CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 9

Size: px
Start display at page:

Download "CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 9"

Transcription

1 CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 9 GENE H GOLUB 1 Error Analysis of Gaussian Elimination In this section, we will consider the case of Gaussian elimination and perform a detailed error analysis, illustrating the analysis originally carried out by JH Wilkinson The process of solving Ax = b consists of three stages: (1) Factoring A = LU, resulting in an approximate LU decomposition A+E = LŪ We assume that partial pivoting is used (2) Solving Ly = b, or, numerically, computing y such that ( L + δ L)(y + δy) = b (3) Solving Ux = y, or, numerically, computing x such that Combining these stages, we see that (Ū + δū)(x + δx) = y + δy b = ( L + δ L)(Ū + δū)(x + δx) = ( LŪ + δ LŪ + LδŪ + δ LδŪ)(x + δx) = (A + E + δ LŪ + LδŪ + δ LδŪ)(x + δx) = (A + )(x + δx) where = E + δ LŪ + LδŪ + δ LδŪ In this analysis, we will view the computed solution x = x + δx as the exact solution to the perturbed problem (A + )x = b This perspective is the idea behind backward error analysis, which we will use to determine the size of the perturbation, and, eventually, arrive at a bound for the error in the computed solution x Let A (k) denote the matrix A after k 1 steps of Gaussian elimination have been performed in exact arithmetic, where a step denotes the process of making all elements below the diagonal within a particular column equal to zero Then the elements of A (k+1) are given by a (k+1) = a (k) m ik a (k), m ik = a(k) ik a (k) (11) Let B (k) denote the matrix A after k 1 steps of Gaussian elimination have been performed in floating-point arithmetic Then the elements of B (k+1) are given by ( ) b (k+1) = a (k) (k) b + ɛ(k+1) ik, s ik = fl b (k) (12) Date: November 25, 2005, version 11 Notes originally due to James Lambers Edited by Lek-Heng Lim 1

2 For j i, we have b (2) = b (1) s i1 b (1) 1j + ɛ(2) b (3) = b (2) s i2 b (2) 2j + ɛ(3) Combining these equations yields i Cancelling terms, we obtain where e := i For i > j, k=2 ɛ(k) k=2 b (i) = b(i 1) b (k) i 1 = b (1) = b (i) b (k) + i 1 s i,i 1 b (i 1) i 1,j + ɛ(i) i 1 i + b (2) = b (1) s i1 b (1) 1j + ɛ(2) b (j) = b (j 1) where s = fl(b (j) /b(j) jj ) = b(j) /b(j) jj + η, and therefore 0 = b (j) = b (j) = b (1) From (13) and (14), we obtain 1 LŪ = s 21 1 s n1 1 where Then, and so, b (k+1) s ik = fl ( ) (k) b ik b (k) k=2 ɛ (k) s ik b (k) + e, j i, (13) s 1 b (j 1) j 1,j + ɛ(j) s b (j) jj s b (j) jj j = b(k) ik + b(j) jj η + ɛ(j+1) s ik b (k) + e (14) b (1) 11 b (1) b (k) fl(s ik b (k) ) = s ikb (k) (1 + θ(k) = fl(b (k) = (b (k) 12 b (1) 1n = A + E b nn (n) (1 + η ik ), η ik u ), (1 + θ(k) )) (1 + θ(k) ))(1 + ϕ(k) θ(k) u ), ϕ(k) u 2

3 After some manipulations, we obtain ɛ (k+1) = b (k+1) ( (k) ) ϕ 1 + ϕ (k) θ(k) With partial pivoting, s ik 1, provided that fl(a/b) 1 whenever a b In most modern implementations of floating-point arithmetic, this is in fact the case It follows that ɛ (k+1) b (k+1) u 1 u + 1 b(k) u How large can the elements of B (k) be? Returning to exact arithmetic, we assume that a a and from (11), we obtain a (2) a(1) + a(1) 2a a (3) 4a a (n) = a(n) nn 2 n 1 a We can show that a similar result holds in floating-point arithmetic: b (k) 2k 1 a + O(u) This upper bound is achievable (by Hadamard matrices), but in practice it rarely occurs 2 Error in the LU Factorization Recall from last time that we were analyzing the error in solving Ax = b using backward error analysis, in which we assume that our computed solution x = x + δx is the exact solution to the perturbed problem (A + δa) x = b where δa is a perturbation that has the form δa = E + LδŪ + δ LŪ + δ LδŪ and the following relationships hold: (1) A + E = LŪ (2) ( L + δ L)(y + δy) = b (3) (Ū + δū)(x + δx) = y + δy We concluded that when partial pivoting is used, the entries of Ū were bounded: b (k) 2k 1 a + O(u) where k is the number of steps of Gaussian elimination that effect the element and a is an upper bound on the elements of A For complete pivoting, Wilkinson gave a bound, denoted G, or growth factor Until 1990, it was conjectured that G k It was shown to be true for n 5, but there have been examples constructed for n > 5 where G n In any event, we have the following bound for the entries of E: E 2uGa + O(u ) n 1 n 1 3

