Integrable Systems in Contemporary Physics

Size: px
Start display at page:

Download "Integrable Systems in Contemporary Physics"

Transcription

1 Integrable Systems in Contemporary Physics Angela Foerster Universidade Federal do Rio Grande do Sul Instituto de Física talk presented in honour of Michael Karowski and Robert Schrader at the FU-Berlin Integrable Systems in Contemporary Physics p.1/62

2 OUTLINE Brief review of Michael Karowskis work Integrable models of Bose Einstein condensates Integrable spin ladder systems Integrable Systems in Contemporary Physics p.2/62

3 BRIEF REVIEW EDUCATION: Diplom (1967) Hamburg (Prof. H. Lehmann) PHd (1970) Hamburg (Prof. H. Lehmann) INSTITUTIONS: Institut für Theoretische Physik Hamburg Max-Planck Institut München University of Dortmund University of Göttingen LPTHP University, Paris ETH Zürich FU- Berlin Integrable Systems in Contemporary Physics p.3/62

4 MAIN COLLABORATORS: H. Babujian B. Berg R. Schrader B. Schroer H. J. Thun T. T. Truong H. J. de Vega P. Weisz PhD STUDENTS: A. Foerster A. Zapletal G. Jüttner T. Quella (Diplom) Integrable Systems in Contemporary Physics p.4/62

5 CONTRIBUTION TO THE DEVELOPMENT: S-matrices Exact form factors Yang-Baxter algebras Bethe ansatz methods Finite size corrections Integrable quantum field theories * Monte Carlo simulations for QFT * Combinatorial approach to topological QFT ( Robert Schrader) Quantum groups Integrable systems... Integrable Systems in Contemporary Physics p.5/62

6 TOP CITED PAPERS 1) Karowski M, Thun HJ, Truong TT, Weisz P Uniqueness of a purely elastic S-matrix in (1+1) dim. Physics Letters B 67; ) Foerster A, Karowski M Algebraic properties of the Bethe ansatz for an SPL(2,1)-susy t-j model Nuclear Physics B396; ) Karowski M, Weisz P Exact form-factors in (1+1)-dimensional field theoretic models with soliton behaviour Nuclear Physics B139; Integrable Systems in Contemporary Physics p.6/62

7 4) Foerster A, Karowski M The susy t-j model with quantum group invariance Nuclear Physics B408; ) Berg B, Karowski M, Weisz P Construction of Green-functions from an exact S-matrix Physical Review D19; ) de Vega HJ, Karowski M Conformal-invariance and integrable theories Nuclear Physics B285; AUG Total number of citations : 1490 (Web of Science) Integrable Systems in Contemporary Physics p.7/62

8 INTEGRABLE SYSTEMS Statistical Physics Quantum Field Theory *** Condensed Matter *** Atomic and Molecular Physics Integrable Systems in Contemporary Physics p.8/62

9 INTEGRABLE MODELS OF BEC INTRODUCTION THE MODEL FOR TWO COUPLED BEC The Hamiltonian for two coupled BEC Integrability and exact solution Definition of the regimes CLASSICAL DYNAMICS Equations of motion QUANTUM DYNAMICS Temporal evolution for different regimes OPEN PROBLEMS Integrable Systems in Contemporary Physics p.9/62

10 I - INTRODUCTION A. Einstein (1925) theoretical prediction of the existence of the condensate - all particles are in the same quantum state (coherent state) Integrable Systems in Contemporary Physics p.10/62

11 D.S. Durfee and W. Ketterle, Optics Express 2 (1998) 299 Integrable Systems in Contemporary Physics p.11/62

12 Since 1935: improving exp. techniques Ketterle et. al.(1995) experim. observ. D.S. Durfee and W. Ketterle, Optics Express 2 (1998) 299 Integrable Systems in Contemporary Physics p.12/62

13 Integrable Systems in Contemporary Physics p.13/62 D.S. Durfee and W. Ketterle, Optics Express 2 (1998) 299

14 JOSEPHSON TUNNELING AND SELF- TRAPPING M. Albiez, R. Gati et. al., cond/mat/ (2004) Integrable Systems in Contemporary Physics p.14/62

15 COLAPSE AND REVIVAL PATTERN M. R. Mathews, B.P. Anderson et al, Phys. Rev. Lett. 83 (1999) 3358 Integrable Systems in Contemporary Physics p.15/62

16 II - A MODEL FOR TWO COUPLED BEC H = k 8 (N 1 N 2 ) 2 µ 2 (N 1 N 2 ) E J 2 (a 1 a 2+a 2 a 1) N 1 = a 1 a 1: number of atoms in the well 1 N 2 = a 2 a 2: number of atoms in the well 2 k: atom-atom interaction term µ: chemical potential E J : tunneling strength G. Milburn et al, Phys. Rev.A55 (1997) 4318 A. Leggett, Rev. Mod. Phys.73 (2001) 307 S. Kohler and F. Sols, Phys. Rev. Lett.89 (2002) Integrable Systems in Contemporary Physics p.16/62

17 Schematic representation k/8 2 1 k/8 external potencial 1 2 external potential = 0 H = k 8 (N 1 N 2 ) 2 µ 2 (N 1 N 2 ) E J 2 (a 1 a 2 +a 2 a 1) Integrable Systems in Contemporary Physics p.17/62

18 Conserved quantities N = N 1 + N 2 [H,N] = 0 Symmetries E J E J ; a 1 a 1 ; a 2 a 2 µ µ ; a 1 a 2 If µ = 0 N 1 N 2 ; N 2 N 1 Integrable Systems in Contemporary Physics p.18/62

