Time Series (1) Information Systems M

Size: px
Start display at page:

Download "Time Series (1) Information Systems M"

Transcription

1 Time Series () Information Systems M Prof. Paolo Ciaccia Time series are everywhere Time series, that is, sequences of observations (samples) made through time, are present in everyday s life: Temperature, rainfalls, seismic traces Weblogs Stock prices EEG, ECG, blood pressure Enrolled students at the Engineering Fac This as well as many of the following figures/examples are taken from the tutorial given by Eamonn Keogh at SBBD (XVII Brazilian Symposium on Databases) Sistemi Informativi M

2 Why is similarity search so important? Similarity search can help you in: Looking for the occurrence of known patterns Discovering unknown patterns Putting things together (clustering) Classifiying new data Predicting/extrapolating future behaviors Sistemi Informativi M 3 Why is similarity search difficult? Consider a large time series DB, e.g.: hour of ECG data: GByte Typical Weblog: 5 GBytes per week Space Shuttle DB: 58 GBytes MACHO Astronomical DB: Tbytes, updated with 3 GBytes a day ( million stars recorded nightly for 4 years) First problem: large database size Second problem: subjectivity of similarity evaluation Sistemi Informativi M 4

3 How to measure similarity Given two time series of equal length D, the usual way to measure their (dis-)similarity is based on Euclidean distance However, with Euclidean distance we have to face two basic problems. High-dimensionality: (very) large D values. Sensitivity to alignment of values s q For problem.we need to define effective lower-bounding techniques that work in a (much) lower dimensional space For problem. we will introduce a new similarity criterion D- ( s,q) = ( s ) t qt t= L Sistemi Informativi M 5 Pre-processing Diretly comparing two time series (e.g., using Euclidean distance) might lead to counter-intuitive results This is because Euclidean distance, as well as other measures, are very sensitive to some data features that might conflict with the subjective notion of similarity Thus, a good idea is to pre-process time series in order to remove such features Sistemi Informativi M 6 3

4 Offset translation Subtract from each sample the mean value of the series d(q,s) q = q - mean(q) s = s - mean(s) d(q,s) Sistemi Informativi M 7 Amplitude scaling Normalize the amplitude (divide by the standard deviation of the series) q = (q - mean(q)) / std(q) s = (s - mean(s)) / std(s) Sistemi Informativi M 8 4

5 Noise removal Average the values of each sample with those of its neighbors (smoothing) q = smooth(q) s = smooth(s) Sistemi Informativi M 9 Dimensionality reduction: DFT () The first method for reducing the dimensionality of time series, proposed in [AFS93], was based on the Discrete Fourier Transform (DFT) Remind: given a time series s, the Fourier coefficients are complex numbers (amplitude,phase), defined as: S f D = D t= s exp ( jπft/d) f =,...,D Parseval theorem: DFT preserves the energy of the signal: t Img D D ( ) = st = E( S) = E s t= f = S f S f S f Re where S f = Re(S f ) + j Img(S f ) = (Re(S f ) + Img(S f ) ) is the absolute value of S f (its amplitude), which equals the Euclidean distance of S f from the origin Sistemi Informativi M 5

6 Dimensionality reduction: DFT () The key observation is that the DFT is a linear transformation Thus, we have: D D (s,q) = Q) t= f = ( st qt ) = E( s q) = E( S Q) = Sf Qf L (S, L = where S f -Q f is the Euclidean distance between S f and Q f in the complex plane The above just says that DFT also preserves the Euclidean distance Img What can we gain from such transformation? Q f S f - Q f S f Re Sistemi Informativi M Dimensionality reduction: DFT (3) The key observation is that, by keeping only a small set of Fourier coefficients, we can obtain a good approximation of the original signal This is because most of the energy of many real-world signals concentrates in the low frequencies ([AFS93]): More precisely, the energy spectrum ( S f vs. f) behaves as O(f -b ), b > : b = (random walk or brown noise): used to model the behavior of stock movements and currency exchange rates b > (black noise): suitable to model slowly varying natural phenomena (e.g., water levels of rivers) b = (pink noise): according to Birkhoff s theory, musical scores follow this energy pattern Thus, by only keeping the first few coefficients (D << D), an effective dimensionality reduction can be obtained Note: this is the basic idea used by well-known compression standards, such as JPEG (which is based on Discrete Cosine Transform) For what we have seen, this projection technique satisfies the L-B lemma Sistemi Informativi M 6

7 An example: EEG data Sampling rate: 8 Hz Time series (4 secs, 5 points) Energy spectrum Sistemi Informativi M 3 Another example 8 points s s s = approximation of s with 4 Fourier coefficients data values Fourier coefficients First 4 Fourier coefficients Sistemi Informativi M

