Workshop on Quark Gluon Plasma Thermalization, Vienna 2005

Size: px
Start display at page:

Download "Workshop on Quark Gluon Plasma Thermalization, Vienna 2005"

Transcription

1 Elliptic R.Andrade 1,F.Grassi 1, Y.Hama 1, T.Kodama 2, O.Socolowski Jr. 3, B.Tavares 2 grassi@if.usp.br 1 Instituto de Física, Universidade de São Paulo, Brazil 2 Instituto de Física, Universidade Federal do Rio de Janeiro, Brazil 3 Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, Brazil Workshop on Quark Gluon Plasma Thermalization, Vienna 2005

2 Outline Motivation 1 Motivation 2 3 4

3 Motivation: elliptic flow is a tool to study thermalization Hydrodynamics seems a correct tool to describe RHIC collisions however v 2 () is not well reproduced as shown by Hirano et al. results (PRC 65(2001)011901, 66(2002)054905)

4 Hirano suggested this might be due to lack of thermalization. Heinz and Kolb presented a model with partial thermalization (QM2004) to account for this:

5 Question: lack of thermalization is the only explaination?

6 NeXSPheRIO is a junction of two codes. SPheRIO is used to compute the hydrodynamical evolution Smoothed Particle Hydrodynamics was originally developped in astrophysics and adapted to relativistic heavy ion to collisions C.E.Aguiar, T.Kodama, T.Osada & Y.Hama, J.Phys.G27(2001)75 Advantage: incorporate any geometry in the initial conditions

7 NeXus is used to compute the initial conditions H.J. Drescher et al. PRC 65(2002)054902; Y.Hama, T.Kodama & O.Socolowski Jr. Braz.J.Phys. 35(2005)24 In other codes, initial conditions are adjusted to reproduce some selected data AND are very smooth.

8 Method: NeXSPheRIO is run many times and an average over final results is performed. This mimicks experimental conditions.

9 Theoretically, the impact parameter angle φ b is known and varies in the range of the centrality window chosen: v 2 = R dn/dφcos[2(φ φb )] dφ R dn/dφ dφ Experimentally, the impact parameter angle ψ 2 is reconstructed, for example in a Phobos-like way (PRL 89(2002)222301; nucl-ex/ ): v 2 = P i dn/dφ P i cos[2(φ i ψ 2 )] i dn/dφ i where ψ 2 = 1 P 2 tan 1 P i sin 2φ i i cos 2φ i ψ 2 <0 and ψ > < < q <cos[2(ψ <0 2 ψ>0 2 )]> 2 are determined for subevents

10 After averaging on events, we get: (15-25) % Average over 200 events v2 (ch) OPT EoS (EbE - FO, T f =135 MeV, v ( φ ) ) 2 b 1OPT EoS (EbE - FO, T f =135 MeV, v 2( ψ 2 ) ) There is some difference. In order to compare with PHOBOS data, we will use the second (reconstructed angle) method

11 After averaging on events, we get: (15-25) % Average over 200 events v2 (ch) OPT EoS (EbE - FO, T f =135 MeV, v ( φ ) ) 2 b 1OPT EoS (EbE - FO, T f =135 MeV, v 2( ψ 2 ) ) There is some difference. In order to compare with PHOBOS data, we will use the second (reconstructed angle) method

12 Motivation In all comparisons, the same set of initial conditions is used, scaled to reproduce dn/d for T f.out = 135 MeV (15 25)% Average over 200 events 350 dn/d OPT EoS (EbE - FO, T f = 125 MeV) 1OPT EoS (EbE - FO, T f = 135 MeV) v 2 and dn/p t dp t favour T f.out = 135 MeV, used thereafter.

13 Motivation In all comparisons, the same set of initial conditions is used, scaled to reproduce dn/d for T f.out = 135 MeV (15-25) % Average over 200 events v2 (ch) OPT EoS (EbE - FO, T f =125 MeV) 1OPT EoS (EbE - FO, T f =135 MeV) v 2 and dn/p t dp t favour T f.out = 135 MeV, used thereafter.

14 π t Motivation In all comparisons, the same set of initial conditions is used, scaled to reproduce dn/d for T f.out = 135 MeV -2 (2 p ) d N/dy π dp (Gev/c) t (15-25)% (x10 ) (h+ + h-)/2 0.2 < y < 1.4 Average over 200 events 1OPT EoS (EbE - FO, T f = 125 MeV) 1OPT EoS (EbE - FO, T f = 135 MeV) P (Gev/c) t v 2 and dn/p t dp t favour T f.out = 135 MeV, used thereafter.

15 Effect of first order transition vs. cross over We compare results obtained for a quark matter equation of state with first transition to hadronic matter and with a crossover We expect larger v 2 for cross over

16 (15 25)% Average over 200 events 350 dn/d CP EoS (EbE - FO, T f = 135 MeV) 1OPT EoS (EbE - FO, T f = 135 MeV) The and p t distributions are not much affected v 2 is higer, as expected

17 π t Motivation -2 (2 p ) d N/dy π dp (Gev/c) t (15-25)% (x10 ) (h+ + h-)/2 0.2 < y < 1.4 Average over 200 events CP EoS (EbE - FO, T f = 135 MeV) 1OPT EoS (EbE - FO, T f = 135 MeV) P (Gev/c) t The and p t distributions are not much affected v 2 is higer, as expected