19 2. Integrability and exact solution: R-matrix: R(u) = b(u) c(u) 0 0 c(u) b(u) 0, b(u) = u u + η R-matrix satisfies the YBE c(u) = η u + η R 12 (x y)r 13 (x)r 23 (y) = R 23 (y)r 13 (x)r 12 (x y) Integrable Systems in Contemporary Physics p.19/62

20 Monodromy matrix: T(u) = ( ) A(u) B(u) C(u) D(u) R 12 (u v)t 13 (u)t 23 (v) = T 23 (v)t 13 (u)r 12 (u v) Integrable Systems in Contemporary Physics p.20/62

21 Suppose we have a realization: L(u) = π(t(u)) = L 1 (u + w)l 2 (v w) L i (u) = ( ) u + ηni a i a i η 1 i = 1, 2 R 12 (u v)l 1 (u)l 2 (v) = L 2 (v)l 1 (u)r 12 (u v) Integrable Systems in Contemporary Physics p.21/62

22 Transfer matrix τ(u) = π(tr(t(u))) = π(a(u) + D(u)) Integrability [τ(u),τ(v)] = 0 [H,τ(v)] = 0 H = κ (τ(u) 14 (τ (0)) 2 uτ (0) η 2 + w 2 u 2 ) Integrable Systems in Contemporary Physics p.22/62

23 with the identification: k 4 = κη2 2, µ 2 = κηw, E J 2 = κ H = k 8 (N 1 N 2 ) 2 µ 2 (N 1 N 2 ) E J 2 (a 1 a 2 +a 2 a 1) Integrable Systems in Contemporary Physics p.23/62

24 Applying the algebraic Bethe ansatz method: Energy: N ( E = κ(η η ) η2 N 2 uηn v i=1 i u 4 N ( u 2 η 2 + w 2 + (u 2 w 2 ) 1 η ) v i u ) ) i=1 Integrable Systems in Contemporary Physics p.24/62

25 u = w E = κ(η 2 N i=1 η 2 (v i w + η)(v i + w) η2 N 2 4 ηwn η 2 ) Integrable Systems in Contemporary Physics p.25/62

26 Bethe Ansatz Equations: η 2 (v 2 i w2 ) = N j i v i v j η v i v j + η Integrable Systems in Contemporary Physics p.26/62

27 3. Definition of regimes: k/e J 0 1 RR JR FR Rabi regime (RR) k/e j << 1/N Josephson reg.(jr) 1/N << k/e j << N Fock regime (FR) k/e j >> N. Integrable Systems in Contemporary Physics p.27/62

28 II - CLASSICAL DYNAMICS Replacing the operators a 1 and a 2 in H : Defining the variables: a 1 N 1 exp ( iφ 1 ) a 2 N 2 exp ( iφ 2 ) z = (N 1 N 2 )/N φ = N(φ 1 φ 2 )/2 Integrable Systems in Contemporary Physics p.28/62

29 New (rescaled) Hamiltonian ( µ = 0) H(z,φ) = E JN 2 ( λ 2 z2 ) 1 z 2 cos(2φ/n) λ = kn 2E J (z,φ) are canonically conjugate variables Integrable Systems in Contemporary Physics p.29/62

30 Equations of motion: φ = H z = E JN 2 ż = H φ = E J ( λz + ) z cos(2φ/n) 1 z 2 ( 1 z2 sin(2φ/n)) Integrable Systems in Contemporary Physics p.30/62

31 1 0,5 z 0-0,5 λ=1.9 λ= t There is a critical value for λ = 2 λ = kn 2E J = 2 k E J = 4 N Integrable Systems in Contemporary Physics p.31/62

32 II - QUANTUM DYNAMICS Standard procedure time evolution of any physical quantity is determined by the Temporal operator U {λ n } ; { ψ n } H ψ n = λ n ψ n Numerical analysis U = N n=0 e iλ nt ψ n ψ n Integrable Systems in Contemporary Physics p.32/62

33 Temporal evolution of any state ψ(t) = U φ = N n=0 a ne iλnt ψ n, a n = ψ n φ Expectation value of any operator A A = ψ(t) A ψ(t) Imbalance population A = (N 1 N 2 )/N Plot the time evolution of the expectation value of the imbalance population for different ratios of the coupling k/e J Integrable Systems in Contemporary Physics p.33/62

34 k/e J 0 1 RR JR FR k/e J = 1/N 2, 1/N, 1,N,N 2 initial state = φ = N, 0 Integrable Systems in Contemporary Physics p.34/62

35 k/e J 0 4/N 1 RR JR FR on the left: k/e J = 1/N, 2/N, 3/N, 4/N on the right: k/e J = 5/N, 10/N, 50/N, 1 Integrable Systems in Contemporary Physics p.35/62

36 CONCLUSIONS Threshold point k/e J 0 4/N Delocalised phase Self-trapped phase Integrable Systems in Contemporary Physics p.36/62

37 Open problems Quantum fluctuation; Entanglement; Energy gap for µ 0 AB model model for atom-molecule BEC Integrable Systems in Contemporary Physics p.37/62

38 A MODEL FOR ATOM- MOLECULE BEC: 1. The Hamiltonian: H = U a N 2 a + U b N 2 b + U ab N a N b + µ a N a + µ b N b + Ω(a a b + b aa) N a = a a: number of atoms; N b = b b: number of molecules; N = N a + 2N b : total atom number U a : atom-atom interaction strength; U b : molecule-molecule interaction strength; U ab : atom-molecule interaction strength; µ a,µ b : external potentials; Ω: amplitude for interconversion of atoms and molecules Integrable Systems in Contemporary Physics p.38/62

