SIMPLE METHOD FOR THE SOLUTION OF INCOMPRESSIBLE FLOWS ON NON-STAGGERED GRIDS

Size: px
Start display at page:

Download "SIMPLE METHOD FOR THE SOLUTION OF INCOMPRESSIBLE FLOWS ON NON-STAGGERED GRIDS"

Transcription

1 SIML MTHOD FOR TH SOLUTION OF INCOMRSSIBL FLOWS ON NON-STAGGRD GRIDS I. Szai - astr Mditrraa Uivrsity, Mchaical girig Dpartmt, Mrsi 10 -Trky 1. Itrdcti Thr ar sally t kids f grid arragmts sd t slv th flid fl prblms: staggrd grids ad -staggrd grids. Fr th staggrd grids, vctr variabls ad scalar variabls ar strd at th sam lcatis, hil fr th staggrd grids, vctr cmpts ad scalar variabls ar strd at diffrt lcatis, shiftd half ctrl vlm i ach crdiat dircti. Staggrd grids ar pplar bcas f thir ability t prvt chckrbard prssr i th fl slti as discssd i Chaptr 6. Hvr, prgrammig f th staggrd grid mthd is tdis sic ad v-mmtm qatis ar discrtizd at diffrt ctrl vlms shiftd i diffrt dirctis frm th mai ctrl vlms. Th prgrammig difficltis icras h dals ith crviliar r strctrd grids. As a rslt, arly all cds ritt crviliar r strctrd grids s -staggrd grid arragmt fr th slti f flid fl prblms. O th thr had -staggrd grids ar pr t prdc a fals prssr fild - chckrbard prssr if spcial prcatis is t tak. Fr this ras, i th arly 1980s ad bfr, -staggrd r rarly sd fr icmprssibl fl. Hvr, sic 1983 th staggrd grid (r cllcatd grid has b sd mr idly, aftr Rhi ad Ch (1983 prpsd a mmtm itrplati mthd t limiat th chckrbard prssr prblm. 1. Mathmatical Frmlati Th gvrig qatis fr t dimsial icmprssibl lamiar hat ad flid fl i Cartsia crdiats ith cstat prprtis ar: ctiity qati + v y = 0 (1 1

2 -mmtm qati ( ρ ( ρ ( ρ v p μ = + + μ + S t y y y v-mmtm qati ( ρ ( ρ ( ρ v v vv p v v μ = + + μ + S t y y y y rgy qati ( ρt ( ρt ( ρvt T T = k + k + ST t y y y qatis (2 (4 ca b prssd i a gral frm as: ( ( v ρφ ρ φ ρ φ φ φ = Γ + Γ + Sφ + f( p t y y y (5 hr ad v ar th vlcity cmpts, T is tmpratr ad φ is ay dpdt variabl (i.., v ad T, ad t, ρ, Γ, ad S φ ar tim, dsity, diffsi cfficit, ad src trm, rspctivly. Als f ( p = p/ fr -mmtm qati f ( p = p/ y fr y-mmtm qati Nt that fr th ctiity qati, φ = 1, Γ = 0, ad S φ = 0. Th gvrig qatis ar discrtizd by sig th fiit-vlm mthd a staggrd grid systm i hich all variabls ar strd at th ctr f th ctrl vlm (Figr 1. Itgratig q. (5 vr th ctrl vlm ith bdd cll facs,,, ad s srrdig ctr, hav ρδδy ( φ φ + ( ρφ ( ρφ Δ y+ ( ρvφ ( ρvφ Δ = s Δt Γ Γ Γ Γ s ( φ φ ( φ φw Δ y+ ( φn φ ( φ φs Δ (6 δ δ δ y δ ys + S ΔΔ y+ S φ ΔΔ y+ f( p ΔΔy c hr th sprscript rfrs t th prvis tim lvl ad Δ, Δ y, δ, δ, δy ad δ y s ar gmtric lgths as sh i Figr 1. v (2 (3 (4 2

3 Figr 1. Nstaggrd Grid Arragmt Th discrtizd ctiity qati fr icmprssibl fl is ( ρ Δy ( ρ Δ y+ ( ρv Δ ( ρvs Δ = 0 (7 Th cll fac vals φ, φ tc ar calclatd sig QUICK r ay thr high rdr schm i a dfrrd crrcti mar. Sbstittig ths vals it q. (6 ad rarragig, btai th fial discrtizd qati fr ay gral variabl φ as flls: aφ aφ awφw anφn asφs aφ b φ = (8 hr 3