18 (15-25) % Average over 200 events v2 (ch) CP EoS (EbE - FO, T f = 135 MeV) 1OPT EoS (EbE - FO, T =135 MeV) f The and p t distributions are not much affected v 2 is higer, as expected

19 Motivation We compare results obtained for freeze out and continuous emission We expect large momentum particles emitted earlier, with less flow, therefore, narrower v 2 ()

20 (15 25)% Average over 200 events 350 dn/d OPT EoS (EbE - CE) 1OPT EoS (EbE - FO, T f = 135 MeV) The and p t distributions are not much affected v 2 is narrower, as expected

21 π t Motivation -2 (2 p ) d N/dy π dp (Gev/c) t (15-25)% (x10 ) (h+ + h-)/2 0.2 < y < 1.4 Average over 200 events 1OPT EoS (EbE - CE) 1OPT EoS (EbE - FO, T f = 135 MeV) P (Gev/c) t The and p t distributions are not much affected v 2 is narrower, as expected

22 (15-25) % Average over 200 events v2 (ch) OPT EoS (EbE - CE) 1OPT EoS (EbE - FO,T f =135 MeV) The and p t distributions are not much affected v 2 is narrower, as expected

23 Motivation Compared to Hiranos pioneering work with smooth initial conditions, the fact that we used event-by-event initial conditions seems crucial: we immediately avoid the two bumb structure what would WE get with smooth initial conditions?

24 Motivation Compared to Hiranos pioneering work with smooth initial conditions, the fact that we used event-by-event initial conditions seems crucial: we immediately avoid the two bumb structure (15-25) % Average over 200 events v2 (ch) OPT EoS (EbE - FO, T f =135 MeV, v ( φ ) ) 2 b 1OPT EoS (EbE - FO, T f =135 MeV, v 2( ψ 2 ) ) what would WE get with smooth initial conditions?

25 PRELIMINARY (15 25)% 350 dn/d OPT EoS (<IC>-FO, T f = 135 MeV) 1OPT EoS (EbE - FO, T f = 135 MeV) The and p t distributions are not much affected We get a two bump structure for v 2 () (The small depression at = 0 is probably numerical)

26 π t Motivation PRELIMINARY -2 (2 p ) d N/dy π dp (Gev/c) t (15-25)% (x10 ) (h+ + h-)/2 0.2 < y < 1.4 1OPT EoS (<IC>-FO, T f = 135 MeV) 1OPT EoS (EbE - FO, T f = 135 MeV) P (Gev/c) t The and p t distributions are not much affected We get a two bump structure for v 2 () (The small depression at = 0 is probably numerical)

27 PRELIMINARY 0.06 (15-25) % 0.05 v2 (ch) OPT EoS (<IC>-FO, T f = 135 MeV) 1OPT EoS (EbE - FO, T f = 135 MeV) The and p t distributions are not much affected We get a two bump structure for v 2 () (The small depression at = 0 is probably numerical)

28 Motivation Event-by-event initial conditions seem important to get right shape of v 2 () at RHIC Other features seem less important: reconstruction of impact parameter direction, f.out temperature, equation of state (w. or wo. crossover), emission mecanism (15-25) % Average over 200 events 0.04 v2 (ch) CP EoS (EbE - CE) CP EoS (EbE - FO,T f =135 MeV) 1OPT EoS (EbE - CE) 1OPT EoS (EbE - FO,T f =135 MeV) Lack of thermalization is not necessary to reproduce v 2 ()

arxiv:hep-ph/ v3 14 Nov 2005

arxiv:hep-ph/ v3 14 Nov 2005 arxiv:hep-ph/596v3 4 Nov 25 3D Relativistic Hydrodynamic Computations Using Lattice-QCD-Inspired Equations of State Yogiro Hama a, Rone P.G. Andrade a, Frédérique Grassi a, Otávio Socolowski Jr. b, Takeshi

More information

Event-by-event analysis of ultra-relativistic heavy-ion collisions in smoothed particle hydrodynamics

Event-by-event analysis of ultra-relativistic heavy-ion collisions in smoothed particle hydrodynamics Event-by-event analysis of ultra-relativistic heavy-ion collisions in smoothed particle hydrodynamics T. Osada 1, C.E. Aguiar 2, Y. Hama 1 and T. Kodama 2 1 Instituto de Física, Universidade de São Paulo,

More information

Event anisotropy at RHIC

Event anisotropy at RHIC Event anisotropy at RHIC Nu Xu - LBNL 1) Introduction 2) Experimental details and 200 GeV results v 2 (m 0, p T, y, b, A) 3) Summary and outlook PHENIX: N. Ajitanand, S. Esumi, R. Lacey, J. Rak PHOBOS:

More information

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape Outline: Non-central collision of spherical nuclei or central collision of deformed nuclei Overlapping zone is of almond shape Co ordinate space anisotropy is converted into momentum space anisotropy via

More information

Indications for the Onset of Deconfinement in Pb+Pb collisions at the SPS

Indications for the Onset of Deconfinement in Pb+Pb collisions at the SPS Indications for the Onset of Deconfinement in Pb+Pb collisions at the SPS P.Seyboth, MPI für Physik, München for the NA49 Collaboration Introduction Search for structure in the energy dependence of Inclusive

More information

Current Status of QGP hydro + hadron cascade approach

Current Status of QGP hydro + hadron cascade approach Current Status of QGP hydro + hadron cascade approach Tetsufumi Hirano the Univ. of Tokyo/LBNL 6/14/2010 @ INT Introduction Outline Motivation A short history of hybrid approaches Importance of hadronic

