UIUC Physics 436 EM Fields & Sources II Fall Semester, 2015 Lect. Notes 7.5 Prof. Steven Errede LECTURE NOTES 7.5

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "UIUC Physics 436 EM Fields & Sources II Fall Semester, 2015 Lect. Notes 7.5 Prof. Steven Errede LECTURE NOTES 7.5"

Transcription

1 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd LECTURE NOTES 7.5 Disprsi: Th Frqucy-Dpdc th Elctric Prmittivity ad th Elctric Suscptibility Ovr th tir EM rqucy itrval 0 Hz, th spd prpagati v prp mchrmatic (i.. sigl-rqucy) EM wavs i mattr is t t cstat, t idpdt rqucy: vprp cstat; crqucy, vprp, bcaus mattr - at th micrscpic scal - is cmpsit - cmprisd atms/mlculs which hav rsacs i rgy/rgy lvls which ar gvrd by th laws quatum mchaics Th rqucy-dpdc th wavlgth, r wavumbr k, ad liar mmtum p assciatd with macrscpic EM wavs prpagatig i a disprsiv mdium ariss rm th rqucy-dpdc th macrscpic lctric prmittivity (r quivaltly th lctric suscptibility sic:. Th rqucy-dpdc th macrscpic lctric prmittivity is kw as disprsi; a mdium that has c is kw as a disprsiv mdium. Fr -magtic/-cductig liar/hmgus/istrpic mdia, th id rracti. Thus, i: th:. Fr a wav packt (= a grup {= suprpsiti/liar cmbiati} wavs may rqucis as plaid by Mssr. Furir), th vlp th wav packt travls with (i gral, rqucy-dpdt) grup spd = spd at which rgy i th wav lws: A prpagatig wav packt: kz t v g " " d dk dk dk d d v v g k dk d A spac-pit z t th wavrm mvs - with cstat phas kz t with (i gral, rqucy-dpdt) phas spd v k. Hc: zt, k v t. Nt that {i gral}: v. g v Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd.

2 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd I v k is rqucy-dpdt, ad vg dk d v {.g. as i v v } th rlatiship btw v v th cas r surac wavs watr, whr g ad g dpds th dtaild physics th mdium (as w shall s s... ). Nt that i crtai circumstacs, v ca cd c {= spd light i th vacuum} but i ths situatis, rgy (ad/r irmati) is trasmittd at supr-lumial spds rgy/irmati is trasmittd at v g < c always, by causality A physical/mchaical ampl: calculat th phas spd th itrscti pit th scissrs tw halvs a scissrs as th blads th scissrs ar clsd. {Aswr:!!!} Disprsi Phma i Liar Dilctrics I a -cductig, liar, hmgus, istrpic mdium thr ar r lctrs (i.. r r 0 ). Atmic lctrs ar prmatly bud t ucli atms cmprisig th mdium. prrtial dircti / prrtial dirctis i such a {istrpic} mdium. Supps ach atmic lctr (charg ) i a dilctric is displacd by a small distac r rm its quilibrium psiti,.g. by applicati a static lctric ild Er rˆ dircti. Th rsultig macrscpic lctric plarizati (aka lctric dipl mmt pr uit vlum) is: b b 3 r pr whr: = bud atmic lctr umbr dsity # m ad th {iducd} atmic/mlcular lctric dipl mmt is: p rr {hr}, whr r is th {vctr} displacmt th atmic lctr rm its quilibrium { r = 0} psiti. b b r p r r Thus: Th atmic lctrs ar ach lastically bud t thir quilibrium psitis with a rc k N m. Th rc quati r ach atmic lctr is thus: FrErkr. r E r k. b b b b E r r p r r E r k k cstat Hc: Th static plarizati is thrr giv by: Hwvr, i th E -ild.g. varis harmically with tim, i..,; v ikz t E E r t E ˆ du t a mchrmatic EM pla wav icidt a atm, th abv rlati is icrrct! A mr crrct {but smi-classical } apprach t trat this situati is t csidr th bud atmic lctrs as classical, dampd, rcd harmic scillatrs (driv by th icidt lctric ild), as mathmatically dscribd by th llwig dirtial quati: mr t m r t kr t E r t ihmgus d -rdr dirtial q. ; ; ;, ; Th dampig cstat rads sc rprsts th ct EM r-radiati by th atm {hr}. Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd.