4 ΓΔ y a = + ma ( ρ Δy, 0 Δ ΓΔ y aw = + ma ( ρ Δy, 0 Δ ΓΔ an = + ma ( ρv Δ, 0 Δy ΓΔ s as = + ma ( ρv Δ, 0 s Δy s ρδδ y a = Δt a = a + a + a + a + a S ΔΔ y+δf W N S ( ρ ( ρ ( ρ ( ρ Δ F = Δy Δ y+ v Δ v Δ b = S ΔΔ y+ b c dc s ( ρ ( φ φ + ma ρ Δy, 0 φ φ ( ρ y ( φ φ ( ρ y ( φ φ b = ma Δy, 0 dc ma Δ, 0 + ma Δ, 0 ( ρv ( φ φ ( ρv ( φ φ ma Δ, 0 + ma Δ, 0 ( ρv ( φ φ ( ρv ( φ φ ma Δ, 0 ma, 0 s + Δ s = ( p p Δy fr -mmtm qati φ φ = ( ps p Δ fr v-mmtm qati φ = 0 fr all thr qatis W N s s S (9 hr th trm b dc rslts frm th adpti f th dfrrd-crrcti prcdr i hich th fac vals f th idpdt variabl, φ, φ, φ, φ s ar calclatd frm a sitabl high rdr schm sch as QUICK. φ is th val f φ frm th prvis tim stp. It ca b bsrvd that th cfficits f th discrtizd - ad y-mmtm qatis ar th sam i cllcatd grid systm, prvidd that th diffsi cfficits ar th sam i ad y-dirctis. I rdr t sl d th chags f dpdt variabls i csctiv sltis, a drrlaati factr is itrdcd it th discrtizd qati as flls: α φ = φ + φ + φ + φ + φ + α φ ( a a a a b φ a ( 1 φ φ 1 W W N N S S a αφ = + a ( aφ awφw anφn asφs B φ (10 4

5 hr th sprscript -1 rfrs t th prvis itrati ad ( 1 αφ 1 B = b + a φ + a φ (11 αφ Nt that th trm b i qatis (8 ad (9 shld b rplacd by B if th qatis ar rlad. 4. Mmtm Itrplati 4.1. Mmtm itrplati fr stady-stat prblm B = b + 1 α α a [q.(11]. Fr th 1 Nt that fr th stady prblms vlcity cmpt at ds ad, q.(10 ca b ritt as α i a i i + Bp α Δy p p = (12 α i a i i + Bp α Δy p p = (13 Mimickig th frmlati f ad, ca btai fllig prssi fr th itrfac vlcity at th cll fac. α i a i i + Bp α Δy p p = (14 hr th trms th right-had sid ith sbscript shld b itrplatd i a apprpriat mar. Th itrfac vlcity at cll facs,, ad s ca b btaid similarly. I Rhi ad Ch s mmtm itrplati, th first trm ad 1 i scd trm f th q. (14 ar liarly itrplatd frm thir ctrparts i qs. (12 ad (13: a + B a + B a + B ( 1 f i i i p + i i i p + i i i p = f + a a a = f + (16 a a a ( 1 f (15 5

6 hr f + is a liar itrplati factr dfis as f = (17 2δ + Δ I rdr t hav a bttr drstadig f q. (14, sbstittig ( a B a q. (15 ad ( a + B a, ( a B a i i i p (14 ad mittig th trm a, btai i i i p + frm i i i p + frm qs. (12 ad (13 it q. ( p + f ( a α y( p p + ( p αδy p αδy p + = f ( 1 f + + Δ + ( 1 f qatis (14 ad (18 ar sstially qivalt. Hvr, q. (18 sparats th itrfacial vlcity it t parts: a liar itrplati part ad th additial. Th trm i first st f brackts f q. (18 is th arithmtic-avragd vals (liar itrplati mthd f t ighbr dal vlcitis. Th trm i bracs ca b rgardd as a crrcti trm, hich has th fcti f smthig th prssr fild, ad it is this trm that may rmv th ralistic prssr fild. qatis (14 ith (15 ad (16 r qati (18 cstitt th Rhi ad Ch s Origial Mmtm Itrplati Mthd (OMIM. Majmdar (1988 rprtd that sltis f stady-stat prblms frm Rhi ad Ch OMIM ar dpdt th drralati factr. T limiat this drrlaati factr dpdcy, a itrati algrithm as prpsd by him t calclat th cll-fac vlcity fr stady-stat prblm as flls: α a + B α Δy p p f f ( 1 α ( 1 i i i p = + ( a + hr sprscript -1 rfr t prvis itrati vals. This itrativ implmtati algrithm ca achiv a iq slti that is idpdt f drrlaati factrs Mmtm itrplati fr stady prblms Chi (1999 rprtd that, th slti sig th rigial Rhi ad Ch schm is tim stp siz dpdt. H prpsd a mdifid Rhi ad Ch schm fr a (18 (19 6

7 stady prblm as flls, hich is qit similar t Majmdar s schm fr a stady prblm: a + b α Δy p p α a i i i p 1 = α + ( 1 α + a a ( a ith a ρδ Δy = Δt (20 (21 It is t b td that bdy-frc trm is glctd fr simplicity f prstati. By a similar sbstitti prcss as th fr th Majmdar s itrplati q. (19, q. (20 ca b ritt qivaltly as ( 1 f f ( p + f ( a α Δy( p p + α Δy p + + ( 1 f ( p α Δy p = ( 1 α f ( 1 f α α ( a α ( a f f + a a (22 Accrdig t Y t al. (2002, sltis by sig this schm ar still tim stp siz dpdt, thgh th dpdc is qit small. Thy prpsd a diffrt itrplati tchiq fr th trms apparig i qati (20 hich appars t b bth dr rlaati factr ad tim stp siz idpdt. I this mthd th first trm th right-had sid f q. (20 is itrplatd as flls: a + B ( ( 1 ( + 1 f ( Sc ( 1 f ( Sc δ y ( + ( 1 ( f a b f a b i i i i i i + + Δ i i i p = a f i ai f i ai hr b 1 is dfid i q. (9. ( 1 f S + f S δ Δ y+ a p p Als, th dmiatr f th scd ad third trms i q. (20 is itrplatd as flls: (23 7

