Modeling the Dynamic Propagation of Shear Bands in Bulk Metallic Glasses

Size: px
Start display at page:

Download "Modeling the Dynamic Propagation of Shear Bands in Bulk Metallic Glasses"

Transcription

1 Modeling the Dynamic Propagation of Shear Bands in Bulk Metallic Glasses B.J. Edwards, K. Feigl, M.L. Morrison*, B. Yang*, P.K. Liaw*, and R.A. Buchanan* Dept. of Chemical Engineering, The University of Tennessee, Knoxville, TN Dept. of Mathematical Sciences, Michigan Tech. University, Houghton, MI *Dept. of Materials Science and Engineering, The University of Tennessee, Knoxville, TN Keywords: shear bands, micromechanical modeling, bulk amorphous materials, finite element analysis, tension test Abstract: A model is developed for quantifying shear-band propagation in bulk metallic glasses. This model is written in terms of the stress, temperature, and band propagation speed. The model quantifies the shear-band length, width, and speed, as well as the direction of propagation and the magnitude of displacement across the band. Corresponding author: B.J. Edwards, bjedwards@chem.engr.utk.edu (865)

2 The formation of shear bands in materials under an applied stress has been studied extensively over the past two decades; however, truly dynamic models of the propagation of these bands are still in the process of being developed. Recent efforts have made remarkable strides toward understanding this phenomenon, but continuum models that can describe the essential physics of shear band propagation are still largely unavailable. In the present work, a macroscopic model is presented for describing the propagation and dissipation of shear bands in bulk metallic glasses (BMGs). This model is written in terms of three relevant variable fields, the stress tensor, σ (Pa), the absolute temperature, T (K), and the flux (propagation speed) of the free volume, φ (m/s), as well as experimentally determined parameters, such as the mass density, heat capacity, conductivity, etc. Finite-element (FE) calculations of the resulting model equations allow the estimation of the characteristic features of the shear band, such as the width, length, and speed of propagation, as well as the temperature, stress, and displacement profiles along the band length. In a recent article [1], the evolution of shear bands in a Zr-based BMG was observed in-situ during tensile loading via thermographic imaging with a high-speed infrared (IR) camera. In these experiments [1], Zr-based BMG Zr 52.5 Cu 17.9 Ni 14.6 Al 10.0 Ti 5.0 samples were subjected to tensile loading in a load-control mode with a loading rate of 44.5 N/s. An IR camera recorded thermographic images of the sample surface at a frame rate of 725 Hz, which amounted to one camera frame every s. After a linear stress-strain regime at low loads (with Young s modulus, E 0, of about 100 GPa [2,3]), plastic deformation began and the onset of shear-band generation occurred. The heat generated during the shear deformation along the band was measured 2

3 using the IR camera. The experiment was continued to the ultimate sample failure, and up to this point, shear bands continually originated, propagated, and arrested. The IR camera measured the thermal trace of the shear bands after propagation had been arrested. It is important to realize that the thermal trace of the shear band can be significantly longer and wider than the shear band itself. It is apparent that the propagation velocity of the shear bands is very fast relative to the IR camera frame rate. Since the IR camera rate records images at intervals of s, very few, if any, shear bands were actually captured during propagation; most images were taken of shear bands at their full lengths after the propagation had been arrested. Although the width of a typical shear band in a BMG is estimated at about nm, the width of the thermal trace left behind by the band decreases from about 0.4 mm at the initiation site to a smaller value at the shear-band tip. The temperature decrease along the length of the thermal trace is roughly 2 K [1]. The temperature near the initiation site of a shear band is estimated to be on the order of 800 K [4]; however, this is confined to a region of width on the order of the 50 nm. According to scanning-electron microscopy images of the sample taken after the completion of the experiment, all shear bands observed had roughly the same characteristics [1]. Each band propagated in one of two directions, at an angle of either 56 or 124 taken counterclockwise relative to the long axis of the sample, and the width was roughly 30 nm. Also, the deformation of transverse planes across the shear band decreased along the band length from the origination site to the tip. In the previous paper [1], a free-volume exhaustion mechanism on the atomiclength scale was proposed to explain the shear-band evolution [4]. When a shear band 3

4 initiates, a large amount of free volume is created at the origination site by the localized strain and temperature profiles. As the shear band propagates, the free volume in the plastic deformation regime will be swept along with the shear band tip, until the local strain and temperature profiles can no longer produce enough of a free-volume increase to allow further propagation. Thus, the band arrests as the available free volume exhausts itself due to decreasing levels of strain and temperature along the length of the band. In this letter, a continuum model is presented for describing quantitatively the macroscopic dynamics of the shear-band propagation and arrest. This model was developed using the principles of non-equilibrium thermodynamics, as represented through a mathematical framework [5,6]. This framework allows one to derive coupled evolution equations (for a set of macroscopic variables), which are guaranteed to satisfy the laws of thermodynamics. Therefore, very complicated interactions occurring among different physical phenomena can be described in a consistent fashion. As mentioned above, the variable set used in this formulation is composed of σ, T, and φ, each representing a function of both space and time. The coupled evolution equations for these variables were derived as described above, and found to be σ σ κ σ κ + 1 σ = η κ t λ T ( + κ ) T T : :, (1) T T ρcˆ V = σ : κ + ( k T ) + ρ Q ( Λ φt ), (2) t φ Q = φ + Λ T t λ φ. (3) The first equation represents the evolution in space and time of the stress distribution within the sample. The form of this equation is that of the classical Upper- 4