More information

arxiv: v1 [hep-ph] 28 Dec 2012

arxiv: v1 [hep-ph] 28 Dec 2012 Further results on peripheral-tube model for ridge correlation arxiv:22.6554v [hep-ph] 28 Dec 22 Yogiro Hama, Rone P.G. Andrade, Frederique Grassi, Jorge Noronha Instituto de Física, Universidade de São

More information

Heavy Ions at the LHC: First Results

Heavy Ions at the LHC: First Results Heavy Ions at the LHC: First Results Thomas Schaefer North Carolina State University Heavy ion collision: Geometry R Au /γ y R Au x b z rapidity : y = 1 2 log ( E + pz E p z ) transverse momentum : p 2

More information

arxiv: v1 [nucl-th] 31 Oct 2012

arxiv: v1 [nucl-th] 31 Oct 2012 Hydro overview Jean-Yves Ollitrault a, Fernando G. Gardim b a CNRS, URA2306, IPhT, Institut de physique théorique de Saclay, F-91191 Gif-sur-Yvette, France b Instituto de Física, Universidade de São Paulo,

More information

Hints of incomplete thermalization in RHIC data

Hints of incomplete thermalization in RHIC data Hints of incomplete thermalization in RHIC data Nicolas BORGHINI CERN in collaboration with R.S. BHALERAO Mumbai J.-P. BLAIZOT ECT J.-Y. OLLITRAULT Saclay N. BORGHINI p.1/30 RHIC Au Au results: the fashionable

More information

arxiv: v2 [nucl-th] 22 Apr 2018

arxiv: v2 [nucl-th] 22 Apr 2018 A quasi-particle model with a phenomenological critical point Hong-Hao Ma 1, Danuce Marcele Dudek 2, Kai Lin 3, Wei-Liang Qian 4,1,5a, Yogiro Hama 6, and Takeshi Kodama 7,8 1 Faculdade de Engenharia de

More information

Initial Condition Fluctuations for Heavy Ion Collisions

Initial Condition Fluctuations for Heavy Ion Collisions Initial Condition Fluctuations for Heavy Ion Collisions Philipe de Almeida Mota Takeshi Kodama (Ph.D. Advisor) Instituto de Física UFRJ, Rio de Janeiro, Brasil Max Planck Institut Frankfurt, Germany February

More information

Lectures on hydrodynamics - Part I: Ideal (Euler) hydrodynamics

Lectures on hydrodynamics - Part I: Ideal (Euler) hydrodynamics Lectures on hydrodynamics - Part I: Ideal (Euler) hydrodynamics Denes Molnar RIKEN/BNL Research Center & Purdue University Goa Summer School September 8-12, 28, International Centre, Dona Paula, Goa, India

More information

Dynamical equilibration of stronglyinteracting

Dynamical equilibration of stronglyinteracting Dynamical equilibration of stronglyinteracting infinite parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein, W.Cassing CPOD, Wuhan, China 11 November 2011 1 Motivation

More information

El deposito de energia-mometo por partones rapidos en un plasma de quarks y gluones. Alejandro Ayala*, Isabel Domínguez and Maria Elena Tejeda-Yeomans

El deposito de energia-mometo por partones rapidos en un plasma de quarks y gluones. Alejandro Ayala*, Isabel Domínguez and Maria Elena Tejeda-Yeomans El deposito de energia-mometo por partones rapidos en un plasma de quarks y gluones Alejandro Ayala*, Isabel Domínguez and Maria Elena Tejeda-Yeomans (*) Instituto de Ciencias Nucleares, UNAM ayala@nucleares.unam.mx

More information

arxiv: v2 [nucl-th] 2 Oct 2018

arxiv: v2 [nucl-th] 2 Oct 2018 On the peripheral-tube description of the two-particle correlations in nuclear collisions Dan Wen 1, Wagner Maciel Castilho 1, Kai Lin, Wei-Liang Qian,1, Yogiro Hama 3, and Takeshi Kodama 4, 1 Faculdade

More information

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Single Au+Au Collision seen by STAR@RHIC Gunther Roland Gunther Roland/MIT July 15 2003 MPI Munich 15/7/2003 Gunther Roland/MIT www.spiegel.de

More information

Perfect-fluid hydrodynamics for RHIC successes and problems

Perfect-fluid hydrodynamics for RHIC successes and problems Title Perfect-fluid hydrodynamics for RHIC successes and problems Wojciech Florkowski with W. Broniowski, M. Chojnacki, A. Kisiel, Institute of Nuclear Physics, Kraków & Jan Kochanowski University, Kielce,

More information

Ultra-Relativistic Heavy Ion Collision Results

Ultra-Relativistic Heavy Ion Collision Results Ultra-Relativistic Heavy Ion Collision Results I. Overview of Effects Observed in Large Nucleus-Nucleus Collision Systems (Au+Au, Pb+Pb) High p T Hadrons Are Suppressed at LHC & RHIC Central Pb-Pb and

More information

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Quantifying the Properties of Hot and Dense QCD Matter, Seattle, 04.06.10 Hannah Petersen Thanks to: Jan Steinheimer,

More information

51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016. Manuel Calderón de la Barca Sánchez

51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016. Manuel Calderón de la Barca Sánchez 51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016 Manuel Calderón de la Barca Sánchez Heavy Flavors in Heavy Ions Heavy quarks produced early: initial hard parton collision

