Manual for deflection of beta particles

Size: px
Start display at page:

Download "Manual for deflection of beta particles"

Transcription

1 Manual for deflection of beta particles Ae Figure 1 The apparatus is an accessory for the bench for experiments in radioactivity ( ) to be placed on the bench instead of the original source holder. To conduct these experiments you also need a beta source and a GM detector with an appropriate counter. A GM tube with a rather small window is well suited in respect to angular resolution. If a tube with a larger window is used, it should be moved further away from the magnets. For demonstration purposes it is convenient to have an acoustic signal from the tube or the counter. Demonstration of the deflection of beta particles Remove the magnet assembly from the apparatus. Adjust the source holder to an angle of 0 (i.e. point the source directly towards the GM tube). Count for 10 seconds or simply listen to the acoustic signal from the counter. Turn the source holder to 90 and count or listen again. The collimated beam of beta particles no longer reaches the GM tube and the count rate is almost zero. Turn the source holder back to 0. After this you should control that the magnets are turned fully clockwise making Figure 2 the magnetic field point vertically down (see fig. 2). Re-mount the magnet assembly on the apparatus. Count or listen again the radiation has disap - peared. Now turn the source holder slowly as shown on fig. 1 while observing the counting rate or the sound. About an angle of 45, counting starts to wake up again and at about 90 the radiation is strongest. There is noticeable radiation all the way up to the maximum deflection at about Two points: 1 Beta radiation is deflected by a magnetic field the radiation consists of charged particles. 2 The radiation does not follow only one circular path the particles are emitted with many different energies. Following the theory of the movement of charged particles in magnetic fields or the 2nd Law of Laplace it may be deduced that beta particles are negatively charged. This requires you to confirm that the field direction is as shown. A small magnet with known polarity may be used for this. Note: Use a plastic covered magnet (like ) for this, to avoid damaging the neodymium magnets of the apparatus. As a check on the observations the magnets may be turned fully counter-clockwise, making the field go straight up. In this case the radiation does not appear again when the source holder is turned. A/S Søren Frederiksen, Ølgod Tel info@frederiksen.eu Viaduktvej 35 DK-6870 Ølgod Fax

2 Figure 3 The beta spectrum simple version If the strength of the magnetic field and its geome try is known, it is possible to establish a relationship between the deflection angle and the kinetic energy of the beta particles. This is presented in fig. 4. This graph is also printed in a larges version on a separate sheet of paper. The strength of the magnets may vary, here a value of 310 mt is assumed. Check that the magnets are turned fully clockwise; making the field point vertically down (fig. 2) The magnet assembly should remain in position during the whole experiment. Vary the angle θ between 40 and 140 in 5 steps and find for each angle the count number N in a fixed time interval (e.g. 100 s). Make also a measurement of the background count N 0 for the same time interval with the source completely removed. Use the graph in fig. 4 to find the kinetic energy of the beta particles for each of the angles used. Calculate the corrected counts N - N 0. Draw the energy spectrum i.e. a graph of the cor rected counts versus the energy. The beta source The magnetic field is chosen to fit the spectrum of the beta decay of Y-90. The decay scheme of a strontium / yttrium source is shown below (fig. 5). The decay of Sr-90 cannot be observed with the magnets provided with the apparatus, as the energies are too small. The branching to the excited level in Zr-90 (and the associated gamma decay) are also impossible to observe. In other words, it is only the decay with a maximum energy of kev that is observed in this apparatus. If a 37 kbq (1 µci) source is used, acceptable counts can be reached by counting intervals of 60 or 100 seconds. If the angle is changed in 5 steps, the experiment can be performed in about half an hour. Figure 5 Figure 4

3 The beta spectrum advanced version Overview The previously treated simple version of the beta spectrum illustrates nicely that the beta particles are emitted with a continuous spectrum of energies, although the details of the spectrum are not determined completely correct. The following sections are meant as a help for those wanting a more thorough theoretical treatment of the subject. To determine the right shape of the energy spec - trum, the nonlinear relationship between deflection angle and kinetic energy must be taken into account. This is the topic for the next two sections. In the section The energy of the beta particles the aforementioned relation is presented. In the section Correction for the distribution of the measurement intervals a correction factor is given, which must be used on the count data. After that, in The shape of the beta spectrum, the theoretical expression for the spectrum is presented. In the last section, The Fermi-Kurie plot, an often used method for determining the maximum energy of the radiation is presented. The use of a spreadsheet or similar software is highly recommended. The energy of the beta particles To determine the relation between the deflection angle θ and the kinetic energy E we will assume that the magnetic field is homogeneous with magnetic flux density B between the magnets and zero elsewhere. The radius of the magnets is called R. Let m 0, e and c as usual stand for the rest mass of the electron, the elementary charge and the speed of light. The relation can now be shown to be with fixed angular intervals. (These are determined primarily by the geometry of the collimator as well as the size of the GM tube and its distance from the center of the magnets.) As E(θ) is nonlinear, the counts must be divided by de/dθ, given by where The shape of the beta spectrum The frequency of beta particles emitted with kinetic energies in an interval de around E is given by where F(Z,E) is the Fermi function that describes the influence of the electrostatic attraction of the beta particles by the atomic nucleus. Z is the atomic number of the daughter nucleus. For Z less than about 50, F(Z,E) may be approximated by the expression Where α = 1/137 is the fine structure constant, and the rest of the entities are given by The graph below (fig. 6) shows with a thick, blue line the theoretical spectrum for E max = 2280 kev. The thin red line shows the combined spectrum for E max = 2280 kev and E max = 546 kev, corresponding to a Sr/Y-90 source. The assumptions about the magnetic field are not completely fulfilled, but a decent agreement with the theoretical spectrum (see below) can be obtained by adjusting B or R slightly. As these only appear in the product B R, it doesn t matter which of the two is modified. Correction for the distribution of the measurement intervals If measurements were performed in equally large energy intervals, you would expect proportionality between the observed counts and the theoretical spectrum, given in the next section. In fact, by using this apparatus, measurements are not performed with fixed energy intervals, but rather Figure 6