39 Collaborators - Dr. Jon Links, UQ-QLD-Australia - Dr. Arlei Prestes Tonel, UFRGS-RS-Brazil - Gilberto Nascimento Filho, UFRGS-RS-Brazil Integrable Systems in Contemporary Physics p.39/62

40 Publications A. Foerster, J. Links and H. Q. Zhou, "Exact Solvability in Contemporary Physics (2003), in Classical and Quantum nonlinear integrable systems, IOP-Publishing, edited by A. Kundu A.P. Tonel, J. Links and A. Foerster, J. Phys. A 38 (2005) 1235; A.P. Tonel, J. Links and A. Foerster, J. Phys. A 38 (2005) 6879; G. Santos, A.P. Tonel, A. Foerster and J. Links, "Classical and quantum dynamics of atom-molecule Bose-Einstein condensate", cond-mat/ (2005) Integrable Systems in Contemporary Physics p.40/62

41 INTEGRABLE SPIN LADDER SYSTEMS INTRODUCTION THE SU(4)-SPIN LADDER MODEL The Hamiltonian Integrability Exact solution and energy gap THERMODYNAMICAL PROPERTIES Partition function Comparison with experiments Integrable Systems in Contemporary Physics p.41/62

42 I - IMPORTANCE OF THE STUDY OF SPIN LADDERS: Some compounds have been realized experimentally with a ladder structure SrCu 2 O 3 La 1 x Sr x CuO 2, 5 Sr 14 x Ca x Cu 2 4O 41 Cu 2 (C 5 H 12 N 2 )Cl 4 CaV 2 O 5 KCuCl 3 Integrable Systems in Contemporary Physics p.42/62

43 Experiments that report on the spin gap: (magnetic susceptibility, NMR techniques) In some of these compounds superconductivity has been detected upon the introduction of hole carriers (chemical substitution) Integrable Systems in Contemporary Physics p.43/62

44 DEFINITION: Spin ladder structure: Example: number of legs L=3 rung leg n o of legs (L) << n o of rungs Integrable Systems in Contemporary Physics p.44/62 interpolates between 1 and 2 dimensions

45 Schematic Representation: L=2: SrCu 2 O 3 L = 3 : Sr 2 Cu 3 O 5 Azuma et al, PRL 94 Integrable Systems in Contemporary Physics p.45/62

46 2-leg ladder: Shows an exponential decay caused by the gap: χ = C e T T ; T 0 Integrable Systems in Contemporary Physics p.46/62

47 3-leg ladder: There is NO exponential decay: χ(t) tends to a finite number as T 0 Troyer et al, PRL54 (1996); Azuma et al, PRL73 (1994) Integrable Systems in Contemporary Physics p.47/62

48 II - AN INTEGRABLE SPIN LADDER MODEL H = L j=1 J l h j,j+1 + J r 2 L j=1 ( σ j. τ j 1). h j,j+1 = 1 4 (1 + σ j. σ j+1 ) (1 + τ j. τ j+1 ) σ j+1 σ j τ j+1 τ j Y.Wang. PRB60 (1999) Integrable Systems in Contemporary Physics p.48/62

49 INTEGRABILITY: for J r = 0, H can be derived from an R matrix that obeys YBA [J r -term,h] = 0 Integrable Systems in Contemporary Physics p.49/62

50 EXACT SOLUTION AND ENERGY GAP: Bethe Ansatz method : Energy eigenvalues: E = M 1 j=1 ( ) J l λ 2 j + 1/4 2J r (J l 2J r ) L with {λ j } solutions of the BAE Integrable Systems in Contemporary Physics p.50/62

51 BAE ( ) L λj i/2 = λ j + i/2 M 2 α=1 M 1 l j λ j λ l i λ j λ l + i λ j µ α + i/2 λ j µ α i/2 M 2 β α M1 µ α µ β i µ α µ β + i = j=1 M 3 δ=1 µ α λ j i/2 µ α λ j + i/2 µ α ν δ i/2 µ α ν δ + i/2 Integrable Systems in Contemporary Physics p.51/62

52 Energy Gap: M 3 γ δ M2 ν δ ν γ i ν δ ν γ + i = α=1 ν δ µ α i/2 ν δ µ α + i/2 Ground state E 0 : corresponds to the product of rung singlets reference state in the BAE {M 1 = M 2 = M 3 = 0} First elementary excitation E 1 : characterized by M 1 = 1,M 2 = M 3 = 0 corresponds to the solution λ = 0 in the BAE Gap: = E 1 E 0 = 2J r 4J l Integrable Systems in Contemporary Physics p.52/62

53 THERMODYNAMICAL PROPERTIES Hamiltonian + external field: H = L [ J l h j,j+1 + J r 2 ( σ j. τ j 1) h 2 j=1 ( σ z j + τ z j ) ] Partition function: Z = conf e βe Integrable Systems in Contemporary Physics p.53/62

54 Magnetization: M = 1 2 L i=1 < σ z i + τ z i >= 1 2Lβ h Ln(Z) Magnetic susceptibility χ = h M h=0 Integrable Systems in Contemporary Physics p.54/62

55 Comparison with experimental curves: Integrable Systems in Contemporary Physics p.55/62

56 (5IAP 2 CuBr 4 2H 2 O) C. Landee, PRB63 (2001); M.B., X.G, N.O., Z.T, A.F, PRL (2003) Integrable Systems in Contemporary Physics p.56/62