8 Comments on DFT Can be computed in O(DlogD)time using FFT (provided D is a power of ) Difficult to use if one wants to deal with sequences of different length Not really amenable to deal with signals with spots (time-varying energy) An alternative to DFT is to use wavelets, which takes a different perspective: A signal can be represented as a sum of contributions, each at a different resolution level Discrete Wavelet Transform (DWT) can be computed in O(D) time Also used in the JPEG standard for compressing images Experimental results however show that the superiority of DWT w.r.t. DFT is dependent on the specific dataset Good for wavelets bad for Fourier 4 6 Good for Fourier bad for wavelets 4 6 Sistemi Informativi M 5 Haar Wavelets: the intuition DWT Haar Haar Haar Haar 3 Haar 4 Haar 5 Haar 6 X X' As with DFT, the time series is decomposed into a linear combinations of base elements The Haar DWT, applied to a series of length D = n, pairs samples, stores their difference and passes their averageto the next stage This process is repeated recursively, which leads to n difference values and one final average (which is for normalized series) s = (3,,4,6,5,6,,) Differences Averages (,-,-,) (.5,5,5.5,) (-3.5,3.5) (3.75,3.75) () (3. 75) Haar 7 Sistemi Informativi M 6 8

9 Dimensionality reduction: PAA PAA(Piecewise Aggregate Approximation) [KCP+,YF] is a very simple, intuitive and fast, O(D), method to approximate time series Its performance is comparable to that of DFT and DWT We take a window of size W and segment our time series into D = D/W pieces (sub-sequences), each of size W i W For each piece, we compute the average of values, i.e. st Our approximation is therefore s = (s,,s D ) ' t= ( i ) W si = We have W L (s,q ) L (s,q) W (arguments generalize those used for the global average example) The same can be generalized to work with arbitrary Lp-norms [YF] W s' s Sistemi Informativi M 7 Some results (thanks again to Eamonn Keogh!) The graphs shows the fraction of data (indexed by an R-tree) that must be retrieved from disk to answer a -NN query mixed dataset On most datasets,.5 the three methods.4 yield very similar results The actual response time may vary, even for a given method, depending on the implementation DFT DWT PAA Sistemi Informativi M 8 9

10 Example: computing the Euclidean distance Consider a sequential -NN algorithm based on Euclidean distance, and let r be the lowest distance found so far Two basic optimization techiniques are. Avoid taking the square root, i.e., use squared Euclidean distance This does not influence the result 5. Early terminate to evaluate the distance on a seres s if the so-far accumulated distance for s is r Clearly, these optimization are not peculiar to time series Seconds 4 3 Euclid Opt Opt, 5,, Number of Objects Sistemi Informativi M 9

Signal Processing With Wavelets

Signal Processing With Wavelets Signal Processing With Wavelets JAMES MONK Niels Bohr Institute, University of Copenhagen. Reminder of the Fourier Transform g(!) = 1 p 2 Z 1 1 f(t)e i!t dt Tells you the frequency components in a signal

More information

WAVELET TRANSFORMS IN TIME SERIES ANALYSIS

WAVELET TRANSFORMS IN TIME SERIES ANALYSIS WAVELET TRANSFORMS IN TIME SERIES ANALYSIS R.C. SINGH 1 Abstract The existing methods based on statistical techniques for long range forecasts of Indian summer monsoon rainfall have shown reasonably accurate

More information

Signal Processing With Wavelets

Signal Processing With Wavelets Signal Processing With Wavelets JAMES MONK Niels Bohr Institute, University of Copenhagen. Self-Similarity Benoît B.* Mandlebrot: Clouds are not spheres, mountains are not cones, coastlines are not circles,

More information

Knowledge Discovery in Databases II Summer Term 2017

Knowledge Discovery in Databases II Summer Term 2017 Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Knowledge Discovery in Databases II Summer Term 2017 Lecture 3: Sequence Data Lectures :

More information

Noise & Data Reduction

Noise & Data Reduction Noise & Data Reduction Andreas Wichert - Teóricas andreas.wichert@inesc-id.pt 1 Paired Sample t Test Data Transformation - Overview From Covariance Matrix to PCA and Dimension Reduction Fourier Analysis

More information

Giovanni Stilo SAX! A Symbolic Representations of Time Series

Giovanni Stilo SAX! A Symbolic Representations of Time Series Giovanni Stilo stilo@di.uniroma1.it SAX! A Symbolic Representations of Time Series 25.1750 25.2250 25.2500 25.2500 25.2750 25.3250 25.3500 25.3500 25.4000 25.4000 25.3250 25.2250 25.2000 25.1750.... 24.6250

More information

Scalable Algorithms for Distribution Search

Scalable Algorithms for Distribution Search Scalable Algorithms for Distribution Search Yasuko Matsubara (Kyoto University) Yasushi Sakurai (NTT Communication Science Labs) Masatoshi Yoshikawa (Kyoto University) 1 Introduction Main intuition and

More information

CS 6604: Data Mining Large Networks and Time-series. B. Aditya Prakash Lecture #12: Time Series Mining

CS 6604: Data Mining Large Networks and Time-series. B. Aditya Prakash Lecture #12: Time Series Mining CS 6604: Data Mining Large Networks and Time-series B. Aditya Prakash Lecture #12: Time Series Mining Pa

More information

V(t) = Total Power = Calculating the Power Spectral Density (PSD) in IDL. Thomas Ferree, Ph.D. August 23, 1999