5 Convected Maxwell Model of viscoelasticity [5]. In the absence of shear-band formation, the stress distribution can be determined from the experimental stress-strain curve. In the experiment under investigation herein [1], the stress evolution was 11 = t quantified by the equation σ ( ) + along the long axis of the sample., where the 1-direction lies T In Eq. (1), κ represents the velocity gradient tensor. In the absence of shearband formation, the imposed velocity gradient is a uniaxial extensional field. The elongational strain rate, ε&, follows also from the experimental stress-strain curve [1]: it takes the value s -1 for t t [0,28], and follows the equation ε& = ( ) e for t (28,37]. (Note that the onset of the plastic deformation regime occurs at 28 s.) The viscosity is related to λ (s) through the shear modulus [5], η( Pa s) = Gλ, herein taken as G = 32.3 GPa for the BMG sample used in the experiment [7]. The bulk sample viscosity at the onset of the plastic deformation regime was estimated from the experiment as on the order of Pa s at ambient temperature [1]. This parameter is 11 represented by an Arhennius temperature dependence: this function is taken as η = 10 Pa s for T T g and > = ( ) exp( 69 T ) η T g for T g T [8], where T = 675 K [8-10]. Equation (2) is the evolution equation for the temperature field. The first three terms in this expression comprise the standard temperature equation in fluid and solid continuum mechanics. The first term on the right hand-side (RHS) is a thermoelastic coupling between temperature and stress, and the second term on the RHS accounts for heat conduction. The additional fourth term in Eq. (2) quantifies the degree of coupling occurring between the temperature evolution and the shear-band propagation. This term represents the effect of the flux of free volume on the temperature distribution within the g 5

6 sample. A similar coupling term appears in Eq. (3). Of the parameters appearing in this equation, the mass density, ρ = g/cm 3 [3,7,10], the specific heat, C ˆ = 24 J/(g-atom K) [96], and the thermal conductivity, k = 4 W/(m K) [3], are all taken as constants. Q is a dimensionless parameter arising from the definition of the free energy of the material; herein, it is assigned the value of unity so that it drops out of the analysis. The last parameter, Λ (m 2 /s 2 K), is an anisotropic matrix that quantifies the extent of coupling between the free-volume propagation and temperature evolution. In general, the elements of this matrix are functions of T, φ, and the invariants of the stress tensor; however, at present, these elements are taken as linear functions of the applied load. The final expression, Eq. (3), describes the evolution of the shear band in terms of its speed of propagation, φ. The RHS describes the dissipative dynamics of the shearband propagation. The first term on the RHS represents the relaxation of the driving force for the shear-band propagation. This rate of relaxation is governed by the V relaxation time, λ Q (s). It is, in general, a function of temperature, but will be taken φ as a constant herein. The second term on the RHS represents the coupled effect that the temperature distribution has on the flux of free volume within the sample. Initial indications of the model behavior were obtained computationally. Simulations were performed using the 2-d version of Eqs. (1)-(3) on a rectangular grid of sample dimensions. The FE method was used for the spatial discretization, and a Runge- Kutta method was used for the temporal discretization. The simulated experiment begins at the time t = 0. The temperature is assumed uniform throughout the sample domain at 292 K at t = 0. For t [0,28], the deformation 6

7 is elastic, and no shear banding is observed. Boundary conditions on the stress are provided from the known applied load. For t (28,37], shear bands initiate, propagate, and arrest, starting from the edge of the sample. At the macroscopic level, shear band initiation must be implemented directly since there is no description of microstructural defects built into the model. Here, for a shear band initiating at time t (28,37], a temperature spike, T, was 0 imposed in a nm 2 region near the right sample edge. As already mentioned, T 0 should be on the gross order of 1,000 K. For t > t, Eqs. (1)-(3) were solved and the results compared to experimental data [1]. Parameter values used are T0 = 1,000 K, 4 λ = 1.5 s, Λ = Λ = Λ = γ = 1.25 Load (GPa) m 2 /s 2 K [5], and φ ( + ( tan ) / tan 56 ) Λ 22 = γ Figures 1 and 2 compare model results to experimental data taken for a shear band that originated at a load of 1.62 GPa. IR thermographic images were taken immediately following the initiation of the shear band. The temperature decreases with distance along the shear band, and with distance perpendicular to it. The dimensions of the thermal trace left behind after the shear band has propagated and arrested can, thus, be determined as functions of time. The model captures all of the qualitative features of the data, and provides reasonable quantitative fits as well. The magnitude of φ is graphed in Figure 3 as a function of the distance along the shear band at various times. The shear band accelerates rapidly at first, obtaining its maximum velocity soon after initiation at a short distance from the point of origin. From this point in time, the maximum velocity relaxes as its location in space is translated 7

8 along the length of the shear band. Simultaneously with the above process, the maximum temperature is pulled along the length of the shear band, thus distributing the applied temperature increase away from the origination site and along the full length of the band. Intense stress softening occurs in the region of the shear band tip. Note from Figure 3 that the shear band propagates and arrests well within the time span of one camera frame. Thus, only its thermal trace is left behind for subsequent camera frames to capture. The length of the shear band as estimated from Figure 3 is roughly 0.35 mm, which is much less that the length of the thermal trace evident in Figure 1. By measuring the distance perpendicular to the band (at a specified location along it) for which the maximum temperature (with respect to time) is above T, an estimate can be made of the width of the shear band. For the model parameters specified above, the width of the shear band is in the range of nm at the initiation site, and this value decreases g moving away from this location. The width of φ perpendicular to the band might also be used to estimate the band width. Figure 4 illustrates that the model predicts an approximately linear increase in the length of the shear bands with the applied load, until very near the final fracture point of the experiment for temperatures in the range of 800-1,200 K. Near this value of the load, the shear-band length begins to increase dramatically; this occurrence is due to two factors. First, the shear band length calculated from the solution of Eqs. (1)-(3) increases faster than linearly at higher loads. Second, the thermoelastic term on the RHS of Eq. (2) starts to influence the system significantly at higher loads, essentially acting as a heat source in the evolution equation for the temperature; the thin, continuous line in Figure 4 shows the effect of removing the thermoelastic contribution. Note that varying T for a 0 8