4 3 Error Analysis of Forward Substitution We now study the process of forward substitution, to solve t 11 0 u 1 h 1 = t n1 Using forward substitution, we obtain which yields or u 1 = h 1 t 11 t nn u n h n u k = h k t k1 u 1 t k,k 1 u k 1 t fl(u k ) = h k(1 + ɛ k )(1 + η k ) k 1 i=1 t kiu i (1 + ξ ki )(1 + ɛ k )(1 + η k ) t = h k k 1 i=1 t kiu i (1 + ξ ki ) t (1 + ɛ k )(1 + η k ) k u i t ki (1 + λ ki ) = h k i=1 which can be rewritten in matrix notation as λ 11 t 11 T u + λ 12 t 12 λ 22 t 22 u = h In other words, the computed solution u is the exact solution to the perturbed problem (T +δt )u = h, where t 11 t 21 2 t 22 δt u + O(u2 ) (n 1) t n1 2 t nn Note that the perturbation δt actually depends on h 4 Bounding the perturbation in A Recall that our computed solution x + δx solves where δa is a perturbation that has the form (A + δa) x = b δa = E + LδŪ + δ LŪ + δ LδŪ For partial pivoting, l 1, and we have the bounds max δ L nu + O(u 2 ), max δū nuga + O(u 2 ) 4

5 were a = max a and G is the growth factor for partial pivoting Putting our bounds together, we have max from which it follows that δa max e + max LδŪ + max 2uGan + n 2 Gau + n 2 Gau + O(u 2 ) δa 2n 2 (n + 1)uGa + O(u 2 ) We conclude that Gaussian elimination is backward stable Ūδ L + max δ LδŪ 5 Bounding the error in the solution Let x = x + δx be the computed solution Then, from (A + δa) x = b we obtain δa x = b A x = r where r is called the residual vector From our previous analysis, Also, recall We know that A na, so r x δa 2n 2 (n + 1)Gau δx x δa A κ(a) 1 κ(a) δa A 2n(n + 1)Gu δa A Note that if κ(a) is large and G is large, our solution can be very inaccurate The important factors in the accuracy of the computed solution are: The growth factor G The condition number κ The accuracy u In particular, κ must be large with respect to the accuracy in order to be troublesome For example, consider the scenario where κ = 10 2 and u = 10 3, as opposed to the case where κ = 10 2 and u = Iterative Refinement The process of iterative refinement proceeds as follows to find a solution to Ax = b: Numerically, this translates to x (0) = 0 r (i) = b Ax (i) Aδ (i) = r (i) x (i+1) = x (i) + δ (i) (A + δa (i) )δ (i) = (I + E (i) )r (i) x (i+1) = (I + F (i) )(x (i) + δ (i) ) 5

6 where the matrices E (i) and F (i) denote roundoff error Let z (i) = x x (i) Then which we rewrite as Taking norms yields x (i+1) x = (I + F (i) )(x (i) + δ (i) ) x Under the assumptions we obtain = (I + F (i) )(x (i) x) + F (i) x + (I + F (i) )δ (i) = (I + F (i) )[ z (i) + (I + A 1 δa (i) ) 1 z (i) + (I + A 1 δa (i) ) 1 (A 1 E (i) A)z (i) ] + F (i) x = (I + F (i) )(I + A 1 δa (i) ) 1 (A 1 δa (i) z (i) + A 1 E (i) Az (i) ) + F (i) x z (i+1) = K (i) z (i) + c (i) z (i+1) K (i) z (i) + c (i) K (i) τ, z (i+1) τ z (i) + σ x Assuming A 1 δa (i) α and E (i) ω, c (i) σ x τ i+1 z (0) + σ(1 + τ + + τ i ) x τ i+1 z (0) + σ 1 τ (i+1) x 1 τ τ = where F (i) ɛ For sufficiently large i, we have (1 + ɛ)(α + κ(a)ω) 1 α z (i) x ɛ 1 τ + O(ɛ2 ) From (1 α) (1 + ɛ)(α + κ(a)ω) 1 τ = 1 α we obtain 1 1 τ = 1 α (1 α) (1 + ɛ)(α + κ(a)ω) 1 α 1 2α κ(a)ω Therefore, 1/(1 τ) 2 whenever α κ(a)ω, approximately It can be shown that if the vector r (k) is computed using double or extended precision that x (k) converges to a solution where almost all digits are correct when κ(a)u 1 Department of Computer Science, Gates Building 2B, Room 280, Stanford, CA address: golub@stanfordedu 6

Roundoff Analysis of Gaussian Elimination

Roundoff Analysis of Gaussian Elimination Jim Lambers MAT 60 Summer Session 2009-0 Lecture 5 Notes These notes correspond to Sections 33 and 34 in the text Roundoff Analysis of Gaussian Elimination In this section, we will perform a detailed error

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6 CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6 GENE H GOLUB Issues with Floating-point Arithmetic We conclude our discussion of floating-point arithmetic by highlighting two issues that frequently

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 5. Ax = b.