3 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd r t; rt; m m kr t E r t t t ma ;, ;.b. w hav glctd th v B E trm hr... Vlcity-dpdt dampig trm dampig cstat Pttial Frc (bidig atmic lctrs t atm) m Drivig Frc lctr mass kg Supps th drivig/rcig trm varis siusidally/is harmic/pridic with agular it F r,; t E r,; t E i t r bcaus E r,; t E rˆ. rqucy, i.. ˆ.b. Th lctric ild E is cmpl E ad pla-plarizd i th ˆr -dircti. i t Th ihmgus rc quati bcms: mr ˆ m r kr E r with cmpl tim-dmai vctr displacmt amplitud: r t; r t; ˆ r. I th stady stat, w hav: Sic rt; i t mr m r kr E rˆ physically rprsts th cmpl vctr spatial displacmt a atmic i t r t; r t; rˆr rˆ lctr rm its quilibrium { r 0 } psiti, th: Thus: i t mr m r kr E rˆ r t; rt; m m kr t; Er, t; t t m r it imr i t kr i t E i t m k i m r E charactristic quati k Divid this quati thrugh by m : i r E m m k k Di: 0 r: 0 = charactristic/atural rsac {agular} rqucy. Th: m m 0 ir E Bud atmic lctr r: r E cmpl rqucydmai spatial m m 0 i displacmt amplitud Nt that th cmplss rqucy-dmai r is i th dmiatr. W ca mv it t th umratr usig th llwig stadard trick /prcdur: iy iy y I: z whr: z ad: m z iy iy iy y y y Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd. 3

4 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd Thus: r E E 0 i m m 0 i 0 i 0 i m E 0 0 i 0 m E 0 0 i 0 i i m E 0 i 0 i i 0 * * i E i E Nt that: E E E. Hwvr, w ca always rtat away /absrb th phas E E 0.g. by a glbal rdiiti th zr tim, r a glbal rdiiti/traslati ur crdiat systm. Hc, w ca quivaltly writ, withut ay lss grality: 0 i r E r ir r ral m 0 imag i Th {rqucy-dpdt} ral part th rqucy-dmai displacmt amplitud r it i.. th cmpt r that is i-phas with th drivig rc E r,; t E rˆ ral 0 r r E m 0 r is: Th {rqucy-dpdt} imagiary part th rqucy-dmai displacmt amplitud r i.. th cmpt r that is 90 it -ut--phas with th drivig rc E r,; t E rˆ imag r mr E m 0 is: is: Th {rqucy-dpdt} phas th rqucy-dmai displacmt amplitud r imag mr r r ta ta ta ral r r 0 k Wh: 0, r 0 r lags E. Wh: k 0, r 0 r lads E. m m 4 Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd.

5 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd is: Th {rqucy-dpdt} magitud th rqucy-dmai displacmt amplitud r * ral imag 0 i 0 0 m r r r r r i E 0 E m 0 E 0 m Th 8-igur plt blw shws th bhavir a mchaical rsac at 30 KHz, ad FWHM 30 Hz i th viciity th rsac r uit amplitud m E. Th rsac rqucy ad l/hi rqucis that di th FWHM, } ar als idicatd i ach plt: {i.. Nt that th s-calld Q {this} rsac {hr} is: Q 000. Fr small Q ad that dampig, it ca b shw that 0, 0 r 0 ta 90, r ta 35 ad r ta 45. Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd. 5