57 Cu 2 (C 5 H 12 N 2 ) 2 Cl 4 G. Chaboussant et al, PRL80 (1998); M.B., X.G, N.O., Z.T, A.F, PRL (2003) Integrable Systems in Contemporary Physics p.57/62

58 Cu 2 (C 5 H 12 N 2 ) 2 Cl 4 : specific heat M. Hagiwara et al, PRB62(2000); M.B., X.G, N.O., Z.T, A.F, PRL (2003) Integrable Systems in Contemporary Physics p.58/62

59 Collaborators - Dr. Murray Batchelor, ANU Canberra, Australia - Dr. Xiwen-Guan, ANU Canberra, Australia - Norman Oelkers, ANU Canberra, Australia - Dr. Jon Links, UQ, Australia - Dr. Mark Gould, UQ, Australia - Dr. Katrina Hibberd, UQ, Australia - Dr. Arlei Prestes Tonel, UFRGS-RS, Brasil - Dr. Silvio Dahmen, UFRGS-RS, Brasil - Dr. Itzhak Roditi, CBPF, Brasil - Dr. Andre Malvezzi, U. Bauru, SP, Brasil - Dr. K. Sakai, University of Tokyo, Japan - Dr. Zengo Tsuboi, University of Tokyo, Japan Integrable Systems in Contemporary Physics p.59/62

60 Publications J. Links and A. Foerster, Physical Review B62 (2000) 65 A. Foerster, K. Hibberd, J. Links, I. Roditi, Journal of Physics A34 (2001) L25-L29 A. P Tonel, A. Foerster, J. Links, A. Malvezzi, Physical Review B64 (2001) A. P. Tonel, S. Dahmen, A. Foerster, A. Malvezzi, Europhysics Letters64 (2003) 111 A. P. Tonel, A. Foerster, X. W. Guan, J. Links, Journal of Physics A36 (2003)359 M. Batchelor, X. W. Guan, A. Foerster, A. Tonel, H. Q. Zhou, Nuclear Physics B669 (2003) 385 M. Batchelor, X. W. Guan, N. Oelkers, A. Foerster, New Journal of Physics 5, (2003) 107 Integrable Systems in Contemporary Physics p.60/62

61 M. Batchelor, X. W. Guan, N. Oelkers, K. Z. Tsuboi, A. Foerster, Physical Review Letters 41 (2003) 67 Z. Ying, A. Foerster, X. W. Guan, I. Roditi, EPJB38, (2004) 535 Z. Ying, A. Foerster, X. W. Guan, I. Roditi, EPJB41, (2004) 67 Integrable Systems in Contemporary Physics p.61/62

62 " Integrable systems are relevant and can be solved, so why not do so and see what they tell us?" R. Baxter Integrable Systems in Contemporary Physics p.62/62

Exactly solvable models and ultracold atoms

Exactly solvable models and ultracold atoms Exactly solvable models and ultracold atoms p. 1/51 Exactly solvable models and ultracold atoms Angela Foerster Universidade Federal do Rio Grande do Sul Instituto de Física talk presented at "Recent Advances

More information

EUROPHYSICS LETTERS OFFPRINT

EUROPHYSICS LETTERS OFFPRINT EUROPHYSICS LEERS OFFPRIN Vol. 64 Number 1 pp. 111 117 Magnetic susceptibility of an exactly solvable anisotropic spin ladder system A. P. onel, S. R. Dahmen, A. Foerster and A. L. Malvezzi Published under

More information

arxiv: v1 [math-ph] 2 Jun 2016

arxiv: v1 [math-ph] 2 Jun 2016 Quantum integrable multi-well tunneling models arxiv:1606.00816v1 [math-ph] 2 Jun 2016 L H Ymai and A P Tonel Universidade Federal do Pampa, Avenida Maria Anunciação Gomes de Godoy 1650 Bairro Malafaia,

More information

Since the discovery of high T c superconductivity there has been a great interest in the area of integrable highly correlated electron systems. Notabl

Since the discovery of high T c superconductivity there has been a great interest in the area of integrable highly correlated electron systems. Notabl CERN-TH/97-72 Anisotropic Correlated Electron Model Associated With the Temperley-Lieb Algebra Angela Foerster (;y;a), Jon Links (2;b) and Itzhak Roditi (3;z;c) () Institut fur Theoretische Physik, Freie

More information

The form factor program a review and new results

The form factor program a review and new results The form factor program a review and new results the nested SU(N)-off-shell Bethe ansatz H. Babujian, A. Foerster, and M. Karowski FU-Berlin Budapest, June 2006 Babujian, Foerster, Karowski (FU-Berlin)

More information

High-Temperature Criticality in Strongly Constrained Quantum Systems

High-Temperature Criticality in Strongly Constrained Quantum Systems High-Temperature Criticality in Strongly Constrained Quantum Systems Claudio Chamon Collaborators: Claudio Castelnovo - BU Christopher Mudry - PSI, Switzerland Pierre Pujol - ENS Lyon, France PRB 2006

More information

Quantum phase transitions and pairing in Strongly Attractive Fermi Atomic Gases

Quantum phase transitions and pairing in Strongly Attractive Fermi Atomic Gases Quantum phase transitions and pairing in Strongly Attractive Fermi Atomic Gases M.T. Batchelor Department of Theoretical Physics and Mathematical Sciences Institute In collaboration with X.W. Guan, C.