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 5. Ax = b. CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 5 GENE H GOLUB Suppose we want to solve We actually have an approximation ξ such that 1 Perturbation Theory Ax = b x = ξ + e The question is, how

More information

Outline. Math Numerical Analysis. Errors. Lecture Notes Linear Algebra: Part B. Joseph M. Mahaffy,

Outline. Math Numerical Analysis. Errors. Lecture Notes Linear Algebra: Part B. Joseph M. Mahaffy, Math 54 - Numerical Analysis Lecture Notes Linear Algebra: Part B Outline Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences

More information

Gaussian Elimination and Back Substitution

Gaussian Elimination and Back Substitution Jim Lambers MAT 610 Summer Session 2009-10 Lecture 4 Notes These notes correspond to Sections 31 and 32 in the text Gaussian Elimination and Back Substitution The basic idea behind methods for solving

More information

1 Error analysis for linear systems

1 Error analysis for linear systems Notes for 2016-09-16 1 Error analysis for linear systems We now discuss the sensitivity of linear systems to perturbations. This is relevant for two reasons: 1. Our standard recipe for getting an error

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Decompositions, numerical aspects Gerard Sleijpen and Martin van Gijzen September 27, 2017 1 Delft University of Technology Program Lecture 2 LU-decomposition Basic algorithm Cost

More information

Program Lecture 2. Numerical Linear Algebra. Gaussian elimination (2) Gaussian elimination. Decompositions, numerical aspects

Program Lecture 2. Numerical Linear Algebra. Gaussian elimination (2) Gaussian elimination. Decompositions, numerical aspects Numerical Linear Algebra Decompositions, numerical aspects Program Lecture 2 LU-decomposition Basic algorithm Cost Stability Pivoting Cholesky decomposition Sparse matrices and reorderings Gerard Sleijpen

More information

Dense LU factorization and its error analysis

Dense LU factorization and its error analysis Dense LU factorization and its error analysis Laura Grigori INRIA and LJLL, UPMC February 2016 Plan Basis of floating point arithmetic and stability analysis Notation, results, proofs taken from [N.J.Higham,

More information

Gaussian Elimination for Linear Systems

Gaussian Elimination for Linear Systems Gaussian Elimination for Linear Systems Tsung-Ming Huang Department of Mathematics National Taiwan Normal University October 3, 2011 1/56 Outline 1 Elementary matrices 2 LR-factorization 3 Gaussian elimination

More information

Lecture Note 2: The Gaussian Elimination and LU Decomposition

Lecture Note 2: The Gaussian Elimination and LU Decomposition MATH 5330: Computational Methods of Linear Algebra Lecture Note 2: The Gaussian Elimination and LU Decomposition The Gaussian elimination Xianyi Zeng Department of Mathematical Sciences, UTEP The method

More information

Linear Algebraic Equations

Linear Algebraic Equations Linear Algebraic Equations 1 Fundamentals Consider the set of linear algebraic equations n a ij x i b i represented by Ax b j with [A b ] [A b] and (1a) r(a) rank of A (1b) Then Axb has a solution iff

More information

Scientific Computing

Scientific Computing Scientific Computing Direct solution methods Martin van Gijzen Delft University of Technology October 3, 2018 1 Program October 3 Matrix norms LU decomposition Basic algorithm Cost Stability Pivoting Pivoting

More information

MATH 3511 Lecture 1. Solving Linear Systems 1

MATH 3511 Lecture 1. Solving Linear Systems 1 MATH 3511 Lecture 1 Solving Linear Systems 1 Dmitriy Leykekhman Spring 2012 Goals Review of basic linear algebra Solution of simple linear systems Gaussian elimination D Leykekhman - MATH 3511 Introduction

More information

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015 CS: Lecture #7 Mridul Aanjaneya March 9, 5 Solving linear systems of equations Consider a lower triangular matrix L: l l l L = l 3 l 3 l 33 l n l nn A procedure similar to that for upper triangular systems

More information

LU Factorization. LU factorization is the most common way of solving linear systems! Ax = b LUx = b

LU Factorization. LU factorization is the most common way of solving linear systems! Ax = b LUx = b AM 205: lecture 7 Last time: LU factorization Today s lecture: Cholesky factorization, timing, QR factorization Reminder: assignment 1 due at 5 PM on Friday September 22 LU Factorization LU factorization

More information

MATH 387 ASSIGNMENT 2

MATH 387 ASSIGNMENT 2 MATH 387 ASSIGMET 2 SAMPLE SOLUTIOS BY IBRAHIM AL BALUSHI Problem 4 A matrix A ra ik s P R nˆn is called symmetric if a ik a ki for all i, k, and is called positive definite if x T Ax ě 0 for all x P R

More information

Computational Methods. Systems of Linear Equations

Computational Methods. Systems of Linear Equations Computational Methods Systems of Linear Equations Manfred Huber 2010 1 Systems of Equations Often a system model contains multiple variables (parameters) and contains multiple equations Multiple equations

More information

COURSE Numerical methods for solving linear systems. Practical solving of many problems eventually leads to solving linear systems.