V(t) = Total Power = Calculating the Power Spectral Density (PSD) in IDL. Thomas Ferree, Ph.D. August 23, 1999 Calculating the Power Spectral Density (PSD) in IDL Thomas Ferree, Ph.D. August 23, 1999 This note outlines the calculation of power spectra via the fast Fourier transform (FFT) algorithm. There are several

More information

HOT SAX: Efficiently Finding the Most Unusual Time Series Subsequence

HOT SAX: Efficiently Finding the Most Unusual Time Series Subsequence HOT SAX: Efficiently Finding the Most Unusual Time Series Subsequence Eamonn Keogh *Jessica Lin Ada Fu University of California, Riverside George Mason Univ Chinese Univ of Hong Kong The 5 th IEEE International

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering Biosignal processing Kung-Bin Sung 6/11/2007 1 Outline Chapter 10: Biosignal processing Characteristics of biosignals Frequency domain representation and analysis

More information

Lecture 01 August 31, 2017

Lecture 01 August 31, 2017 Sketching Algorithms for Big Data Fall 2017 Prof. Jelani Nelson Lecture 01 August 31, 2017 Scribe: Vinh-Kha Le 1 Overview In this lecture, we overviewed the six main topics covered in the course, reviewed

More information

Phase-Correlation Motion Estimation Yi Liang

Phase-Correlation Motion Estimation Yi Liang EE 392J Final Project Abstract Phase-Correlation Motion Estimation Yi Liang yiliang@stanford.edu Phase-correlation motion estimation is studied and implemented in this work, with its performance, efficiency

More information

University of Florida CISE department Gator Engineering. Clustering Part 1

University of Florida CISE department Gator Engineering. Clustering Part 1 Clustering Part 1 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville What is Cluster Analysis? Finding groups of objects such that the objects

More information

Module 7:Data Representation Lecture 35: Wavelets. The Lecture Contains: Wavelets. Discrete Wavelet Transform (DWT) Haar wavelets: Example

Module 7:Data Representation Lecture 35: Wavelets. The Lecture Contains: Wavelets. Discrete Wavelet Transform (DWT) Haar wavelets: Example The Lecture Contains: Wavelets Discrete Wavelet Transform (DWT) Haar wavelets: Example Haar wavelets: Theory Matrix form Haar wavelet matrices Dimensionality reduction using Haar wavelets file:///c /Documents%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/ist_data/lecture35/35_1.htm[6/14/2012

More information

Wavelet analysis identifies geology in seismic

Wavelet analysis identifies geology in seismic Wavelet analysis identifies geology in seismic Geologic lithofacies can be quantitatively identified by the wavelet decomposition of the seismic reflection. That is, the reservoir risk can be mitigated

More information

Introduction to Signal Processing

Introduction to Signal Processing to Signal Processing Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Intelligent Systems for Pattern Recognition Signals = Time series Definitions Motivations A sequence

More information

( nonlinear constraints)

( nonlinear constraints) Wavelet Design & Applications Basic requirements: Admissibility (single constraint) Orthogonality ( nonlinear constraints) Sparse Representation Smooth functions well approx. by Fourier High-frequency

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spring 2014 TTh 14:30-15:45 CBC C313 Lecture 05 Image Processing Basics 13/02/04 http://www.ee.unlv.edu/~b1morris/ecg782/

More information

Ch. 15 Wavelet-Based Compression

Ch. 15 Wavelet-Based Compression Ch. 15 Wavelet-Based Compression 1 Origins and Applications The Wavelet Transform (WT) is a signal processing tool that is replacing the Fourier Transform (FT) in many (but not all!) applications. WT theory

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 12 Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted for noncommercial,

More information

Lecture 10 September 27, 2016

Lecture 10 September 27, 2016 CS 395T: Sublinear Algorithms Fall 2016 Prof. Eric Price Lecture 10 September 27, 2016 Scribes: Quinten McNamara & William Hoza 1 Overview In this lecture, we focus on constructing coresets, which are

More information

Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 :

Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 : Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 : X(t) = µ + Asin(ω 0 t)+ Δ δ ( t t 0 ) ±σ N =100 Δ =100 χ ( ω ) Raises the amplitude uniformly at all

More information

INTRODUCTION TO. Adapted from CS474/674 Prof. George Bebis Department of Computer Science & Engineering University of Nevada (UNR)

INTRODUCTION TO. Adapted from CS474/674 Prof. George Bebis Department of Computer Science & Engineering University of Nevada (UNR) INTRODUCTION TO WAVELETS Adapted from CS474/674 Prof. George Bebis Department of Computer Science & Engineering University of Nevada (UNR) CRITICISM OF FOURIER SPECTRUM It gives us the spectrum of the

More information

ECE 901 Lecture 16: Wavelet Approximation Theory

ECE 901 Lecture 16: Wavelet Approximation Theory ECE 91 Lecture 16: Wavelet Approximation Theory R. Nowak 5/17/29 1 Introduction In Lecture 4 and 15, we investigated the problem of denoising a smooth signal in additive white noise. In Lecture 4, we considered

More information

Sparse linear models

Sparse linear models Sparse linear models Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 2/22/2016 Introduction Linear transforms Frequency representation Short-time