More information

Notas de Física. CBPF-NF-006/15 July Bethe states for the two-site Bose-Hubbard model: a binomial approach ISSN

Notas de Física. CBPF-NF-006/15 July Bethe states for the two-site Bose-Hubbard model: a binomial approach ISSN ISSN 0029-3865 Notas de Física CBPF-NF-006/15 July 2015 Bethe states for the two-site Bose-Hubbard model: a binomial approach Gilberto Santos, Changrim Ahn, Angela Foerster and Itzhak Roditi Bethe states

More information

Notas de Física. CBPF-NF-006/14 November Exactly solvable models for multiatomic molecular Bose-Einstein condensates ISSN G.

Notas de Física. CBPF-NF-006/14 November Exactly solvable models for multiatomic molecular Bose-Einstein condensates ISSN G. ISSN 0029-3865 Notas de Física CBPF-NF-006/14 November 2014 Exactly solvable models for multiatomic molecular Bose-Einstein condensates G. Santos Ciência, Tecnologia e Inovação Source: arxiv: arxiv:1108.1244v1

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

A guide to numerical experiments

A guide to numerical experiments BECs and and quantum quantum chaos: chaos: A guide to numerical experiments Martin Holthaus Institut für Physik Carl von Ossietzky Universität Oldenburg http://www.condmat.uni-oldenburg.de/ Quo vadis BEC?

More information

Properties of the Bethe Ansatz equations for Richardson-Gaudin models

Properties of the Bethe Ansatz equations for Richardson-Gaudin models Properties of the Bethe Ansatz equations for Richardson-Gaudin models Inna Luyaneno, Phillip Isaac, Jon Lins Centre for Mathematical Physics, School of Mathematics and Physics, The University of Queensland

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 30 Dec 1997

arxiv:cond-mat/ v1 [cond-mat.str-el] 30 Dec 1997 Resistivity of Doped Two-Leg Spin Ladders Gilson Carneiro and Pascal Lederer + + Departamento de Física, PUC-Rio, C. P. 3871, Rio de Janeiro and +, Instituto de Física, Universidade Federal do Rio de Janeiro,

More information

Frustration without competition: the SU(N) model of quantum permutations on a lattice

Frustration without competition: the SU(N) model of quantum permutations on a lattice Frustration without competition: the SU(N) model of quantum permutations on a lattice F. Mila Ecole Polytechnique Fédérale de Lausanne Switzerland Collaborators P. Corboz (Zürich), A. Läuchli (Innsbruck),

More information

Unusual ordered phases of magnetized frustrated antiferromagnets

Unusual ordered phases of magnetized frustrated antiferromagnets Unusual ordered phases of magnetized frustrated antiferromagnets Credit: Francis Pratt / ISIS / STFC Oleg Starykh University of Utah Leon Balents and Andrey Chubukov Novel states in correlated condensed

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

Integrable anisotropic spin-ladder model

Integrable anisotropic spin-ladder model PHYSICA REVIEW B, VOUME 64, 054420 Interable anisotropic spin-ladder model Arlei Prestes Tonel,, * Anela Foerster,, Jon inks,,2, and Andre uiz Malvezzi 3, Instituto de Física da UFRGS, Avenida Bento Gonçalves

More information

arxiv:cond-mat/ v1 1 Nov 2000

arxiv:cond-mat/ v1 1 Nov 2000 Magnetic properties of a new molecular-based spin-ladder system: (5IAP) 2 CuBr 4 2H 2 O arxiv:cond-mat/0011016v1 1 Nov 2000 C. P. Landee 1, M. M. Turnbull 2, C. Galeriu 1, J. Giantsidis 2, and F. M. Woodward

More information

Inequivalent Representations of a q-oscillator Algebra in a Quantum q-gas

Inequivalent Representations of a q-oscillator Algebra in a Quantum q-gas CBPF-NF-028/95 Inequivalent Representations of a q-oscillator Algebra in a Quantum q-gas M.R-Monteiro a and L.M.C.S. Rodrigues b Centro Brasileiro de Pesquisas Físicas - CBPF Rua Dr. Xavier Sigaud, 50

More information

arxiv: v1 [quant-ph] 25 Feb 2014

arxiv: v1 [quant-ph] 25 Feb 2014 Atom-field entanglement in a bimodal cavity G.L. Deçordi and A. Vidiella-Barranco 1 Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas 13083-859 Campinas SP Brazil arxiv:1402.6172v1

More information

Nonequilibrium dynamics of interacting systems of cold atoms

Nonequilibrium dynamics of interacting systems of cold atoms Nonequilibrium dynamics of interacting systems of cold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin,

More information

Interference experiments with ultracold atoms

Interference experiments with ultracold atoms Interference experiments with ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Serena Fagnocchi, Vladimir Gritsev, Mikhail Lukin,

More information

Matter wave interferometry beyond classical limits

Matter wave interferometry beyond classical limits Max-Planck-Institut für Quantenoptik Varenna school on Atom Interferometry, 15.07.2013-20.07.2013 The Plan Lecture 1 (Wednesday): Quantum noise in interferometry and Spin Squeezing Lecture 2 (Friday):

More information

Difference Equations and Highest Weight Modules of U q [sl(n)]

Difference Equations and Highest Weight Modules of U q [sl(n)] arxiv:math/9805089v1 [math.qa] 20 May 1998 Difference Equations and Highest Weight Modules of U q [sl(n)] A. Zapletal 1,2 Institut für Theoretische Physik Freie Universität Berlin, Arnimallee 14, 14195

More information

Magnetism and Superconductivity in Decorated Lattices

Magnetism and Superconductivity in Decorated Lattices Magnetism and Superconductivity in Decorated Lattices Mott Insulators and Antiferromagnetism- The Hubbard Hamiltonian Illustration: The Square Lattice Bipartite doesn t mean N A = N B : The Lieb Lattice