8 = f ( a + ( 1 f ( a i i i i ( 1 f S + f S δ Δ y+ a p p qati (20 cmbid ith q. (23 ad q. (24 is Y t al. s (2002 schm. Sbstittig q. (23 it q. (20 th fllig qati is btaid: (24 f ( a + ( 1 f ( a + ( f ( Sc ( 1 f ( Sc δ y f ( Sc y + Δ Δ Δ α + + ( 1 f ( Sc y Δ Δ 1 = + α Δy p p + f Δy p p + f Δy p p ( a + + α ( ( 1 α + + ( a f ( a ( 1 f ( a + + a f ( a ( 1 f ( a hr a is fd frm qati (24. It shld b td that th cll fac vlcitis fd frm th mmtm itrplati mthd ar sd t dtrmi th mass fls acrss th cll facs. Thy shld t b sd fr th cll fac val f th idpdt variabl φ i th dfrrd crrcti trm b dc i q. (9 i th cas φ stads fr r v i th - r y- mmtm qatis. Th fac vals f th idpdt variabl φ ar calclatd sig a sitabl cvcti schm, sch as UWIND r QUICK. Th SIML Algrithm Fr a gssd prssr fild p * th crrspdig fac vlcity q. (20 as * * * * i i i p 1 ( 1 α ( a ( a ( a (25 * ca b ritt sig a b y p p a α + α Δ = + + α (26 8

9 * A similar qati ca b ritt fr th fac vlcity v. N dfi th crrcti p' as th diffrc bt th crrct prssr fild p ad th gssd prssr fild p * s that * p = p + p (27 Similarly dfi vlcity crrctis ' ad v' as = + (28 * v = v + v (29 * Sbtractig q. (26 frm q. (20 givs ( ( α i a i i + bp α Δy p p = (30 As a apprimati, i SIML mthd th first trm i th abv qati is glctd givig = d p p (31 hr d α A = (32 ( a hr A = Δy is th ara f th ctrl vlm at th ast fac. Similarly, v = d p p (33 v N hr d α A = (34 v v ( a Th th crrctd vlcitis bcm ( = + d p p (35 * ( v = v + d p p (36 * v N Sbstittig th crrctd fac vlcitis sch as that giv by q.s (35ad (36 it th discrtizd ctiity qati (7 givs a p = a p + a p + a p + a p + b (37 W W S S N N hr 9

10 a = ( ρ Ad a = ( ρad a = ( ρad a = ( ρad W N S s * * * * ( ρ ( ρ ( ρ ( ρ b= A A + v A A s Aftr slvig th p' fild frm q. (37 th fac vlcitis ar crrctd sig q.'s (35 ad (36 ad th prssr fild is crrctd by sig = + α (39 * p p p p hr α p is th prssr dr-rlaati factr hich is chs t b bt 0 ad 1. Similarly th dal vlcitis ar crrctd sig ( = + d p p (40 * ( v = v + d p p (41 * v s hr d (38 αa v αva = ad d = (42 Th prssr crrctis at th cll facs i qs. (40 ad (41 ar calclatd by liar itrplati frm th dal vals as p = f p + (1 f p (43 W p = f p + (1 f p (44 p = f p + (1 f p (45 s s s S p = f p + (1 f p (46 N Bdary Cditis fr rssr Sic thr is qati fr th prssr, bdary cditis ar dd fr th prssr at th bdary pits. Th prssr vals at th bdary pits ca b calclatd by liar traplati sig th t ar-bdary d prssrs. Bdary Cditis fr rssr Crrcti qati Wh th vlcitis at th bdaris ar k, thr is d t crrct th vlcitis at th bdaris i th drivati f th prssr crrcti qati. Fr ampl if th vlcity at th st bdary is k th fr a ctrl vlm ar th st bdary: ( = + d p p (47 * 10

11 = (48 all ( v = v + d p p (49 * v N ( v = v + d p p (50 * v s s s S Sbstittig qatis (47-(50 it th discrtizd ctiity qati (7 btai th fllig prssr crrcti qati fr a ctrl vlm ar th st bdary ap = aw p W + ap + asp S + anp N + b (51 hr a = ( ρ Ad aw = 0 an = ( ρad as = ( ρad s * * * (52 b= ( ρa all ( ρ A + ( ρv A ( ρ A s Cmparig q.'s (51-(52 ith (37-(38 fr a ar bdary ctrl vlm th sam dfiiti f th cfficits as sd fr th itrir pits ca b sd fr a ar bdary ctrl vlm by sttig th crrspdig cfficit (a i this cas t zr ad sig all i th b trm. As a rslt val f prssr crrcti at th bdary ( p is ivlvd i this frmlati. Hvr, th val f th prssr crrcti is dd fr crrctig th dal vlcitis ar bdaris. Fr ampl, fr crrctig th -vlcity at a dal pit ar a st bdary, p at th st bdary is dd i accrdac ith qati (40. This val ca b btaid by liar traplati bt th t dal vals f prssr crrctis ar th bdary, that is sig p (2, j ad p (3, j. Rfrcs Chi S. K., "Nt th Us f Mmtm Itrplati Mthd fr Ustady Fls", Nmrical. Hat Trasfr art, A, vl. 36, pp , Majmdar S., "Rl f Udrrlaati i Mmtm Itrplati fr Calclati f Fl ith Nstaggrd Grids", Nmrical Hat Trasfr, art B, vl. 13, pp , Rhi C. M. ad Ch W. L., "Nmrical Stdy f th Trblt Fl ast a Airfil ith Trailig dg Sparati", AIAA Jral, vl. 21, 11, pp , Y B., Ta W., ad Wi J., "Discssi Mmtm Itrplati Mthd fr Cllcatd Grids f Icmprssibl Fl", Nmrical. Hat Trasfr art B, vl. 42, pp ,