More information

Multiresolution Analysis

Multiresolution Analysis Multiresolution Analysis DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Frames Short-time Fourier transform

More information

Elec4621 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis

Elec4621 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis Elec461 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis Dr. D. S. Taubman May 3, 011 In this last chapter of your notes, we are interested in the problem of nding the instantaneous

More information

University of Colorado at Boulder ECEN 4/5532. Lab 2 Lab report due on February 16, 2015

University of Colorado at Boulder ECEN 4/5532. Lab 2 Lab report due on February 16, 2015 University of Colorado at Boulder ECEN 4/5532 Lab 2 Lab report due on February 16, 2015 This is a MATLAB only lab, and therefore each student needs to turn in her/his own lab report and own programs. 1

More information

On the Optimality of the Greedy Heuristic in Wavelet Synopses for Range Queries

On the Optimality of the Greedy Heuristic in Wavelet Synopses for Range Queries On the Optimality of the Greedy Heuristic in Wavelet Synopses for Range Queries Yossi Matias School of Computer Science Tel Aviv University Tel Aviv 69978, Israel matias@tau.ac.il Daniel Urieli School

More information

1 Introduction to Wavelet Analysis

1 Introduction to Wavelet Analysis Jim Lambers ENERGY 281 Spring Quarter 2007-08 Lecture 9 Notes 1 Introduction to Wavelet Analysis Wavelets were developed in the 80 s and 90 s as an alternative to Fourier analysis of signals. Some of the

More information

Chirp Transform for FFT

Chirp Transform for FFT Chirp Transform for FFT Since the FFT is an implementation of the DFT, it provides a frequency resolution of 2π/N, where N is the length of the input sequence. If this resolution is not sufficient in a

More information

MA3232 Summary 5. d y1 dy1. MATLAB has a number of built-in functions for solving stiff systems of ODEs. There are ode15s, ode23s, ode23t, ode23tb.

MA3232 Summary 5. d y1 dy1. MATLAB has a number of built-in functions for solving stiff systems of ODEs. There are ode15s, ode23s, ode23t, ode23tb. umerical solutions of higher order ODE We can convert a high order ODE into a system of first order ODEs and then apply RK method to solve it. Stiff ODEs Stiffness is a special problem that can arise in

More information

Noise & Data Reduction

Noise & Data Reduction Noise & Data Reduction Paired Sample t Test Data Transformation - Overview From Covariance Matrix to PCA and Dimension Reduction Fourier Analysis - Spectrum Dimension Reduction 1 Remember: Central Limit

More information

Wavelets and Multiresolution Processing

Wavelets and Multiresolution Processing Wavelets and Multiresolution Processing Wavelets Fourier transform has it basis functions in sinusoids Wavelets based on small waves of varying frequency and limited duration In addition to frequency,

More information

Time Series Mining and Forecasting

Time Series Mining and Forecasting CSE 6242 / CX 4242 Mar 25, 2014 Time Series Mining and Forecasting Duen Horng (Polo) Chau Georgia Tech Slides based on Prof. Christos Faloutsos s materials Outline Motivation Similarity search distance

More information

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan Clustering CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Supervised vs Unsupervised Learning Supervised learning Given x ", y " "%& ', learn a function f: X Y Categorical output classification

More information

Spectral Algorithms I. Slides based on Spectral Mesh Processing Siggraph 2010 course

Spectral Algorithms I. Slides based on Spectral Mesh Processing Siggraph 2010 course Spectral Algorithms I Slides based on Spectral Mesh Processing Siggraph 2010 course Why Spectral? A different way to look at functions on a domain Why Spectral? Better representations lead to simpler solutions

More information

Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 :

Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 : Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 : ( ) ±σ X(t) = µ + Asin(ω 0 t)+ Δ δ t t 0 N =100 Δ =100 χ ( ω ) Raises the amplitude uniformly at all

More information

Tailored Bregman Ball Trees for Effective Nearest Neighbors

Tailored Bregman Ball Trees for Effective Nearest Neighbors Tailored Bregman Ball Trees for Effective Nearest Neighbors Frank Nielsen 1 Paolo Piro 2 Michel Barlaud 2 1 Ecole Polytechnique, LIX, Palaiseau, France 2 CNRS / University of Nice-Sophia Antipolis, Sophia

More information

ICML '97 and AAAI '97 Tutorials

ICML '97 and AAAI '97 Tutorials A Short Course in Computational Learning Theory: ICML '97 and AAAI '97 Tutorials Michael Kearns AT&T Laboratories Outline Sample Complexity/Learning Curves: nite classes, Occam's VC dimension Razor, Best

More information

LECTURE NOTES IN AUDIO ANALYSIS: PITCH ESTIMATION FOR DUMMIES

LECTURE NOTES IN AUDIO ANALYSIS: PITCH ESTIMATION FOR DUMMIES LECTURE NOTES IN AUDIO ANALYSIS: PITCH ESTIMATION FOR DUMMIES Abstract March, 3 Mads Græsbøll Christensen Audio Analysis Lab, AD:MT Aalborg University This document contains a brief introduction to pitch