4 The Fermi-Kurie plot At high energies the Fermi function is almost constant and the energy spectrum can be linearized. If the expression is plotted as a function of E, the result is a straight line that crosses the x-axis in E max. When using this apparatus ( ), the uncertainty of the energy is large for high energies. As seen in the example shown (fig. 7) it may be necessary to discard e few experimental points around E max, that clearly deviates from the straight line (the two lilac points). After doing that, a very fine agreement with the expected Emax is established. Figure 7

5 deflection of beta particles A/S Søren Frederiksen, Ølgod Tel Viaduktvej 35 DK-6870 Ølgod Fax

BETA-RAY SPECTROMETER

BETA-RAY SPECTROMETER 14 Sep 07 β-ray.1 BETA-RAY SPECTROMETER In this experiment, a 180, constant-radius magnetic spectrometer consisting of an electromagnet with a Geiger-Muller detector, will be used to detect and analyze

More information

Figure 1. Time in days. Use information from Figure 1 to calculate the half-life of the radioactive isotope.

Figure 1. Time in days. Use information from Figure 1 to calculate the half-life of the radioactive isotope. Radioactivity Past Exam Questions Q. Different radioactive isotopes have different values of half-life. (a) What is meant by the half-life of a radioactive isotope?......... (b) Figure shows how the count

More information

Lab NUC. Determination of Half-Life with a Geiger-Müller Counter

Lab NUC. Determination of Half-Life with a Geiger-Müller Counter Lab NUC Determination of Half-Life with a Geiger-Müller Counter Object: Apparatus: To understand the concept of half-life; to become familiar with the use of a Geiger-Müller counter; to determine the half-lives

More information

Radioactivity. (b) Fig shows two samples of the same radioactive substance. The substance emits β-particles. Fig. 12.1

Radioactivity. (b) Fig shows two samples of the same radioactive substance. The substance emits β-particles. Fig. 12.1 112 (a) What is meant by radioactive decay? Radioactivity [2] (b) Fig. 12.1 shows two samples of the same radioactive substance. The substance emits β-particles. Fig. 12.1 Put a tick alongside any of the

More information

Overview: In this experiment we will study the decay of a radioactive nucleus, Cesium. Figure 1: The Decay Modes of Cesium 137

Overview: In this experiment we will study the decay of a radioactive nucleus, Cesium. Figure 1: The Decay Modes of Cesium 137 Radioactivity (Part I and Part II) Objectives: To measure the absorption of beta and gamma rays To understand the concept of half life and to measure the half life of Ba 137* Apparatus: Radioactive source,

More information

Lab 14. RADIOACTIVITY

Lab 14. RADIOACTIVITY Lab 14. RADIOACTIVITY 14.1. Guiding Question What are the properties of different types of nuclear radiation? How does nucelar decay proceed over time? 14.2. Equipment 1. ST360 Radiation Counter, G-M probe

More information

Physics 1000 Half Life Lab

Physics 1000 Half Life Lab Physics 1000 Half Life Lab Determination of Half-Life with a Geiger-Müller Counter Object: Apparatus: To understand the concept of half-life; to become familiar with the use of a Geiger-Müller counter;

More information

Beta Spectrum. T β,max = kev kev 2.5 ms. Eγ = kev

Beta Spectrum. T β,max = kev kev 2.5 ms. Eγ = kev HOM, 1/14/05; DVB 014-Jan-9, 01-Dec-17, 013-Oct-16 Beta Spectrum Goal: to investigate the spectrum of β rays emitted by a 137 Cs source. The instrument used is a so-called 180 o magnetic spectrometer that

More information

RADIOACTIVITY MATERIALS: PURPOSE: LEARNING OBJECTIVES: DISCUSSION:

RADIOACTIVITY MATERIALS: PURPOSE: LEARNING OBJECTIVES: DISCUSSION: RADIOACTIVITY This laboratory experiment was largely adapted from an experiment from the United States Naval Academy Chemistry Department MATERIALS: (total amounts per lab) small bottle of KCl; isogenerator

More information

PHYS 3650L - Modern Physics Laboratory

PHYS 3650L - Modern Physics Laboratory PHYS 3650L - Modern Physics Laboratory Laboratory Advanced Sheet Photon Attenuation 1. Objectives. The objectives of this laboratory exercise are: a. To measure the mass attenuation coefficient at a gamma

More information

To study the physical pendulum i.e. a composite, rigid body comparing measured and calculated values of moments of inertia.