SIMPLE METHOD FOR THE SOLUTION OF INCOMPRESSIBLE FLOWS ON NON-STAGGERED GRIDS

SIMPLE METHOD FOR THE SOLUTION OF INCOMPRESSIBLE FLOWS ON NON-STAGGERED GRIDS SIML MTHOD FOR TH SOLUTION OF INCOMRSSIBL FLOWS ON NON-STAGGRD GRIDS I. Szai - astrn Mditrranan Univrsity, Mchanical nginring Dpartmnt, Mrsin 10 -Trky Rvisd in Janary, 2011 1. Intrdctin Thr ar sally t

More information

( ) ( ) (a) w(x) = a v(x) + b. (b) w(x) = a v(x + b) w = the system IS linear. (1) output as the sum of the outputs from each signal individually

( ) ( ) (a) w(x) = a v(x) + b. (b) w(x) = a v(x + b) w = the system IS linear. (1) output as the sum of the outputs from each signal individually Hrk Sltis. Th fllig ipttpt rltis dscri ssts ith ipt d tpt. Which ssts r lir? Which r spc-irit? [6 pts.] i. tst lirit tstig lir sprpsiti lt thr t ipt sigls d tpt s th s f th tpts fr ch sigl idiidll ' tpt

More information

Bohr type models of the atom give a totally incorrect picture of the atom and are of only historical significance.

Bohr type models of the atom give a totally incorrect picture of the atom and are of only historical significance. VISUAL PHYSICS ONLIN BOHR MODL OF TH ATOM Bhr typ mdls f th atm giv a ttally icrrct pictur f th atm ad ar f ly histrical sigificac. Fig.. Bhr s platary mdl f th atm. Hwvr, th Bhr mdls wr a imprtat stp

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

GUC (Dr. Hany Hammad)

GUC (Dr. Hany Hammad) Lct # Pl s. Li bdsid s with ifm mplitd distibtis. Gl Csidtis Uifm Bimil Optimm (Dlph-Tchbshff) Cicl s. Pl s ssmig ifm mplitd citti m F m d cs z F d d M COMM Lct # Pl s ssmig ifm mplitd citti F m m m T

More information

Some Families of Higher Order Three-Step Iterative Techniques. where is a real number and y (5)

Some Families of Higher Order Three-Step Iterative Techniques. where is a real number and y (5) Lif Scic Jural 03;0s http://www.lifscicsit.cm Sm Familis f Highr Orr Thr-Stp Itrativ Tchiqus Nair Ahma Mir Sahr Akmal Kha Naila Rafiq Nusrut Yasmi. Dpartmt f Basic Scics Riphah Itratial Uivrsit Islamaba

More information

GUC (Dr. Hany Hammad) 4/20/2016

GUC (Dr. Hany Hammad) 4/20/2016 GU (r. Hay Hamma) 4/0/06 Lctur # 0 Filtr sig y Th srti Lss Mth sig Stps Lw-pass prttyp sig. () Scalig a cvrsi. () mplmtati. Usig Stus. Usig High-Lw mpac Sctis. Thry f priic structurs. mag impacs a Trasfr

More information

European Business Confidence Survey December 2012 Positive expectations for 2013

European Business Confidence Survey December 2012 Positive expectations for 2013 Dcmbr 2012 Erpa Bsiss Cfic rv Dcmbr 2012 Psitiv xpctatis fr 2013 Lasrp a Ivigrs EMEA hav rctl cmplt thir latst Erpa Bsiss Cfic rv. Th fiigs sggst a psitiv start t 2013 a a mr ptimistic tlk cmpar t that

More information

Topic 5:Discrete-Time Fourier Transform (DTFT)

Topic 5:Discrete-Time Fourier Transform (DTFT) ELEC64: Sigals Ad Systms Tpic 5:Discrt-Tim Furir Trasfrm DTFT Aishy Amr Ccrdia Uivrsity Elctrical ad Cmputr Egirig Itrducti DT Furir Trasfrm Sufficit cditi fr th DTFT DT Furir Trasfrm f Pridic Sigals DTFT

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime Ctiuus-Tim Furir Dfiiti Th CTFT f a ctiuustim sigal x a (t is giv by Xa ( jω xa( t jωt Oft rfrrd t as th Furir spctrum r simply th spctrum f th ctiuus-tim sigal dt Ctiuus-Tim Furir Dfiiti Th ivrs CTFT

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS

COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS COMPUTTIONL NUCLER THERML HYDRULICS Cho, Hyoung Kyu Dpartmnt of Nuclar Enginring Soul National Univrsity CHPTER4. THE FINITE VOLUME METHOD FOR DIFFUSION PROBLEMS 2 Tabl of Contnts Chaptr 1 Chaptr 2 Chaptr

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Exam 2 is Wed. March 28, at 9:05-9:55 AM. Rooms: Last names beginning A - M Akerman 225; N Z Tate 110.

