? I. Determstc Vers ONR-MURI, Jul 2002 p.2/?? Fg a Nash-equlbrum prblem rmulat the Nash-uct asscate

More information

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean Research Joural of Mathematcal ad Statstcal Sceces ISS 30 6047 Vol. 1(), 5-1, ovember (013) Res. J. Mathematcal ad Statstcal Sc. Comparso of Dual to Rato-Cum-Product Estmators of Populato Mea Abstract

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Generalized Linear Regression with Regularization

Generalized Linear Regression with Regularization Geeralze Lear Regresso wth Regularzato Zoya Bylsk March 3, 05 BASIC REGRESSION PROBLEM Note: I the followg otes I wll make explct what s a vector a what s a scalar usg vec t or otato, to avo cofuso betwee

More information

Chapter 8: Statistical Analysis of Simulated Data

Chapter 8: Statistical Analysis of Simulated Data Marquette Uversty MSCS600 Chapter 8: Statstcal Aalyss of Smulated Data Dael B. Rowe, Ph.D. Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 08 by Marquette Uversty MSCS600 Ageda 8. The Sample

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

Lecture 8: Linear Regression

Lecture 8: Linear Regression Lecture 8: Lear egresso May 4, GENOME 56, Sprg Goals Develop basc cocepts of lear regresso from a probablstc framework Estmatg parameters ad hypothess testg wth lear models Lear regresso Su I Lee, CSE

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

Ionization Energies in Si, Ge, GaAs

Ionization Energies in Si, Ge, GaAs Izt erges S, Ge, GAs xtrsc Semcuctrs A extrsc semcuctrs s efe s semcuctr whch ctrlle muts f secfc t r murty tms hve bee e s tht the thermlequlbrum electr hle ccetrt re fferet frm the trsc crrer ccetrt.

More information

A New Family of Transformations for Lifetime Data

A New Family of Transformations for Lifetime Data Proceedgs of the World Cogress o Egeerg 4 Vol I, WCE 4, July - 4, 4, Lodo, U.K. A New Famly of Trasformatos for Lfetme Data Lakhaa Watthaacheewakul Abstract A famly of trasformatos s the oe of several

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

C.11 Bang-bang Control

C.11 Bang-bang Control Itroucto to Cotrol heory Iclug Optmal Cotrol Nguye a e -.5 C. Bag-bag Cotrol. Itroucto hs chapter eals wth the cotrol wth restrctos: s boue a mght well be possble to have scotutes. o llustrate some of

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Descriptive Statistics

Descriptive Statistics Page Techcal Math II Descrptve Statstcs Descrptve Statstcs Descrptve statstcs s the body of methods used to represet ad summarze sets of data. A descrpto of how a set of measuremets (for eample, people

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

To use adaptive cluster sampling we must first make some definitions of the sampling universe:

To use adaptive cluster sampling we must first make some definitions of the sampling universe: 8.3 ADAPTIVE SAMPLING Most of the methods dscussed samplg theory are lmted to samplg desgs hch the selecto of the samples ca be doe before the survey, so that oe of the decsos about samplg deped ay ay

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Sampling Theory MODULE X LECTURE - 35 TWO STAGE SAMPLING (SUB SAMPLING)

Sampling Theory MODULE X LECTURE - 35 TWO STAGE SAMPLING (SUB SAMPLING) Samplg Theory ODULE X LECTURE - 35 TWO STAGE SAPLIG (SUB SAPLIG) DR SHALABH DEPARTET OF ATHEATICS AD STATISTICS IDIA ISTITUTE OF TECHOLOG KAPUR Two stage samplg wth uequal frst stage uts: Cosder two stage

More information

Investigating Cellular Automata

Investigating Cellular Automata Researcher: Taylor Dupuy Advsor: Aaro Wootto Semester: Fall 4 Ivestgatg Cellular Automata A Overvew of Cellular Automata: Cellular Automata are smple computer programs that geerate rows of black ad whte