9 given value of the applied load also affects the shear-band length, possibly accounting for the scatter in the experimental data: the various shear-band-activation events occur at different initial temperatures. However, the range of lengths calculated from the model for the temperature range of 800 1,000 K is actually fairly narrow: as T increases, the propagation speed increases as well. Consequently, the driving force behind the shearband propagation dissipates quicker as well, thus limiting the potential size increase of the shear band. Figure 5 displays a plot of the displacement across the shear band as measured experimentally using SEM, and as predicted from the model. Displacement is calculated with the model by integrating the φ y element with respect to time at various points along the length of the band. This results in a virtual translation, which one could identify with the transverse displacement perpendicular to the band. According to Figure 5, most of the displacement occurs during the first 75% of the band length. Afterward, the displacement drops dramatically as the band tip is approached. Interestingly, the model predicts that a negative displacement always occurs for bands oriented at 56, and a positive displacement always occurs for bands oriented at References [1] Morrison ML, Yang B, Liu CT, Liaw PK, Buchanan RA, Carmichael CA, Leon RV. Phys Rev Lett, submitted for publication. [2] Bian Z, He G, Chen GL. Scripta Mater 2000;43:1003. [3] Aydmer CC, Üstündag E, Hanan JC. Metall Mater Trans 2001;32A:2709. [4] Steif PS, Spaepen F, Hutchinson JW. Acta Metall 1982;30:447. 9

10 [5] Beris AN, Edwards BJ. Thermodynamics of Flowing Systems. Oxford University Press: New York; [6] Grmela M, Öttinger HC. Phys Rev E 1997;56:6620. [7] Bian Z, Pan MX, Zhang Y, Wang WH. Appl Phys Lett 2002;81:4739. [8] Mukherjee S, Schroers J, Zhou Z, Johnson WL, Rhim W-K. Acta Mater 2004;52:3689. [9] Glade SC, Busch R, Lee DS, Johnson WL, Wunderlich RK, Fecht HJ. J Appl Phys 2000;87:7242. [10] Mattern N, Kühn U, Hermann H, Roth S, Vinzelberg H, Eckert J. Mat Sci Eng A 2004;375:351. Figures Figure 1: Temperature relative to ambient versus distance along the shear band from the point of initiation. Results are displayed at three camera frames after shear-band propagation. Figure 2: Temperature relative to ambient versus distance perpendicular to the shear band for the same case as Figure 1. Figure 3: The magnitude of φ versus distance along the shear band from the point of origin at various times. Figure 4: Shear-band length versus applied load for three values of initial temperature. Figure 5: Displacement at various locations along the shear band. 10

11 11

12 Figure 1, Edwards et al. 12

13 Figure 2, Edwards et al. 13

14 Figure 3, Edwards et al. 14

15 Figure 4, Edwards et al. 15

16 Figure 5, Edwards et al. 16

STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS

STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS Chapter 3 STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS We report the strong dependence of elastic properties on configurational changes in a Cu-Zr binary

More information

Chapter 4. The Effect of Elastic Softening and Cooperativity on the Fragility of

Chapter 4. The Effect of Elastic Softening and Cooperativity on the Fragility of Chapter 4 The Effect of Elastic Softening and Cooperativity on the Fragility of Glass-Forming Metallic Liquids Key words: Amorphous metals, Shear transformation zones, Ultrasonic measurement, Compression

More information

Diameter- and Loading Mode Effects of Modulus in ZnO Nanowires

Diameter- and Loading Mode Effects of Modulus in ZnO Nanowires Diameter- and Loading Mode Effects of Modulus in ZnO Nanowires In Situ Measurements & Theoretical Understanding Mo-rigen H, CQ Chen, Y Shi, YS Zhang, W Zhou, JW Chen, YJ Yan, J Zhu* Beijing National Center

More information

IAP 2006: From nano to macro: Introduction to atomistic modeling techniques and application in a case study of modeling fracture of copper (1.

IAP 2006: From nano to macro: Introduction to atomistic modeling techniques and application in a case study of modeling fracture of copper (1. IAP 2006: From nano to macro: Introduction to atomistic modeling techniques and application in a case study of modeling fracture of copper (1.978 PDF) http://web.mit.edu/mbuehler/www/teaching/iap2006/intro.htm

More information

20. Rheology & Linear Elasticity

20. Rheology & Linear Elasticity I Main Topics A Rheology: Macroscopic deformation behavior B Linear elasticity for homogeneous isotropic materials 10/29/18 GG303 1 Viscous (fluid) Behavior http://manoa.hawaii.edu/graduate/content/slide-lava

More information

IOP Conference Series: Materials Science and Engineering. Related content PAPER OPEN ACCESS

IOP Conference Series: Materials Science and Engineering. Related content PAPER OPEN ACCESS IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Distributions of energy storage rate and microstructural evolution in the area of plastic strain localization during uniaxial

More information

Prediction of Elastic Constants on 3D Four-directional Braided

Prediction of Elastic Constants on 3D Four-directional Braided Prediction of Elastic Constants on 3D Four-directional Braided Composites Prediction of Elastic Constants on 3D Four-directional Braided Composites Liang Dao Zhou 1,2,* and Zhuo Zhuang 1 1 School of Aerospace,

More information

Discrete Element Modelling of a Reinforced Concrete Structure

Discrete Element Modelling of a Reinforced Concrete Structure Discrete Element Modelling of a Reinforced Concrete Structure S. Hentz, L. Daudeville, F.-V. Donzé Laboratoire Sols, Solides, Structures, Domaine Universitaire, BP 38041 Grenoble Cedex 9 France sebastian.hentz@inpg.fr