More information

Magnetic field in heavy-ion collision and anisotropy of photon production

Magnetic field in heavy-ion collision and anisotropy of photon production Magnetic field in heavy-ion collision and anisotropy of photon production Vladimir Skokov Strong Magnetic Field and QCD; 12 November 2012 G. Basar, D. Kharzeev, V.S., arxiv:1206.1334; PRL A. Bzdak, V.S.,

More information

Shingo Sakai Univ. of California, Los Angeles

Shingo Sakai Univ. of California, Los Angeles Shingo Sakai Univ. of California, Los Angeles Non-photonic e result in AuAu b/c separation in non-photonic electron by electron-hadron correlations @ pp Bottom production Discuss heavy flavor energy loss

More information

Review of collective flow at RHIC and LHC

Review of collective flow at RHIC and LHC Review of collective flow at RHIC and LHC Jaap Onderwaater 29 November 2012 J. Onderwaater (EMMI,GSI) Collective flow 29 November 2012 1 / 37 Heavy ion collision stages Outline Heavy ion collisions and

More information

Anisotropic Flow: from RHIC to the LHC

Anisotropic Flow: from RHIC to the LHC Anisotropic Flow: from RHIC to the LHC Raimond Snellings The 2 nd Asian Triangle Heavy Ion Conference 13 th - 15 th October, 28 University of Tsukuba, Tsukuba, Japan arxiv:89.2949 [nucl-ex] 2 Elliptic

More information

Collaborating with Takeshi Kodama

Collaborating with Takeshi Kodama Collaborating with Takeshi Kodama RANP 2013 September/2013 Rio de Janeiro Y. Hama I would like to thank Wei-Liang Qian and Sandra Padula for editing the presentation Collaborating with Takeshi Kodama RANP

More information

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned:

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Particle spectral shapes in thermal model ( static medium) are exponential in m T with common slope for all particles.

More information

Global and Collective Dynamics at PHENIX

Global and Collective Dynamics at PHENIX Global and Collective Dynamics at PHENIX Takafumi Niida for the PHENIX Collaboration University of Tsukuba Heavy Ion collisions in the LHC era in Quy Nhon outline n Introduction of v n n Higher harmonic

More information

Strongly interacting quantum fluids: Experimental status

Strongly interacting quantum fluids: Experimental status Strongly interacting quantum fluids: Experimental status Thomas Schaefer North Carolina State University Perfect fluids: The contenders QGP (T=180 MeV) Liquid Helium (T=0.1 mev) Trapped Atoms (T=0.1 nev)

More information

Flow Harmonic Probability Distribution in Heavy Ion Collision

Flow Harmonic Probability Distribution in Heavy Ion Collision 1/28 Flow Harmonic Probability Distribution in Heavy Ion Collision Seyed Farid Taghavi Institute For Research in Fundamental Sciences (IPM), Tehran, Iran Second Iran & Turkey Joint Conference on LHC Physics

More information

Fluctuations of Conserved Charges

Fluctuations of Conserved Charges Fluctuations of Conserved Charges Theory, Experiment, and Lattice Masakiyo Kitazawa (Osaka U.) KEK, 2014/Jan./20 QCD @ nonzero T Theory (Motivation) QCD @ nonzero T Lattice Heavy Ion Collisions QCD @ nonzero

More information

Hadronic equation of state and relativistic heavy-ion collisions

Hadronic equation of state and relativistic heavy-ion collisions Hadronic equation of state and relativistic heavy-ion collisions Pasi Huovinen J. W. Goethe Universität Workshop on Excited Hadronic States and the Deconfinement Transition Feb 23, 2011, Thomas Jefferson

More information

THERMALIZATION, ISOTROPIZATION AND FLOWS OF THE SHATTERED CGC

THERMALIZATION, ISOTROPIZATION AND FLOWS OF THE SHATTERED CGC Dr. Marco Ruggieri Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy) THERMALIZATION, ISOTROPIZATION AND FLOWS OF THE SHATTERED CGC Collaborators: - Vincenzo Greco

More information

Creating a Quark Gluon Plasma With Heavy Ion Collisions

Creating a Quark Gluon Plasma With Heavy Ion Collisions Creating a Quark Gluon Plasma With Heavy Ion Collisions David Hofman UIC Special thanks to my Collaborators in PHOBOS, STAR, & CMS and B. Back, M. Baker, R. Hollis, K. Rajagopal, R. Seto, and P. Steinberg

More information

Bulk matter formed in Pb Pb collisions at the LHC

Bulk matter formed in Pb Pb collisions at the LHC Bulk matter formed in Pb Pb collisions at the LHC Introductory remarks is quark matter at LHC in equilibrium? Energy dependence of hadron production and the quark hadron phase boundary The fireball expands

More information

Pion Transverse Momentum Spectrum, Elliptic Flow and Interferometry in the Granular Source Model in Ultra-Relativistic Heavy Ion Collisions

Pion Transverse Momentum Spectrum, Elliptic Flow and Interferometry in the Granular Source Model in Ultra-Relativistic Heavy Ion Collisions Pion Transverse Momentum Spectrum, Elliptic Flow and Interferometry in the Granular Source Model in Ultra-Relativistic Heavy Ion Collisions Jing Yang 1, Yan-Yu Ren and Wei-Ning Zhang 1, 1 School of Physics