More information

Abstract. Introduction

Abstract. Introduction THE IMPACT OF USING LOG-ERROR CERS OUTSIDE THE DATA RANGE AND PING FACTOR By Dr. Shu-Pg Hu Teclte Research Ic. 566 Hllster Ave. Ste. 30 Sata Barbara, CA 93 Abstract Ths paper dscusses the prs ad cs f usg

More information

Marginal Distribution Plots for Proportional Hazards Models with Time-Dependent Covariates or Time-Varying Regression Coefficients

Marginal Distribution Plots for Proportional Hazards Models with Time-Dependent Covariates or Time-Varying Regression Coefficients Ope Jural f Statstcs 27 7 92- http://wwwscrprg/jural/js ISSN Ole: 26-798 ISSN Prt: 26-78X Margal Dstrbut Plts fr Prprtal Hazards Mdels wth Tme-Depedet Cvarates r Tme-Varyg Regress Ceffcets Qqg u Juy Dg

More information

LINEAR REGRESSION ANALYSIS

LINEAR REGRESSION ANALYSIS LINEAR REGRESSION ANALYSIS MODULE V Lecture - Correctg Model Iadequaces Through Trasformato ad Weghtg Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Aalytcal methods for

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 17

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 17 Itroucto to Ecoometrcs (3 r Upate Eto) by James H. Stock a Mark W. Watso Solutos to O-Numbere E-of-Chapter Exercses: Chapter 7 (Ths erso August 7, 04) 05 Pearso Eucato, Ic. Stock/Watso - Itroucto to Ecoometrcs

More information

The fuzzy decision of transformer economic operation

The fuzzy decision of transformer economic operation The fuzzy decs f trasfrmer ecmc perat WENJUN ZHNG, HOZHONG CHENG, HUGNG XIONG, DEXING JI Departmet f Electrcal Egeerg hagha Jatg Uversty 954 Huasha Rad, 3 hagha P. R. CHIN bstract: - Ths paper presets

More information

UNIT 7 RANK CORRELATION

UNIT 7 RANK CORRELATION UNIT 7 RANK CORRELATION Rak Correlato Structure 7. Itroucto Objectves 7. Cocept of Rak Correlato 7.3 Dervato of Rak Correlato Coeffcet Formula 7.4 Te or Repeate Raks 7.5 Cocurret Devato 7.6 Summar 7.7

More information

Ch5 Appendix Q-factor and Smith Chart Matching

Ch5 Appendix Q-factor and Smith Chart Matching h5 Appedx -factr ad mth hart Matchg 5B-1 We-ha a udwg, F rcut Desg Thery ad Applcat, hapter 8 Frequecy espse f -type Matchg Netwrks 5B- Fg.8-8 Tw desg realzats f a -type matchg etwrk.65pf, 80 f 1 GHz Fg.8-9

More information

Faculty Research Interest Seminar Department of Biostatistics, GSPH University of Pittsburgh. Gong Tang Feb. 18, 2005

Faculty Research Interest Seminar Department of Biostatistics, GSPH University of Pittsburgh. Gong Tang Feb. 18, 2005 Faculty Research Iterest Semar Departmet of Bostatstcs, GSPH Uversty of Pttsburgh Gog ag Feb. 8, 25 Itroducto Joed the departmet 2. each two courses: Elemets of Stochastc Processes (Bostat 24). Aalyss

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Exergy Analysis of Large ME-TVC Desalination System

Exergy Analysis of Large ME-TVC Desalination System Exergy Aalyss f arge ME-V esalat System Awar O. Bamer Water & Eergy Prgram\Research rectrate Kuwat udat fr the Advacemet f Sceces (KAS) he 0 th Gulf Water ferece, -4 Aprl 0, ha- Qatar Outles Itrduct Prcess

More information

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s).