To study the physical pendulum i.e. a composite, rigid body comparing measured and calculated values of moments of inertia. Physical pendulum Number 135610-EN Topic Mechanics, rigid bodies Version 2016.08.11 / HS Type Student exercise Suggested for grade 12+ p. 1/5 Objective To study the physical pendulum i.e. a composite,

More information

EXPERIMENT FOUR - RADIOACTIVITY This experiment has been largely adapted from an experiment from the United States Naval Academy, Annapolis MD

EXPERIMENT FOUR - RADIOACTIVITY This experiment has been largely adapted from an experiment from the United States Naval Academy, Annapolis MD EXPERIMENT FOUR - RADIOACTIVITY This experiment has been largely adapted from an experiment from the United States Naval Academy, Annapolis MD MATERIALS: (total amounts per lab) small bottle of KCl; isogenerator

More information

Overview: In this experiment we study the decay of a radioactive nucleus, Cesium 137. Figure 1: The Decay Modes of Cesium 137

Overview: In this experiment we study the decay of a radioactive nucleus, Cesium 137. Figure 1: The Decay Modes of Cesium 137 Radioactivity (Part I and Part II) 7-MAC Objectives: To measure the absorption of beta and gamma rays To understand the concept of half life and to measure the half life of Ba 137* Apparatus: Radioactive

More information

β-spectroscopy Fig. 1: Experimental set-up for determining inductance from the resonant frequency of an oscillatory circuit.

β-spectroscopy Fig. 1: Experimental set-up for determining inductance from the resonant frequency of an oscillatory circuit. Related Topics -decay, -decay, electron capture, neutrino, positron, decay diagram, decay energy, resting energy, relativistic Lorentz equation. Principle The radiation of β-unstable atomic nuclei is selected

More information

Figure 1. Decay Scheme for 60Co

Figure 1. Decay Scheme for 60Co Department of Physics The University of Hong Kong PHYS3851 Atomic and Nuclear Physics PHYS3851- Laboratory Manual A. AIMS 1. To learn the coincidence technique to study the gamma decay of 60 Co by using

More information

Radioactivity INTRODUCTION. Natural Radiation in the Background. Radioactive Decay

Radioactivity INTRODUCTION. Natural Radiation in the Background. Radioactive Decay Radioactivity INTRODUCTION The most common form of radiation is the electromagnetic wave. These waves include low energy radio waves, microwaves, visible light, x-rays, and high-energy gamma rays. Electromagnetic

More information

RADIOACTIVITY Q32 P1 A radioactive carbon 14 decay to Nitrogen by beta emission as below 14 x 0

RADIOACTIVITY Q32 P1 A radioactive carbon 14 decay to Nitrogen by beta emission as below 14 x 0 NAME SCHOOL INDEX NUMBER DATE RADIOACTIVITY 1. 1995 Q32 P1 A radioactive carbon 14 decay to Nitrogen by beta emission as below 14 x 0 C N + e 6 7 y Determine the values of x and y in the equation (2 marks)

More information

SCINTILLATION DETECTORS & GAMMA SPECTROSCOPY: AN INTRODUCTION

SCINTILLATION DETECTORS & GAMMA SPECTROSCOPY: AN INTRODUCTION SCINTILLATION DETECTORS & GAMMA SPECTROSCOPY: AN INTRODUCTION OBJECTIVE The primary objective of this experiment is to use an NaI(Tl) detector, photomultiplier tube and multichannel analyzer software system

More information

BETA DECAY. Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706

BETA DECAY. Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 (revised 4/21/03) BETA DECAY Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 Abstract The beta decay spectrum of Cs 137 is measured using a magnetic spectrometer and a

More information

BETA DECAY. Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706

BETA DECAY. Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 (revised 4/27/01) BETA DECAY Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 Abstract The beta decay spectrum of Cs 137 is measured using a magnetic spectrometer and a

More information

(a) (i) State the proton number and the nucleon number of X.

(a) (i) State the proton number and the nucleon number of X. PhysicsAndMathsTutor.com 1 1. Nuclei of 218 84Po decay by the emission of an particle to form a stable isotope of an element X. You may assume that no emission accompanies the decay. (a) (i) State the

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation Higher -o-o-o- Past Paper questions 1991-2001 -o-o-o- 3.6 Radiation 1992 Q35 A typical reaction produced in the core of a nuclear reactor can be described by the following equation: (a) State the name

More information

EQUIPMENT Beta spectrometer, vacuum pump, Cs-137 source, Geiger-Muller (G-M) tube, scalar

EQUIPMENT Beta spectrometer, vacuum pump, Cs-137 source, Geiger-Muller (G-M) tube, scalar Modern Physics Laboratory Beta Spectroscopy Experiment In this experiment, electrons emitted as a result of the radioactive beta decay of Cs-137 are measured as a function of their momentum by deflecting

More information

Radioactivity 1. How: We randomize and spill a large set of dice, remove those showing certain numbers, then repeat.

