A Multi-Fluid Model of Membrane Formation by Phase-Inversion

Size: px
Start display at page:

Download "A Multi-Fluid Model of Membrane Formation by Phase-Inversion"

Transcription

1 A Multi-Fluid Model of Membrane Formation by Phase-Inversion Douglas R. Tree 1 and Glenn Fredrickson 1,2 1 Materials Research Laboratory 2 Departments of Chemical Engineering and Materials University of California, Santa Barbara Society of Rheology Annual Meeting February 13, 2017

2 Acknowledgements Jan Garcia Dr. Kris T. Delaney Prof. Hector D. Ceniceros Lucas Francisco dos Santos Dr. Tatsuhiro Iwama (Asahi Kasei) Dr. Jeffrey Weinhold (Dow) 2

3 Can we predict the microstructure of polymers? I Microstructure dictates properties I Microstructure depends on process history Polymer Blends Polymer membranes I clean water I medical filters I commodity plastics (e.g. HIPS) I block polymer thin films Saedi et al. Can. J. Chem. Eng. (2014) Polymer composites I bulk heterojunctions I nanocomposites Hoppe and Sariciftci J. Mater. Chem. (2006) A very general problem! Biological patterning I Eurasian jay feathers Parnell et al. Sci. Rep. (2015) 3

4 Can we predict the microstructure of polymers? I Microstructure dictates properties I Microstructure depends on process history Polymer Blends Polymer membranes I clean water I medical filters I commodity plastics (e.g. HIPS) I block polymer thin films Saedi et al. Can. J. Chem. Eng. (2014) Polymer composites I bulk heterojunctions I nanocomposites Hoppe and Sariciftci J. Mater. Chem. (2006) A very general problem! Biological patterning I Eurasian jay feathers Parnell et al. Sci. Rep. (2015) 3

5 Clean water is a present and growing concern U.S. Drought Monitor July 7, 2015 Author: Brian Fuchs National Drought Mitigation Center Intensity: D0 Abnormally Dry D1 Moderate Drought D2 Severe Drought D3 Extreme Drought D4 Exceptional Drought Why membranes? Water is projected to become increasingly scarce. Filtration is a key technology for water purification. Center/Configurations/What-are-Hollow-Fiber-Membranes.aspx 4

6 Polymer membrane synthesis by immersion precipitation polymer solution nonsolvent membrane substrate solvent non-solvent bath Figure inspired by: 5

7 Polymer membrane synthesis by immersion precipitation polymer solution nonsolvent membrane substrate solvent solvent non-solvent bath H G Figure inspired by: L-L L-G polymer non-solvent 5

8 Microstructural variety in membranes Asymmetric Sponge Uniform Sponge Skin Layer Fingers or Macro-voids Strathmann et al. Desalination. (1975) 6

9 Model Development Model Characterization run NIPS quench process

10 Model Development Model Characterization run NIPS quench process

11 How can we model microstructure formation? A difficult challenge Complex thermodynamics out of equilibrium Spatially inhomogeneous (multi-phase) Multiple modes of transport (diffusion & convection) Large separation of length/time scales Continuum fluid dynamics Self-consistent field theory (SCFT) Fredrickson. J. Chem. Phys (2002) Hall et al. Phys. Rev. Lett (2006) Teran et al. Phys. Fluid. (2008) Key idea cheaper models Classical density functional theory (CDFT)/ phase field models 8

12 Multi-fluid models Two-fluid model Momentum equation for each species Large drag enforces cons. of momentum The Rayleighian A Lagrangian expression of least energy dissipation for overdamped systems (Re = 0). R[{v i }] = F [{v i }] free energy + Φ[{v i }] dissipation λg[{v i }] constraints δr δv i & φ i t = (φ iv i ) Transport equations de Gennes. J. Chem Phys. (1980) Doi and Onuki. J Phys (Paris)

13 Multi-fluid models Two-fluid model Momentum equation for each species Large drag enforces cons. of momentum The Rayleighian A Lagrangian expression of least energy dissipation for overdamped systems (Re = 0). R[{v i }] = F [{v i }] free energy + Φ[{v i }] dissipation λg[{v i }] constraints δr δv i & φ i t = (φ iv i ) Transport equations de Gennes. J. Chem Phys. (1980) Doi and Onuki. J Phys (Paris)

14 A ternary solution model F [{v i }] Φ[{v i }] λg[{v i }] free energy dissipation constraints Transport Equations Diffusion & Momentum Coupled, Non-lin. PDEs Solve numerically Pseudo-spectral on GPUs Semi-implicit stabilization Ternary polymer solution (Flory Huggins de Gennes) [ ] F = dr f({φ i }) + 1 κ i φ i 2 2 Φ = 1 2 Newtonian fluid with φ-dependent viscosity [ dr ζ i (v i v) 2 i +2η({φ i })D : D Incompressibility λg = p v i ] 10

15 Transport equations φ i t + v φ i = j µ i = δf [{φ i}] δφ i Model H Model B M ij ({φ}) µ j Convection-Diffusion Chemical Potential 0 = p + [η({φ})( v + v T ) ] N 1 φ i µ i i=0 Momentum 0 = v Incompressibility 11

16 Model Development Model Characterization run NIPS quench process 12

17 Characterization of model thermodynamics (a) N = 50 κ = 12 χ = (b) φp 0.4 φn x/r (c) 1.0 (d) x/r φ s φs x/r φ p φ n 13