More information

Quantum many-body systems and tensor networks: simulation methods and applications

Quantum many-body systems and tensor networks: simulation methods and applications Quantum many-body systems and tensor networks: simulation methods and applications Román Orús School of Physical Sciences, University of Queensland, Brisbane (Australia) Department of Physics and Astronomy,

More information

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates arxiv:0905.1096, To appear in New. J. Phys. Erez Berg 1, Steven A. Kivelson 1, Doug J. Scalapino 2 1 Stanford University, 2

More information

Quantum noise studies of ultracold atoms

Quantum noise studies of ultracold atoms Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli Polkovnikov Funded by NSF,

More information

arxiv: v1 [quant-ph] 2 Aug 2011

arxiv: v1 [quant-ph] 2 Aug 2011 Numerical solutions of the Dicke Hamiltonian Miguel A. Bastarrachea-Magnani, Jorge G. Hirsch Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México Apdo. Postal 70-543, Mexico D. F.,

More information

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois BCS Pairing Dynamics 1 ShengQuan Zhou Dec.10, 2006, Physics Department, University of Illinois Abstract. Experimental control over inter-atomic interactions by adjusting external parameters is discussed.

More information

Bethe ansatz solution of a closed spin 1 XXZ Heisenberg chain with quantum algebra symmetry

Bethe ansatz solution of a closed spin 1 XXZ Heisenberg chain with quantum algebra symmetry Bethe ansatz solution of a closed spin 1 XXZ Heisenberg chain with quantum algebra symmetry Jon Links, Angela Foerster and Michael Karowski arxiv:solv-int/9809001v1 8 Aug 1998 Department of Mathematics,

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Quantum Properties of Two-dimensional Helium Systems

Quantum Properties of Two-dimensional Helium Systems Quantum Properties of Two-dimensional Helium Systems Hiroshi Fukuyama Department of Physics, Univ. of Tokyo 1. Quantum Gases and Liquids 2. Bose-Einstein Condensation 3. Superfluidity of Liquid 4 He 4.

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

Superfluid 3 He. Miguel A. Morales

Superfluid 3 He. Miguel A. Morales Superfluid 3 He Miguel A. Morales Abstract In this report I will discuss the main properties of the superfluid phases of Helium 3. First, a brief description of the experimental observations and the phase

More information

and C 3 P 0 model in the Charming Strange Sector

and C 3 P 0 model in the Charming Strange Sector Journal of Physics: Conference Series PAPER OPEN ACCESS Differences Between The 3 P 0 and C 3 P 0 model in the Charming Strange Sector To cite this article: D T da Silva et al 2015 J. Phys.: Conf. Ser.

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Current/recent students Saurabh Dayal (current PhD student) Wasanthi De Silva (new grad student 212) Jeong-Pil Song (finished

More information

F. Chevy Seattle May 2011

F. Chevy Seattle May 2011 THERMODYNAMICS OF ULTRACOLD GASES F. Chevy Seattle May 2011 ENS FERMION GROUPS Li S. Nascimbène Li/K N. Navon L. Tarruell K. Magalhaes FC C. Salomon S. Chaudhuri A. Ridinger T. Salez D. Wilkowski U. Eismann

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

Universally diverging Grüneisen parameter and magnetocaloric effect close to quantum critical points

Universally diverging Grüneisen parameter and magnetocaloric effect close to quantum critical points united nations educational, scientific and cultural organization the abdus salam international centre for theoretical physics international atomic energy agency SMR.1572-3 Workshop on Novel States and

More information

Exactly solvable models in atomic and molecular physics

Exactly solvable models in atomic and molecular physics Nuclear Physics B 777 [FS] 007) 373 403 Exactly solvable models in atomic and molecular physics A. Foerster a, E. Ragoucy b, a Instituto de Física da UFRGS, Av. Bento Gonçalves 9500, Porto Alegre, RS,

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

The Remarkable Bose-Hubbard Dimer

The Remarkable Bose-Hubbard Dimer The Remarkable Bose-Hubbard Dimer David K. Campbell, Boston University Winter School, August 2015 Strongly Coupled Field Theories for Condensed Matter and Quantum Information Theory International Institute

More information

Squeezing and superposing many-body states of Bose gases in confining potentials

Squeezing and superposing many-body states of Bose gases in confining potentials Squeezing and superposing many-body states of Bose gases in confining potentials K. B. Whaley Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley Quantum Information and

More information

Molecular fraction calculations for an atomic-molecular Bose-Einstein condensate model

Molecular fraction calculations for an atomic-molecular Bose-Einstein condensate model Molecular fraction calculations for an atomic-molecular Bose-Einstein condensate model Jon Links Centre for Mathematical Physics, The University of Queensland, Australia. 2nd Annual Meeting of ANZAMP,

More information

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

Stochastic nonlinear Schrödinger equations and modulation of solitary waves Stochastic nonlinear Schrödinger equations and modulation of solitary waves A. de Bouard CMAP, Ecole Polytechnique, France joint work with R. Fukuizumi (Sendai, Japan) Deterministic and stochastic front

More information

The Higgs particle in condensed matter

The Higgs particle in condensed matter The Higgs particle in condensed matter Assa Auerbach, Technion N. H. Lindner and A. A, Phys. Rev. B 81, 054512 (2010) D. Podolsky, A. A, and D. P. Arovas, Phys. Rev. B 84, 174522 (2011)S. Gazit, D. Podolsky,