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s). CHAPTER STATISTICS Pots to Remember :. Facts or fgures, collected wth a defte pupose, are called Data.. Statstcs s the area of study dealg wth the collecto, presetato, aalyss ad terpretato of data.. The

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

ENGI 4421 Propagation of Error Page 8-01

ENGI 4421 Propagation of Error Page 8-01 ENGI 441 Propagato of Error Page 8-01 Propagato of Error [Navd Chapter 3; ot Devore] Ay realstc measuremet procedure cotas error. Ay calculatos based o that measuremet wll therefore also cota a error.

More information

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen.

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen. .5 x 54.5 a. x 7. 786 7 b. The raked observatos are: 7.4, 7.5, 7.7, 7.8, 7.9, 8.0, 8.. Sce the sample sze 7 s odd, the meda s the (+)/ 4 th raked observato, or meda 7.8 c. The cosumer would more lkely

More information

Median as a Weighted Arithmetic Mean of All Sample Observations

Median as a Weighted Arithmetic Mean of All Sample Observations Meda as a Weghted Arthmetc Mea of All Sample Observatos SK Mshra Dept. of Ecoomcs NEHU, Shllog (Ida). Itroducto: Iumerably may textbooks Statstcs explctly meto that oe of the weakesses (or propertes) of

More information

Numerical Simulations of the Complex Modied Korteweg-de Vries Equation. Thiab R. Taha. The University of Georgia. Abstract

Numerical Simulations of the Complex Modied Korteweg-de Vries Equation. Thiab R. Taha. The University of Georgia. Abstract Numercal Smulatos of the Complex Moded Korteweg-de Vres Equato Thab R. Taha Computer Scece Departmet The Uversty of Georga Athes, GA 002 USA Tel 0-542-2911 e-mal thab@cs.uga.edu Abstract I ths paper mplemetatos

More information

M2S1 - EXERCISES 8: SOLUTIONS

M2S1 - EXERCISES 8: SOLUTIONS MS - EXERCISES 8: SOLUTIONS. As X,..., X P ossoλ, a gve that T ˉX, the usg elemetary propertes of expectatos, we have E ft [T E fx [X λ λ, so that T s a ubase estmator of λ. T X X X Furthermore X X X From

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

CHAPTER 2. = y ˆ β x (.1022) So we can write

CHAPTER 2. = y ˆ β x (.1022) So we can write CHAPTER SOLUTIONS TO PROBLEMS. () Let y = GPA, x = ACT, ad = 8. The x = 5.875, y = 3.5, (x x )(y y ) = 5.85, ad (x x ) = 56.875. From equato (.9), we obta the slope as ˆβ = = 5.85/56.875., rouded to four

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uversty Mchael Bar Sprg 5 Mdterm am, secto Soluto Thursday, February 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes eam.. No calculators of ay kd are allowed..

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

ECON 5360 Class Notes GMM

ECON 5360 Class Notes GMM ECON 560 Class Notes GMM Geeralzed Method of Momets (GMM) I beg by outlg the classcal method of momets techque (Fsher, 95) ad the proceed to geeralzed method of momets (Hase, 98).. radtoal Method of Momets

More information

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy Bouds o the expected etropy ad KL-dvergece of sampled multomal dstrbutos Brado C. Roy bcroy@meda.mt.edu Orgal: May 18, 2011 Revsed: Jue 6, 2011 Abstract Iformato theoretc quattes calculated from a sampled

More information

b. There appears to be a positive relationship between X and Y; that is, as X increases, so does Y.

b. There appears to be a positive relationship between X and Y; that is, as X increases, so does Y. .46. a. The frst varable (X) s the frst umber the par ad s plotted o the horzotal axs, whle the secod varable (Y) s the secod umber the par ad s plotted o the vertcal axs. The scatterplot s show the fgure

More information

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set.