More information

Composite Quantization for Approximate Nearest Neighbor Search

Composite Quantization for Approximate Nearest Neighbor Search Composite Quantization for Approximate Nearest Neighbor Search Jingdong Wang Lead Researcher Microsoft Research http://research.microsoft.com/~jingdw ICML 104, joint work with my interns Ting Zhang from

More information

Introduction to Wavelets and Wavelet Transforms

Introduction to Wavelets and Wavelet Transforms Introduction to Wavelets and Wavelet Transforms A Primer C. Sidney Burrus, Ramesh A. Gopinath, and Haitao Guo with additional material and programs by Jan E. Odegard and Ivan W. Selesnick Electrical and

More information

Multimedia communications

Multimedia communications Multimedia communications Comunicazione multimediale G. Menegaz gloria.menegaz@univr.it Prologue Context Context Scale Scale Scale Course overview Goal The course is about wavelets and multiresolution

More information

Module 4 MULTI- RESOLUTION ANALYSIS. Version 2 ECE IIT, Kharagpur

Module 4 MULTI- RESOLUTION ANALYSIS. Version 2 ECE IIT, Kharagpur Module 4 MULTI- RESOLUTION ANALYSIS Lesson Theory of Wavelets Instructional Objectives At the end of this lesson, the students should be able to:. Explain the space-frequency localization problem in sinusoidal

More information

Event Operators: Formalization, Algorithms, and Implementation Using Interval- Based Semantics

Event Operators: Formalization, Algorithms, and Implementation Using Interval- Based Semantics Department of Computer Science and Engineering University of Texas at Arlington Arlington, TX 76019 Event Operators: Formalization, Algorithms, and Implementation Using Interval- Based Semantics Raman

More information

Manifold Coarse Graining for Online Semi-supervised Learning

Manifold Coarse Graining for Online Semi-supervised Learning for Online Semi-supervised Learning Mehrdad Farajtabar, Amirreza Shaban, Hamid R. Rabiee, Mohammad H. Rohban Digital Media Lab, Department of Computer Engineering, Sharif University of Technology, Tehran,

More information

Math 307 Learning Goals. March 23, 2010

Math 307 Learning Goals. March 23, 2010 Math 307 Learning Goals March 23, 2010 Course Description The course presents core concepts of linear algebra by focusing on applications in Science and Engineering. Examples of applications from recent

More information

NOTES ON VECTORS, PLANES, AND LINES

NOTES ON VECTORS, PLANES, AND LINES NOTES ON VECTORS, PLANES, AND LINES DAVID BEN MCREYNOLDS 1. Vectors I assume that the reader is familiar with the basic notion of a vector. The important feature of the vector is that it has a magnitude

More information

The Growth of Functions. A Practical Introduction with as Little Theory as possible

The Growth of Functions. A Practical Introduction with as Little Theory as possible The Growth of Functions A Practical Introduction with as Little Theory as possible Complexity of Algorithms (1) Before we talk about the growth of functions and the concept of order, let s discuss why

More information

SNR Calculation and Spectral Estimation [S&T Appendix A]

SNR Calculation and Spectral Estimation [S&T Appendix A] SR Calculation and Spectral Estimation [S&T Appendix A] or, How not to make a mess of an FFT Make sure the input is located in an FFT bin 1 Window the data! A Hann window works well. Compute the FFT 3

More information

Discrete Wavelet Transform

Discrete Wavelet Transform Discrete Wavelet Transform [11] Kartik Mehra July 2017 Math 190s Duke University "1 Introduction Wavelets break signals up and then analyse them separately with a resolution that is matched with scale.

More information

Preface The theoretical framework for this work was shaped by Paris Kanellakis together with the first author (Goldin), who was then Paris' Ph.D. stud

Preface The theoretical framework for this work was shaped by Paris Kanellakis together with the first author (Goldin), who was then Paris' Ph.D. stud Bounded Similarity Querying for Time-series Data Dina Q. Goldin Λ Computer Science and Eng. Dept., Univ. of Connecticut, Storrs, CT 06269, USA Todd D. Millstein Computer Science Dept., Univ. of California,

More information

COS597D: Information Theory in Computer Science October 19, Lecture 10

COS597D: Information Theory in Computer Science October 19, Lecture 10 COS597D: Information Theory in Computer Science October 9, 20 Lecture 0 Lecturer: Mark Braverman Scribe: Andrej Risteski Kolmogorov Complexity In the previous lectures, we became acquainted with the concept

More information

UMCS. Annales UMCS Informatica AI 6 (2007) Wavelet analysis of speech signal

UMCS. Annales UMCS Informatica AI 6 (2007) Wavelet analysis of speech signal Annales Informatica AI 6 (2007) 103-115 Wavelet analysis of speech signal Ireneusz Codello *, Wies awa Kuniszyk-Jó kowiak Annales Informatica Lublin-Polonia Sectio AI http://www.annales.umcs.lublin.pl/

More information

Noise-resilient quantum circuits

Noise-resilient quantum circuits Noise-resilient quantum circuits Isaac H. Kim IBM T. J. Watson Research Center Yorktown Heights, NY Oct 10th, 2017 arxiv:1703.02093, arxiv:1703.00032, arxiv:17??.?????(w. Brian Swingle) Why don t we have