Exam 2 is Wed. March 28, at 9:05-9:55 AM. Rooms: Last names beginning A - M Akerman 225; N Z Tate 110. hm 5 Rviw Sht fr Em Pstd //8 Rmidr: Em is Wd. Mrch 8, t 9:5-9:55 AM. Rms: Lst ms giig A - M Akrm 5; N Z Tt. It will cvr th mtril cvrd i lctr thrgh ri. Nv., d th rdigs d prlms : Pstlts d pricipls f qtm

More information

Signals and Systems View Point

Signals and Systems View Point Signals and Sstms Viw Pint Inpt signal Ozt Mdical Imaging Sstm LOzt Otpt signal Izt r Iz r I A signalssstms apprach twards imaging allws s as Enginrs t Gain a bttr ndrstanding f hw th imags frm and what

More information

Solutions to Midterm II. of the following equation consistent with the boundary condition stated u. y u x y

Solutions to Midterm II. of the following equation consistent with the boundary condition stated u. y u x y Sltis t Midterm II Prblem : (pts) Fid the mst geeral slti ( f the fllwig eqati csistet with the bdary cditi stated y 3 y the lie y () Slti : Sice the system () is liear the slti is give as a sperpsiti

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

O QP P. Limit Theorems. p and to see if it will be less than a pre-assigned number,. p n

O QP P. Limit Theorems. p and to see if it will be less than a pre-assigned number,. p n Limit Trms W ft av t d fr apprximatis w gts vry larg. Fr xampl, smtims fidig t prbability distributis f radm variabls lad t utractabl matmatical prblms. W ca s tat t distributi fr crtai fuctis f a radm

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP)

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP) th Topc Compl Nmbrs Hyprbolc fctos ad Ivrs hyprbolc fctos, Rlato btw hyprbolc ad crclar fctos, Formla of hyprbolc fctos, Ivrs hyprbolc fctos Prpard by: Prof Sl Dpartmt of Mathmatcs NIT Hamrpr (HP) Hyprbolc

More information

Math 656 Midterm Examination March 27, 2015 Prof. Victor Matveev

Math 656 Midterm Examination March 27, 2015 Prof. Victor Matveev Math 656 Mdtrm Examnatn March 7, 05 Prf. Vctr Matvv ) (4pts) Fnd all vals f n plar r artsan frm, and plt thm as pnts n th cmplx plan: (a) Snc n-th rt has xactly n vals, thr wll b xactly =6 vals, lyng n

More information

Mount Vernon Charles Station Potential Visibility Assessment. December 4, 2017 Chesapeake Conservancy Annapolis, MD 21401

Mount Vernon Charles Station Potential Visibility Assessment. December 4, 2017 Chesapeake Conservancy Annapolis, MD 21401 Mt Vr Charls tati Pttial Vility Assssmt Dcmbr, 7 Chsapak Csrvacy Aaplis, MD Mthdlgy Bst Availabl Data Lidar pit clds rprst th bst availabl lvati data i Charls ad Pric Grg s Ctis. Ths datasts ctai millis

More information

EE 232 Lightwave Devices Lecture 3: Basic Semiconductor Physics and Optical Processes. Optical Properties of Semiconductors

EE 232 Lightwave Devices Lecture 3: Basic Semiconductor Physics and Optical Processes. Optical Properties of Semiconductors 3 Lightwav Dvics Lctur 3: Basic Smicoductor Physics ad Optical Procsss Istructor: Mig C. Wu Uivrsity of Califoria, Brly lctrical girig ad Computr Scics Dpt. 3 Lctur 3- Optical Proprtis of Smicoductors

More information

4. (5a + b) 7 & x 1 = (3x 1)log 10 4 = log (M1) [4] d = 3 [4] T 2 = 5 + = 16 or or 16.

4. (5a + b) 7 & x 1 = (3x 1)log 10 4 = log (M1) [4] d = 3 [4] T 2 = 5 + = 16 or or 16. . 7 7 7... 7 7 (n )0 7 (M) 0(n ) 00 n (A) S ((7) 0(0)) (M) (7 00) 8897 (A). (5a b) 7 7... (5a)... (M) 7 5 5 (a b ) 5 5 a b (M)(A) So th cofficint is 75 (A) (C) [] S (7 7) (M) () 8897 (A) (C) [] 5. x.55

More information

LECTURE 5 Guassian Wave Packet

LECTURE 5 Guassian Wave Packet LECTURE 5 Guassian Wav Pact 1.5 Eampl f a guassian shap fr dscribing a wav pact Elctrn Pact ψ Guassian Assumptin Apprimatin ψ As w hav sn in QM th wav functin is ftn rprsntd as a Furir transfrm r sris.