More information

arxiv: v1 [nucl-ex] 10 Feb 2012

arxiv: v1 [nucl-ex] 10 Feb 2012 Cent. Eur. J. Phys. 1-5 Author version Central European Journal of Physics Highlights of the Beam Energy Scan from STAR Review Article arxiv:10.389v1 [nucl-ex] 10 Feb 01 A. Schmah for the STAR Collaboration

More information

(Some) Bulk Properties at RHIC

(Some) Bulk Properties at RHIC (Some) Bulk Properties at RHIC Many thanks to organizers! Kai Schweda, University of Heidelberg / GSI Darmstadt 1/26 EMMI workshop, St. Goar, 31 Aug 3 Sep, 2009 Kai Schweda Outline Introduction Collectivity

More information

Philipe de Almeida Mota

Philipe de Almeida Mota Philipe de Almeida Mota Personal Data birth date: december 9, 1983 nationality: Brazilian gender: male degree: M.Sc. in Physics (currently Ph.D. student) residential address: Av. Epitácio Pessoa 3100,

More information

What do we see? LHC lecture, Heidelberg, 1 Feb, Kai Schweda

What do we see? LHC lecture, Heidelberg, 1 Feb, Kai Schweda What do we see? 1/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda Hadron spectra from RHIC p+p and Au+Au collisions at 200 GeV Full kinematic reconstruction of (multi-) strange hadrons in large acceptance

More information

Fluctuations and QCD phase structure

Fluctuations and QCD phase structure Fluctuations and QCD phase structure Guo-yun Shao ( 邵国运 ) Xi an Jiaotong University Outline: Motivation Methods to describe fluctuations of conserved charges in heavy-ion collisions Numerical results and

More information

Quark Gluon Plasma Recent Advances

Quark Gluon Plasma Recent Advances Quark Gluon Plasma Recent Advances Lawrence Berkeley National Laboratory LP01, Rome, July 2001 Introduction P.C. Sereno et al. Science, Nov. 13, 1298(1998). (Spinosaurid) We may not see the entire body

More information

FLOW STUDIES IN NUCLEUS-NUCLEUS COLLISIONS AT FAIR-GSI AVAILABLE ENERGIES

FLOW STUDIES IN NUCLEUS-NUCLEUS COLLISIONS AT FAIR-GSI AVAILABLE ENERGIES (c) 2017 Rom. Rep. Phys. (for accepted papers only) FLOW STUDIES IN NUCLEUS-NUCLEUS COLLISIONS AT FAIR-GSI AVAILABLE ENERGIES O. RISTEA 1, C. RISTEA 1,2,a, A. JIPA 1, T. PETRUSE 1, T. ESANU 3, M. CALIN

More information

Strangeness production in relativistic heavy ion collisions

Strangeness production in relativistic heavy ion collisions F. Becattini, University of Florence Strangeness production in relativistic heavy ion collisions OUTLINE Strangeness enhancement in heavy ion collisions Statistical model and strangeness undersaturation

More information

Phenomenology of Heavy-Ion Collisions

Phenomenology of Heavy-Ion Collisions Phenomenology of Heavy-Ion Collisions Hendrik van Hees Goethe University Frankfurt and FIAS October 2, 2013 Hendrik van Hees (GU Frankfurt/FIAS) HIC Phenomenology October 2, 2013 1 / 20 Outline 1 Plan

More information

Space-time evolution of the Quark Gluon Plasma. Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg

Space-time evolution of the Quark Gluon Plasma. Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg Space-time evolution of the Quark Gluon Plasma Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg High-energy nucleus-nucleus Collisions High-Energy Nuclear Collisions Time à

More information

EPOS 2 and LHC Results

EPOS 2 and LHC Results EPOS 2 and LHC Results Tanguy Pierog, K. Werner, Y. Karpenko Institut für Kernphysik, Karlsruhe, Germany 46th Rencontres de Moriond, QCD, La Thuile, France March the 24th 2011 T. Pierog, KIT - 1/19 Outline

More information

Quantifying the Sensitivity of Experimental Data to Variations in the QGP Equation of State

Quantifying the Sensitivity of Experimental Data to Variations in the QGP Equation of State Quantifying the Sensitivity of Experimental Data to Variations in the QGP Equation of State Lawrence Livermore National Laboratory E-mail: soltz@llnl.gov We have developed a framework, the Comprehensive

More information

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Lawrence Berkeley National Laboratory Berkeley, US 1 Introduction: Heavy Ion Physics Today t = 5 10 17 sec T=1

More information

The Core Corona Model

The Core Corona Model The Core Corona Model or Is the Centrality Dependence of Observables more than a Core-Corona Effect? inspired by the first multiplicity results in CuCu then used to extract the physics of EPOS simulations

More information

Hunt for the Quark-Gluon Plasma: 20 Years Later

Hunt for the Quark-Gluon Plasma: 20 Years Later Brazilian Journal of Physics, vol. 34, no. 1A, March, 2004 205 Hunt for the Quark-Gluon Plasma: 20 Years Later Takeshi Kodama Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528,

More information

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC?