More information

A rate-dependent Hosford-Coulomb model for predicting ductile fracture at high strain rates

A rate-dependent Hosford-Coulomb model for predicting ductile fracture at high strain rates EPJ Web of Conferences 94, 01080 (2015) DOI: 10.1051/epjconf/20159401080 c Owned by the authors, published by EDP Sciences, 2015 A rate-dependent Hosford-Coulomb model for predicting ductile fracture at

More information

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS 1 MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS Version 2011-01-14 Stress tensor Definition of traction vector (1) Cauchy theorem (2) Equilibrium (3) Invariants (4) (5) (6) or, written in terms of principal

More information

For an imposed stress history consisting of a rapidly applied step-function jump in

For an imposed stress history consisting of a rapidly applied step-function jump in Problem 2 (20 points) MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 0239 2.002 MECHANICS AND MATERIALS II SOLUTION for QUIZ NO. October 5, 2003 For

More information

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile

More information

Molecular Dynamics Simulation of Fracture of Graphene

Molecular Dynamics Simulation of Fracture of Graphene Molecular Dynamics Simulation of Fracture of Graphene Dewapriya M. A. N. 1, Rajapakse R. K. N. D. 1,*, Srikantha Phani A. 2 1 School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada

More information

Flow of Glasses. Peter Schall University of Amsterdam

Flow of Glasses. Peter Schall University of Amsterdam Flow of Glasses Peter Schall University of Amsterdam Liquid or Solid? Liquid or Solid? Example: Pitch Solid! 1 day 1 year Menkind 10-2 10 0 10 2 10 4 10 6 10 8 10 10 10 12 10 14 sec Time scale Liquid!

More information

MHA042 - Material mechanics: Duggafrågor

MHA042 - Material mechanics: Duggafrågor MHA042 - Material mechanics: Duggafrågor 1) For a static uniaxial bar problem at isothermal (Θ const.) conditions, state principle of energy conservation (first law of thermodynamics). On the basis of

More information

CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS

CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS Concepts of Stress and Strain 6.1 Using mechanics of materials principles (i.e., equations of mechanical equilibrium applied to a free-body diagram),

More information

1 Static Plastic Behaviour of Beams

1 Static Plastic Behaviour of Beams 1 Static Plastic Behaviour of Beams 1.1 Introduction Many ductile materials which are used in engineering practice have a considerable reserve capacity beyond the initial yield condition. The uniaxial

More information

Continuum Mechanics and Theory of Materials

Continuum Mechanics and Theory of Materials Peter Haupt Continuum Mechanics and Theory of Materials Translated from German by Joan A. Kurth Second Edition With 91 Figures, Springer Contents Introduction 1 1 Kinematics 7 1. 1 Material Bodies / 7

More information

The science of elasticity

The science of elasticity The science of elasticity In 1676 Hooke realized that 1.Every kind of solid changes shape when a mechanical force acts on it. 2.It is this change of shape which enables the solid to supply the reaction

More information

Lecture 8: Tissue Mechanics

Lecture 8: Tissue Mechanics Computational Biology Group (CoBi), D-BSSE, ETHZ Lecture 8: Tissue Mechanics Prof Dagmar Iber, PhD DPhil MSc Computational Biology 2015/16 7. Mai 2016 2 / 57 Contents 1 Introduction to Elastic Materials

More information

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4 DOI: /v

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4 DOI: /v A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 57 2012 Issue 4 DOI: 10.2478/v10172-012-0124-2 M. MAJ, W. OLIFERUK, ANALYSIS OF PLASTIC STRAIN LOCALIZATION ON THE BASIS OF STRAIN

More information

Module 7: Micromechanics Lecture 34: Self Consistent, Mori -Tanaka and Halpin -Tsai Models. Introduction. The Lecture Contains. Self Consistent Method

Module 7: Micromechanics Lecture 34: Self Consistent, Mori -Tanaka and Halpin -Tsai Models. Introduction. The Lecture Contains. Self Consistent Method Introduction In this lecture we will introduce some more micromechanical methods to predict the effective properties of the composite. Here we will introduce expressions for the effective properties without

More information

Multi-mode revisited

Multi-mode revisited Multi-mode revisited Testing the application of shift factors S.J.M Hellenbrand 515217 MT 7.29 Coaches: Ir. L.C.A. van Breemen Dr. Ir. L.E. Govaert 2-7- 7 Contents Contents 1 Introduction 2 I Polymers

More information

Intensity (a.u.) Intensity (a.u.) Raman Shift (cm -1 ) Oxygen plasma. 6 cm. 9 cm. 1mm. Single-layer graphene sheet. 10mm. 14 cm

Intensity (a.u.) Intensity (a.u.) Raman Shift (cm -1 ) Oxygen plasma. 6 cm. 9 cm. 1mm. Single-layer graphene sheet. 10mm. 14 cm Intensity (a.u.) Intensity (a.u.) a Oxygen plasma b 6 cm 1mm 10mm Single-layer graphene sheet 14 cm 9 cm Flipped Si/SiO 2 Patterned chip Plasma-cleaned glass slides c d After 1 sec normal Oxygen plasma

More information

Stress-Strain Behavior

Stress-Strain Behavior Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

More information

Evaluation of in-plane orthotropic elastic constants of paper and paperboard

Evaluation of in-plane orthotropic elastic constants of paper and paperboard Evaluation of in-plane orthotropic elastic constants of paper and paperboard T. Yokoyama and K. Nakai Department of Mechanical Engineering, Okayama University of Science - Ridai-cho, Okayama 7-5, Japan