6 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd Th 3-D plt blw shws th CW path tak i th cmpl pla i passig thrugh th rsac: FWHM, = Nw:,; b ; b i rt r t r t rˆ whr: r Thus:,; 0 i E m 0 i i rt E r E rˆ b 0 it b 0 ˆ it m m 0 0 it Sic th cmpl tim-dmai rt,; r; rˆ, w s that th cmpl rqucydmai vctr amplitud is: ; I th static limit (i.. 0 ): b 0 i r ˆ E r. m 0 b b b m m r; 0 E ˆ ˆ ˆ r Er Er 0 k k m Static plarizati 0 is i-phas with E 6 Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd.

7 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd Nt that th phas th rqucy-dmai vctr amplitud r; lags bhid (r lads) E ta by a rqucy-dpdt phas agl : mr, ta r, 0 is rqucy dpdt, k Wh: 0, 0 lags E. Wh: k 0, 0 lads E. m Frm th abv rmula, t that i th dampig cstat 0, th 0, th plarizati, bcaus i 0 m r, t 0, is always i-phas with E i.. th plarizati (FWHM) Hz m, th is purly ral! A dampig cstat 0 als mas that th width th atmic/mlcular rsac is iiitly arrw, ad thus thr ar dissipativ prcsss (i.. rgy lss mchaisms) prst at th micrscpic atmic/mlcular lvl i this macrscpic mdium! Nt als that has physical/si uits radias/scd. Nt urthr that E i th abv prssi is actually E it th itral macrscpic lctric ild th dilctric: E Eit Et EP, th sum th macrscpic tral applid lctric ild ad th macrscpic lctric ild du t th plarizati th dilctric mdium. Th lctric ild du t plarizati th mdium is: Thus: E Eit Et 3 Thrr: E P 3 b 0 i k Et 0 m 3 0 m Nw slv r : Skippig writig ut sm {tdius} cmpl algbra, w btai: b i E m t whr: b 0 0 = 3 m Nt that this rmula is sstially idtical.g. t th {cmpl} displacmt amplitud rmula r a driv harmic scillatr, ad/r that r th {cmpl} AC vltag amplitud i a LCR circuit, ad r may thr physical systms hibitig a {dampd} rsac-typ bhavir. Nw i E t dilctric mdium: E -ild assciatd with a mchrmatic pla EM wav prpagatig i a ikz t Et z, t E, th bcaus th liar rlatiship btw th ikz t E t z, t E, Gauss Law bcms (sic 0 r r ): E 0 plarizati ad.g. ˆ t bud.b. Th dampig cstat has th sam uits as : radias/sc S P435 Lct. Nts 0, p. -6. S als P435 Lct. Nts 9, p. 6. ctiv agular rsac rqucy bud atmic lctrs Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd. 7

8 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd Th wav quati r a dilctric mdium with r 0 ad J 0 r r bcms: Or: Et b Et Et c t t m t i with: c i b Et Et c m t b with: 0 3 m Th gral sluti t this disprsiv wav quati is th rm: E r,; t E t ikz t with cmpl k ki ad: k c i. b m Thus, w als s that hr {agai} th cmpl wavumbr k ki is plicitly k k i. dpdt th agular rqucy, i.. W urthr s that mchrmatic pla EM wavs prpagatig i a disprsiv dilctric ikz t z ikz t E r,; t E E, mdium ar ptially attuatd, bcaus: i.. th m k t trm crrspds t absrpti/dissipati i th macrscpic dilctric, ad is physically rlatd t/is prprtial t th dampig cstat. Nt that w als hav: rt,, Et rt,,, thus th suscptibility als cmpl, ad rqucy-dpdt: i. Th m {hr} is trm crrspds t absrpti/dissipati i th dilctric, ad is physically rlatd t/is prprtial t th dampig cstat. Th crrspdig dissipativ rgy lsss at th micrscpic, atmic/ mlcular lvl i th dilctric ultimatly wid up as hat! Sic: b i r,; t Et r,; t E,; t r t m b i E, ; t r t m b whr: 0 3 m 8 Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd.