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set. Addtoal Decrease ad Coquer Algorthms For combatoral problems we mght eed to geerate all permutatos, combatos, or subsets of a set. Geeratg Permutatos If we have a set f elemets: { a 1, a 2, a 3, a } the

More information

CHAPTER 5 ENTROPY GENERATION Instructor: Prof. Dr. Uğur Atikol

CHAPTER 5 ENTROPY GENERATION Instructor: Prof. Dr. Uğur Atikol CAPER 5 ENROPY GENERAION Istructr: Pr. Dr. Uğur Atkl Chapter 5 Etrpy Geerat (Exergy Destruct Outle st Avalable rk Cycles eat ege cycles Rergerat cycles eat pump cycles Nlw Prcesses teady-flw Prcesses Exergy

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Physics 107 HOMEWORK ASSIGNMENT #20

Physics 107 HOMEWORK ASSIGNMENT #20 Physcs 107 HOMEWORK ASSIGNMENT #0 Cutnell & Jhnsn, 7 th etn Chapter 6: Prblems 5, 7, 74, 104, 114 *5 Cncept Smulatn 6.4 prves the ptn f explrng the ray agram that apples t ths prblem. The stance between

More information

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity ECONOMETRIC THEORY MODULE VIII Lecture - 6 Heteroskedastcty Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur . Breusch Paga test Ths test ca be appled whe the replcated data

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information

= 1. UCLA STAT 13 Introduction to Statistical Methods for the Life and Health Sciences. Parameters and Statistics. Measures of Centrality

= 1. UCLA STAT 13 Introduction to Statistical Methods for the Life and Health Sciences. Parameters and Statistics. Measures of Centrality UCLA STAT Itroducto to Statstcal Methods for the Lfe ad Health Sceces Istructor: Ivo Dov, Asst. Prof. of Statstcs ad Neurology Teachg Assstats: Fred Phoa, Krste Johso, Mg Zheg & Matlda Hseh Uversty of

More information

STAT 400 Homework 09 Spring 2018 Dalpiaz UIUC Due: Friday, April 6, 2:00 PM

STAT 400 Homework 09 Spring 2018 Dalpiaz UIUC Due: Friday, April 6, 2:00 PM STAT Homework 9 Sprg 28 Dalpaz UIUC Due: Fray, Aprl 6, 2: PM Exercse f(x, θ) = θ e x/θ, x >, θ > Note that, the momets of ths strbuto are gve by E[X k ] = Ths wll be a useful fact for Exercses 2 a 3. x

More information

Kernels. Nuno Vasconcelos ECE Department, UCSD

Kernels. Nuno Vasconcelos ECE Department, UCSD Kerels Nu Vasels ECE Departmet UCSD Prpal mpet aalyss Dmesalty reut: Last tme we saw that whe the ata lves a subspae t s best t esg ur learg algrthms ths subspae D subspae 3D y φ φ λ λ y ths a be e by

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

ANALYSIS OF A CLASS OF ADAPTIVE ROBUSTIFIED PREDICTORS IN THE PRESENCE OF NOISE UNCERTAINTY

ANALYSIS OF A CLASS OF ADAPTIVE ROBUSTIFIED PREDICTORS IN THE PRESENCE OF NOISE UNCERTAINTY I. K. Kvačevć dr. Aalza jede vrste adaptra rbusg predktra u prsutst epzatg šuma ISS 330-365 Prt, ISS 848-6339 Ole DOI: 0.7559/V-040506383 AALYSIS OF A CLASS OF ADAPIVE ROBUSIFIED PREDICORS I HE PRESECE

More information

Application of Matrix Iteration for Determining the Fundamental Frequency of Vibration of a Continuous Beam

Application of Matrix Iteration for Determining the Fundamental Frequency of Vibration of a Continuous Beam Iteratal Jural f Egeerg Research ad Develpet e-issn: 78-67, p-issn : 78-8, www.jerd.c Vlue 4, Issue (Nveber ), PP. -6 Applcat f Matrx Iterat fr Deterg the Fudaetal Frequecy f Vbrat f a Ctuus Bea S. Sule,