More information

Engineering Solid Mechanics

Engineering Solid Mechanics }} Engineering Solid Mechanics 1 (2013) 1-8 Contents lists available at GrowingScience Engineering Solid Mechanics homepage: www.growingscience.com/esm Impact damage simulation in elastic and viscoelastic

More information

Multiscale modeling of failure in ABS materials

Multiscale modeling of failure in ABS materials Institute of Mechanics Multiscale modeling of failure in ABS materials Martin Helbig, Thomas Seelig 15. International Conference on Deformation, Yield and Fracture of Polymers Kerkrade, April 2012 Institute

More information

Identification of the plastic zone using digital image correlation

Identification of the plastic zone using digital image correlation M. Rossi et alii, Frattura ed Integrità Strutturale, 3 (4) 55-557; DOI:.3/IGF-ESIS.3.66 Focussed on: Fracture and Structural Integrity related Issues Identification of the plastic zone using digital image

More information

NUMERICAL SIMULATION OF THE INELASTIC SEISMIC RESPONSE OF RC STRUCTURES WITH ENERGY DISSIPATORS

NUMERICAL SIMULATION OF THE INELASTIC SEISMIC RESPONSE OF RC STRUCTURES WITH ENERGY DISSIPATORS NUMERICAL SIMULATION OF THE INELASTIC SEISMIC RESPONSE OF RC STRUCTURES WITH ENERGY DISSIPATORS ABSTRACT : P Mata1, AH Barbat1, S Oller1, R Boroschek2 1 Technical University of Catalonia, Civil Engineering

More information

1.050 Engineering Mechanics. Lecture 22: Isotropic elasticity

1.050 Engineering Mechanics. Lecture 22: Isotropic elasticity 1.050 Engineering Mechanics Lecture 22: Isotropic elasticity 1.050 Content overview I. Dimensional analysis 1. On monsters, mice and mushrooms 2. Similarity relations: Important engineering tools II. Stresses

More information

An orthotropic damage model for crash simulation of composites

An orthotropic damage model for crash simulation of composites High Performance Structures and Materials III 511 An orthotropic damage model for crash simulation of composites W. Wang 1, F. H. M. Swartjes 1 & M. D. Gan 1 BU Automotive Centre of Lightweight Structures

More information

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus Case study 2 In field of Physics, it explains how an object deforms under an applied force Real rigid bodies are elastic we can

More information

Theoretical approach to the Poisson s ratio behaviour during structural changes in metallic glasses. Abstract

Theoretical approach to the Poisson s ratio behaviour during structural changes in metallic glasses. Abstract Theoretical approach to the Poisson s ratio behaviour during structural changes in metallic glasses Eloi Pineda Dept. de Física i Enginyeria Nuclear, ESAB, Universitat Politècnica de Catalunya, Campus

More information

INTRODUCTION TO STRAIN

INTRODUCTION TO STRAIN SIMPLE STRAIN INTRODUCTION TO STRAIN In general terms, Strain is a geometric quantity that measures the deformation of a body. There are two types of strain: normal strain: characterizes dimensional changes,

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING

MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING N. Krishna Vihari 1, P. Phani Prasanthi 1, V. Bala Krishna Murthy 2* and A. Srihari Prasad 3 1 Mech. Engg. Dept., P. V. P. Siddhartha

More information

THERMAL IMAGING FOR THE ANALYSIS OF ENERGY BALANCE

THERMAL IMAGING FOR THE ANALYSIS OF ENERGY BALANCE THERMAL MAGNG FOR THE ANALYSS OF ENERGY BALANCE DURNG CRACK PROPAGATON Yingxia Wang, S. Telenkov, L.D. Favro, P.K. Kuo and R.L. Thomas Department of Physics and nstitute for Manufacturing Research Wayne

More information

Cracked concrete structures under cyclic load

Cracked concrete structures under cyclic load Cracked concrete structures under cyclic load Fabrizio Barpi & Silvio Valente Department of Structural and Geotechnical Engineering, Politecnico di Torino, Torino, Italy ABSTRACT: The safety of cracked

More information

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina Module III - Macro-mechanics of Lamina Lecture 23 Macro-Mechanics of Lamina For better understanding of the macromechanics of lamina, the knowledge of the material properties in essential. Therefore, the

More information

THE MUTUAL EFFECTS OF SHEAR AND TRANSVERSE DAMAGE IN POLYMERIC COMPOSITES

THE MUTUAL EFFECTS OF SHEAR AND TRANSVERSE DAMAGE IN POLYMERIC COMPOSITES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS THE MUTUAL EFFECTS OF SHEAR AND TRANSVERSE DAMAGE IN POLYMERIC COMPOSITES L.V. Smith 1 *, M. Salavatian 1 1 School of Mechanical and Materials

More information

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens.

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens. a). Cohesive Failure b). Interfacial Failure c). Oscillatory Failure d). Alternating Failure Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double

More information

Stress in Flip-Chip Solder Bumps due to Package Warpage -- Matt Pharr

Stress in Flip-Chip Solder Bumps due to Package Warpage -- Matt Pharr Stress in Flip-Chip Bumps due to Package Warpage -- Matt Pharr Introduction As the size of microelectronic devices continues to decrease, interconnects in the devices are scaling down correspondingly.