9 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd W s that th cmpl suscptibility assciatd with a sigl rsac is: Hc: Ad: i b m i b m b m m Nw br w g much urthr with this, w d t discuss athr aspct ur mdl amly that i mst liar dilctric matrials, th atms cmprisig th matrial ar multilctr atms, ad csqutly thr ar may dirt bidig rgis th utr shll atmic lctrs ar wakly bud, hc hav small k, ad thus small 0 k m, whras th ir-shll lctrs ar much mr tightly bud, hc hav largr k, largr 0 k m. Furthrmr, i cmpl mdia, i.. dilctrics with mr tha kid atm, lctrs ca b shard btw atms i.. thy ar bud t mlculs.g. th π-lctrs i bz rig / armatic hydrcarb-typ cmpuds, which ca b wakly bud i sm mlculs. Thus, thr ca b als b {mlcular} rsacs.g. i th micrwav ad ira-rd rgis th EM spctrum atmic rsacs ar typically i th ptical ad UV rgis {r th utr-mst shll lctrs}, as wll as i th ar UV ad -ray rgis {r th irshll lctrs}! Allwig r all such rsacs, w ca writ th {cmpl} lctric plarizati as a summati vr all th rsacs prst i th liar dilctric as llws: whr: ad whr: Physically: b i sc rt,; E,; t rt m b 3 m 0 sc ad: 0 k m scillatr strgth th rsac, did such that: sc = ractial strgth th th rsac ad = width th th rsac. sc Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd. 9

10 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd is: Thus, w s that th multi-rsac cmpl lctric suscptibility i i b sc m i Hc: b sc m Ad: b sc m m Th cmpl lctric prmittivity i dilctric mdium is: a disprsiv, liar b i sc m with th rlatis: ad: b sc i m m m b sc. m i 0 Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd.

11 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd Mchrmatic pla EM wav slutis t th disprsiv wav quati ar th rm: E r,, t E Thus:,, ikz t with cmpl wavumbr k k i z E r t E E ikz t ikz t t ptial dampig EM wav r a -magtic mdium, i... is quivalt Itrducig a {rqucy-dpdt} cmpl wavumbr kki t itrducig a {rqucy-dpdt} cmpl id rracti i. Fr a disprsiv dilctric, th cmpl id rracti ad cmpl wavumbr ar {simply} rlatd t ach thr by: k c k i i i c k c c c ad c Fr a -magtic mdium ( ), th cmpl id rracti is rlatd t th cmpl lctric prmittivity suscptibility via th rlati: Squarig bth sids: But: ad thus th cmpl lctric, k b i sc m b i sc c m k i k ik Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd.

12 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd c th: Sic: k b c i sc k m i i Equatig th ral ad imagiary parts th LHS & RHS th abv quati, w btai: sc b m b sc m quatis ad ukws: & slv r & First di: sc b m sc b m (.b. 0, is always psitiv {hr}) Th: ad Thus: Or: Di:. W tmprarily supprss th Th: 0 multiply quati thrugh by a b c -dpdc i th llwig: 0 with: Th slutis / rts this quadratic quati ar th gral rm:.b. This may lk lik a quartic quati, but it is actually a quadratic quati!!! a, b, c b b 4ac a Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd.