Radioactivity 1. How: We randomize and spill a large set of dice, remove those showing certain numbers, then repeat. PHYS 1301 Radioactivity 1 Why: To illustrate the notion of half-life of a decaying system. What: We will remove members of a population using a certain rule at each stage and from the decay in the population

More information

Thursday, April 23, 15. Nuclear Physics

Thursday, April 23, 15. Nuclear Physics Nuclear Physics Some Properties of Nuclei! All nuclei are composed of protons and neutrons! Exception is ordinary hydrogen with just a proton! The atomic number, Z, equals the number of protons in the

More information

Radioactivity APPARATUS INTRODUCTION PROCEDURE

Radioactivity APPARATUS INTRODUCTION PROCEDURE Radioactivity APPARATUS. Geiger Counter / Scaler. Cesium-7 sealed radioactive source. 0 pieces of paper. 8 aluminum plates. 0 lead plates 6. Graph paper - log-log and semi-log 7. Survey Meter ( unit for

More information

Chapter 29. Nuclear Physics

Chapter 29. Nuclear Physics Chapter 29 Nuclear Physics Ernest Rutherford 1871 1937 Discovery that atoms could be broken apart Studied radioactivity Nobel prize in 1908 Some Properties of Nuclei All nuclei are composed of protons

More information

Alpha-energies of different sources with Multi Channel Analyzer (Item No.: P )

Alpha-energies of different sources with Multi Channel Analyzer (Item No.: P ) Alpha-energies of different sources with Multi Channel Analyzer (Item No.: P2522015) Curricular Relevance Area of Expertise: ILIAS Education Level: Physik Topic: Hochschule Subtopic: Moderne Physik Experiment:

More information

GAMMA RAY SPECTROSCOPY

GAMMA RAY SPECTROSCOPY GAMMA RAY SPECTROSCOPY Gamma Ray Spectroscopy 1 In this experiment you will use a sodium iodide (NaI) detector along with a multichannel analyzer (MCA) to measure gamma ray energies from energy level transitions

More information

UNIQUE SCIENCE ACADEMY

UNIQUE SCIENCE ACADEMY UNIQUE SIENE EMY Test (Unit 25) Name :... Paper: Physics ate :... ode: 5054 lass: II Time llowed: 5Minutes Maximum Marks: 25 1 Theory Section: [Total 17 Marks] 1 doctor uses a radioactive isotope, iodine-11,

More information

Rutherford Scattering

Rutherford Scattering Rutherford Scattering Today's understanding of the atom, as a structure whose positive charge and majority of mass are concentrated in a minute nucleus, is due to the α particle scattering experiments

More information

Page 2. Draw one line from each type of radiation to what the radiation consists of. Type of radiation. What radiation consists of

Page 2. Draw one line from each type of radiation to what the radiation consists of. Type of radiation. What radiation consists of (a) Draw one line from each type of radiation to what the radiation consists of. Type of radiation What radiation consists of Electron from the nucleus Alpha Two protons and two neutrons Beta Electromagnetic

More information

Particles and Waves Homework One (Target mark 13 out of 15)

Particles and Waves Homework One (Target mark 13 out of 15) Particles and Waves Homework One (Target mark 13 out of 15) Display all answers to 2 significant figures. 1. A car covers a distance of 170m in a time of 18s. Calculate the average speed of the car. 2.

More information

PHYSICS B (ADVANCED PHYSICS) 2864/01 Field and Particle Pictures

PHYSICS B (ADVANCED PHYSICS) 2864/01 Field and Particle Pictures THIS IS A LEGACY SPECIFICATION ADVANCED GCE PHYSICS B (ADVANCED PHYSICS) 2864/01 Field and Particle Pictures *CUP/T64120* Candidates answer on the question paper OCR Supplied Materials: Data, Formulae

More information

Atomic and Nuclear Physics

Atomic and Nuclear Physics Atomic and Nuclear Physics Nuclear physics Rutherford scattering LD Physics Leaflets P6.5.2.1 Rutherford scattering: measuring the scattering rate as a function of the scattering angle and the atomic number

More information

Chapter 3 Radioactivity

Chapter 3 Radioactivity Chapter 3 Radioactivity Marie Curie 1867 1934 Discovered new radioactive elements Shared Nobel Prize in physics in 1903 Nobel Prize in Chemistry in 1911 Radioactivity Radioactivity is the spontaneous emission

More information

The deflection of beta radiation in a magnetic field

The deflection of beta radiation in a magnetic field The deflection of beta radiation in a magnetic field (Item No.: P7300900) Curricular Relevance Area of Expertise: Physik Education Level: Klasse 7-0 Topic: Radioaktivität Subtopic: Strahlenarten und ihre

More information

Absorption and Backscattering of β-rays

Absorption and Backscattering of β-rays Experiment #54 Absorption and Backscattering of β-rays References 1. B. Brown, Experimental Nucleonics 2. I. Kaplan, Nuclear Physics 3. E. Segre, Experimental Nuclear Physics 4. R.D. Evans, The Atomic

More information

Ratio of Charge to Mass (e/m) for the Electron

Ratio of Charge to Mass (e/m) for the Electron Objective: In this experiment you will determine the ratio of charge to mass (e/m) of the electron, by measuring the deflecting of electrons as they move through a magnetic field. Apparatus: e/m apparatus

More information

Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics

Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics PART I Geiger Tube: Optimal Operating Voltage and Resolving Time Objective: To become acquainted with the operation and characteristics

More information

The Particle Nature of Matter. Home Work Solutions

The Particle Nature of Matter. Home Work Solutions Chapter 4 The Particle Nature of Matter. Home Work Solutions 4. Problem 4.0 (In the text book) A typical Rutherford scattering apparatus consists of an evacuated tube containing a polonium- 20 α source

More information

Jazan University College of Science Physics Department. Lab Manual. Nuclear Physics (2) 462 Phys. 8 th Level. Academic Year: 1439/1440

Jazan University College of Science Physics Department. Lab Manual. Nuclear Physics (2) 462 Phys. 8 th Level. Academic Year: 1439/1440 Jazan University College of Science Physics Department جاهعة جازان كلية العل وم قسن الفيزياء Lab Manual Nuclear Physics (2) 462 Phys 8 th Level Academic Year: 1439/1440 1 Contents No. Name of the Experiment

More information

Morning FOR EXAMINER S USE WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED. ANSWERS WRITTEN ELSEWHERE WILL NOT BE MARKED.