More information

A phenomenological model for shear-thickening in wormlike micelle solutions

A phenomenological model for shear-thickening in wormlike micelle solutions EUROPHYSICS LETTERS 5 December 999 Europhys. Lett., 8 (6), pp. 76-7 (999) A phenomenological model for shear-thickening in wormlike micelle solutions J. L. Goveas ( ) and D. J. Pine Department of Chemical

More information

Anisotropic Damage Mechanics Modeling of Concrete under Biaxial Fatigue Loading

Anisotropic Damage Mechanics Modeling of Concrete under Biaxial Fatigue Loading Open Journal of Civil Engineering, 2015, 5, 8-16 Published Online March 2015 in SciRes. http://www.scirp.org/journal/ojce http://dx.doi.org/10.4236/ojce.2015.51002 Anisotropic Damage Mechanics Modeling

More information

Theory at a Glance (for IES, GATE, PSU)

Theory at a Glance (for IES, GATE, PSU) 1. Stress and Strain Theory at a Glance (for IES, GATE, PSU) 1.1 Stress () When a material is subjected to an external force, a resisting force is set up within the component. The internal resistance force

More information

Wave Propagation Through Soft Tissue Matter

Wave Propagation Through Soft Tissue Matter Wave Propagation Through Soft Tissue Matter Marcelo Valdez and Bala Balachandran Center for Energetic Concepts Development Department of Mechanical Engineering University of Maryland College Park, MD 20742-3035

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary material How things break under shear and tension? How does a crack propagate in three dimensions when a material is both under tension and sheared parallel to the crack front? Numerous experimental

More information

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by SEMM Mechanics PhD Preliminary Exam Spring 2014 1. Consider a two-dimensional rigid motion, whose displacement field is given by u(x) = [cos(β)x 1 + sin(β)x 2 X 1 ]e 1 + [ sin(β)x 1 + cos(β)x 2 X 2 ]e

More information

The Influence of Strain Amplitude, Temperature and Frequency on Complex Shear Moduli of Polymer Materials under Kinematic Harmonic Loading

The Influence of Strain Amplitude, Temperature and Frequency on Complex Shear Moduli of Polymer Materials under Kinematic Harmonic Loading Mechanics and Mechanical Engineering Vol. 21, No. 1 (2017) 157 170 c Lodz University of Technology The Influence of Strain Amplitude, Temperature and Frequency on Complex Shear Moduli of Polymer Materials

More information

Elastic Properties of Solid Materials. Notes based on those by James Irvine at

Elastic Properties of Solid Materials. Notes based on those by James Irvine at Elastic Properties of Solid Materials Notes based on those by James Irvine at www.antonine-education.co.uk Key Words Density, Elastic, Plastic, Stress, Strain, Young modulus We study how materials behave

More information

Mechanical properties 1 Elastic behaviour of materials

Mechanical properties 1 Elastic behaviour of materials MME131: Lecture 13 Mechanical properties 1 Elastic behaviour of materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Deformation of material under the action of a mechanical

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lectures & 3, 9/31 Aug 017 www.geosc.psu.edu/courses/geosc508 Discussion of Handin, JGR, 1969 and Chapter 1 Scholz, 00. Stress analysis and Mohr Circles Coulomb Failure

More information

Phase-Field Simulation of the Effect of Elastic Inhomogeneity on Microstructure Evolution in Ni-Based Superalloys

Phase-Field Simulation of the Effect of Elastic Inhomogeneity on Microstructure Evolution in Ni-Based Superalloys Materials Transactions, Vol. 50, No. 4 (2009) pp. 744 to 748 #2009 The Japan Institute of Metals Phase-Field Simulation of the Effect of Elastic Inhomogeneity on Microstructure Evolution in Ni-Based Superalloys

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

More information

Macroscopic theory Rock as 'elastic continuum'

Macroscopic theory Rock as 'elastic continuum' Elasticity and Seismic Waves Macroscopic theory Rock as 'elastic continuum' Elastic body is deformed in response to stress Two types of deformation: Change in volume and shape Equations of motion Wave

More information

Equilibrium. the linear momentum,, of the center of mass is constant

Equilibrium. the linear momentum,, of the center of mass is constant Equilibrium is the state of an object where: Equilibrium the linear momentum,, of the center of mass is constant Feb. 19, 2018 the angular momentum,, about the its center of mass, or any other point, is

More information

After lecture 16 you should be able to

After lecture 16 you should be able to Lecture 16: Design of paper and board packaging Advanced concepts: FEM, Fracture Mechanics After lecture 16 you should be able to describe the finite element method and its use for paper- based industry

More information

Introduction to Engineering Materials ENGR2000. Dr. Coates

Introduction to Engineering Materials ENGR2000. Dr. Coates Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed

More information

MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP

MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP Wanil Byun*, Seung Jo Kim*, Joris Wismans** *Seoul National University, Republic

More information

THE INFLUENCE OF IN-PLANE DENSITY VARIATION ON ENGINEERING PROPERTIES OF ORIENTED STRANDBOARD: A FINITE ELEMENT SIMULATION

THE INFLUENCE OF IN-PLANE DENSITY VARIATION ON ENGINEERING PROPERTIES OF ORIENTED STRANDBOARD: A FINITE ELEMENT SIMULATION Proceedings of McMat5: 5 Joint ASME/ASCE/SES Conference on Mechanics and Materials June 1-3, 5, Baton Rouge, Louisiana, USA 255 THE INFLUENCE OF IN-PLANE DENSITY VARIATION ON ENGINEERING PROPERTIES OF

More information

A FEM STUDY ON THE INFLUENCE OF THE GEOMETRIC CHARACTERISTICS OF METALLIC FILMS IRRADIATED BY NANOSECOND LASER PULSES

A FEM STUDY ON THE INFLUENCE OF THE GEOMETRIC CHARACTERISTICS OF METALLIC FILMS IRRADIATED BY NANOSECOND LASER PULSES 8 th GRACM International Congress on Computational Mechanics Volos, 12 July 15 July 2015 A FEM STUDY ON THE INFLUENCE OF THE GEOMETRIC CHARACTERISTICS OF METALLIC FILMS IRRADIATED BY NANOSECOND LASER PULSES