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

BAYESIAN ESTIMATOR OF A CHANGE POINT IN THE HAZARD FUNCTION

BAYESIAN ESTIMATOR OF A CHANGE POINT IN THE HAZARD FUNCTION Mathematcal ad Computatoal Applcatos, Vol. 7, No., pp. 29-38, 202 BAYESIAN ESTIMATOR OF A CHANGE POINT IN THE HAZARD FUNCTION Durdu Karasoy Departmet of Statstcs, Hacettepe Uversty, 06800 Beytepe, Akara,

More information

McFadden Chapter 4. Limit Theorems in Statistics 93

McFadden Chapter 4. Limit Theorems in Statistics 93 McFae Chater 4 Lmt Therems Statstcs 93 Chater 4 Lmt Therems Statstcs 1 Sequeces f Ram Varables 11 Cser a sequece f ram varables 1,,, These ram varables are all fucts f the same state f Nature s, but may

More information

Application of Calibration Approach for Regression Coefficient Estimation under Two-stage Sampling Design

Application of Calibration Approach for Regression Coefficient Estimation under Two-stage Sampling Design Authors: Pradp Basak, Kaustav Adtya, Hukum Chadra ad U.C. Sud Applcato of Calbrato Approach for Regresso Coeffcet Estmato uder Two-stage Samplg Desg Pradp Basak, Kaustav Adtya, Hukum Chadra ad U.C. Sud

More information

(2014) ISSN

(2014) ISSN Estraa, Eresto a e la Pea, Jose too (4) Maxmum walk etropy mples walk regularty. Lear lgebra a ts pplcatos, 458. pp. 54-547. ISSN 4-3795, http://x.o.org/.6/j.laa.4.6.3 Ths verso s avalable at https://strathprts.strath.ac.uk/5879/

More information

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uverst Mchael Bar Sprg 5 Mdterm xam, secto Soluto Thursda, Februar 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes exam.. No calculators of a kd are allowed..

More information

BAYESIAN INFERENCES FOR TWO PARAMETER WEIBULL DISTRIBUTION

BAYESIAN INFERENCES FOR TWO PARAMETER WEIBULL DISTRIBUTION Iteratoal Joural of Mathematcs ad Statstcs Studes Vol.4, No.3, pp.5-39, Jue 06 Publshed by Europea Cetre for Research Trag ad Developmet UK (www.eajourals.org BAYESIAN INFERENCES FOR TWO PARAMETER WEIBULL

More information

Statistics MINITAB - Lab 5

Statistics MINITAB - Lab 5 Statstcs 10010 MINITAB - Lab 5 PART I: The Correlato Coeffcet Qute ofte statstcs we are preseted wth data that suggests that a lear relatoshp exsts betwee two varables. For example the plot below s of

More information

Outline. Point Pattern Analysis Part I. Revisit IRP/CSR

Outline. Point Pattern Analysis Part I. Revisit IRP/CSR Pot Patter Aalyss Part I Outle Revst IRP/CSR, frst- ad secod order effects What s pot patter aalyss (PPA)? Desty-based pot patter measures Dstace-based pot patter measures Revst IRP/CSR Equal probablty:

More information

Multiple Linear Regression Analysis

Multiple Linear Regression Analysis LINEA EGESSION ANALYSIS MODULE III Lecture - 4 Multple Lear egresso Aalyss Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Cofdece terval estmato The cofdece tervals multple

More information

residual. (Note that usually in descriptions of regression analysis, upper-case

residual. (Note that usually in descriptions of regression analysis, upper-case Regresso Aalyss Regresso aalyss fts or derves a model that descres the varato of a respose (or depedet ) varale as a fucto of oe or more predctor (or depedet ) varales. The geeral regresso model s oe of

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

The equation is sometimes presented in form Y = a + b x. This is reasonable, but it s not the notation we use.