More information

U(N) Matrix Difference Equations and a Nested Bethe Ansatz

U(N) Matrix Difference Equations and a Nested Bethe Ansatz U(N) Matrix Difference Equations and a Nested Bethe Ansatz arxiv:hep-th/9611006v1 1 Nov 1996 H. Babujian 1,2,3, M. Karowski 4 and A. Zapletal 5,6 Institut für Theoretische Physik Freie Universität Berlin,

More information

Lecture 24 Seiberg Witten Theory III

Lecture 24 Seiberg Witten Theory III Lecture 24 Seiberg Witten Theory III Outline This is the third of three lectures on the exact Seiberg-Witten solution of N = 2 SUSY theory. The third lecture: The Seiberg-Witten Curve: the elliptic curve

More information

Spin liquids in frustrated magnets

Spin liquids in frustrated magnets May 20, 2010 Contents 1 Frustration 2 3 4 Exotic excitations 5 Frustration The presence of competing forces that cannot be simultaneously satisfied. Heisenberg-Hamiltonian H = 1 J ij S i S j 2 ij The ground

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 15 Jul 2005

arxiv:cond-mat/ v1 [cond-mat.str-el] 15 Jul 2005 Correlation functions of one-dimensional Bose-Fermi mixtures Holger Frahm and Guillaume Palacios Institut für Theoretische Physik, Universität Hannover, Appelstr. 2, 30167 Hannover, Germany (Dated: July

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli

More information

Density and current profiles for U q (A (1) 2) zero range process

Density and current profiles for U q (A (1) 2) zero range process Density and current profiles for U q (A (1) 2) zero range process Atsuo Kuniba (Univ. Tokyo) Based on [K & Mangazeev, arxiv:1705.10979, NPB in press] Matrix Program: Integrability in low-dimensional quantum

More information

Spontaneous Symmetry Breaking in Bose-Einstein Condensates

Spontaneous Symmetry Breaking in Bose-Einstein Condensates The 10th US-Japan Joint Seminar Spontaneous Symmetry Breaking in Bose-Einstein Condensates Masahito UEDA Tokyo Institute of Technology, ERATO, JST collaborators Yuki Kawaguchi (Tokyo Institute of Technology)

More information

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates) Non-magnetic states Two spins, i and j, in isolation, H ij = J ijsi S j = J ij [Si z Sj z + 1 2 (S+ i S j + S i S+ j )] For Jij>0 the ground state is the singlet; φ s ij = i j i j, E ij = 3J ij /4 2 The

More information

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators Nagoya University Masatoshi Sato In collaboration with Yukio Tanaka (Nagoya University) Keiji Yada (Nagoya University) Ai Yamakage

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

NMR: Formalism & Techniques

NMR: Formalism & Techniques NMR: Formalism & Techniques Vesna Mitrović, Brown University Boulder Summer School, 2008 Why NMR? - Local microscopic & bulk probe - Can be performed on relatively small samples (~1 mg +) & no contacts

More information

Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın

Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın Advisor: M. Özgür Oktel Co-Advisor: Özgür E. Müstecaplıoğlu Outline Superradiance and BEC Superradiance

More information

NOVEL SOLITONS? Classical and quantum solitons Solitons in bers 2D & 3D solitons in parametric ampliers Optical switching with parametric solitons Gap

NOVEL SOLITONS? Classical and quantum solitons Solitons in bers 2D & 3D solitons in parametric ampliers Optical switching with parametric solitons Gap SOLITONS: NOVEL AND ATOM LASERS PARAMPS Drummond Peter He Hao Kheruntsyan Karen of Queensland University September 18, 1998 Drummond, He, Kheruntsyan { Novel solitons: paramps and atom lasers NOVEL SOLITONS?

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Time Evolving Block Decimation Algorithm

Time Evolving Block Decimation Algorithm Time Evolving Block Decimation Algorithm Application to bosons on a lattice Jakub Zakrzewski Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University,

More information

Quantum Spin-Metals in Weak Mott Insulators

Quantum Spin-Metals in Weak Mott Insulators Quantum Spin-Metals in Weak Mott Insulators MPA Fisher (with O. Motrunich, Donna Sheng, Simon Trebst) Quantum Critical Phenomena conference Toronto 9/27/08 Quantum Spin-metals - spin liquids with Bose

More information

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014 Cavity Optomechanics with synthetic Landau Levels of ultra cold atoms: Sankalpa Ghosh, Physics Department, IIT Delhi Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, 043603 (2013)! HRI, Allahabad,Cold

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

Electrical transport near a pair-breaking superconductor-metal quantum phase transition

Electrical transport near a pair-breaking superconductor-metal quantum phase transition Electrical transport near a pair-breaking superconductor-metal quantum phase transition Emily Dunkel (Harvard) Joel Moore (Berkeley) Daniel Podolsky (Berkeley) Subir Sachdev (Harvard) Ashvin Vishwanath

More information

The interacting boson model

The interacting boson model The interacting boson model P. Van Isacker, GANIL, France Introduction to the IBM Practical applications of the IBM Overview of nuclear models Ab initio methods: Description of nuclei starting from the

More information

Interferencing intensity in two Bose Einstein condensates with Josephson-like coupling

Interferencing intensity in two Bose Einstein condensates with Josephson-like coupling Physica A 274 (1999) 484 490 www.elsevier.com/locate/physa Interferencing intensity in two Bose Einstein condensates with Josephson-like coupling Xiao-Guang Wang a;, Shao-Hua Pan b;c, Guo-Zhen Yang b;c