More information

Quiz 1. Introduction to Polymers

Quiz 1. Introduction to Polymers 100406 Quiz 1. Introduction to Polymers 1) Polymers are different than low-molecular weight oligomers. For example an oligomeric polyethylene is wax, oligomeric polystyrene is similar to naphthalene (moth

More information

Enhancing Prediction Accuracy In Sift Theory

Enhancing Prediction Accuracy In Sift Theory 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Enhancing Prediction Accuracy In Sift Theory J. Wang 1 *, W. K. Chiu 1 Defence Science and Technology Organisation, Fishermans Bend, Australia, Department

More information

Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige

Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige Chapter 6: Mechanical Properties of Metals Dr. Feras Fraige Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness

More information

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering OMAE2016 June 19-24, 2016, Busan, South Korea

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering OMAE2016 June 19-24, 2016, Busan, South Korea Proceedings of the ASME 26 35th International Conference on Ocean, Offshore and Arctic Engineering OMAE26 June 9-24, 26, Busan, South Korea OMAE26-54554 LOCAL STRAIN AND STRESS CALCULATION METHODS OF IRREGULAR

More information

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises Non-linear and time-dependent material models in Mentat & MARC Tutorial with Background and Exercises Eindhoven University of Technology Department of Mechanical Engineering Piet Schreurs July 7, 2009

More information

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS - Technical Paper - Tidarut JIRAWATTANASOMKUL *1, Dawei ZHANG *2 and Tamon UEDA *3 ABSTRACT The objective of this study is to propose a new

More information

Mechanical Properties of Silica Aerogel A Molecular Dynamics Study

Mechanical Properties of Silica Aerogel A Molecular Dynamics Study Mechanical Properties of Silica Aerogel A Molecular Dynamics Study Jincheng Lei 1), Jianying Hu 2) and *Zishun Liu 3) 1), 2) Int. Center for Applied Mechanics; State Key Laboratory for Strength and Vibration

More information

Prediction of the bilinear stress-strain curve of engineering material by nanoindentation test

Prediction of the bilinear stress-strain curve of engineering material by nanoindentation test Prediction of the bilinear stress-strain curve of engineering material by nanoindentation test T.S. Yang, T.H. Fang, C.T. Kawn, G.L. Ke, S.Y. Chang Institute of Mechanical & Electro-Mechanical Engineering,

More information

3.032 Problem Set 4 Fall 2007 Due: Start of Lecture,

3.032 Problem Set 4 Fall 2007 Due: Start of Lecture, 3.032 Problem Set 4 Fall 2007 Due: Start of Lecture, 10.19.07 1. A microelectronic sensor is to be made of conductive wires deposited on a thin Si wafer. During design considerations, it was decided that

More information

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum By F. Rouyer, S. Cohen-Addad, R. Höhler, P. Sollich, and S.M. Fielding The European

More information

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004 Elements of Polymer Structure and Viscoelasticity David M. Parks Mechanics and Materials II 2.002 February 18, 2004 Outline Elements of polymer structure Linear vs. branched; Vinyl polymers and substitutions

More information

RHEOLOGY & LINEAR ELASTICITY. B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous isotropic materials

RHEOLOGY & LINEAR ELASTICITY. B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous isotropic materials GG303 Lecture 2 0 9/4/01 1 RHEOLOGY & LINEAR ELASTICITY I II Main Topics A Rheology: Macroscopic deformation behavior B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous

More information

Modelling Localisation and Spatial Scaling of Constitutive Behaviour: a Kinematically Enriched Continuum Approach

Modelling Localisation and Spatial Scaling of Constitutive Behaviour: a Kinematically Enriched Continuum Approach Modelling Localisation and Spatial Scaling of Constitutive Behaviour: a Kinematically Enriched Continuum Approach Giang Dinh Nguyen, Chi Thanh Nguyen, Vinh Phu Nguyen School of Civil, Environmental and

More information

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like:

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like: 11/01/2017 Lecture 3 Properties of Fluids There are thermodynamic properties of fluids like: Pressure, p (N/m 2 ) or [ML -1 T -2 ], Density, ρ (kg/m 3 ) or [ML -3 ], Specific weight, γ = ρg (N/m 3 ) or

More information

Archetype-Blending Multiscale Continuum Method

Archetype-Blending Multiscale Continuum Method Archetype-Blending Multiscale Continuum Method John A. Moore Professor Wing Kam Liu Northwestern University Mechanical Engineering 3/27/2014 1 1 Outline Background and Motivation Archetype-Blending Continuum

More information

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction ARCHIVES OF ACOUSTICS 31, 4 (Supplement), 53 58 (2006) VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES J. CIEŚLIK, W. BOCHNIAK AGH University of Science and Technology Department of Robotics and Mechatronics

More information

Frictional characteristics of exfoliated and epitaxial graphene

Frictional characteristics of exfoliated and epitaxial graphene Frictional characteristics of exfoliated and epitaxial graphene Young Jun Shin a,b, Ryan Stromberg c, Rick Nay c, Han Huang d, Andrew T. S. Wee d, Hyunsoo Yang a,b,*, Charanjit S. Bhatia a a Department

More information

PHASE-FIELD SIMULATION OF DOMAIN STRUCTURE EVOLUTION IN FERROELECTRIC THIN FILMS

PHASE-FIELD SIMULATION OF DOMAIN STRUCTURE EVOLUTION IN FERROELECTRIC THIN FILMS Mat. Res. Soc. Symp. Proc. Vol. 652 2001 Materials Research Society PHASE-FIELD SIMULATION OF DOMAIN STRUCTURE EVOLUTION IN FERROELECTRIC THIN FILMS Y. L. Li, S. Y. Hu, Z. K. Liu, and L. Q. Chen Department

More information

The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties.