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Non-Peturb QCD, IAP Paris, Klaus WERNER, Subatech, Nantes - Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Klaus Werner in collaboration with Iu. Karpenko, T. Pierog,

More information

MIXED HARMONIC FLOW CORRELATIONS

MIXED HARMONIC FLOW CORRELATIONS MIXED HARMONIC FLOW CORRELATIONS RECENT RESULTS ON SYMMETRIC CUMULANTS Matthew Luzum F. Gardim, F. Grassi, ML, J. Noronha-Hostler; arxiv:168.2982 Universidade de São Paulo NBI Mini Workshop 19 September,

More information

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC PHENIX! AGS! RHIC! STAR! Cover 3 decades of energy in center-of-mass s NN = 2.76 TeV 5.5 TeV (2015) CMS LHC! s NN = 5-200 GeV

More information

A Senior Honors Thesis

A Senior Honors Thesis A Study Using Relativistic Hydrodynamics for Ultrarelativistic Heavy-Ion Collisions: The Quark-Gluon-Plasma to Hadron Phase Transition and LHC Predictions A Senior Honors Thesis Presented in Partial Fulfillment

More information

PoS(High-pT physics09)047

PoS(High-pT physics09)047 HYDJE++ simulations and reconstruction of the anisotropic flow in Pb+Pb collisions at the LHC L.V. Bravina, ab, E.E. Zabrodin ab a Universitetet i Oslo, Norway E-mail: gyulnare@student.matnat.uio.no V.L.

More information

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Benjamin Dönigus 03.12.2009 Seminar WS 2009/2010 Relativistische Schwerionenphysik Interface of Quark-Gluon Plasma and

More information

Critical vs. spurious fluctuations in the search for the QCD critical point

Critical vs. spurious fluctuations in the search for the QCD critical point Critical vs. spurious fluctuations in the search for the QCD critical point Maurício Hippert Eduardo S. Fraga Edivaldo M. Santos Instituto de Física - Universidade Federal do Rio de Janeiro June 16, 2016

More information

Partons and waves. Alejandro Ayala*, Isabel Domínguez and Maria Elena Tejeda-Yeomans. December 2, 2012

Partons and waves. Alejandro Ayala*, Isabel Domínguez and Maria Elena Tejeda-Yeomans. December 2, 2012 Partons and waves Alejandro Ayala*, Isabel Domínguez and Maria Elena Tejeda-Yeomans (*) Instituto de Ciencias Nucleares, UNAM ayala@nucleares.unam.mx December, Seminal work Outline. Azimuthal angular correlations.

More information

1992 Predictions for RHIC with HIJING

1992 Predictions for RHIC with HIJING 1992 Predictions for RHIC with HIJING HIJING: A MONTE CARLO MODEL FOR MULTIPLE JET PRODUCTION IN P P, P A AND A A COLLISIONS Phys.Rev.D44:3501-3516,1991 GLUON SHADOWING AND JET QUENCHING IN A + A COLLISIONS

More information

Global polarization of Λ and Λ hyperons in Pb Pb collisions at s NN = 2.76 TeV

Global polarization of Λ and Λ hyperons in Pb Pb collisions at s NN = 2.76 TeV Global polarization of and hyperons in Pb Pb collisions at s NN = 2.76 TeV Maxim Konyushikhin Wayne State University On behalf of the ALICE collaboration March 29, 27 QCD Chirality Workshop 27 Outline

More information

Correlations of Electrons from Heavy Flavor Decay with Hadrons in Au+Au and p+p Collisions arxiv: v1 [nucl-ex] 11 Jul 2011

Correlations of Electrons from Heavy Flavor Decay with Hadrons in Au+Au and p+p Collisions arxiv: v1 [nucl-ex] 11 Jul 2011 Correlations of Electrons from Heavy Flavor Decay with Hadrons in and Collisions arxiv:7.v [nucl-ex] Jul Anne M. Sickles, for the PHENIX Collaboration Brookhaven National Laboratory, Upton, NY E-mail:

More information

Melting the QCD Vacuum with Relativistic Heavy-Ion Collisions

Melting the QCD Vacuum with Relativistic Heavy-Ion Collisions Melting the QCD Vacuum with Relativistic Heavy-Ion Collisions Steffen A. Bass QCD Theory Group Introduction: the Quark-Gluon-Plasma How can one create a QGP? Basic tools for a Theorist: Transport Theory

More information

Strangeness production and nuclear modification at LHC energies

Strangeness production and nuclear modification at LHC energies Strangeness production and nuclear modification at LHC energies Oliver Busch for the ALICE collaboration 1 Outline introduction jet azimuthal anisotropy jet shapes 2 Introduction 3 Jets: seeing quarks

More information

Constraining the QCD equation of state in hadron colliders

Constraining the QCD equation of state in hadron colliders Constraining the QCD equation of state in hadron colliders Akihiko Monnai (KEK, Japan) with Jean-Yves Ollitrault (IPhT Saclay, France) AM and J.-Y. Ollitrault, Phys. Rev. C 96, 044902 (2017) New Frontiers

More information

Intersections of nuclear physics and cold atom physics

Intersections of nuclear physics and cold atom physics Intersections of nuclear physics and cold atom physics Thomas Schaefer North Carolina State University Unitarity limit Consider simple square well potential a < 0 a =, ǫ B = 0 a > 0, ǫ B > 0 Unitarity

More information

& Λ Production in ALICE

& Λ Production in ALICE Journal of Physics: Conference eries OPEN ACCE Related content K & Λ Production in ALICE - trangeness production in ALICE Domenico Elia and the ALICE Collaboration o cite this article: Luke Hanratty and

More information

Uncertainties in the underlying e-by-e viscous fluid simulation

Uncertainties in the underlying e-by-e viscous fluid simulation Uncertainties in the underlying e-by-e viscous fluid simulation Ulrich Heinz (The Ohio State University) Jet Workfest, Wayne State University, 24-25 August 213 Supported by the U.S. Department of Energy