18 Calculated interface width for many parameters 10 2 l = 1 2 ( ) κ 1/2 χ χ = (χ χ c )/χ c l/l N = 1 N = 20 N = 2 N = 50 N = 5 N = N = 10 N = χ 14

19 What explains the interface width data? 10 2 l/l We are near the critical point, χ c We recover the mean-field critical exponent, ( ) χ 1/2 χc l = l χ c N = 1 N = 20 N = 2 N = 50 N = 5 N = N = 10 N = χ 15

20 Characterization of phase separation dynamics 16

21 There are two dynamic regimes 10 2 domain size simulation time 17

22 Early-time regime initiation of spinodal decomposition λ λ+ 10 λ k Linear stability analysis Exponential growth of the fastest growing mode, δψ = exp[λ + (q)t] - 20 Two key parameters q m fastest growing mode λ m rate of spinodal decomposition φ s q m φ p φ n

23 Long-time regime coarsening surface diffusion bulk diffusion hydrodynamics domain size slope=1/4 domain size slope=1/3 domain size slope=1 time time time 19

24 Comparing simulations to the LSA 10 2 domain size, 2π/ q 10 1 φ s φ p simulation time, t φ n 20

25 Comparing simulations to the LSA 10 1 scaled domain size, qm/ q scaled simulation time, λ m t 20

26 Model Development Model Characterization run NIPS quench process 21

27 How does a quench happen by mass transfer? Qualitative features of NIPS (mass-transfer) v. TIPS (temp.) 1. Inherent anisotropy and inhomogeneities 2. Driving force (solvent exchange) and phase separation inseparably linked by mass transfer film bath Important questions 1. What is the effect of the initial bath/film concentration? 2. What role does film thickness play? 3. How does mass transfer path affect microstructure? 22

28 Anisotropic quench The bath interface gives rise to: Surface-directed spinodal decomposition Surface hydrodynamic instabilities Ball and Essery. J. Phys.-Condens. Mat. 2, (1990) 23

29 Early-time behavior the infinite film limit Key concept time scales Phase separation is faster than solvent exchange At short times we can neglect the role of film thickness. Pego. P. Roy. Soc. A-Math. Phy. 422, 261 (1989) Simple diffusion from a initial step 24

30 Early-time behavior the infinite film limit Key concept time scales Phase separation is faster than solvent exchange At short times we can neglect the role of film thickness. Pego. P. Roy. Soc. A-Math. Phy. 422, 261 (1989) Three possible cases 1. No phase separation, just diffusion (steady) Simple diffusion from a initial step 24

31 Early-time behavior the infinite film limit Key concept time scales Phase separation is faster than solvent exchange At short times we can neglect the role of film thickness. Pego. P. Roy. Soc. A-Math. Phy. 422, 261 (1989) Three possible cases 1. No phase separation, just diffusion (steady) 2. Phase separation, single domain film (steady) Simple diffusion from a initial step 24

32 Early-time behavior the infinite film limit Key concept time scales Phase separation is faster than solvent exchange At short times we can neglect the role of film thickness. Pego. P. Roy. Soc. A-Math. Phy. 422, 261 (1989) Simple diffusion from a initial step Three possible cases 1. No phase separation, just diffusion (steady) 2. Phase separation, single domain film (steady) 3. Phase separation, multiple domain film (unsteady) 24

33 Immediate spinodal decomposition into multi-domain films 25

34 A finite-sized film can exhibit delayed phase-separation φ s polymer film nonsolvent bath φ p φ n Depending on parameters and initial conditions, a delayed phase separation produces either single domain films (shown) multiple domain films 26

35 Finite-film data collapse with a similarity variable φ s f = f = φn φ p ξ φ n 27

36 Conclusions (1D) 1. Inherent anisotropy? SDSD-like wave 2. Film thickness? Short v. long-time Scales with xt 1/2 3. Initial conditions? No PS, single/multiple domains Instantaneous v. delayed PS Future: microstructure (2D) Pore gradients φ s φ p φ n Macrovoids q m Saedi et al. Can. J. Chem. Eng. (2014) Sternling and Scriven. AICHE J. (1959) 28

Supporting information for: A multi-fluid model for microstructure. formation in polymer membranes

Supporting information for: A multi-fluid model for microstructure. formation in polymer membranes Electronic Supplementary Material ESI for Soft Matter. This journal is The Royal Society of Chemistry 2017 Supporting information for: A multi-fluid model for microstructure formation in polymer membranes

More information

Modified models of polymer phase separation

Modified models of polymer phase separation Modified models of polymer phase separation Douglas Zhou, Pingwen Zhang,, * and Weinan E,2, LMAM, Peking University, Beijing 0087, People s Republic of China and School of Mathematical Science, Peking

More information

Complex Fluids. University of California - Santa Barbara, CA April 26, Abstract

Complex Fluids. University of California - Santa Barbara, CA April 26, Abstract Gravitational Effects on Structure Development in Quenched Complex Fluids V. E. Badalassi, a H. D. Ceniceros b and S. Banerjee c a,c Department of Chemical Engineering, b Department of Mathematics University

More information

MHD Non-Newtonian Power Law Fluid Flow and Heat Transfer Past a Non-Linear Stretching Surface with Thermal Radiation and Viscous Dissipation