The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties. Objective: The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties. Introduction: Mechanical testing plays an important role

More information

A METHOD FOR CALCULATING SURFACE STRESS AND ELASTIC CONSTANTS BY MOLECULAR DYNAMICS

A METHOD FOR CALCULATING SURFACE STRESS AND ELASTIC CONSTANTS BY MOLECULAR DYNAMICS A METHOD FOR CALCULATING SURFACE STRESS AND ELASTIC CONSTANTS BY MOLECULAR DYNAMICS Satoshi Izumi Dept. of Mechanical Engineering, Univ. of Tokyo., JAPAN Shotaro Hara Dept. of Mechanical Engineering, Univ.

More information

EART162: PLANETARY INTERIORS

EART162: PLANETARY INTERIORS EART162: PLANETARY INTERIORS Francis Nimmo Last Week Global gravity variations arise due to MoI difference (J 2 ) We can also determine C, the moment of inertia, either by observation (precession) or by

More information

Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading

Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading Indian Journal of Engineering & Materials Sciences Vol. 15, October 2008, pp. 382-390 Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading K Sivaji Babu a *, K Mohana

More information

Potential-dependent dynamic fracture of nanoporous gold

Potential-dependent dynamic fracture of nanoporous gold Potential-dependent dynamic fracture of nanoporous gold Shaofeng Sun 1, Xiying Chen 1, Nilesh Badwe 1, Karl Sieradzki 1 * 1 Ira A. Fulton School of Engineering, Arizona State University, Tempe, Arizona

More information

Calculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites

Calculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites Copyright c 2007 ICCES ICCES, vol.1, no.2, pp.61-67, 2007 Calculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites K. Gordnian 1, H. Hadavinia 1, G. Simpson 1 and A.

More information

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Dynamic Mechanical Behavior MSE 383, Unit 3-3 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Scope Why DMA & TTS? DMA Dynamic Mechanical Behavior (DMA) Superposition Principles

More information

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION A - INTRODUCTION INTRODUCTION M.N.Tamin, CSMLab, UTM Course Content: A - INTRODUCTION Mechanical failure modes; Review of load and stress analysis equilibrium equations, complex stresses, stress transformation,

More information

Development and numerical implementation of an anisotropic continuum damage model for concrete

Development and numerical implementation of an anisotropic continuum damage model for concrete Development and numerical implementation of an anisotropic continuum damage model for concrete Juha Hartikainen 1, Kari Kolari 2, Reijo Kouhia 3 1 Tampere University of Technology, Department of Civil

More information

On the visco-elastic properties of open-cell polyurethane foams in uniaxial compression

On the visco-elastic properties of open-cell polyurethane foams in uniaxial compression Author manuscript, published in "6th International Congress of the Croatian Society of Mechanics, Dubrovnik : Croatia (2009)" On the visco-elastic properties of open-cell polyurethane foams in uniaxial

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction This thesis is concerned with the behaviour of polymers in flow. Both polymers in solutions and polymer melts will be discussed. The field of research that studies the flow behaviour

More information

WINTER 16 EXAMINATION

WINTER 16 EXAMINATION Model ject Code: Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written

More information

Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives

Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives Mark Oliver October 19, 2016 Adhesives and Sealants Council Fall Convention contact@veryst.com www.veryst.com Outline

More information

INFLUENCE OF A WELDED PIPE WHIP RESTRAINT ON THE CRITICAL CRACK SIZE IN A 90 BEND

INFLUENCE OF A WELDED PIPE WHIP RESTRAINT ON THE CRITICAL CRACK SIZE IN A 90 BEND 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18) Beijing, China, August 7-12, 25 SMiRT18-G8-5 INFLUENCE OF A WELDED PIPE WHIP RESTRAINT ON THE CRITICAL CRACK SIZE

More information

Chapter Two: Mechanical Properties of materials

Chapter Two: Mechanical Properties of materials Chapter Two: Mechanical Properties of materials Time : 16 Hours An important consideration in the choice of a material is the way it behave when subjected to force. The mechanical properties of a material

More information

4.MECHANICAL PROPERTIES OF MATERIALS

4.MECHANICAL PROPERTIES OF MATERIALS 4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stress-strain diagram

More information

Chapter 26 Elastic Properties of Materials

Chapter 26 Elastic Properties of Materials Chapter 26 Elastic Properties of Materials 26.1 Introduction... 1 26.2 Stress and Strain in Tension and Compression... 2 26.3 Shear Stress and Strain... 4 Example 26.1: Stretched wire... 5 26.4 Elastic

More information

Slow crack growth in polycarbonate films

Slow crack growth in polycarbonate films EUROPHYSICS LETTERS 5 July 5 Europhys. Lett., 7 (), pp. 4 48 (5) DOI:.9/epl/i5-77-3 Slow crack growth in polycarbonate films P. P. Cortet, S. Santucci, L. Vanel and S. Ciliberto Laboratoire de Physique,

More information

A hierarchy of higher order and higher grade continua Application to the plasticity and fracture of metallic foams

A hierarchy of higher order and higher grade continua Application to the plasticity and fracture of metallic foams A hierarchy of higher order and higher grade continua Application to the plasticity and fracture of metallic foams Samuel Forest Centre des Matériaux/UMR 7633 Mines Paris ParisTech /CNRS BP 87, 91003 Evry,

More information

Shock wave speed and stress-strain relation of aluminium honeycombs under dynamic compression

Shock wave speed and stress-strain relation of aluminium honeycombs under dynamic compression EPJ Web of Conferences 83, 7 (8) DYMAT 8 https://doi.org/.5/epjconf/8837 Shock wave speed and stress-strain relation of aluminium honeycombs under dynamic compression Peng Wang,*, Jun Zhang, Haiying Huang,

More information