13 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd 4 i...b. th trm: 0 Must slct +v rt physical gruds, sic 0. Fially, w btai: Cmpl id rracti: i m Whr: sc b m sc b m Obviusly, plicitly writig ut th ull mathmatical rmula r ad is quit tdius but ths ca b rasably-asily cdd up {i.. a cmputr prgram} ad plts vs. ca b btaid. W ca als th btai th llwig: vs. ad c Th cmpl rlatis: i ad k k i c c ad thus: k ad Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd.. 3

14 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd Th {rqucy-dpdt} itsity/irradiac Ir, Sr, t; assciatd with a mchrmatic pla EM wav prpagatig i a liar, disprsiv dilctric is als ptially dcrasd by a actr its rigial valu i gig a charactristic distac : z i.. diig: att att = itsity attuati lgth which is ~ aalgus t th ski dpth, r mtals / cductrs. Hwvr, t that is assciatd with th attuati th E ad B - sc ilds, whras attuati cts i itsity/irradiac, I varis as th squar th E -ild: I r S r t E r t,, ;, ; t hc: Ir (, ) E E sc z z I th ptial z-dpdt trm, sic th rgy dsit(is) uem, r,; t I r, S r, t; ar bth prprtial t E i.. bth prprtial t itsity z z, w di th {rqucy-dpdt} absrpti cicit: ad att. Similarly, r th {rqucy-dpdt} cmpl id rracti i w ca als di th {rqucy-dpdt} ticti cicit:. c Sic: c c c thus:. att c c ad. Th absrpti cicit: Th ticti cicit: Typical valus th (ral) id rracti r slids ad liquids ar.3.7 i th visibl light rgi EM spctrum,.g. glass.5, HO.3, plastic.7. Th i: Th: id rracti.5 glass i th visibl light rgi.5.5 O quati & tw ukws: 4.50 ad Thus: Nd athr rlati / idpdt cstrait!! 4 Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd.

15 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd Nt that glass ds t hav sigiicat absrpti i th visibl light rgi, typical such slid/liquid matrials hav (masurd) absrpti cicits r visibl light i th rag : c 0 0 m Itsity I(z) dcrass t / = = iitial I(z = 0) valu atr light travls a distac z = / () ~ 0 00 m i glass. 6 0 m i glass r visibl light, vis 0 radias / sc c S supps: c Nw: ad.5 r glass i visibl light rag EM spctrum. 9 r: i th visibl light rag r glass Th: Ca w slv r : ad: This has a sluti wh:.5 r: 9 0 Obtaid via umrical mthds usig a cmputr Thus, r.5 r glass i th visibl light rgi th EM spctrum, with.5 9 ad 9 0 (i.. ), as a plicit chck, w s that: Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd. 5

16 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd Thus w als s that: sc b m i.. r typical matrials glass, watr, plastic i th visibl light rgi th EM spctrum, 6 0 radias / sc. Whras: b sc m r ths sam matrials glass, watr, plastic i th visibl light rgi th EM spctrum, 6 0 radias / sc. Our rigial quatis wr: ad 9 with:.5 ad 90 r.5 9 with visibl light ad: 30. W w s mr clarly that: r: (r glass) i th visibl light rgi th EM spctrum i i r glass is 9 r glass, i.. th cmpl id rracti.5 90 prdmiatly ral i th visibl light rgi th EM spctrum. Thus, r glass i th visibl light rgi th EM spctrum: sc b.5.5 m ad: b sc 9 0 0m sc b.5 m 9 Nt that ths rsults that w ust btaid r glass i th visibl light rgi th EM spctrum d t hld tru r all rqucis EM wavs {visibl light rgi is i act ly a arrw prti th EM spctrum}!!! I particular, ths rsults d t hld at {r ar} a atmic (r mlcular) rsac! 6 Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd.

17 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd Lt us csidr a simpliid atmic/mlcular systm, that havig ly a sigl rsac rqucy (i.. a sigl bud-stat quatum rgy lvl), th: r: b 0 3 m b 3m 0 with: 0 k m sc.b. Oscillatr strgth {hr} bcaus hav ly a sigl rsac! Th: sc b m b sc m Th igur th lt (immdiatly blw) shws th bhavir th ral ad imagiary parts vs. } ad th cmpl id rracti a disprsiv, liar mdium, i.. { { vs. } r a sigl atmic rsac. Th igur th right (immdiatly blw) shws th bhavir { vs. } ad th absrpti cicit { vs. } r a sigl atmic rsac. = Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd. 7