More information

Partonic transport simulations of jet quenching

Partonic transport simulations of jet quenching Partonic transport simulations of jet quenching Z. Xu, C. Greiner Institut für Theoretische Physik J. W. Goethe-Universität, Frankfurt Outline motivation introduction to the model simulations of Au+Au

More information

arxiv: v3 [nucl-th] 2 Jul 2008

arxiv: v3 [nucl-th] 2 Jul 2008 Elliptic Flow arising from Ridges due to Semi-hard Scattering Rudolph C. Hwa Institute of Theoretical Science and Department of Physics University of Oregon, Eugene, OR 97403-5203, USA arxiv:0708.1508v3

More information

Experimental Approach to the QCD Phase Diagram & Search for the Critical Point

Experimental Approach to the QCD Phase Diagram & Search for the Critical Point Experimental Approach to the QCD Phase Diagram & Search for the Critical Point / LBNL, Berkeley The John Cramer Symposium University of Washington, Seattle, September 10-11, 2009 Outline : QCD phase diagram

More information

QGP Hydrodynamics. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad

QGP Hydrodynamics. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad QGP Hydrodynamics Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad First School on LHC Physics, NCP, Islamabad Oct 28, 2009 1 Outline QGP Evolution Centrality Why Hydrodynamics? What is a flow? Percolation

More information

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk Final Exam Instructions: Please write clearly. Do not just answer the questions, but document the thoughts leading

More information

Some aspects of dilepton production in HIC

Some aspects of dilepton production in HIC Some aspects of dilepton production in HIC Qun Wang University of Science and Technology of China (USTC) In collaboration with H.J.Xu, J.Deng, X.Dong, L.J.Ruan, Z.B.Xu, N.Xu, P.F.Zhuang, Y.F. Zhang Electromagnetic

More information

arxiv: v1 [hep-ph] 13 Sep 2016

arxiv: v1 [hep-ph] 13 Sep 2016 Energy loss as the origin of an universal scaling law of the elliptic flow Carlota Andrés, 1, Mikhail Braun, 2, and Carlos Pajares 1, 1 Instituto Galego de Física de Altas Enerxías IGFAE, arxiv:1609.03927v1

More information

The time evolution of the quark gluon plasma in the early Universe

The time evolution of the quark gluon plasma in the early Universe Journal of Physics: Conference Series PAPER OPEN ACCESS The time evolution of the quark gluon plasma in the early Universe To cite this article: S M Sanches Jr et al 215 J. Phys.: Conf. Ser. 63 1228 Related

More information

Status of Heavy-Ion Physics at the LHC

Status of Heavy-Ion Physics at the LHC Status of Heavy-Ion Physics at the LHC Yvonne Pachmayer, Heidelberg University J. Jowett LHC Page 1 2 Motivation: What is the question? ALICE/LHC Pb+Pb snn = 2760 GeV What happens if you make matter Hotter

More information

Introduction to Relativistic Heavy Ion Physics

Introduction to Relativistic Heavy Ion Physics 1 Introduction to Relativistic Heavy Ion Physics Lecture 3: Approaching Perfection Columbia University Reminder- From Lecture 2 2 A new state of matter (QGP?) is formed in Au+Au collisions at RHIC Densities

More information

Heavy quark production and elliptic flow at RHIC and LHC

Heavy quark production and elliptic flow at RHIC and LHC Heavy quark production and elliptic flow at RHIC and LHC Jan Uphoff with O. Fochler, Z. Xu and C. Greiner Institute for Theoretical Physics Hirschegg January 20, 2010 Outline Motivation Charm processes

More information

Kent Riley Yale University 6/25/2012

Kent Riley Yale University 6/25/2012 Kent Riley Yale University 6/25/2012 Motivation Azimuthal correlations of charged particles A probe for Local Parity Violation (LPV) Charge separation effects due to the Chiral Magnetic Effect (CME) should

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Goethe-Universität Frankfurt November 9, 211 Hendrik van Hees (GU Frankfurt) Heavy-Quark Transport November 9, 211 1 / 19 Motivation Fast equilibration

More information

HOT HADRONIC MATTER. Hampton University and Jefferson Lab

HOT HADRONIC MATTER. Hampton University and Jefferson Lab 200 Cr oss sect ion (m b) 0 K ptotal 20 5 K pelastic 2 1 K N 1 1.6 2 3 4 2 5 6 7 8 9 20 30 3 40 THE ROLE OF BARYON RESONANCES IN Relativistic Heavy Ion Collider (RHIC) HOT HADRONIC MATTER Au+Au K d 2.5

More information

Further development of the hydrokinetic model and description of the RHIC and LHC A+A femtoscopic data

Further development of the hydrokinetic model and description of the RHIC and LHC A+A femtoscopic data and description of the RHIC and LHC A+A femtoscopic data Iu.A. Karpenko Bogolyubov Institute for heoretical Physics, 1-b, Metrolohichna str., Kiev, 080, Ukraine E-mail: karpenko@bitp.kiev.ua Bogolyubov

More information

Exploring quark-gluon plasma in relativistic heavy-ion collisions

Exploring quark-gluon plasma in relativistic heavy-ion collisions Exploring quark-gluon plasma in relativistic heavy-ion collisions Guang-You Qin 秦广友 Duke University @ University of Science and Technology of China July 12 th, 2011 Outline Introduction Collective flow

More information

arxiv:nucl-th/ v2 8 Jun 2006

arxiv:nucl-th/ v2 8 Jun 2006 Acta Phys. Hung. A / (2005) 000 000 HEAVY ION PHYSICS Strange quark collectivity of φ meson at RHIC arxiv:nucl-th/0510095v2 8 Jun 2006 J. H. Chen 1,2, Y. G. Ma 1,a, G. L. Ma 1,2, H. Z. Huang 1,3, X. Z.