More information

Sweep from Superfluid to Mottphase in the Bose-Hubbard model p.1/14

Sweep from Superfluid to Mottphase in the Bose-Hubbard model p.1/14 Sweep from Superfluid to phase in the Bose-Hubbard model Ralf Schützhold Institute for Theoretical Physics Dresden University of Technology Sweep from Superfluid to phase in the Bose-Hubbard model p.1/14

More information

Phases of strongly-interacting bosons on a two-leg ladder

Phases of strongly-interacting bosons on a two-leg ladder Phases of strongly-interacting bosons on a two-leg ladder Marie Piraud Arnold Sommerfeld Center for Theoretical Physics, LMU, Munich April 20, 2015 M. Piraud Phases of strongly-interacting bosons on a

More information

Quantum Quenches in Chern Insulators

Quantum Quenches in Chern Insulators Quantum Quenches in Chern Insulators Nigel Cooper Cavendish Laboratory, University of Cambridge CUA Seminar M.I.T., November 10th, 2015 Marcello Caio & Joe Bhaseen (KCL), Stefan Baur (Cambridge) M.D. Caio,

More information

J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S (98)90604-X

J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S (98)90604-X J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S0953-8984(98)90604-X LETTER TO THE EDITOR Calculation of the susceptibility of the S = 1 antiferromagnetic Heisenberg chain with single-ion

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

Solving the Schrödinger equation for the Sherrington Kirkpatrick model in a transverse field

Solving the Schrödinger equation for the Sherrington Kirkpatrick model in a transverse field J. Phys. A: Math. Gen. 30 (1997) L41 L47. Printed in the UK PII: S0305-4470(97)79383-1 LETTER TO THE EDITOR Solving the Schrödinger equation for the Sherrington Kirkpatrick model in a transverse field

More information

Inauguration Meeting & Celebration of Lev Pitaevskii s 70 th Birthday. Bogoliubov excitations. with and without an optical lattice.

Inauguration Meeting & Celebration of Lev Pitaevskii s 70 th Birthday. Bogoliubov excitations. with and without an optical lattice. Inauguration Meeting & Celebration of Lev Pitaevskii s 7 th Birthday Bogoliubov excitations with and without an optical lattice Chiara Menotti OUTLINE OF THE TALK Bogoliubov theory: uniform system harmonic

More information

Part A - Comments on the papers of Burovski et al. Part B - On Superfluid Properties of Asymmetric Dilute Fermi Systems

Part A - Comments on the papers of Burovski et al. Part B - On Superfluid Properties of Asymmetric Dilute Fermi Systems Part A - Comments on the papers of Burovski et al. Part B - On Superfluid Properties of Asymmetric Dilute Fermi Systems Part A Comments on papers of E. Burovski,, N. Prokof ev ev,, B. Svistunov and M.

More information

Symmetry of the Dielectric Tensor

Symmetry of the Dielectric Tensor Symmetry of the Dielectric Tensor Curtis R. Menyuk June 11, 2010 In this note, I derive the symmetry of the dielectric tensor in two ways. The derivations are taken from Landau and Lifshitz s Statistical

More information

Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate. Frank Vewinger Universität Bonn

Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate. Frank Vewinger Universität Bonn Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate Frank Vewinger Universität Bonn What are we dealing with? System: 0 4 0 5 Photons ultracold : 300K Box: Curved mirror cavity A few

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Talk at Rutherford Appleton Lab, March 13, 2007 Peter Kopietz, Universität Frankfurt collaborators: Nils Hasselmann,

More information

Topological phases of SU(N) spin chains and their realization in ultra-cold atom gases

Topological phases of SU(N) spin chains and their realization in ultra-cold atom gases Topological phases of SU(N) spin chains and their realization in ultra-cold atom gases Thomas Quella University of Cologne Workshop on Low-D Quantum Condensed Matter University of Amsterdam, 8.7.2013 Based

More information

Evidence for Efimov Quantum states

Evidence for Efimov Quantum states KITP, UCSB, 27.04.2007 Evidence for Efimov Quantum states in Experiments with Ultracold Cesium Atoms Hanns-Christoph Nägerl bm:bwk University of Innsbruck TMR network Cold Molecules ultracold.atoms Innsbruck

More information

(Dynamical) quantum typicality: What is it and what are its physical and computational implications?

(Dynamical) quantum typicality: What is it and what are its physical and computational implications? (Dynamical) : What is it and what are its physical and computational implications? Jochen Gemmer University of Osnabrück, Kassel, May 13th, 214 Outline Thermal relaxation in closed quantum systems? Typicality

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

Unitary Fermi Gas: Quarky Methods

Unitary Fermi Gas: Quarky Methods Unitary Fermi Gas: Quarky Methods Matthew Wingate DAMTP, U. of Cambridge Outline Fermion Lagrangian Monte Carlo calculation of Tc Superfluid EFT Random matrix theory Fermion L Dilute Fermi gas, 2 spins

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

Disordered Solids. real crystals spin glass. glasses. Grenoble

Disordered Solids. real crystals spin glass. glasses. Grenoble Disordered Solids real crystals spin glass glasses Grenoble 21.09.11-1 Tunneling of Atoms in Solids Grenoble 21.09.11-2 Tunneln Grenoble 21.09.11-3 KCl:Li Specific Heat specific heat roughly a factor of

More information

Phys Midterm. March 17

Phys Midterm. March 17 Phys 7230 Midterm March 17 Consider a spin 1/2 particle fixed in space in the presence of magnetic field H he energy E of such a system can take one of the two values given by E s = µhs, where µ is the

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/20 What is common for strong coupled cold atoms and QGP? Cold atoms and AdS/CFT p.2/20

More information