MHD Non-Newtonian Power Law Fluid Flow and Heat Transfer Past a Non-Linear Stretching Surface with Thermal Radiation and Viscous Dissipation Journal of Applied Science and Engineering, Vol. 17, No. 3, pp. 267274 (2014) DOI: 10.6180/jase.2014.17.3.07 MHD Non-Newtonian Power Law Fluid Flow and Heat Transfer Past a Non-Linear Stretching Surface

More information

File ISM02. Dynamics of Soft Matter

File ISM02. Dynamics of Soft Matter File ISM02 Dynamics of Soft Matter 1 Modes of dynamics Quantum Dynamics t: fs-ps, x: 0.1 nm (seldom of importance for soft matter) Molecular Dynamics t: ps µs, x: 1 10 nm Brownian Dynamics t: ns>ps, x:

More information

A MATLAB Program for Quantitative Simulation. Nano-scaled Features

A MATLAB Program for Quantitative Simulation. Nano-scaled Features A MATLAB Program for Quantitative Simulation arxiv:1007.1254v1 [cond-mat.mtrl-sci] 7 Jul 2010 of Self-assembly of Polymer Blend Films with Nano-scaled Features Yingrui Shang and David Kazmer Center of

More information

Field-based Simulations for Block Copolymer Lithography (Self-Assembly of Diblock Copolymer Thin Films in Square Confinement)

Field-based Simulations for Block Copolymer Lithography (Self-Assembly of Diblock Copolymer Thin Films in Square Confinement) Field-based Simulations for Block Copolymer Lithography (Self-Assembly of Diblock Copolymer Thin Films in Square Confinement) Su-Mi Hur Glenn H. Fredrickson Complex Fluids Design Consortium Annual Meeting

More information

A simple model for block-copolymer layer morphology formation

A simple model for block-copolymer layer morphology formation A simple model for block-copolymer layer morphology formation A. J. Wagner and A. Croll, Department of Physics, North Dakota State University, Fargo, ND 58102 Prato Workshop, February 12, 2016 A big thanks

More information

Quiz Polymer Properties

Quiz Polymer Properties Quiz 7 070521 Polymer Properties A mean field theory deals with interactions and takes a multi-bodied problem (that is interactions between many sites) and converts it to a single-bodied problem (interactions

More information

Phase Transition Dynamics in Polymer Gels

Phase Transition Dynamics in Polymer Gels Phase Transition Dynamics in Polymer Gels Akira Onuki Department of Physics, Kyoto University, Kyoto 606, Japan Phone: 075-753-3743 Faximile: 075-753-3819 e-mail: onuki@scphys.kyoto-u.ac.jp 1. We first

More information

Parash Moni Thakur. Gopal Ch. Hazarika

Parash Moni Thakur. Gopal Ch. Hazarika International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 2, Issue 6, June 2014, PP 554-566 ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) www.arcjournals.org Effects of

More information

Thermodynamic modeling behavior of cellulose acetate / polyvinyl chloride blend membrane preparation

Thermodynamic modeling behavior of cellulose acetate / polyvinyl chloride blend membrane preparation Thermodynamic modeling behavior of cellulose acetate / polyvinyl chloride blend membrane preparation Dr. Ayman El-Gendi Dr. Heba Abdallah Dr. Ashraf Amin National Research Centre, El Buhouth St., Dokki,

More information

This is the accepted manuscript made available via CHORUS. The article has been published as:

This is the accepted manuscript made available via CHORUS. The article has been published as: This is the accepted manuscript made available via CHORUS. The article has been published as: Similarity of the Signatures of the Initial Stages of Phase Separation in Metastable and Unstable Polymer Blends

More information

A PRACTICALLY UNCONDITIONALLY GRADIENT STABLE SCHEME FOR THE N-COMPONENT CAHN HILLIARD SYSTEM

A PRACTICALLY UNCONDITIONALLY GRADIENT STABLE SCHEME FOR THE N-COMPONENT CAHN HILLIARD SYSTEM A PRACTICALLY UNCONDITIONALLY GRADIENT STABLE SCHEME FOR THE N-COMPONENT CAHN HILLIARD SYSTEM Hyun Geun LEE 1, Jeong-Whan CHOI 1 and Junseok KIM 1 1) Department of Mathematics, Korea University, Seoul

More information

Nonlinear elasticity and gels

Nonlinear elasticity and gels Nonlinear elasticity and gels M. Carme Calderer School of Mathematics University of Minnesota New Mexico Analysis Seminar New Mexico State University April 4-6, 2008 1 / 23 Outline Balance laws for gels

More information

Network formation in viscoelastic phase separation

Network formation in viscoelastic phase separation INSTITUTE OF PHYSICSPUBLISHING JOURNAL OFPHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 15 (2003) S387 S393 PII: S0953-8984(03)54761-0 Network formation in viscoelastic phase separation Hajime Tanaka,

More information

The Truth about diffusion (in liquids)

The Truth about diffusion (in liquids) The Truth about diffusion (in liquids) Aleksandar Donev Courant Institute, New York University & Eric Vanden-Eijnden, Courant In honor of Berni Julian Alder LLNL, August 20th 2015 A. Donev (CIMS) Diffusion

More information

EFFECTS OF AN IMPOSED FLOW ON PHASE-SEPARATING BINARY MIXTURES

EFFECTS OF AN IMPOSED FLOW ON PHASE-SEPARATING BINARY MIXTURES Fractals, Vol. 11, Supplementary Issue (February 2003) 119 127 c World Scientific Publishing Company EFFECTS OF AN IMPOSED FLOW ON PHASE-SEPARATING BINARY MIXTURES F. CORBERI Istituto Nazionale per la