Morning FOR EXAMINER S USE WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED. ANSWERS WRITTEN ELSEWHERE WILL NOT BE MARKED. ADVANCED GCE UNIT 2824 PHYSICS A Forces, Fields and Energy MONDAY 22 JANUARY 2007 Morning Additional materials: Electronic Calculator Time: 1 hour 30 minutes INSTRUCTIONS TO CANDIDATES Write your name,

More information

1 (a) Sketch the electric field surrounding the gold nucleus drawn below. (3)

1 (a) Sketch the electric field surrounding the gold nucleus drawn below. (3) 1 (a) Sketch the electric field surrounding the gold nucleus drawn below. (b) The spreadsheet shown approximately models the behaviour of an alpha particle as it approaches a gold nucleus. The proton number

More information

H2 Physics Set D Paper 3 H2 PHYSICS. Exam papers with worked solutions. (Selected from Top JC) SET D PAPER 3.

H2 Physics Set D Paper 3   H2 PHYSICS. Exam papers with worked solutions. (Selected from Top JC) SET D PAPER 3. H2 PHYSICS Exam papers with worked solutions (Selected from Top JC) SET D PAPER 3 Compiled by THE PHYSICS CAFE 1 P a g e INSTRUCTIONS TO CANDIDATES Do Not Open This Booklet Until You Are Told To Do So.

More information

5 Atomic Physics. 1 of the isotope remains. 1 minute, 4. Atomic Physics. 1. Radioactivity 2. The nuclear atom

5 Atomic Physics. 1 of the isotope remains. 1 minute, 4. Atomic Physics. 1. Radioactivity 2. The nuclear atom 5 Atomic Physics 1. Radioactivity 2. The nuclear atom 1. In a fission reactor, which particle causes a Uranium-235 nucleus to split? A. alpha-particle B. gamma ray C. neutron D. proton 2. A radioactive

More information

Modern Physics Laboratory Beta Spectroscopy Experiment

Modern Physics Laboratory Beta Spectroscopy Experiment Modern Physics Laboratory Beta Spectroscopy Experiment Josh Diamond and John Cummings Fall 2009 Abstract In this experiment, electrons emitted as a result of the radioactive beta decay of 137 55 Cs are

More information

6. Atomic and Nuclear Physics

6. Atomic and Nuclear Physics 6. Atomic and Nuclear Physics Chapter 6.2 Radioactivity From IB OCC, prepared by J. Domingues based on Tsokos Physics book Warm Up Define: nucleon atomic number mass number isotope. Radioactivity In 1896,

More information

Cambridge International Examinations Cambridge International Advanced Level *6106210292* PHYSICS 9702/42 Paper 4 A2 Structured Questions May/June 2014 2 hours Candidates answer on the Question Paper. No

More information

EXPERIMENT 11: NUCLEAR RADIATION

EXPERIMENT 11: NUCLEAR RADIATION Introduction: radioactive nuclei. third is electromagnetic radiation. EXPERIMENT 11: NUCLEAR RADIATION In this lab, you will be investigating three types of emissions from Two types of these emissions

More information

Copyright 2008, University of Chicago, Department of Physics. Gamma Cross-sections. NaI crystal (~2" dia) mounted on photo-multiplier tube

Copyright 2008, University of Chicago, Department of Physics. Gamma Cross-sections. NaI crystal (~2 dia) mounted on photo-multiplier tube Gamma Cross-sections 1. Goal We wish to measure absorption cross-sections for γ-rays for a range of gamma energies and absorber atomic number. 2. Equipment Pulse height analyzer Oscilloscope NaI crystal

More information

Radioactivity and energy levels

Radioactivity and energy levels Radioactivity and energy levels Book page 497-503 Review of radioactivity β ; Free neutron proton β- decay is continuous β : Proton in nucleus neutron antineutrino neutrino Summary of useful equations

More information

4- Locate the channel number of the peak centroid with the software cursor and note the corresponding energy. Record these values.

4- Locate the channel number of the peak centroid with the software cursor and note the corresponding energy. Record these values. EXPERIMENT 2.1 GAMMA ENERGY CALIBRATION 1- Turn the power supply on to 900 V. Turn the NIM crate on to power the amplifiers. Turn the Oscilloscope on to check the gamma pulses. The main amplifier should

More information

4 α or 4 2 He. Radioactivity. Exercise 9 Page 1. Illinois Central College CHEMISTRY 132 Laboratory Section:

4 α or 4 2 He. Radioactivity. Exercise 9 Page 1. Illinois Central College CHEMISTRY 132 Laboratory Section: Exercise 9 Page 1 Illinois Central College CHEMISTRY 132 Laboratory Section: Radioactivity Name: Equipment Geiger Counter Alpha, Beta, and Gamma source Objectives The objectives of this experiment are

More information

The wavefunction ψ for an electron confined to move within a box of linear size L = m, is a standing wave as shown.