More information

Carnegie Mellon Univ. Dept. of Computer Science Database Applications. SAMs - Detailed outline. Spatial Access Methods - problem

Carnegie Mellon Univ. Dept. of Computer Science Database Applications. SAMs - Detailed outline. Spatial Access Methods - problem Carnegie Mellon Univ. Dept. of Computer Science 15-415 - Database Applications Lecture #26: Spatial Databases (R&G ch. 28) SAMs - Detailed outline spatial access methods problem dfn R-trees Faloutsos 2

More information

Vector Space Model. Yufei Tao KAIST. March 5, Y. Tao, March 5, 2013 Vector Space Model

Vector Space Model. Yufei Tao KAIST. March 5, Y. Tao, March 5, 2013 Vector Space Model Vector Space Model Yufei Tao KAIST March 5, 2013 In this lecture, we will study a problem that is (very) fundamental in information retrieval, and must be tackled by all search engines. Let S be a set

More information

Compressing Kinetic Data From Sensor Networks. Sorelle A. Friedler (Swat 04) Joint work with David Mount University of Maryland, College Park

Compressing Kinetic Data From Sensor Networks. Sorelle A. Friedler (Swat 04) Joint work with David Mount University of Maryland, College Park Compressing Kinetic Data From Sensor Networks Sorelle A. Friedler (Swat 04) Joint work with David Mount University of Maryland, College Park Motivation Motivation Computer Science Graphics: Image and video

More information

Oberwolfach workshop on Combinatorics and Probability

Oberwolfach workshop on Combinatorics and Probability Apr 2009 Oberwolfach workshop on Combinatorics and Probability 1 Describes a sharp transition in the convergence of finite ergodic Markov chains to stationarity. Steady convergence it takes a while to

More information

CS229 Project: Musical Alignment Discovery

CS229 Project: Musical Alignment Discovery S A A V S N N R R S CS229 Project: Musical Alignment iscovery Woodley Packard ecember 16, 2005 Introduction Logical representations of musical data are widely available in varying forms (for instance,

More information

Time Series. Duen Horng (Polo) Chau Assistant Professor Associate Director, MS Analytics Georgia Tech. Mining and Forecasting

Time Series. Duen Horng (Polo) Chau Assistant Professor Associate Director, MS Analytics Georgia Tech. Mining and Forecasting http://poloclub.gatech.edu/cse6242 CSE6242 / CX4242: Data & Visual Analytics Time Series Mining and Forecasting Duen Horng (Polo) Chau Assistant Professor Associate Director, MS Analytics Georgia Tech

More information

Classification of Be Stars Using Feature Extraction Based on Discrete Wavelet Transform

Classification of Be Stars Using Feature Extraction Based on Discrete Wavelet Transform Classification of Be Stars Using Feature Extraction Based on Discrete Wavelet Transform Pavla Bromová 1, David Bařina 1, Petr Škoda 2, Jaroslav Vážný 2, and Jaroslav Zendulka 1 1 Faculty of Information

More information

Seismic Modeling, Migration and Velocity Inversion

Seismic Modeling, Migration and Velocity Inversion Seismic Modeling, Migration and Velocity Inversion Inverse Scattering Bee Bednar Panorama Technologies, Inc. 14811 St Marys Lane, Suite 150 Houston TX 77079 May 30, 2014 Bee Bednar (Panorama Technologies)

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

Information Management course

Information Management course Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 03 : 09/10/2013 Data Mining: Concepts and Techniques (3 rd ed.) Chapter

More information

Cambridge University Press The Mathematics of Signal Processing Steven B. Damelin and Willard Miller Excerpt More information

Cambridge University Press The Mathematics of Signal Processing Steven B. Damelin and Willard Miller Excerpt More information Introduction Consider a linear system y = Φx where Φ can be taken as an m n matrix acting on Euclidean space or more generally, a linear operator on a Hilbert space. We call the vector x a signal or input,

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

Wavelets, Filter Banks and Multiresolution Signal Processing

Wavelets, Filter Banks and Multiresolution Signal Processing Wavelets, Filter Banks and Multiresolution Signal Processing It is with logic that one proves; it is with intuition that one invents. Henri Poincaré Introduction - 1 A bit of history: from Fourier to Haar

More information

Novel selective transform for non-stationary signal processing

Novel selective transform for non-stationary signal processing Novel selective transform for non-stationary signal processing Miroslav Vlcek, Pavel Sovka, Vaclav Turon, Radim Spetik vlcek@fd.cvut.cz Czech Technical University in Prague Miroslav Vlcek, Pavel Sovka,

More information

Wolf-Tilo Balke Silviu Homoceanu Institut für Informationssysteme Technische Universität Braunschweig

Wolf-Tilo Balke Silviu Homoceanu Institut für Informationssysteme Technische Universität Braunschweig Multimedia Databases Wolf-Tilo Balke Silviu Homoceanu Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de 14 Indexes for Multimedia Data 14 Indexes for Multimedia

More information

Outline : Multimedia Databases and Data Mining. Indexing - similarity search. Indexing - similarity search. C.