More information

Linear Theory of Evolution to an Unstable State

Linear Theory of Evolution to an Unstable State Chapter 2 Linear Theory of Evolution to an Unstable State c 2012 by William Klein, Harvey Gould, and Jan Tobochnik 1 October 2012 2.1 Introduction The simple theory of nucleation that we introduced in

More information

The influence of axial orientation of spheroidal particles on the adsorption

The influence of axial orientation of spheroidal particles on the adsorption The influence of axial orientation of spheroidal particles on the adsorption rate in a granular porous medium F. A. Coutelieris National Center for Scientific Research Demokritos, 1510 Aghia Paraskevi

More information

Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS)

Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS) Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS) A flight project in the Microgravity Materials Science Program 2002 Microgravity Materials Science Meeting June 25, 2002 John A. Pojman

More information

Diffusive Transport Enhanced by Thermal Velocity Fluctuations

Diffusive Transport Enhanced by Thermal Velocity Fluctuations Diffusive Transport Enhanced by Thermal Velocity Fluctuations Aleksandar Donev 1 Courant Institute, New York University & Alejandro L. Garcia, San Jose State University John B. Bell, Lawrence Berkeley

More information

Part IV: Numerical schemes for the phase-filed model

Part IV: Numerical schemes for the phase-filed model Part IV: Numerical schemes for the phase-filed model Jie Shen Department of Mathematics Purdue University IMS, Singapore July 29-3, 29 The complete set of governing equations Find u, p, (φ, ξ) such that

More information

Biotransport: Principles

Biotransport: Principles Robert J. Roselli Kenneth R. Diller Biotransport: Principles and Applications 4 i Springer Contents Part I Fundamentals of How People Learn (HPL) 1 Introduction to HPL Methodology 3 1.1 Introduction 3

More information

Charge Extraction from Complex Morphologies in Bulk Heterojunctions. Michael L. Chabinyc Materials Department University of California, Santa Barbara

Charge Extraction from Complex Morphologies in Bulk Heterojunctions. Michael L. Chabinyc Materials Department University of California, Santa Barbara Charge Extraction from Complex Morphologies in Bulk Heterojunctions Michael L. Chabinyc Materials Department University of California, Santa Barbara OPVs Vs. Inorganic Thin Film Solar Cells Alta Devices

More information

Step Bunching in Epitaxial Growth with Elasticity Effects

Step Bunching in Epitaxial Growth with Elasticity Effects Step Bunching in Epitaxial Growth with Elasticity Effects Tao Luo Department of Mathematics The Hong Kong University of Science and Technology joint work with Yang Xiang, Aaron Yip 05 Jan 2017 Tao Luo

More information

MHD Flow and Heat Transfer over an. Exponentially Stretching Sheet with Viscous. Dissipation and Radiation Effects

MHD Flow and Heat Transfer over an. Exponentially Stretching Sheet with Viscous. Dissipation and Radiation Effects Applied Mathematical Sciences, Vol. 7, 3, no. 4, 67-8 MHD Flow and Heat Transfer over an Exponentially Stretching Sheet with Viscous Dissipation and Radiation Effects R. N. Jat and Gopi Chand Department

More information

Wall Effects in Convective Heat Transfer from a Sphere to Power Law Fluids in Tubes

Wall Effects in Convective Heat Transfer from a Sphere to Power Law Fluids in Tubes Excerpt from the Proceedings of the COMSOL Conference 9 Boston Wall Effects in Convective Heat Transfer from a Sphere to Power Law Fluids in Tubes Daoyun Song *1, Rakesh K. Gupta 1 and Rajendra P. Chhabra

More information

Unsteady MHD Couette Flow with Heat Transfer in the Presence of Uniform Suction and Injection

Unsteady MHD Couette Flow with Heat Transfer in the Presence of Uniform Suction and Injection Mechanics and Mechanical Engineering Vol. 12, No. 2 (2008) 165 176 c Technical University of Lodz Unsteady MHD Couette Flow with Heat Transfer in the Presence of Uniform Suction and Injection Hazem A.

More information

DYNAMIC STABILITY OF NON-DILUTE FIBER SHEAR SUSPENSIONS

DYNAMIC STABILITY OF NON-DILUTE FIBER SHEAR SUSPENSIONS THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 1551-1555 1551 DYNAMIC STABILITY OF NON-DILUTE FIBER SHEAR SUSPENSIONS by Zhan-Hong WAN a*, Zhen-Jiang YOU b, and Chang-Bin WANG c a Department of Ocean

More information

Phase-field modeling of step dynamics. University of California, Irvine, CA Caesar Research Center, Friedensplatz 16, 53111, Bonn, Germany.