The wavefunction ψ for an electron confined to move within a box of linear size L = m, is a standing wave as shown. 1. This question is about quantum aspects of the electron. The wavefunction ψ for an electron confined to move within a box of linear size L = 1.0 10 10 m, is a standing wave as shown. State what is meant

More information

Absorption and Backscattering ofβrays

Absorption and Backscattering ofβrays Experiment #54 Absorption and Backscattering ofβrays References 1. B. Brown, Experimental Nucleonics 2. I. Kaplan, Nuclear Physics 3. E. Segre, Experimental Nuclear Physics 4. R.D. Evans, The Atomic Nucleus

More information

Relativistic Electrons

Relativistic Electrons Relativistic Electrons Physics 300 1 Introduction In this experiment you will make independent measurements of the momentum and kinetic energy of electrons emitted from a β source. You will use these data

More information

Attenuation of Radiation in Matter. Attenuation of gamma particles

Attenuation of Radiation in Matter. Attenuation of gamma particles Attenuation of Radiation in Matter In this experiment we will examine how radiation decreases in intensity as it passes through a substance. Since radiation interacts with matter, its intensity will decrease

More information

PHYSICS A Forces, Fields and Energy. OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced GCE. 1 hour 30 minutes

PHYSICS A Forces, Fields and Energy. OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced GCE. 1 hour 30 minutes OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced GCE PHYSICS A 2824 ces, Fields and Energy Thursday 20 JANUARY 2005 Morning 1 hour 30 minutes Candidates answer on the question paper. Additional materials:

More information

Chapter 33: The Atomic Nucleus and Radioactivity Review questions pg. 658

Chapter 33: The Atomic Nucleus and Radioactivity Review questions pg. 658 Chapter 33: The Atomic Nucleus and Radioactivity Review questions pg. 658 5. How do the electric charges of alpha, beta and gamma rays differ? Ans. The alpha 'ray' consists of alpha particles. Each alpha

More information

FYSP106/K3 GEIGER & MÜLLER TUBE. 1 Introduction. 2 The equipment

FYSP106/K3 GEIGER & MÜLLER TUBE. 1 Introduction. 2 The equipment FYSP106/K3 GEIGER & MÜLLER TUE 1 Introduction In this measurement you get familiar with Geiger-Müller tube. The dead time, the range of beta-radiation in medium and the activity of the radiation source

More information

atomic number and mass number. Go over nuclear symbols, such as He-4 and He. Discuss

atomic number and mass number. Go over nuclear symbols, such as He-4 and He. Discuss Nuclear Decay and Chain Reactions ID: 9522 Time required 45 minutes Topic: Nuclear Identify and write equations for the three forms of nuclear decay. Predict decay products. Perform half-life and decay

More information

CHAPTER 12 TEST REVIEW

CHAPTER 12 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 76 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 12 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

More information

Level 2 Physics, 2011

Level 2 Physics, 2011 90256 902560 2SUPERVISOR S Level 2 Physics, 2011 90256 Demonstrate understanding of atoms and radioactivity 2.00 pm Wednesday ednesday 16 1 November 2011 Credits: Two Check that the National Student Number

More information

Gamma and X-Ray Standards

Gamma and X-Ray Standards Gamma and X-Ray Standards A wide range of gamma and x-ray standards for research and educational use are available in the energy range of 5.9 to 2614 kev. Many nuclides are available up to 100 µci (3.7

More information

This experiment is included in the XRP 4.0 X-ray solid state, XRS 4.0 X-ray structural analysis, and XRC 4.0 X-ray characteristics upgrade sets.

This experiment is included in the XRP 4.0 X-ray solid state, XRS 4.0 X-ray structural analysis, and XRC 4.0 X-ray characteristics upgrade sets. The intensity of characteristic X-rays as a TEP Related topics Characteristic X-radiation, energy levels, Bragg s law, and intensity of characteristic X-rays Principle The X-ray spectrum of an X-ray tube

More information

X-RAY SPECTRA. Theory:

X-RAY SPECTRA. Theory: 12 Oct 18 X-ray.1 X-RAY SPECTRA In this experiment, a number of measurements involving x-rays will be made. The spectrum of x-rays emitted from a molybdenum target will be measured, and the experimental

More information

(revised 3/11/2014) BETA DECAY. Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706

(revised 3/11/2014) BETA DECAY. Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 (revised 3/11/2014) BETA DECAY Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 Abstract The beta decay spectrum of Cs 137 is measured using a magnetic spectrometer and

More information

EXAMINATION QUESTIONS (6)

EXAMINATION QUESTIONS (6) 1. What is a beta-particle? A a helium nucleus B a high-energy electron C four protons D two neutrons EXAMINATION QUESTIONS (6) 2. The diagram shows part of a circuit used to switch street lamps on and

More information

H2 Physics Set A Paper 3 H2 PHYSICS. Exam papers with worked solutions. (Selected from Top JC) SET A PAPER 3.