18 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd.b. Th abv curvs ar classic aturs a cmpl rsac with ctr / rsac rqucy ad = dampig cstat Γ = width (= FWHM) th th rsac. Nt that th width Γ Hz. I th - cmpl pla: (FWHM) 0 = = 0 I th visibl light rgi th EM spctrum, th graph blw shws bth th rqucy ad vs. {dttd li} ad wavlgth bhavir th {ral} id rracti glass, i.. v v vs. {slid li}. Nt that sic prp prp r: vprp { Ågstrm = 0 0 m = 0. m}.b. Mdia which ar vry traspart.g. i th visibl light rgi ar t almst (r ar) paqu i th s-calld amalus disprsi rgi a rsac, R i.. i th FWHM rgi th atmic rsac, whr th ticti cicit bcms vry larg EM wavs ar th rsac rqucy R ar vry rapidly ptially attuatd! Th Gral Bhavir Classic Cmpl Rsac: z iy.b. i sm cmpl systms.g. th rsac a LCR circuit, z & mz ar itrchagd rm what is draw hr! i.. z mz 8 Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd.

19 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd Nt that th shap th curv r th magitud z, z z z * y is vry similar t shap th mz curv {as shw hr}. Th tractry z i th cmpl pla:, A mr ralistic micrscpic pictur a atmic systm with may lctrs with may quatum bud stats may rsacs i a disprsiv, liar macrscpic dilctric!!! ad Ercis(s): Draw ut th crrspdig tractris cmpl i i r th abv tripl-rsac cass i th cmpl pla! Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd. 9

20 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd I th high-rqucy rgi, abv th highst rsat rqucy (typically i UV r -ray rgi), th id rracti is prdictd t b.0 (i.. actually lss tha that th vacuum). Idd, this phm has plicitly b bsrvd/masurd.g. i quartz (SiO) usig -rays: Nt Supprssd Zr! Nt that physically th dampig cstat = width th th rsac is ivrsly rlatd t th litim assciatd with th crrspdig citd stat th cstitut atms/mlculs th disprsiv, liar dilctric, sic at th micrscpic lvl, th {ral} phts assciatd with th mchrmatic pla EM wav hav rgy E h ad {assumig th atms/mlculs th disprsiv, liar dilctric t all b i thir grud stat, with grud stat rgy E }, th i th mchrmatic pla EM wav has {agular} rqucy R R = th rsac rqucy th bud atmic lctrs, th w s that E E E E hr R at rsac! At a rsac,.g. wh, th {ral} phts i th mchrmatic pla EM wav asily stimulat th atmic lctrs, causig thm t rsat th {ral} phts ar absrbd, th ablig th atmic lctr t mak a trasiti rm th grud stat {with rgy E } t th citd stat {with rgy E } via a lctric dipl trasiti, i s allwd by quatummchaical slcti ruls. Th citd atmic stat has {ma} litim th assciatd with it, thus th atmic lctr d-cits back t th grud stat by mittig a {ral} pht this sam rqucy. Th miracl all this is that {ral} phts assciatd with th EM ild ar actually itractig simultausly with all th atms i th disprsiv liar dilctric (withi th chrc lgth th pht c ) at ay giv istat i tim, thus th rsultat scattrd pht that is {ultimatly} mittd, actually must b summd vr th rsps th smbl may atms th miraculus rsult which is rward scattrig th phts assciatd with th macrscpic EM wav, but with a {rqucy-dpdt} phas shit, which is rlatd t th rsac lishap {ad th iit litim } th citd stat th atm! 0 Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd.