COURSE Numerical methods for solving linear systems. Practical solving of many problems eventually leads to solving linear systems. COURSE 9 4 Numerical methods for solving linear systems Practical solving of many problems eventually leads to solving linear systems Classification of the methods: - direct methods - with low number of

More information

Numerical methods for solving linear systems

Numerical methods for solving linear systems Chapter 2 Numerical methods for solving linear systems Let A C n n be a nonsingular matrix We want to solve the linear system Ax = b by (a) Direct methods (finite steps); Iterative methods (convergence)

More information

Direct Methods for Solving Linear Systems. Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le

Direct Methods for Solving Linear Systems. Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le Direct Methods for Solving Linear Systems Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le 1 Overview General Linear Systems Gaussian Elimination Triangular Systems The LU Factorization

More information

Review of matrices. Let m, n IN. A rectangle of numbers written like A =

Review of matrices. Let m, n IN. A rectangle of numbers written like A = Review of matrices Let m, n IN. A rectangle of numbers written like a 11 a 12... a 1n a 21 a 22... a 2n A =...... a m1 a m2... a mn where each a ij IR is called a matrix with m rows and n columns or an

More information

14.2 QR Factorization with Column Pivoting

14.2 QR Factorization with Column Pivoting page 531 Chapter 14 Special Topics Background Material Needed Vector and Matrix Norms (Section 25) Rounding Errors in Basic Floating Point Operations (Section 33 37) Forward Elimination and Back Substitution

More information

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4 Linear Algebra Section. : LU Decomposition Section. : Permutations and transposes Wednesday, February 1th Math 01 Week # 1 The LU Decomposition We learned last time that we can factor a invertible matrix

More information

Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems. Matrix Factorization Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

Next topics: Solving systems of linear equations

Next topics: Solving systems of linear equations Next topics: Solving systems of linear equations 1 Gaussian elimination (today) 2 Gaussian elimination with partial pivoting (Week 9) 3 The method of LU-decomposition (Week 10) 4 Iterative techniques:

More information

Lecture 7. Floating point arithmetic and stability

Lecture 7. Floating point arithmetic and stability Lecture 7 Floating point arithmetic and stability 2.5 Machine representation of numbers Scientific notation: 23 }{{} }{{} } 3.14159265 {{} }{{} 10 sign mantissa base exponent (significand) s m β e A floating

More information

AMS 209, Fall 2015 Final Project Type A Numerical Linear Algebra: Gaussian Elimination with Pivoting for Solving Linear Systems

AMS 209, Fall 2015 Final Project Type A Numerical Linear Algebra: Gaussian Elimination with Pivoting for Solving Linear Systems AMS 209, Fall 205 Final Project Type A Numerical Linear Algebra: Gaussian Elimination with Pivoting for Solving Linear Systems. Overview We are interested in solving a well-defined linear system given

More information

Lecture 9. Errors in solving Linear Systems. J. Chaudhry (Zeb) Department of Mathematics and Statistics University of New Mexico

Lecture 9. Errors in solving Linear Systems. J. Chaudhry (Zeb) Department of Mathematics and Statistics University of New Mexico Lecture 9 Errors in solving Linear Systems J. Chaudhry (Zeb) Department of Mathematics and Statistics University of New Mexico J. Chaudhry (Zeb) (UNM) Math/CS 375 1 / 23 What we ll do: Norms and condition

More information

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn Today s class Linear Algebraic Equations LU Decomposition 1 Linear Algebraic Equations Gaussian Elimination works well for solving linear systems of the form: AX = B What if you have to solve the linear

More information

CSE 160 Lecture 13. Numerical Linear Algebra

CSE 160 Lecture 13. Numerical Linear Algebra CSE 16 Lecture 13 Numerical Linear Algebra Announcements Section will be held on Friday as announced on Moodle Midterm Return 213 Scott B Baden / CSE 16 / Fall 213 2 Today s lecture Gaussian Elimination

More information

Applied Numerical Linear Algebra. Lecture 8

Applied Numerical Linear Algebra. Lecture 8 Applied Numerical Linear Algebra. Lecture 8 1/ 45 Perturbation Theory for the Least Squares Problem When A is not square, we define its condition number with respect to the 2-norm to be k 2 (A) σ max (A)/σ

More information

FLOATING POINT ARITHMETHIC - ERROR ANALYSIS

FLOATING POINT ARITHMETHIC - ERROR ANALYSIS FLOATING POINT ARITHMETHIC - ERROR ANALYSIS Brief review of floating point arithmetic Model of floating point arithmetic Notation, backward and forward errors Roundoff errors and floating-point arithmetic

More information

FLOATING POINT ARITHMETHIC - ERROR ANALYSIS

FLOATING POINT ARITHMETHIC - ERROR ANALYSIS FLOATING POINT ARITHMETHIC - ERROR ANALYSIS Brief review of floating point arithmetic Model of floating point arithmetic Notation, backward and forward errors 3-1 Roundoff errors and floating-point arithmetic

More information

Introduction to Numerical Analysis

Introduction to Numerical Analysis Université de Liège Faculté des Sciences Appliquées Introduction to Numerical Analysis Edition 2015 Professor Q. Louveaux Department of Electrical Engineering and Computer Science Montefiore Institute

More information

2.1 Gaussian Elimination

2.1 Gaussian Elimination 2. Gaussian Elimination A common problem encountered in numerical models is the one in which there are n equations and n unknowns. The following is a description of the Gaussian elimination method for