H2 Physics Set A Paper 3  H2 PHYSICS. Exam papers with worked solutions. (Selected from Top JC) SET A PAPER 3. H2 PHYSICS Exam papers with worked solutions (Selected from Top JC) SET A PAPER 3 Compiled by THE PHYSICS CAFE 1 P a g e Candidates answer on the Question Paper. No Additional Materials are required. READ

More information

THE COMPTON EFFECT Last Revised: January 5, 2007

THE COMPTON EFFECT Last Revised: January 5, 2007 B2-1 THE COMPTON EFFECT Last Revised: January 5, 2007 QUESTION TO BE INVESTIGATED: How does the energy of a scattered photon change after an interaction with an electron? INTRODUCTION: When a photon is

More information

Card #1/28. Card #2/28. Science Revision P2. Science Revision P2. Science Revision P2. Card #4/28. Topic: F = ma. Topic: Resultant Forces

Card #1/28. Card #2/28. Science Revision P2. Science Revision P2. Science Revision P2. Card #4/28. Topic: F = ma. Topic: Resultant Forces Card #1/28 Card #2/28 Topic: Resultant Forces Topic: F = ma Topic: Distance-TIme Graphs Card #3/28 Card #4/28 Topic: Velocity-Time Graphs Card #2/28 Card #1/28 Card #4/28 Card #3/28 Card #5/28 Card #6/28

More information

Particle Physics. Question Paper 1. Save My Exams! The Home of Revision. International A Level. Exam Board Particle & Nuclear Physics

Particle Physics. Question Paper 1. Save My Exams! The Home of Revision. International A Level. Exam Board Particle & Nuclear Physics For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ Particle Physics Question Paper 1 Level International Level Subject Physics Exam oard IE Topic Particle & Nuclear Physics Sub

More information

She uses different thicknesses of sheets of paper between the source and the sensor. radioactive source

She uses different thicknesses of sheets of paper between the source and the sensor. radioactive source 1 Dr Williams shows her class an experiment with radioactivity. She uses three different radioactive sources an alpha emitter a beta emitter a gamma emitter. She uses different thicknesses of sheets of

More information

PRODUCTS FOR EDUCATION AND TRAINING

PRODUCTS FOR EDUCATION AND TRAINING PRODUCTS FOR EDUCATION AND TRAINING This section gives detailed information about products to support training in radiation protection, applications of radioactivity and handling radioactive materials.

More information

A Study of Radioactivity and Determination of Half-Life

A Study of Radioactivity and Determination of Half-Life A Study of Radioactivity and Determination of Half-Life Purpose: To examine different types of radioactivity and their properties, and measure the half-life of a radioisotope Introduction A radioactive

More information

3 Types of Nuclear Decay Processes

3 Types of Nuclear Decay Processes 3 Types of Nuclear Decay Processes Radioactivity is the spontaneous decay of an unstable nucleus The radioactive decay of a nucleus may result from the emission of some particle from the nucleus. The emitted

More information

Alpha-Energies of different sources with Multi Channel Analyzer

Alpha-Energies of different sources with Multi Channel Analyzer Physical Structure of Matter Radioactivity Alpha-Energies of different sources with Multi Channel Analyzer What you can learn about Decay series Radioactive equilibrium Isotopic properties Decay energy

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation Higher -o-o-o- Past Paper questions 2000-2010 -o-o-o- 3.6 Radiation 2000 Q29 Radium (Ra) decays to radon (Rn) by the emission of an alpha particle. Some energy is also released by this decay. The decay

More information

MASS ATTENUATION COEFFICIENT OF LEAD

MASS ATTENUATION COEFFICIENT OF LEAD OBJECTIVE MASS ATTENUATION COEFFICIENT OF LEAD The objective of this experiment is to measure the mass attenuation coefficient of lead by manipulating Beer-Lambert s law of attenuation. INTRODUCTION Background

More information

This lab was adapted from Kwantlen University College s Determination of e/m lab.

This lab was adapted from Kwantlen University College s Determination of e/m lab. e /m: Charge to Mass Ratio of the Electron This lab was adapted from Kwantlen University College s Determination of e/m lab. Purpose To determine the charge to mass ratio of the electron, e /m, using Helmholtz

More information

2. A proton is traveling with velocity v, to the right, through a magnetic field pointing into the page as indicated in the figure below.

2. A proton is traveling with velocity v, to the right, through a magnetic field pointing into the page as indicated in the figure below. 1. An electron has a mass of 9.11 x 10-31 kg and its charge is -1.6 x 10-19 C. The electron is released from rest in a vacuum between two flat, parallel metal plates that are 10 cm apart. The potential

More information

In a particular investigation the atomic spacing of the crystal is m and the electrons are accelerated through 3000 V.