More information

120~~60 o D 12~0 1500~30O, 15~30 150~30. ..,u 270,,,, ~"~"-4-~qno 240 2~o 300 v 240 ~70O 300

120~~60 o D 12~0 1500~30O, 15~30 150~30. ..,u 270,,,, ~~-4-~qno 240 2~o 300 v 240 ~70O 300 1 Find th plar crdinats that d nt dscrib th pint in th givn graph. (-2, 30 ) C (2,30 ) B (-2,210 ) D (-2,-150 ) Find th quatin rprsntd in th givn graph. F 0=3 H 0=2~ G r=3 J r=2 0 :.1 2 3 ~ 300 2"~ 2,

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Entropy Equation for a Control Volume

Entropy Equation for a Control Volume Fudamtals of Thrmodyamcs Chaptr 7 Etropy Equato for a Cotrol Volum Prof. Syoug Jog Thrmodyamcs I MEE2022-02 Thrmal Egrg Lab. 2 Q ds Srr T Q S2 S1 1 Q S S2 S1 Srr T t t T t S S s m 1 2 t S S s m tt S S

More information

Lectur 22. RF and Microwave Circuit Design Γ-Plane and Smith Chart Analysis. ECE 303 Fall 2005 Farhan Rana Cornell University

Lectur 22. RF and Microwave Circuit Design Γ-Plane and Smith Chart Analysis. ECE 303 Fall 2005 Farhan Rana Cornell University ctur RF ad Micrwav Circuit Dig -Pla ad Smith Chart Aalyi I thi lctur yu will lar: -pla ad Smith Chart Stub tuig Quartr-Wav trafrmr ECE 33 Fall 5 Farha Raa Crll Uivrity V V Impdac Trafrmati i Tramii i ω

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Reliability of time dependent stress-strength system for various distributions

Reliability of time dependent stress-strength system for various distributions IOS Joural of Mathmatcs (IOS-JM ISSN: 78-578. Volum 3, Issu 6 (Sp-Oct., PP -7 www.osrjourals.org lablty of tm dpdt strss-strgth systm for varous dstrbutos N.Swath, T.S.Uma Mahswar,, Dpartmt of Mathmatcs,

More information

Chapter 2 Linear Waveshaping: High-pass Circuits

Chapter 2 Linear Waveshaping: High-pass Circuits Puls and Digital Circuits nkata Ra K., Rama Sudha K. and Manmadha Ra G. Chaptr 2 Linar Wavshaping: High-pass Circuits. A ramp shwn in Fig.2p. is applid t a high-pass circuit. Draw t scal th utput wavfrm

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Lecture 14. Time Harmonic Fields

Lecture 14. Time Harmonic Fields Lcu 4 Tim amic Filds I his lcu u will la: Cmpl mahmaics f im-hamic filds Mawll s quais f im-hamic filds Cmpl Pig vc C 303 Fall 007 Faha aa Cll Uivsi Tim-amic Filds ad -filds f a pla wav a (fm las lcu:

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Differential Equations

Differential Equations UNIT I Diffrntial Equations.0 INTRODUCTION W li in a world of intrrlatd changing ntitis. Th locit of a falling bod changs with distanc, th position of th arth changs with tim, th ara of a circl changs

More information

FEM FOR HEAT TRANSFER PROBLEMS دانشگاه صنعتي اصفهان- دانشكده مكانيك

FEM FOR HEAT TRANSFER PROBLEMS دانشگاه صنعتي اصفهان- دانشكده مكانيك FEM FOR HE RNSFER PROBLEMS 1 Fild problms Gnral orm o systm quations o D linar stady stat ild problms: For 1D problms: D D g Q y y (Hlmholtz quation) d D g Q d Fild problms Hat transr in D in h h ( D D

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

CHAPTER Solution: The work done is equal to the change in kinetic energy kg 10m

CHAPTER Solution: The work done is equal to the change in kinetic energy kg 10m CHPTER. Sluti: 5kg Th wrk d i qual t th chag i kitic rgy U gx, r gx 4/. Sluti: Draw a FD t th frc actig. Th lb wight ha a a f /. lug. Cpar th chag i kitic rgy fr t ft/ with th wrk d agait th frc f fricti.

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE UNIVARIATE TRANSFORMATIONS TRANSFORMATION OF RANDOM VARIABLES If s a rv wth cdf F th Y=g s also a rv. If w wrt

More information

Multiple Short Term Infusion Homework # 5 PHA 5127

Multiple Short Term Infusion Homework # 5 PHA 5127 Multipl Short rm Infusion Homwork # 5 PHA 527 A rug is aministr as a short trm infusion. h avrag pharmacokintic paramtrs for this rug ar: k 0.40 hr - V 28 L his rug follows a on-compartmnt boy mol. A 300

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Motivation. We talk today for a more flexible approach for modeling the conditional probabilities.

Motivation. We talk today for a more flexible approach for modeling the conditional probabilities. Baysia Ntworks Motivatio Th coditioal idpdc assuptio ad by aïv Bays classifirs ay s too rigid spcially for classificatio probls i which th attributs ar sowhat corrlatd. W talk today for a or flibl approach

More information

ARC Window System. General Information: Determine your window type and turn to the specific pages for the. Type #1 Arc. Windows. Type #2 Arc Windows

ARC Window System. General Information: Determine your window type and turn to the specific pages for the. Type #1 Arc. Windows. Type #2 Arc Windows I-1 ARC Wid Systm This systm quis a additial tip t th jb sit ad cdiati bt th km ad th istall. Tip #1- Masu th id. Tip #2- Fi-tu th fit t th id, th s th tatmt. Tip #3- Istall fial tatmt. As ith ay typ f

More information

SAFE OPERATION OF TUBULAR (PFR) ADIABATIC REACTORS. FIGURE 1: Temperature as a function of space time in an adiabatic PFR with exothermic reaction.