More information

Numerical Methods I Solving Square Linear Systems: GEM and LU factorization

Numerical Methods I Solving Square Linear Systems: GEM and LU factorization Numerical Methods I Solving Square Linear Systems: GEM and LU factorization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 September 18th,

More information

Solution of Linear Equations

Solution of Linear Equations Solution of Linear Equations (Com S 477/577 Notes) Yan-Bin Jia Sep 7, 07 We have discussed general methods for solving arbitrary equations, and looked at the special class of polynomial equations A subclass

More information

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit II: Numerical Linear Algebra Lecturer: Dr. David Knezevic Unit II: Numerical Linear Algebra Chapter II.2: LU and Cholesky Factorizations 2 / 82 Preliminaries 3 / 82 Preliminaries

More information

Matrix decompositions

Matrix decompositions Matrix decompositions How can we solve Ax = b? 1 Linear algebra Typical linear system of equations : x 1 x +x = x 1 +x +9x = 0 x 1 +x x = The variables x 1, x, and x only appear as linear terms (no powers

More information

Sherman-Morrison-Woodbury

Sherman-Morrison-Woodbury Week 5: Wednesday, Sep 23 Sherman-Mrison-Woodbury The Sherman-Mrison fmula describes the solution of A+uv T when there is already a factization f A. An easy way to derive the fmula is through block Gaussian

More information

MIDTERM. b) [2 points] Compute the LU Decomposition A = LU or explain why one does not exist.

MIDTERM. b) [2 points] Compute the LU Decomposition A = LU or explain why one does not exist. MAE 9A / FALL 3 Maurício de Oliveira MIDTERM Instructions: You have 75 minutes This exam is open notes, books No computers, calculators, phones, etc There are 3 questions for a total of 45 points and bonus

More information

Let x be an approximate solution for Ax = b, e.g., obtained by Gaussian elimination. Let x denote the exact solution. Call. r := b A x.

Let x be an approximate solution for Ax = b, e.g., obtained by Gaussian elimination. Let x denote the exact solution. Call. r := b A x. ESTIMATION OF ERROR Let x be an approximate solution for Ax = b, e.g., obtained by Gaussian elimination. Let x denote the exact solution. Call the residual for x. Then r := b A x r = b A x = Ax A x = A

More information

Topics. Review of lecture 2/11 Error, Residual and Condition Number. Review of lecture 2/16 Backward Error Analysis The General Case 1 / 22

Topics. Review of lecture 2/11 Error, Residual and Condition Number. Review of lecture 2/16 Backward Error Analysis The General Case 1 / 22 Topics Review of lecture 2/ Error, Residual and Condition Number Review of lecture 2/6 Backward Error Analysis The General Case / 22 Theorem (Calculation of 2 norm of a symmetric matrix) If A = A t is

More information

5. Direct Methods for Solving Systems of Linear Equations. They are all over the place...

5. Direct Methods for Solving Systems of Linear Equations. They are all over the place... 5 Direct Methods for Solving Systems of Linear Equations They are all over the place Miriam Mehl: 5 Direct Methods for Solving Systems of Linear Equations They are all over the place, December 13, 2012

More information

Matrix decompositions

Matrix decompositions Matrix decompositions How can we solve Ax = b? 1 Linear algebra Typical linear system of equations : x 1 x +x = x 1 +x +9x = 0 x 1 +x x = The variables x 1, x, and x only appear as linear terms (no powers

More information

5 Solving Systems of Linear Equations

5 Solving Systems of Linear Equations 106 Systems of LE 5.1 Systems of Linear Equations 5 Solving Systems of Linear Equations 5.1 Systems of Linear Equations System of linear equations: a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 +

More information

CS 323: Numerical Analysis and Computing

CS 323: Numerical Analysis and Computing CS 323: Numerical Analysis and Computing MIDTERM #1 Instructions: This is an open notes exam, i.e., you are allowed to consult any textbook, your class notes, homeworks, or any of the handouts from us.

More information

Numerical methods, midterm test I (2018/19 autumn, group A) Solutions

Numerical methods, midterm test I (2018/19 autumn, group A) Solutions Numerical methods, midterm test I (2018/19 autumn, group A Solutions x Problem 1 (6p We are going to approximate the limit 3/2 x lim x 1 x 1 by substituting x = 099 into the fraction in the present form

More information

lecture 2 and 3: algorithms for linear algebra

lecture 2 and 3: algorithms for linear algebra lecture 2 and 3: algorithms for linear algebra STAT 545: Introduction to computational statistics Vinayak Rao Department of Statistics, Purdue University August 27, 2018 Solving a system of linear equations

More information

CHAPTER 6. Direct Methods for Solving Linear Systems

CHAPTER 6. Direct Methods for Solving Linear Systems CHAPTER 6 Direct Methods for Solving Linear Systems. Introduction A direct method for approximating the solution of a system of n linear equations in n unknowns is one that gives the exact solution to

More information

AMS 147 Computational Methods and Applications Lecture 17 Copyright by Hongyun Wang, UCSC

AMS 147 Computational Methods and Applications Lecture 17 Copyright by Hongyun Wang, UCSC Lecture 17 Copyright by Hongyun Wang, UCSC Recap: Solving linear system A x = b Suppose we are given the decomposition, A = L U. We solve (LU) x = b in 2 steps: *) Solve L y = b using the forward substitution