Outline : Multimedia Databases and Data Mining. Indexing - similarity search. Indexing - similarity search. C. Outline 15-826: Multimedia Databases and Data Mining Lecture #30: Conclusions C. Faloutsos Goal: Find similar / interesting things Intro to DB Indexing - similarity search Points Text Time sequences; images

More information

Time-Series Analysis Prediction Similarity between Time-series Symbolic Approximation SAX References. Time-Series Streams

Time-Series Analysis Prediction Similarity between Time-series Symbolic Approximation SAX References. Time-Series Streams Time-Series Streams João Gama LIAAD-INESC Porto, University of Porto, Portugal jgama@fep.up.pt 1 Time-Series Analysis 2 Prediction Filters Neural Nets 3 Similarity between Time-series Euclidean Distance

More information

Wavelets for Efficient Querying of Large Multidimensional Datasets

Wavelets for Efficient Querying of Large Multidimensional Datasets Wavelets for Efficient Querying of Large Multidimensional Datasets Cyrus Shahabi University of Southern California Integrated Media Systems Center (IMSC) and Dept. of Computer Science Los Angeles, CA 90089-0781

More information

CSE446: non-parametric methods Spring 2017

CSE446: non-parametric methods Spring 2017 CSE446: non-parametric methods Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin and Luke Zettlemoyer Linear Regression: What can go wrong? What do we do if the bias is too strong? Might want

More information

Retrieval by Content. Part 2: Text Retrieval Term Frequency and Inverse Document Frequency. Srihari: CSE 626 1

Retrieval by Content. Part 2: Text Retrieval Term Frequency and Inverse Document Frequency. Srihari: CSE 626 1 Retrieval by Content Part 2: Text Retrieval Term Frequency and Inverse Document Frequency Srihari: CSE 626 1 Text Retrieval Retrieval of text-based information is referred to as Information Retrieval (IR)

More information

Query Processing in Spatial Network Databases

Query Processing in Spatial Network Databases Temporal and Spatial Data Management Fall 0 Query Processing in Spatial Network Databases SL06 Spatial network databases Shortest Path Incremental Euclidean Restriction Incremental Network Expansion Spatial

More information

Fourier Series and Recent Developments in Analysis

Fourier Series and Recent Developments in Analysis Fourier Series and Recent Developments in Analysis Karlstad, June 2003 Javier Soria (U. Barcelona) 1 Jean Baptiste Joseph Fourier (1768-1830) It was around 1804 that Fourier did his important mathematical

More information

The Australia Telescope. The Australia Telescope National Facility. Why is it a National Facility? Who uses the AT? Ray Norris CSIRO ATNF

The Australia Telescope. The Australia Telescope National Facility. Why is it a National Facility? Who uses the AT? Ray Norris CSIRO ATNF The Australia Telescope National Facility The Australia Telescope Ray Norris CSIRO ATNF Why is it a National Facility? Funded by the federal government (through CSIRO) Provides radio-astronomical facilities

More information

Introduction to Discrete-Time Wavelet Transform

Introduction to Discrete-Time Wavelet Transform Introduction to Discrete-Time Wavelet Transform Selin Aviyente Department of Electrical and Computer Engineering Michigan State University February 9, 2010 Definition of a Wavelet A wave is usually defined

More information

Time Series Analysis and Mining with R

Time Series Analysis and Mining with R 1/42 Analysis and Mining with R Yanchang Zhao RDataMining.com http://www.rdatamining.com/ 18 July 2011 2/42 Outline 1 R and Data 2 3 4 5 6 7 3/42 R a free software environment for statistical computing

More information

Weather Prediction Using Historical Data

Weather Prediction Using Historical Data Weather Prediction Using Historical Data COMP 381 Project Report Michael Smith 1. Problem Statement Weather prediction is a useful tool for informing populations of expected weather conditions. Weather

More information

Wavelet Transform. Figure 1: Non stationary signal f(t) = sin(100 t 2 ).

Wavelet Transform. Figure 1: Non stationary signal f(t) = sin(100 t 2 ). Wavelet Transform Andreas Wichert Department of Informatics INESC-ID / IST - University of Lisboa Portugal andreas.wichert@tecnico.ulisboa.pt September 3, 0 Short Term Fourier Transform Signals whose frequency

More information

USING SHANKS BABY-STEP GIANT-STEP METHOD TO SOLVE THE GENERALIZED PELL EQUATION x 2 Dy 2 = N. Copyright 2009 by John P. Robertson. 1.