SAFE OPERATION OF TUBULAR (PFR) ADIABATIC REACTORS. FIGURE 1: Temperature as a function of space time in an adiabatic PFR with exothermic reaction. he 47 Lctu Fall 5 SFE OPERION OF UBULR (PFR DIBI REORS I a xthmic acti th tmatu will ctiu t is as mvs alg a lug flw act util all f th limitig actat is xhaust. Schmatically th aiabatic tmatu is as a fucti

More information

AS 5850 Finite Element Analysis

AS 5850 Finite Element Analysis AS 5850 Finit Elmnt Analysis Two-Dimnsional Linar Elasticity Instructor Prof. IIT Madras Equations of Plan Elasticity - 1 displacmnt fild strain- displacmnt rlations (infinitsimal strain) in matrix form

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

PREPARATORY MATHEMATICS FOR ENGINEERS

PREPARATORY MATHEMATICS FOR ENGINEERS CIVE 690 This qusti ppr csists f 6 pritd pgs, ch f which is idtifid by th Cd Numbr CIVE690 FORMULA SHEET ATTACHED UNIVERSITY OF LEEDS Jury 008 Emiti fr th dgr f BEg/ MEg Civil Egirig PREPARATORY MATHEMATICS

More information

Narayana IIT Academy

Narayana IIT Academy INDIA Sc: LT-IIT-SPARK Dat: 9--8 6_P Max.Mars: 86 KEY SHEET PHYSIS A 5 D 6 7 A,B 8 B,D 9 A,B A,,D A,B, A,B B, A,B 5 A 6 D 7 8 A HEMISTRY 9 A B D B B 5 A,B,,D 6 A,,D 7 B,,D 8 A,B,,D 9 A,B, A,B, A,B,,D A,B,

More information

UIUC Physics 436 EM Fields & Sources II Fall Semester, 2015 Lect. Notes 7.5 Prof. Steven Errede LECTURE NOTES 7.5

UIUC Physics 436 EM Fields & Sources II Fall Semester, 2015 Lect. Notes 7.5 Prof. Steven Errede LECTURE NOTES 7.5 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd LECTURE NOTES 7.5 Disprsi: Th Frqucy-Dpdc th Elctric Prmittivity ad th Elctric Suscptibility Ovr th tir EM rqucy itrval 0 Hz,

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

Another Explanation of the Cosmological Redshift. April 6, 2010.

Another Explanation of the Cosmological Redshift. April 6, 2010. Anthr Explanatin f th Csmlgical Rdshift April 6, 010. Jsé Francisc García Juliá C/ Dr. Marc Mrncian, 65, 5. 4605 Valncia (Spain) E-mail: js.garcia@dival.s h lss f nrgy f th phtn with th tim by missin f

More information

Modern Physics. Unit 5: Schrödinger s Equation and the Hydrogen Atom Lecture 5.6: Energy Eigenvalues of Schrödinger s Equation for the Hydrogen Atom

Modern Physics. Unit 5: Schrödinger s Equation and the Hydrogen Atom Lecture 5.6: Energy Eigenvalues of Schrödinger s Equation for the Hydrogen Atom Mdrn Physics Unit 5: Schrödingr s Equatin and th Hydrgn Atm Lctur 5.6: Enrgy Eignvalus f Schrödingr s Equatin fr th Hydrgn Atm Rn Rifnbrgr Prfssr f Physics Purdu Univrsity 1 Th allwd nrgis E cm frm th

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

Higher-Order Discrete Calculus Methods

Higher-Order Discrete Calculus Methods Highr-Ordr Discrt Calculus Mthods J. Blair Prot V. Subramanian Ralistic Practical, Cost-ctiv, Physically Accurat Paralll, Moving Msh, Complx Gomtry, Slid 1 Contxt Discrt Calculus Mthods Finit Dirnc Mimtic

More information

Figure 1: Schematic of a fluid element used for deriving the energy equation.

Figure 1: Schematic of a fluid element used for deriving the energy equation. Driation of th Enrg Eation ME 7710 Enironmntal Flid Dnamics Spring 01 This driation follos closl from Bird, Start and Lightfoot (1960) bt has bn tndd to incld radiation and phas chang. W can rit th 1 st

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Unit C Algbra Trigonomtr Gomtr Calculus Vctor gomtr Pag Algbra Molus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv

More information

The phenomenon of nonlinear optical birefringence in uniaxial crystals

The phenomenon of nonlinear optical birefringence in uniaxial crystals Th phmf liar ptical birfrigc i uiaial crstals Timtr Pascal, Adam Usma, J. C. Odd Dpartmt f Phsics, Fdral Uivrsit f Tchlg, Yla. P.M.B. 2076 Yla. Adamawa Stat, Nigria. E-mail: ptimtr@ah.cm; aausma@ah.c.uk

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

International Journal of Mathematical Archive-7(5), 2016, Available online through ISSN

International Journal of Mathematical Archive-7(5), 2016, Available online through   ISSN Itratial Jural f athmatial Arhiv-7(5), 06, 60-70 Availabl li thrugh wwwimaif ISSN 9 5046 IDEALS IN ALOST SEILATTICE G NANAJI RAO, TEREFE GETACHEW BEYENE*,Dpartmt f athmatis, Adhra Uivrsity, Visakhpataam,