The equation is sometimes presented in form Y = a + b x. This is reasonable, but it s not the notation we use. INTRODUCTORY NOTE ON LINEAR REGREION We have data of the form (x y ) (x y ) (x y ) These wll most ofte be preseted to us as two colum of a spreadsheet As the topc develops we wll see both upper case ad

More information

MECH6661 lectures 10/1 Dr. M. Medraj Mech. Eng. Dept. - Concordia University

MECH6661 lectures 10/1 Dr. M. Medraj Mech. Eng. Dept. - Concordia University Outle Revew ublattce Mdel Example ublattce Mdel Thermdyamc Mdelg Itrduct Example lly Desg Terary Phase Dagrams Gbbs Phase Rule Thermdyamcs f Multcmpet ystems Mech. Eg. Dept. - crda Uversty Revew: ublattce

More information

ADAPTIVE CLUSTER SAMPLING USING AUXILIARY VARIABLE

ADAPTIVE CLUSTER SAMPLING USING AUXILIARY VARIABLE Joural o Mathematcs ad tatstcs 9 (3): 49-55, 03 I: 549-3644 03 cece Publcatos do:0.3844/jmssp.03.49.55 Publshed Ole 9 (3) 03 (http://www.thescpub.com/jmss.toc) ADAPTIVE CLUTER AMPLIG UIG AUXILIARY VARIABLE

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

Solutions. Definitions pertaining to solutions

Solutions. Definitions pertaining to solutions Slutis Defiitis pertaiig t slutis Slute is the substace that is disslved. It is usually preset i the smaller amut. Slvet is the substace that des the disslvig. It is usually preset i the larger amut. Slubility

More information

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic.

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic. c Pogsa Porchawseskul, Faculty of Ecoomcs, Chulalogkor Uversty olato of costat varace of s but they are stll depedet. C,, he error term s sad to be heteroscedastc. c Pogsa Porchawseskul, Faculty of Ecoomcs,

More information

Chapter 3 Sampling For Proportions and Percentages

Chapter 3 Sampling For Proportions and Percentages Chapter 3 Samplg For Proportos ad Percetages I may stuatos, the characterstc uder study o whch the observatos are collected are qualtatve ature For example, the resposes of customers may marketg surveys

More information

Generalization of the Dissimilarity Measure of Fuzzy Sets

Generalization of the Dissimilarity Measure of Fuzzy Sets Iteratoal Mathematcal Forum 2 2007 o. 68 3395-3400 Geeralzato of the Dssmlarty Measure of Fuzzy Sets Faramarz Faghh Boformatcs Laboratory Naobotechology Research Ceter vesa Research Isttute CECR Tehra

More information

Lecture Notes Forecasting the process of estimating or predicting unknown situations

Lecture Notes Forecasting the process of estimating or predicting unknown situations Lecture Notes. Ecoomc Forecastg. Forecastg the process of estmatg or predctg ukow stuatos Eample usuall ecoomsts predct future ecoomc varables Forecastg apples to a varet of data () tme seres data predctg

More information

Chapter 3.1: Polynomial Functions

Chapter 3.1: Polynomial Functions Ntes 3.1: Ply Fucs Chapter 3.1: Plymial Fuctis I Algebra I ad Algebra II, yu ecutered sme very famus plymial fuctis. I this secti, yu will meet may ther members f the plymial family, what sets them apart

More information

Q-analogue of a Linear Transformation Preserving Log-concavity

Q-analogue of a Linear Transformation Preserving Log-concavity Iteratoal Joural of Algebra, Vol. 1, 2007, o. 2, 87-94 Q-aalogue of a Lear Trasformato Preservg Log-cocavty Daozhog Luo Departmet of Mathematcs, Huaqao Uversty Quazhou, Fua 362021, P. R. Cha ldzblue@163.com

More information

Chapter 10 Two Stage Sampling (Subsampling)

Chapter 10 Two Stage Sampling (Subsampling) Chapter 0 To tage amplg (usamplg) I cluster samplg, all the elemets the selected clusters are surveyed oreover, the effcecy cluster samplg depeds o sze of the cluster As the sze creases, the effcecy decreases

More information