Phase-field modeling of step dynamics. University of California, Irvine, CA Caesar Research Center, Friedensplatz 16, 53111, Bonn, Germany. Phase-field modeling of step dynamics ABSTRACT J.S. Lowengrub 1, Zhengzheng Hu 1, S.M. Wise 1, J.S. Kim 1, A. Voigt 2 1 Dept. Mathematics, University of California, Irvine, CA 92697 2 The Crystal Growth

More information

Jacco Snoeijer PHYSICS OF FLUIDS

Jacco Snoeijer PHYSICS OF FLUIDS Jacco Snoeijer PHYSICS OF FLUIDS dynamics dynamics freezing dynamics freezing microscopics of capillarity Menu 1. surface tension: thermodynamics & microscopics 2. wetting (statics): thermodynamics & microscopics

More information

ENAS 606 : Polymer Physics

ENAS 606 : Polymer Physics ENAS 606 : Polymer Physics Professor Description Course Topics TA Prerequisite Class Office Hours Chinedum Osuji 302 Mason Lab, 432-4357, chinedum.osuji@yale.edu This course covers the static and dynamic

More information

Simulations of Polymeric Membrane Formation in 2D and 3D. Bo Zhou

Simulations of Polymeric Membrane Formation in 2D and 3D. Bo Zhou Simulations of Polymeric Membrane Formation in 2D and 3D by Bo Zhou Submitted to the Department of Materials Science and Engineering in partial fulfillment of the requirements for the degree of Doctor

More information

Chapter 2 Mass Transfer Coefficient

Chapter 2 Mass Transfer Coefficient Chapter 2 Mass Transfer Coefficient 2.1 Introduction The analysis reported in the previous chapter allows to describe the concentration profile and the mass fluxes of components in a mixture by solving

More information

Bubbles and Filaments: Stirring a Cahn Hilliard Fluid

Bubbles and Filaments: Stirring a Cahn Hilliard Fluid Bubbles and Filaments: Stirring a Cahn Hilliard Fluid Lennon Ó Náraigh and Jean-Luc Thiffeault Department of Mathematics Imperial College London APS-DFD Meeting, 21 November 2006 1 / 12 The classical Cahn

More information

3D simulations of phase separation with a liquid crystal component

3D simulations of phase separation with a liquid crystal component Trabalho apresentado no CNMAC, Gramado - RS, 2016. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics D simulations of phase separation with a liquid crystal component

More information

Lecture 2: Constitutive Relations

Lecture 2: Constitutive Relations Lecture 2: Constitutive Relations E. J. Hinch 1 Introduction This lecture discusses equations of motion for non-newtonian fluids. Any fluid must satisfy conservation of momentum ρ Du = p + σ + ρg (1) Dt

More information

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017 Transient Heat Transfer Experiment ME 331 Introduction to Heat Transfer June 1 st, 2017 Abstract The lumped capacitance assumption for transient conduction was tested for three heated spheres; a gold plated

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Biological Process Engineering An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems

Biological Process Engineering An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems Biological Process Engineering An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems Arthur T. Johnson, PhD, PE Biological Resources Engineering Department

More information

Module 3: "Thin Film Hydrodynamics" Lecture 11: "" The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces

Module 3: Thin Film Hydrodynamics Lecture 11:  The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces Order of Magnitude Analysis file:///e /courses/colloid_interface_science/lecture11/11_1.htm[6/16/2012 1:39:56 PM]

More information

The Effect of Suction and Injection on the Unsteady Flow Between two Parallel Plates with Variable Properties

The Effect of Suction and Injection on the Unsteady Flow Between two Parallel Plates with Variable Properties Tamkang Journal of Science and Engineering, Vol. 8, No 1, pp. 17 (005) 17 The Effect of Suction and Injection on the Unsteady Flow Between two Parallel Plates with Variable Properties Hazem Ali Attia Department

More information

Study of Block Copolymer Lithography using SCFT: New Patterns and Methodology

Study of Block Copolymer Lithography using SCFT: New Patterns and Methodology Study of Block Copolymer Lithography using SCFT: New Patterns and Methodology Su-Mi Hur Glenn Fredrickson Complex Fluids Design Consortium Annual Meeting Monday, February 2, 2009 Materials Research Laboratory

More information

A New Approach for the Numerical Solution of Diffusion Equations with Variable and Degenerate Mobility

A New Approach for the Numerical Solution of Diffusion Equations with Variable and Degenerate Mobility A New Approach for the Numerical Solution of Diffusion Equations with Variable and Degenerate Mobility Hector D. Ceniceros Department of Mathematics, University of California Santa Barbara, CA 93106 Carlos

More information

Basic Principles of Membrane Technolog

Basic Principles of Membrane Technolog Basic Principles of Membrane Technolog by Marcel Mulder Center for Membrane Science and Technology, University oftwente, Enschede, The Netherlands ff KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON

More information

Finite Difference Solution of the Heat Equation

Finite Difference Solution of the Heat Equation Finite Difference Solution of the Heat Equation Adam Powell 22.091 March 13 15, 2002 In example 4.3 (p. 10) of his lecture notes for March 11, Rodolfo Rosales gives the constant-density heat equation as:

More information

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature Chapter 1 Continuum mechanics review We will assume some familiarity with continuum mechanics as discussed in the context of an introductory geodynamics course; a good reference for such problems is Turcotte

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

High-Resolution Implementation of Self-Consistent Field Theory

High-Resolution Implementation of Self-Consistent Field Theory High-Resolution Implementation of Self-Consistent Field Theory Eric W. Cochran Chemical and Biological Engineering Iowa State University Carlos Garcia-Cervera Department of Mathematics University of California

More information

Effect of Anisotropic Permeability on Band Growth

Effect of Anisotropic Permeability on Band Growth Effect of Anisotropic Permeability on Band Growth Jesse Taylor-West October 7, 24 Introduction The mechanics of partially molten regions of the mantle are not well understood- in part due to the inaccessibility

More information

Last update: 15 Oct 2007

Last update: 15 Oct 2007 Unsteady flow of an axisymmetric annular film under gravity HOUSIADAS K, TSAMOPOULOS J -- PHYSICS OF FLUIDS --10 (10)2500-2516 1998 Yang XT, Xu ZL, Wei YM Two-dimensional simulation of hollow fiber membrane