More information

N J of oscillators in the three lowest quantum

N J of oscillators in the three lowest quantum . a) Calculat th fractinal numbr f scillatrs in th thr lwst quantum stats (j,,,) fr fr and Sl: ( ) ( ) ( ) ( ) ( ).6.98. fr usth sam apprach fr fr j fr frm q. b) .) a) Fr a systm f lcalizd distinguishabl

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Elements of Statistical Thermodynamics

Elements of Statistical Thermodynamics 24 Elmnts of Statistical Thrmodynamics Statistical thrmodynamics is a branch of knowldg that has its own postulats and tchniqus. W do not attmpt to giv hr vn an introduction to th fild. In this chaptr,

More information

THESEUS ARRIVES MARY JANE LEACH. Mixed Chorus (SSAATB) and String Quartet. Ariadne Press Duration: ca. 2:30

THESEUS ARRIVES MARY JANE LEACH. Mixed Chorus (SSAATB) and String Quartet. Ariadne Press Duration: ca. 2:30 HESEUS ARRIVES Mixd hors (SSAA) and String Qartt Dration: ca. 2:30 MARY JANE LEAH Ariadn rss 00034 Soprano 1 Soprano 2 Vocal rangs: & & b Alto 1 & Alto 2 & b nor V b ass b In a pic sch as this, in hich

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Cor rvision gui Pag Algbra Moulus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv blow th ais in th ais. f () f () f

More information

5. B To determine all the holes and asymptotes of the equation: y = bdc dced f gbd

5. B To determine all the holes and asymptotes of the equation: y = bdc dced f gbd 1. First you chck th domain of g x. For this function, x cannot qual zro. Thn w find th D domain of f g x D 3; D 3 0; x Q x x 1 3, x 0 2. Any cosin graph is going to b symmtric with th y-axis as long as

More information

Types of Communication

Types of Communication Tps f Cmmunicatin Analg: cntinuus ariabls with nis {rrr 0} 0 (imprfct) Digital: dcisins, discrt chics, quantizd, nis {rrr} 0 (usuall prfct) Mssag S, S, r S M Mdulatr (t) channl; adds nis and distrtin M-ar

More information

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the Copyright itutcom 005 Fr download & print from wwwitutcom Do not rproduc by othr mans Functions and graphs Powr functions Th graph of n y, for n Q (st of rational numbrs) y is a straight lin through th

More information

INTEGRATION BY PARTS

INTEGRATION BY PARTS Mathmatics Rvision Guids Intgration by Parts Pag of 7 MK HOME TUITION Mathmatics Rvision Guids Lvl: AS / A Lvl AQA : C Edcl: C OCR: C OCR MEI: C INTEGRATION BY PARTS Vrsion : Dat: --5 Eampls - 6 ar copyrightd

More information

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem Mahmacal ascs 8 Chapr VIII amplg Dsrbos ad h Cral Lm Thorm Fcos of radom arabls ar sall of rs sascal applcao Cosdr a s of obsrabl radom arabls L For ampl sppos h arabls ar a radom sampl of s from a poplao

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

STRUCTURES IN MIKE 21. Flow over sluice gates A-1

STRUCTURES IN MIKE 21. Flow over sluice gates A-1 A-1 STRUCTURES IN MIKE 1 Fl ver luice gate Fr a give gemetry f the luice gate ad k ater level uptream ad dtream f the tructure, the fl rate, ca be determied thrugh the equati f eergy ad mmetum - ee B Pedere,

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

a 1and x is any real number.

a 1and x is any real number. Calcls Nots Eponnts an Logarithms Eponntial Fnction: Has th form y a, whr a 0, a an is any ral nmbr. Graph y, Graph y ln y y Th Natral Bas (Elr s nmbr): An irrational nmbr, symboliz by th lttr, appars

More information

Signals & Systems - Chapter 3

Signals & Systems - Chapter 3 .EgrCS.cm, i Sigls d Sysms pg 9 Sigls & Sysms - Chpr S. Ciuus-im pridic sigl is rl vlud d hs fudml prid 8. h zr Furir sris cfficis r -, - *. Eprss i h m. cs A φ Slui: 8cs cs 8 8si cs si cs Eulrs Apply

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

Vr Vr

Vr Vr F rt l Pr nt t r : xt rn l ppl t n : Pr nt rv nd PD RDT V t : t t : p bl ( ll R lt: 00.00 L n : n L t pd t : 0 6 20 8 :06: 6 pt (p bl Vr.2 8.0 20 8.0. 6 TH N PD PPL T N N RL http : h b. x v t h. p V l

More information

ELEG 413 Lecture #6. Mark Mirotznik, Ph.D. Professor The University of Delaware

ELEG 413 Lecture #6. Mark Mirotznik, Ph.D. Professor The University of Delaware LG 43 Lctur #6 Mrk Mirtnik, Ph.D. Prfssr Th Univrsity f Dlwr mil: mirtni@c.udl.du Wv Prpgtin nd Plritin TM: Trnsvrs lctrmgntic Wvs A md is prticulr fild cnfigurtin. Fr givn lctrmgntic bundry vlu prblm,

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

How many neutrino species?

How many neutrino species? ow may utrio scis? Two mthods for dtrmii it lium abudac i uivrs At a collidr umbr of utrio scis Exasio of th uivrs is ovrd by th Fridma quatio R R 8G tot Kc R Whr: :ubblcostat G :Gravitatioal costat 6.

More information