More information

Lecture 12 (Tue, Mar 5) Gaussian elimination and LU factorization (II)

Lecture 12 (Tue, Mar 5) Gaussian elimination and LU factorization (II) Math 59 Lecture 2 (Tue Mar 5) Gaussian elimination and LU factorization (II) 2 Gaussian elimination - LU factorization For a general n n matrix A the Gaussian elimination produces an LU factorization if

More information

Chapter 2 - Linear Equations

Chapter 2 - Linear Equations Chapter 2 - Linear Equations 2. Solving Linear Equations One of the most common problems in scientific computing is the solution of linear equations. It is a problem in its own right, but it also occurs

More information

Numerical Analysis: Solutions of System of. Linear Equation. Natasha S. Sharma, PhD

Numerical Analysis: Solutions of System of. Linear Equation. Natasha S. Sharma, PhD Mathematical Question we are interested in answering numerically How to solve the following linear system for x Ax = b? where A is an n n invertible matrix and b is vector of length n. Notation: x denote

More information

Linear Algebra and Matrix Inversion

Linear Algebra and Matrix Inversion Jim Lambers MAT 46/56 Spring Semester 29- Lecture 2 Notes These notes correspond to Section 63 in the text Linear Algebra and Matrix Inversion Vector Spaces and Linear Transformations Matrices are much

More information

The Solution of Linear Systems AX = B

The Solution of Linear Systems AX = B Chapter 2 The Solution of Linear Systems AX = B 21 Upper-triangular Linear Systems We will now develop the back-substitution algorithm, which is useful for solving a linear system of equations that has

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 16 1 / 21 Overview

More information

Solving Linear Systems of Equations

Solving Linear Systems of Equations November 6, 2013 Introduction The type of problems that we have to solve are: Solve the system: A x = B, where a 11 a 1N a 12 a 2N A =.. a 1N a NN x = x 1 x 2. x N B = b 1 b 2. b N To find A 1 (inverse

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 09: Accuracy and Stability Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 12 Outline 1 Condition Number of Matrices

More information

CS227-Scientific Computing. Lecture 4: A Crash Course in Linear Algebra

CS227-Scientific Computing. Lecture 4: A Crash Course in Linear Algebra CS227-Scientific Computing Lecture 4: A Crash Course in Linear Algebra Linear Transformation of Variables A common phenomenon: Two sets of quantities linearly related: y = 3x + x 2 4x 3 y 2 = 2.7x 2 x

More information

Lecture 2 Decompositions, perturbations

Lecture 2 Decompositions, perturbations March 26, 2018 Lecture 2 Decompositions, perturbations A Triangular systems Exercise 2.1. Let L = (L ij ) be an n n lower triangular matrix (L ij = 0 if i > j). (a) Prove that L is non-singular if and

More information

Solving Linear Systems of Equations

Solving Linear Systems of Equations Solving Linear Systems of Equations Gerald Recktenwald Portland State University Mechanical Engineering Department gerry@me.pdx.edu These slides are a supplement to the book Numerical Methods with Matlab:

More information

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i ) Direct Methods for Linear Systems Chapter Direct Methods for Solving Linear Systems Per-Olof Persson persson@berkeleyedu Department of Mathematics University of California, Berkeley Math 18A Numerical

More information

Linear Algebra Linear Algebra : Matrix decompositions Monday, February 11th Math 365 Week #4

Linear Algebra Linear Algebra : Matrix decompositions Monday, February 11th Math 365 Week #4 Linear Algebra Linear Algebra : Matrix decompositions Monday, February 11th Math Week # 1 Saturday, February 1, 1 Linear algebra Typical linear system of equations : x 1 x +x = x 1 +x +9x = 0 x 1 +x x

More information

Chapter 4 No. 4.0 Answer True or False to the following. Give reasons for your answers.

Chapter 4 No. 4.0 Answer True or False to the following. Give reasons for your answers. MATH 434/534 Theoretical Assignment 3 Solution Chapter 4 No 40 Answer True or False to the following Give reasons for your answers If a backward stable algorithm is applied to a computational problem,

More information

lecture 3 and 4: algorithms for linear algebra

lecture 3 and 4: algorithms for linear algebra lecture 3 and 4: algorithms for linear algebra STAT 545: Introduction to computational statistics Vinayak Rao Department of Statistics, Purdue University August 30, 2016 Solving a system of linear equations

More information

Introduction to PDEs and Numerical Methods Lecture 7. Solving linear systems

Introduction to PDEs and Numerical Methods Lecture 7. Solving linear systems Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Introduction to PDEs and Numerical Methods Lecture 7. Solving linear systems Dr. Noemi Friedman, 09.2.205. Reminder: Instationary heat

More information

JACOBI S ITERATION METHOD

JACOBI S ITERATION METHOD ITERATION METHODS These are methods which compute a sequence of progressively accurate iterates to approximate the solution of Ax = b. We need such methods for solving many large linear systems. Sometimes

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA2501 Numerical Methods Spring 2015 Solutions to exercise set 3 1 Attempt to verify experimentally the calculation from class that

More information

MODULE 7. where A is an m n real (or complex) matrix. 2) Let K(t, s) be a function of two variables which is continuous on the square [0, 1] [0, 1].