More information

Absorption of gas by a falling liquid film

Absorption of gas by a falling liquid film Absorption of gas by a falling liquid film Christoph Albert Dieter Bothe Mathematical Modeling and Analysis Center of Smart Interfaces/ IRTG 1529 Darmstadt University of Technology 4th Japanese-German

More information

Fluctuating Hydrodynamics for Transport in Neutral and Charged Fluid Mixtures

Fluctuating Hydrodynamics for Transport in Neutral and Charged Fluid Mixtures Fluctuating Hydrodynamics for Transport in Neutral and Charged Fluid Mixtures Alejandro L. Garcia San Jose State University Lawrence Berkeley Nat. Lab. Hydrodynamic Fluctuations in Soft Matter Simulations

More information

Lecture 5: Diffusion Controlled Growth

Lecture 5: Diffusion Controlled Growth Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP6, Kinetics and Microstructure Modelling, H. K.. H. Bhadeshia Lecture 5: iffusion Controlled Growth Rate Controlling Processes

More information

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling Penetration of a liquid agent into a polymer Valentin Sulzer Contents 1. Introduction... 2 Background... 2 Modelling approach...

More information

Interfacial hoop stress and viscoelastic free surface flow instability. Michael D. Graham University of Wisconsin-Madison

Interfacial hoop stress and viscoelastic free surface flow instability. Michael D. Graham University of Wisconsin-Madison Interfacial hoop stress and viscoelastic free surface flow instability Michael D. Graham University of Wisconsin-Madison Free surface instabilities of viscoelastic flows Eccentric cylinders (Varela-Lopez

More information

Phase Transitions in Nonequilibrium Steady States and Power Laws and Scaling Functions of Surface Growth Processes

Phase Transitions in Nonequilibrium Steady States and Power Laws and Scaling Functions of Surface Growth Processes Phase Transitions in Nonequilibrium Steady States and Power Laws and Scaling Functions of Surface Growth Processes Term-paper for PHY563 Xianfeng Rui, UIUC Physics Abstract: Three models of surface growth

More information

THERE are several types of non-newtonian fluid models

THERE are several types of non-newtonian fluid models INTERNATIONAL JOURNAL OF MATHEMATICS AND SCIENTIFIC COMPUTING (ISSN: 221-5), VOL. 4, NO. 2, 214 74 Invariance Analysis of Williamson Model Using the Method of Satisfaction of Asymptotic Boundary Conditions

More information

Diffuse interface modeling of the morphology and rheology of immiscible polymer blends

Diffuse interface modeling of the morphology and rheology of immiscible polymer blends PHYSICS OF FLUIDS VOLUME 15, NUMBER 9 SEPTEMBER 2003 Diffuse interface modeling of the morphology and rheology of immiscible polymer blends B. J. Keestra Materials Technology, Faculty of Mechanical Engineering,

More information

Linear Transport Relations (LTR)

Linear Transport Relations (LTR) Linear Transport Relations (LTR) Much of Transport Phenomena deals with the exchange of momentum, mass, or heat between two (or many) objects. Often, the most mathematically simple way to consider how

More information

Progress Report on Phase Separation in Polymer Solutions

Progress Report on Phase Separation in Polymer Solutions PROGRESS REPORT Polymeric Porous Media Progress Report on Phase Separation in Polymer Solutions Fei Wang,* Patrick Altschuh,* Lorenz Ratke, Haodong Zhang, Michael Selzer, and Britta Nestler Polymeric porous

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface International Journal of Engineering and Technology Volume 2 No. 4, April, 2012 Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface 1 Sahin

More information

Cahn-Hilliard Phase Decomposition and

Cahn-Hilliard Phase Decomposition and Decomposition and Roy H. Stogner 1 Graham F. Carey 1 1 Computational Fluid Dynamics Lab Institute for Computational Engineering and Sciences University of Texas at Austin 9th US National Congress on Computational

More information

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai Mesoscale Simulation Methods Ronojoy Adhikari The Institute of Mathematical Sciences Chennai Outline What is mesoscale? Mesoscale statics and dynamics through coarse-graining. Coarse-grained equations

More information

Microstructural studies for rheology. Chapter 7: Microstructural studies for rheology. Separation of length scales. Micro & macro views

Microstructural studies for rheology. Chapter 7: Microstructural studies for rheology. Separation of length scales. Micro & macro views Chapter 7: Microstructural studies for rheology Microstructural studies for rheology To calculate the flow of complex fluids, need governing equations, in particular, the constitutive equation relating

More information

Rheology, Adhesion, and Debonding of Lightly Cross-linked Polymer Gels

Rheology, Adhesion, and Debonding of Lightly Cross-linked Polymer Gels Rheology, Adhesion, and Debonding of Lightly Cross-linked Polymer Gels Nicholas B. Wyatt, and Anne M. Grillet 2 Materials Science and Engineering Division 2 Engineering Sciences Division Sandia National

More information

Three-Dimensional Numerical Simulations of Viscoelastic Phase Separation: Morphological Characteristics

Three-Dimensional Numerical Simulations of Viscoelastic Phase Separation: Morphological Characteristics Macromolecules 2001, 34, 1953-1963 1953 Three-Dimensional Numerical Simulations of Viscoelastic Phase Separation: Morphological Characteristics Takeaki Araki and Hajime Tanaka* Institute of Industrial

More information

Instabilities in the Flow of Thin Liquid Films

Instabilities in the Flow of Thin Liquid Films Instabilities in the Flow of Thin Liquid Films Lou Kondic Department of Mathematical Sciences Center for Applied Mathematics and Statistics New Jersey Institute of Technology Presented at Annual Meeting

More information

Patterning Soft Materials at the Nanoscale:

Patterning Soft Materials at the Nanoscale: Lecture 9 Patterning Soft Materials at the Nanoscale: Phase-field methods Recommended reading: S.C. Glotzer and W. Paul, Annual Reviews of Materials Research 32 (401-436), 2002 and references therein (e.g.