More information

Overview of anisotropic flow measurements from ALICE

Overview of anisotropic flow measurements from ALICE EPJ Web of Conferences 117, (2016) Overview of anisotropic flow measurements from ALICE You Zhou on behalf of the ALICE Collaboration Niels Bohr Institute, University of Copenhagen, Denmark Abstract Anisotropic

More information

Phase diagram of QCD: the critical point

Phase diagram of QCD: the critical point Phase diagram of QCD: the critical point p. 1/1 Phase diagram of QCD: the critical point M. Stephanov U. of Illinois at Chicago Phase diagram of QCD: the critical point p. 2/1 Phase Diagram of QCD Basic

More information

First results with heavy-ion collisions at the LHC with ALICE

First results with heavy-ion collisions at the LHC with ALICE First results with heavy-ion collisions at the LHC with ALICE Domenico Elia INFN, Bari (Italy) on behalf of the ALICE Collaboration D. Elia (INFN Bari, Italy) PANIC 011 / Boston, MA (USA) July 4-9, 011

More information

Relativistic Heavy Ions Collisions at PHENIX (some of) Recent results

Relativistic Heavy Ions Collisions at PHENIX (some of) Recent results Relativistic Heavy Ions Collisions at PHENIX (some of) Recent results Vladislav Pantuev Stony Brook University 1 Outline: 1. Jet quenching 2. Direct photons: high pt, thermal, correlations 3. J/Ψ, cold

More information

HIGH ENERGY HEAVY ION COLLISIONS AT LHC

HIGH ENERGY HEAVY ION COLLISIONS AT LHC HIGH ENERGY HEAVY ION COLLISIONS AT LHC Outline 1. Introduction 2. Paton energy loss in QGP 3. QGP properties probing via hadrons 4. ALICE-DCal project (Italy-Japan collaboration) 5. Summary QGP : Quark

More information

Correlations and Fluctuations in Nuclear Collisions - Experimental Overview

Correlations and Fluctuations in Nuclear Collisions - Experimental Overview Correlations and Fluctuations in Nuclear Collisions - Experimental Overview Gunther Roland - MIT Supercomputing RHIC Physics TIFR, Mumbai Dec 5-9 2005 This talk dn/dη/ Pseudorapidity Hadron

More information

Beam energy scan using a viscous hydro+cascade model: an update

Beam energy scan using a viscous hydro+cascade model: an update Beam energy scan using a viscous hydro+cascade model: an update Iurii KARPENKO Frankfurt Institute for Advanced Studies/ Bogolyubov Institute for heoretical Physics ransport group meeting, December 17,

More information

The Λ Global Polarization with the AMPT model

The Λ Global Polarization with the AMPT model The Λ Global Polarization with the AMPT model Hui Li ( 李慧 ) University of Science and Technology of China Cooperators: Xiao-Liang Xia, Long-Gang Pang, Qun Wang arxiv: 1704.01507 Outline Introduction The

More information

ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS

ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS Dr. Marco Ruggieri Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy) ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS Based on collaboration with: V. Greco, S.

More information

arxiv:nucl-ex/ v1 10 May 2004

arxiv:nucl-ex/ v1 10 May 2004 arxiv:nucl-ex/0405004v1 10 May 2004 Proc. 20th Winter Workshop on Nuclear Dynamics (2003) 000 000 Anisotropic flow at RHIC A. H. Tang 1 for the STAR Collaboration 1 NIKHEF and Brookhaven National Lab,

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Justus-Liebig Universität Gießen October 13, 29 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) Heavy-Quark

More information

Particle correlations in such collision?! N=n(n-1)/2. azimuthal, back-to back, multiplicity... close velocity,

Particle correlations in such collision?! N=n(n-1)/2. azimuthal, back-to back, multiplicity... close velocity, Future of Nuclear Collisions at High Energies Kielce, Poland, October 14-17 2004 Particle correlations in heavy ion collisions Jan Pluta Warsaw University of Technology Faculty of Physics, Heavy Ion Reactions

More information

Quark chemical equilibrabon for thermal photon ellipbc flow

Quark chemical equilibrabon for thermal photon ellipbc flow AM, Phys. Rev. C 90, 021901(R) (2014) AM, arxiv:1408.1410 [nucl- th] Quark chemical equilibrabon for thermal photon ellipbc flow Akihiko Monnai RIKEN BNL Research Center Nishina Center for Accelerator-

More information

arxiv: v1 [nucl-ex] 6 Dec 2011

arxiv: v1 [nucl-ex] 6 Dec 2011 Higher harmonic anisotropic flow measurements of charged particles at s NN =.76 TeV with the ALICE detector You Zhou (for the ALICE Collaboration) arxiv:111.156v1 [nucl-ex] 6 Dec 011 Nikhef, Science Park

More information

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Hydrodynamical description of ultrarelativistic heavy-ion collisions Frankfurt Institute for Advanced Studies June 27, 2011 with G. Denicol, E. Molnar, P. Huovinen, D. H. Rischke 1 Fluid dynamics (Navier-Stokes equations) Conservation laws momentum conservation Thermal

More information