MODULE 7. where A is an m n real (or complex) matrix. 2) Let K(t, s) be a function of two variables which is continuous on the square [0, 1] [0, 1]. Topics: Linear operators MODULE 7 We are going to discuss functions = mappings = transformations = operators from one vector space V 1 into another vector space V 2. However, we shall restrict our sights

More information

Lecture 7. Gaussian Elimination with Pivoting. David Semeraro. University of Illinois at Urbana-Champaign. February 11, 2014

Lecture 7. Gaussian Elimination with Pivoting. David Semeraro. University of Illinois at Urbana-Champaign. February 11, 2014 Lecture 7 Gaussian Elimination with Pivoting David Semeraro University of Illinois at Urbana-Champaign February 11, 2014 David Semeraro (NCSA) CS 357 February 11, 2014 1 / 41 Naive Gaussian Elimination

More information

Process Model Formulation and Solution, 3E4

Process Model Formulation and Solution, 3E4 Process Model Formulation and Solution, 3E4 Section B: Linear Algebraic Equations Instructor: Kevin Dunn dunnkg@mcmasterca Department of Chemical Engineering Course notes: Dr Benoît Chachuat 06 October

More information

Numerical Linear Algebra And Its Applications

Numerical Linear Algebra And Its Applications Numerical Linear Algebra And Its Applications Xiao-Qing JIN 1 Yi-Min WEI 2 August 29, 2008 1 Department of Mathematics, University of Macau, Macau, P. R. China. 2 Department of Mathematics, Fudan University,

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS We want to solve the linear system a, x + + a,n x n = b a n, x + + a n,n x n = b n This will be done by the method used in beginning algebra, by successively eliminating unknowns

More information

The System of Linear Equations. Direct Methods. Xiaozhou Li.

The System of Linear Equations. Direct Methods. Xiaozhou Li. 1/16 The Direct Methods xiaozhouli@uestc.edu.cn http://xiaozhouli.com School of Mathematical Sciences University of Electronic Science and Technology of China Chengdu, China Does the LU factorization always

More information

ROUNDOFF ERRORS; BACKWARD STABILITY

ROUNDOFF ERRORS; BACKWARD STABILITY SECTION.5 ROUNDOFF ERRORS; BACKWARD STABILITY ROUNDOFF ERROR -- error due to the finite representation (usually in floatingpoint form) of real (and complex) numers in digital computers. FLOATING-POINT

More information

Lecture notes to the course. Numerical Methods I. Clemens Kirisits

Lecture notes to the course. Numerical Methods I. Clemens Kirisits Lecture notes to the course Numerical Methods I Clemens Kirisits November 8, 08 ii Preface These lecture notes are intended as a written companion to the course Numerical Methods I taught from 06 to 08

More information

LU Factorization. LU Decomposition. LU Decomposition. LU Decomposition: Motivation A = LU

LU Factorization. LU Decomposition. LU Decomposition. LU Decomposition: Motivation A = LU LU Factorization To further improve the efficiency of solving linear systems Factorizations of matrix A : LU and QR LU Factorization Methods: Using basic Gaussian Elimination (GE) Factorization of Tridiagonal

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 12: Gaussian Elimination and LU Factorization Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 10 Gaussian Elimination

More information

4. Direct Methods for Solving Systems of Linear Equations. They are all over the place...

4. Direct Methods for Solving Systems of Linear Equations. They are all over the place... They are all over the place... Numerisches Programmieren, Hans-Joachim ungartz page of 27 4.. Preliminary Remarks Systems of Linear Equations Another important field of application for numerical methods

More information

1 Problem 1 Solution. 1.1 Common Mistakes. In order to show that the matrix L k is the inverse of the matrix M k, we need to show that

1 Problem 1 Solution. 1.1 Common Mistakes. In order to show that the matrix L k is the inverse of the matrix M k, we need to show that 1 Problem 1 Solution In order to show that the matrix L k is the inverse of the matrix M k, we need to show that Since we need to show that Since L k M k = I (or M k L k = I). L k = I + m k e T k, M k

More information

The Behavior of Algorithms in Practice 2/21/2002. Lecture 4. ɛ 1 x 1 y ɛ 1 x 1 1 = x y 1 1 = y 1 = 1 y 2 = 1 1 = 0 1 1

The Behavior of Algorithms in Practice 2/21/2002. Lecture 4. ɛ 1 x 1 y ɛ 1 x 1 1 = x y 1 1 = y 1 = 1 y 2 = 1 1 = 0 1 1 8.409 The Behavior of Algorithms in Practice //00 Lecture 4 Lecturer: Dan Spielman Scribe: Matthew Lepinski A Gaussian Elimination Example To solve: [ ] [ ] [ ] x x First factor the matrix to get: [ ]

More information

Scientific Computing: Dense Linear Systems

Scientific Computing: Dense Linear Systems Scientific Computing: Dense Linear Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 February 9th, 2012 A. Donev (Courant Institute)