More information

Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction Motahar Reza, Rajni Chahal, Neha Sharma Abstract This article addresses the boundary layer flow and heat

More information

Long-time behavior and different shear regimes in quenched binary mixtures

Long-time behavior and different shear regimes in quenched binary mixtures PHYSICAL REVIEW E 75, 011501 2007 Long-time behavior and different shear regimes in quenched binary mixtures G. Gonnella* Dipartimento di Fisica, Università di Bari, and INFN, Sezione di Bari, Via Amendola

More information

Dynamics of the Self-Propelled Motion of a Polymer Solvent Droplet

Dynamics of the Self-Propelled Motion of a Polymer Solvent Droplet Dynamics of the Self-Propelled Motion of a Polymer Solvent Droplet Abraham Reddy North Dakota State University Senior Project May 10, 2007 1 Introduction In this project I investigate the dynamics of the

More information

Hydrodynamics. l. mahadevan harvard university

Hydrodynamics. l. mahadevan harvard university Thermodynamics / statistical mechanics : Hydrodynamics N>>1; large number of interacting particles! Hydrodynamics : L >> l; T >> t; long wavelength, slow time - average over (some) microscopic length and

More information

THE BRITISH SOCIETY OF RHEOLOGY

THE BRITISH SOCIETY OF RHEOLOGY To cite: THE BRITISH SOCIETY OF RHEOLOGY R J Poole (2012), The Deborah and Weissenberg numbers. The British Society of Rheology, Rheology Bulletin. 53(2) pp 32-39 1 2 The Deborah and Weissenberg numbers

More information

Modelling the Rheology of Semi-Concentrated Polymeric Composites

Modelling the Rheology of Semi-Concentrated Polymeric Composites THALES Project No 1188 Modelling the Rheology of Semi-Concentrated Polymeric Composites Research Team Evan Mitsoulis (PI), Professor, NTUA, Greece Costas Papoulias (Research Student), NTUA, Greece Souzanna

More information

Shear Flow of a Nematic Liquid Crystal near a Charged Surface

Shear Flow of a Nematic Liquid Crystal near a Charged Surface Physics of the Solid State, Vol. 45, No. 6, 00, pp. 9 96. Translated from Fizika Tverdogo Tela, Vol. 45, No. 6, 00, pp. 5 40. Original Russian Text Copyright 00 by Zakharov, Vakulenko. POLYMERS AND LIQUID

More information

Membrane processes selective hydromechanical diffusion-based porous nonporous

Membrane processes selective hydromechanical diffusion-based porous nonporous Membrane processes Separation of liquid or gaseous mixtures by mass transport through membrane (= permeation). Membrane is selective, i.e. it has different permeability for different components. Conditions

More information

Part I.

Part I. Part I bblee@unimp . Introduction to Mass Transfer and Diffusion 2. Molecular Diffusion in Gasses 3. Molecular Diffusion in Liquids Part I 4. Molecular Diffusion in Biological Solutions and Gels 5. Molecular

More information

Coarse-grained Models for Oligomer-grafted Silica Nanoparticles

Coarse-grained Models for Oligomer-grafted Silica Nanoparticles Modeling So+ Ma-er: Linking Mul3ple Length and Time Scales KITP Conference, Santa Barbara, June 4-8, 2012 Coarse-grained Models for Oligomer-grafted Silica Nanoparticles Bingbing Hong Alexandros Chremos

More information

Coupled flow-polymer dynamics via statistical field theory: modeling and computation

Coupled flow-polymer dynamics via statistical field theory: modeling and computation Coupled flow-polymer dynamics via statistical field theory: modeling and computation Hector D. Ceniceros 1 Glenn H. Fredrickson 2 George O. Mohler 3, Abstract Field-theoretic models, which replace interactions

More information

FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES

FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES Proceedings of the International Conference on Mechanical Engineering 2 (ICME2) 8-2 December 2, Dhaka, Bangladesh ICME-TH-6 FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES

More information

Sulfonated Polyethersulfone as a New Platform for Thin Film Composite Membranes

Sulfonated Polyethersulfone as a New Platform for Thin Film Composite Membranes University of Connecticut DigitalCommons@UConn Master's Theses University of Connecticut Graduate School 5-11-2013 Sulfonated Polyethersulfone as a New Platform for Thin Film Composite Membranes Brendan

More information

Critical Phenomena under Shear Flow

Critical Phenomena under Shear Flow Critical Phenomena under Shear Flow Pavlik Lettinga, Hao Wang, Jan K.G. Dhont Close to a gas-liquid critical point, effective interactions between particles become very long ranged, and the dynamics of

More information

COMPLEX FLOW OF NANOCONFINED POLYMERS

COMPLEX FLOW OF NANOCONFINED POLYMERS COMPLEX FLOW OF NANOCONFINED POLYMERS Connie B. Roth, Chris A. Murray and John R. Dutcher Department of Physics University of Guelph Guelph, Ontario, Canada N1G 2W1 OUTLINE instabilities in freely-standing

More information

Assessment of thickness-dependent gas permeability of polymer membranes

Assessment of thickness-dependent gas permeability of polymer membranes Indian Journal of Chemical Technology Vol. 12, January 25, pp. 88-92 Assessment of thickness-dependent gas permeability of polymer membranes M A Islam* & H Buschatz GKSS Forschungszentrum Geesthacht GmbH,

More information

Demystifying Transmission Lines: What are They? Why are They Useful?