In a particular investigation the atomic spacing of the crystal is m and the electrons are accelerated through 3000 V. 1 Crystal structure can be investigated using the diffraction of an electron beam. A typical diffraction pattern is shown. In a particular investigation the atomic spacing of the crystal is 2.3 10 11 m

More information

Assessment Schedule 2011 Physics: Demonstrate understanding of atoms and radioactivity (90256)

Assessment Schedule 2011 Physics: Demonstrate understanding of atoms and radioactivity (90256) NCEA Level 2 Physics (90256) 2011 page 1 of 5 Assessment Schedule 2011 Physics: Demonstrate understanding of atoms and radioactivity (90256) Evidence Statement Q Evidence Achievement Merit Excellence ONE

More information

Radioactivity Outcomes. Radioactivity Outcomes. Radiation

Radioactivity Outcomes. Radioactivity Outcomes. Radiation 1 Radioactivity Outcomes Describe the experimental evidence for there being three types of radiation. Discuss the nature and properties of each type. Solve problems about mass and atomic numbers in radioactive

More information

Core Questions Physics unit 4 - Atomic Structure

Core Questions Physics unit 4 - Atomic Structure Core Questions Physics unit 4 - Atomic Structure No. Question Answer 1 What did scientists think about atoms before the discovery of the They were tiny spheres that could not be broken up electron? 2 Which

More information

KE = 1 2 mv2 = ev. (1)

KE = 1 2 mv2 = ev. (1) The e/m ratio Objective To measure the electronic charge-to-mass ratio e/m, by injecting electrons into a magnetic field and examining their trajectories. We also estimate the magnitude of the earth s

More information

11 Gamma Ray Energy and Absorption

11 Gamma Ray Energy and Absorption 11 Gamma Ray Energy and Absorption Before starting this laboratory, we must review the physiological effects and the proper use of the radioactive samples you will be using during the experiment. Physiological

More information

b) Connect the oscilloscope across the potentiometer that is on the breadboard. Your instructor will draw the circuit diagram on the board.

b) Connect the oscilloscope across the potentiometer that is on the breadboard. Your instructor will draw the circuit diagram on the board. Geiger Counter Experiments and The Statistics of Nuclear Decay Using a Geiger Mueller tube, there are a number of experiments we can do. In the classroom there are two different types of Geiger Counters:

More information

(b) Which of these particles has the largest mass? (1) (c) The maximum range of a beta particle in air is about (1)

(b) Which of these particles has the largest mass? (1) (c) The maximum range of a beta particle in air is about (1) 1 Unstable nuclei can emit particles. (a) Which of these particles has the largest charge? A alpha particle B C beta particle neutron D proton (b) Which of these particles has the largest mass? A alpha

More information

2. With the help of diagram explain the Edison s discovery of thermionic emission. Mention the observations and the conclusion.

2. With the help of diagram explain the Edison s discovery of thermionic emission. Mention the observations and the conclusion. Work Sheet - 1 1. Explain the following terms i) Bound Electrons ii) Conduction/free electrons iii) Work function iv) Thermionic emission 2. With the help of diagram explain the Edison s discovery of thermionic

More information

RADIOACTIVITY. Nature of Radioactive Emissions

RADIOACTIVITY. Nature of Radioactive Emissions 1 RADIOACTIVITY Radioactivity is the spontaneous emissions from the nucleus of certain atoms, of either alpha, beta or gamma radiation. These radiations are emitted when the nuclei of the radioactive substance

More information

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY THE ATOMIC NUCLEUS / NUCLEAR RADIUS & DENSITY / PROPERTIES OF NUCLEAR RADIATION / INTENSITY & BACKGROUND RADIATION / EXPONENTIAL LAW OF DECAY

More information

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity Radiation and Radioactivity 1 Radiation and Radioactivity This experiment has four parts: 1. Counting Statistics 2. Gamma (g) Ray Absorption Half-length and shielding 3. 137 Ba Decay Half-life 4. Dosimetry

More information

Basic physics of nuclear medicine

Basic physics of nuclear medicine Basic physics of nuclear medicine Nuclear structure Atomic number (Z): the number of protons in a nucleus; defines the position of an element in the periodic table. Mass number (A) is the number of nucleons

More information

Beta Spectroscopy. Glenn F. Knoll Radiation Detection and Measurements, John Wiley & Sons, Inc. 2000

Beta Spectroscopy. Glenn F. Knoll Radiation Detection and Measurements, John Wiley & Sons, Inc. 2000 Advanced Laboratory Experiments Universität Siegen Prof. Dr. I. Fleck Beta Spectroscopy Abstract The experiment on beta spectroscopy introduces the student into the field of special relativity and weak

More information

y loo Physics Essentials Workbook Stage 2 Physics Exercises

y loo Physics Essentials Workbook Stage 2 Physics Exercises 238 Physics Essentials Workbook Stage 2 Physics 15.1 2 Exercises P Explain why stable nuclei of high mass have a higher proportion of neutrons than stable nuclei of low mass. 2 Name four types of spontaneous

More information

Bi β + Po Bismuth-214 is radioactive. It has a half-life of 20 minutes. (a) The nuclide notation for bismuth-214 is Bi.

Bi β + Po Bismuth-214 is radioactive. It has a half-life of 20 minutes. (a) The nuclide notation for bismuth-214 is Bi. 1 Bismuth-214 is radioactive. It has a half-life of 20 minutes. (a) The nuclide notation for bismuth-214 is Bi. State the composition of the nucleus of bismuth-214. [2] (b) Bismuth-214 decays by β-decay

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level *6644304748* PHYSICS 5054/21 Paper 2 Theory May/June 2013 1 hour 45 minutes Candidates answer on the Question

More information

RADIOACTIVITY, BETA, AND GAMMA RAYS

RADIOACTIVITY, BETA, AND GAMMA RAYS July 14, 2008 Radioactivity 1 Name Date Partners RADIOACTIVITY, BETA, AND GAMMA RAYS Classic atomic and radioactive symbol OBJECTIVES OVERVIEW Learn about radioactivity. Understand the random nature of

More information