More information

12/1/2015 LINEAR ALGEBRA PRE-MID ASSIGNMENT ASSIGNED BY: PROF. SULEMAN SUBMITTED BY: M. REHAN ASGHAR BSSE 4 ROLL NO: 15126

12/1/2015 LINEAR ALGEBRA PRE-MID ASSIGNMENT ASSIGNED BY: PROF. SULEMAN SUBMITTED BY: M. REHAN ASGHAR BSSE 4 ROLL NO: 15126 12/1/2015 LINEAR ALGEBRA PRE-MID ASSIGNMENT ASSIGNED BY: PROF. SULEMAN SUBMITTED BY: M. REHAN ASGHAR Cramer s Rule Solving a physical system of linear equation by using Cramer s rule Cramer s rule is really

More information

A Note on the Pin-Pointing Solution of Ill-Conditioned Linear System of Equations

A Note on the Pin-Pointing Solution of Ill-Conditioned Linear System of Equations A Note on the Pin-Pointing Solution of Ill-Conditioned Linear System of Equations Davod Khojasteh Salkuyeh 1 and Mohsen Hasani 2 1,2 Department of Mathematics, University of Mohaghegh Ardabili, P. O. Box.

More information

Jim Lambers MAT 610 Summer Session Lecture 2 Notes

Jim Lambers MAT 610 Summer Session Lecture 2 Notes Jim Lambers MAT 610 Summer Session 2009-10 Lecture 2 Notes These notes correspond to Sections 2.2-2.4 in the text. Vector Norms Given vectors x and y of length one, which are simply scalars x and y, the

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 2: Direct Methods PD Dr.

More information

Review Questions REVIEW QUESTIONS 71

Review Questions REVIEW QUESTIONS 71 REVIEW QUESTIONS 71 MATLAB, is [42]. For a comprehensive treatment of error analysis and perturbation theory for linear systems and many other problems in linear algebra, see [126, 241]. An overview of

More information

Simple Iteration, cont d

Simple Iteration, cont d Jim Lambers MAT 772 Fall Semester 2010-11 Lecture 2 Notes These notes correspond to Section 1.2 in the text. Simple Iteration, cont d In general, nonlinear equations cannot be solved in a finite sequence

More information

1.5 Gaussian Elimination With Partial Pivoting.

1.5 Gaussian Elimination With Partial Pivoting. Gaussian Elimination With Partial Pivoting In the previous section we discussed Gaussian elimination In that discussion we used equation to eliminate x from equations through n Then we used equation to

More information

Chapter 3. Numerical linear algebra. 3.1 Motivation. Example 3.1 (Stokes flow in a cavity) Three equations,

Chapter 3. Numerical linear algebra. 3.1 Motivation. Example 3.1 (Stokes flow in a cavity) Three equations, Chapter 3 Numerical linear algebra 3. Motivation In this chapter we will consider the two following problems: ➀ Solve linear systems Ax = b, where x, b R n and A R n n. ➁ Find x R n that minimizes m (Ax

More information

AM 205: lecture 6. Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization

AM 205: lecture 6. Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization AM 205: lecture 6 Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization Unit II: Numerical Linear Algebra Motivation Almost everything in Scientific Computing

More information

MATH 612 Computational methods for equation solving and function minimization Week # 6

MATH 612 Computational methods for equation solving and function minimization Week # 6 MATH 612 Computational methods for equation solving and function minimization Week # 6 F.J.S. Spring 2014 University of Delaware FJS MATH 612 1 / 58 Plan for this week Discuss any problems you couldn t

More information

The answer in each case is the error in evaluating the taylor series for ln(1 x) for x = which is 6.9.

The answer in each case is the error in evaluating the taylor series for ln(1 x) for x = which is 6.9. Brad Nelson Math 26 Homework #2 /23/2. a MATLAB outputs: >> a=(+3.4e-6)-.e-6;a- ans = 4.449e-6 >> a=+(3.4e-6-.e-6);a- ans = 2.224e-6 And the exact answer for both operations is 2.3e-6. The reason why way

More information

AM 205: lecture 6. Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization

AM 205: lecture 6. Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization AM 205: lecture 6 Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization Unit II: Numerical Linear Algebra Motivation Almost everything in Scientific Computing

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 0

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 0 CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 0 GENE H GOLUB 1 What is Numerical Analysis? In the 1973 edition of the Webster s New Collegiate Dictionary, numerical analysis is defined to be the

More information

Implicitly Defined High-Order Operator Splittings for Parabolic and Hyperbolic Variable-Coefficient PDE Using Modified Moments

Implicitly Defined High-Order Operator Splittings for Parabolic and Hyperbolic Variable-Coefficient PDE Using Modified Moments Implicitly Defined High-Order Operator Splittings for Parabolic and Hyperbolic Variable-Coefficient PDE Using Modified Moments James V. Lambers September 24, 2008 Abstract This paper presents a reformulation

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 21: Sensitivity of Eigenvalues and Eigenvectors; Conjugate Gradient Method Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis

More information

Iterative techniques in matrix algebra

Iterative techniques in matrix algebra Iterative techniques in matrix algebra Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan September 12, 2015 Outline 1 Norms of vectors and matrices 2 Eigenvalues and

More information