Demystifying Transmission Lines: What are They? Why are They Useful? Demystifying Transmission Lines: What are They? Why are They Useful? Purpose of This Note This application note discusses theory and practice of transmission lines. It outlines the necessity of transmission

More information

Chemical Engineering - CHEN

Chemical Engineering - CHEN Chemical Engineering - CHEN 1 Chemical Engineering - CHEN Courses CHEN 2100 PRINCIPLES OF CHEMICAL ENGINEERING (4) LEC. 3. LAB. 3. Pr. (CHEM 1110 or CHEM 1117 or CHEM 1030) and (MATH 1610 or MATH 1613

More information

Phase-separation dynamics of a ternary mixture coupled with reversible chemical reaction

Phase-separation dynamics of a ternary mixture coupled with reversible chemical reaction JOURNAL OF CHEMICAL PHYSICS VOLUME 6, NUMBER 4 JANUARY 00 Phase-separation dynamics of a ternary mixture coupled with reversible chemical reaction Chaohui Tong and Yuliang Yang a) Department of Macromolecular

More information

Effect of Hall current on the velocity and temperature distributions of Couette flow with variable properties and uniform suction and injection

Effect of Hall current on the velocity and temperature distributions of Couette flow with variable properties and uniform suction and injection Volume 28, N. 2, pp. 195 212, 29 Copyright 29 SBMAC ISSN 11-825 www.scielo.br/cam Effect of Hall current on the velocity and temperature distributions of Couette flow with variable properties and uniform

More information

Solution of Partial Differential Equations

Solution of Partial Differential Equations Solution of Partial Differential Equations Introduction and Problem Statement Combination of Variables R. Shankar Subramanian We encounter partial differential equations routinely in transport phenomena.

More information

Mobility of Power-law and Carreau Fluids through Fibrous Media

Mobility of Power-law and Carreau Fluids through Fibrous Media Mobility of Power-law and Carreau Fluids through Fibrous Media Setareh Shahsavari, Gareth H. McKinley Department of Mechanical Engineering, Massachusetts Institute of Technology September 3, 05 Abstract

More information

Modeling the Dynamic Propagation of Shear Bands in Bulk Metallic Glasses

Modeling the Dynamic Propagation of Shear Bands in Bulk Metallic Glasses Modeling the Dynamic Propagation of Shear Bands in Bulk Metallic Glasses B.J. Edwards, K. Feigl, M.L. Morrison*, B. Yang*, P.K. Liaw*, and R.A. Buchanan* Dept. of Chemical Engineering, The University of

More information

Dan s Morris s Notes on Stable Fluids (Jos Stam, SIGGRAPH 1999)

Dan s Morris s Notes on Stable Fluids (Jos Stam, SIGGRAPH 1999) Dan s Morris s Notes on Stable Fluids (Jos Stam, SIGGRAPH 1999) This is intended to be a detailed by fairly-low-math explanation of Stam s Stable Fluids, one of the key papers in a recent series of advances

More information

Numerical Analysis of Laminar flow of Viscous Fluid Between Two Porous Bounding walls

Numerical Analysis of Laminar flow of Viscous Fluid Between Two Porous Bounding walls Numerical Analysis of Laminar flow of Viscous Fluid Between Two Porous Bounding walls Ramesh Yadav Department of Mathematics Babu Banarasi Das National Institute of Technology & Management Lucknow Uttar

More information

Dynamics of wrinkle growth and coarsening in stressed thin films

Dynamics of wrinkle growth and coarsening in stressed thin films Dynamics of wrinkle growth and coarsening in stressed thin films Rui Huang and Se Hyuk Im Department of Aerospace Engineering & Engineering Mechanics, University of Texas, Austin, Texas 78712, USA Received

More information

Introduction to Heat and Mass Transfer. Week 9

Introduction to Heat and Mass Transfer. Week 9 Introduction to Heat and Mass Transfer Week 9 補充! Multidimensional Effects Transient problems with heat transfer in two or three dimensions can be considered using the solutions obtained for one dimensional

More information

A Fluctuating Immersed Boundary Method for Brownian Suspensions of Rigid Particles

A Fluctuating Immersed Boundary Method for Brownian Suspensions of Rigid Particles A Fluctuating Immersed Boundary Method for Brownian Suspensions of Rigid Particles Aleksandar Donev Courant Institute, New York University APS DFD Meeting San Francisco, CA Nov 23rd 2014 A. Donev (CIMS)

More information

Riyadh 11451, Saudi Arabia. ( a b,c Abstract

Riyadh 11451, Saudi Arabia. ( a b,c Abstract Effects of internal heat generation, thermal radiation, and buoyancy force on boundary layer over a vertical plate with a convective boundary condition a Olanrewaju, P. O., a Gbadeyan, J.A. and b,c Hayat

More information