USING SHANKS BABY-STEP GIANT-STEP METHOD TO SOLVE THE GENERALIZED PELL EQUATION x 2 Dy 2 = N. Copyright 2009 by John P. Robertson. 1. USING SHANKS BABY-STEP GIANT-STEP METHOD TO SOLVE THE GENERALIZED PELL EQUATION x 2 Dy 2 = N Abstract. For D > 0 not a square, and N 0, the continued fraction algorithm can be used to solve the generalized

More information

MULTI-RESOLUTION SIGNAL DECOMPOSITION WITH TIME-DOMAIN SPECTROGRAM FACTORIZATION. Hirokazu Kameoka

MULTI-RESOLUTION SIGNAL DECOMPOSITION WITH TIME-DOMAIN SPECTROGRAM FACTORIZATION. Hirokazu Kameoka MULTI-RESOLUTION SIGNAL DECOMPOSITION WITH TIME-DOMAIN SPECTROGRAM FACTORIZATION Hiroazu Kameoa The University of Toyo / Nippon Telegraph and Telephone Corporation ABSTRACT This paper proposes a novel

More information

Lecture Notes 5: Multiresolution Analysis

Lecture Notes 5: Multiresolution Analysis Optimization-based data analysis Fall 2017 Lecture Notes 5: Multiresolution Analysis 1 Frames A frame is a generalization of an orthonormal basis. The inner products between the vectors in a frame and

More information

Introduction to Special Relativity

Introduction to Special Relativity 1 Introduction to Special Relativity PHYS 1301 F99 Prof. T.E. Coan version: 20 Oct 98 Introduction This lab introduces you to special relativity and, hopefully, gives you some intuitive understanding of

More information

Phys 122 Lecture 3 G. Rybka

Phys 122 Lecture 3 G. Rybka Phys 122 Lecture 3 G. Rybka A few more Demos Electric Field Lines Example Calculations: Discrete: Electric Dipole Overview Continuous: Infinite Line of Charge Next week Labs and Tutorials begin Electric

More information

Recognition Using Class Specific Linear Projection. Magali Segal Stolrasky Nadav Ben Jakov April, 2015

Recognition Using Class Specific Linear Projection. Magali Segal Stolrasky Nadav Ben Jakov April, 2015 Recognition Using Class Specific Linear Projection Magali Segal Stolrasky Nadav Ben Jakov April, 2015 Articles Eigenfaces vs. Fisherfaces Recognition Using Class Specific Linear Projection, Peter N. Belhumeur,

More information

Fast Fourier Transform

Fast Fourier Transform Fast Fourier Transform December 8, 2016 FFT JPEG RGB Y C B C R (luma (brightness), chroma 2 (color)) chroma resolution is reduced image is split in blocks 8 8 pixels JPEG RGB Y C B C R (luma (brightness),

More information

2.3. Quantitative Properties of Finite Difference Schemes. Reading: Tannehill et al. Sections and

2.3. Quantitative Properties of Finite Difference Schemes. Reading: Tannehill et al. Sections and 3 Quantitative Properties of Finite Difference Schemes 31 Consistency, Convergence and Stability of FD schemes Reading: Tannehill et al Sections 333 and 334 Three important properties of FD schemes: Consistency

More information

11 The Max-Product Algorithm

11 The Max-Product Algorithm Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms for Inference Fall 2014 11 The Max-Product Algorithm In the previous lecture, we introduced

More information

Image Compression. 1. Introduction. Greg Ames Dec 07, 2002

Image Compression. 1. Introduction. Greg Ames Dec 07, 2002 Image Compression Greg Ames Dec 07, 2002 Abstract Digital images require large amounts of memory to store and, when retrieved from the internet, can take a considerable amount of time to download. The

More information

Proc. of NCC 2010, Chennai, India

Proc. of NCC 2010, Chennai, India Proc. of NCC 2010, Chennai, India Trajectory and surface modeling of LSF for low rate speech coding M. Deepak and Preeti Rao Department of Electrical Engineering Indian Institute of Technology, Bombay

More information

Introduction to Wavelet. Based on A. Mukherjee s lecture notes

Introduction to Wavelet. Based on A. Mukherjee s lecture notes Introduction to Wavelet Based on A. Mukherjee s lecture notes Contents History of Wavelet Problems of Fourier Transform Uncertainty Principle The Short-time Fourier Transform Continuous Wavelet Transform

More information

MLISP: Machine Learning in Signal Processing Spring Lecture 8-9 May 4-7

MLISP: Machine Learning in Signal Processing Spring Lecture 8-9 May 4-7 MLISP: Machine Learning in Signal Processing Spring 2018 Prof. Veniamin Morgenshtern Lecture 8-9 May 4-7 Scribe: Mohamed Solomon Agenda 1. Wavelets: beyond smoothness 2. A problem with Fourier transform

More information

1. Personal Audio 2. Features 3. Segmentation 4. Clustering 5. Future Work

1. Personal Audio 2. Features 3. Segmentation 4. Clustering 5. Future Work Segmenting and Classifying Long-Duration Recordings of Personal Audio Dan Ellis and Keansub Lee Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Eng., Columbia Univ., NY

More information

A First Course in Wavelets with Fourier Analysis

A First Course in Wavelets with Fourier Analysis * A First Course in Wavelets with Fourier Analysis Albert Boggess Francis J. Narcowich Texas A& M University, Texas PRENTICE HALL, Upper Saddle River, NJ 07458 Contents Preface Acknowledgments xi xix 0

More information

4: The Pandemic process

4: The Pandemic process 4: The Pandemic process David Aldous July 12, 2012 (repeat of previous slide) Background meeting model with rates ν. Model: Pandemic Initially one agent is infected. Whenever an infected agent meets another

More information