21 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd At a rsac,.g. wh k, a larg, trasitry/trasit {cmpl ad rqucy- p r, r r r is iducd i th atm, whr: dpdt} lctric dipl mmt ˆ b i sc r r r i m Nt hr w ca als mak a dirct ccti with quatum mchaics th lctric dipl mmt pratr p r, r ad psiti pratr r pratig.g. th grud stat wav ucti th atm/mlcul p r, r r r. r, i.. ad W ca.g. cmput th pctati valu th mdulus squard th lctric dipl r p r, r th atm/mlcul. Isrtig a cmplt st stats mmt r r r r mchaical prdictis r th {squars} th scillatr strgths it this prssi, w ca th btai th quatum sc : * r p r, r r pr, r r p r, r Th trasiti rat (= # atms/mlculs pr scd) rm th grud stat t th citd stat {via a lctric dipl trasiti, as allwd by quatum mchaical slcti ruls} is prprtial t r p r, r, whras th trasiti rat (= # atms/ mlculs th pr scd) rm th citd stat t th grud stat {via a lctric dipl trasiti, as * r p r r. allwd by quatum mchaical slcti ruls} is prprtial t, Nt that by th {micrscpic} maist tim-rvrsal ivariac th lctrmagtic itracti, th trasiti rats ar idtical, i.. = dampig cstat i ur smi-classical mdl! Nt urthr that th litims th citd stats atms ar {ivrsly} rlatd t th widths th pricipl: E t miimum, i.. th rsacs/widths th th citd stats by th Hisbrg ucrtaity, whr h ad h = Plack s cstat. I w st this rlati t its Et th: r: th Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd.

22 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd I stays wll away/ar rm {all} th rsac rqucis bud-stat atmic lctrs, th rsac actr bcms: i i.. ar rm a rsac: Thus, ar rm a rsac / all rsacs, rlativly littl absrpti/dissipati ccurs is prdmiatly ral} ad hc: {i.., such that b sc m Nw: 4 b sc sc 4 m Th: I ad Thus, ar rm a rsac/rsacs: b sc sc 4 m But: c c = vacuum wavlgth, hc:, thus: k w btai Cauchy s Frmula: sc sc b c 4 m B A Whr: A = Cicit Rracti ad: B = Cicit Disprsi. Cmparig th quatis, w s that: b sc A m sc sc ad: B c 4 Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd.

23 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd c Sic: i ad/r: k kik ad: k c Th: k c ad:, thus: Th phas spd: v c i k Th grup spd: v g c " " d dk dk d < Nt that at th turig pits ithr th { vs. } r: { k vs. } graphs, i.. at whr th slp dk d 0 v!!! {agular} rqucis ad/r g Nt urthr that i th {agular} rqucy rgi {th amalus disprsi dk d v dk d 0!!! rgi}, sic th slp 0 th th grup spd g {Hc th am amalus disprsi } This phm has b primtally vriid (s.g. C.G.B. Garrtt & D.E. McCumbr, Phys. Rv. A,, p. 305 (970). I th disprsiv mdium is t t thick, a Gaussia puls with a ctral rqucy ar a absrpti li (i.. ar a rsac, ) ad with puls width t prpagats with apprciabl absrpti, but (mr r lss) rtais its shap. R R Th pak th Gaussia puls prpagats at vg v wh th grup spd is gativ!!! Usul r puls r-shapig applicatis - ladig dg is lss attuatd tha trailig dg. R Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd. 3

24 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd Ca actually hav th pak a gratly attuatd puls mrg rm th absrbr br th pak th icidt puls trs th absrbr ( diiti gativ grup spd)!!! {i.. micrscpically, i th absrbr is t t thick, th sm phts ca mak it all th way thrugh th absrbr w/ itractig at all this prbability is ptially supprssd. Has applicatis/uss.g. i ptical mammgraphy/brast cacr scrig r wm...} S.g. J.D. Jacks s Elctrdyamics, 3 rd Editi, pags 35-6 r mr dtails! Fially, i w st 0, th w btai th static (i.. zr-rqucy) limit {all } ths quatitis. Nt that thy als {all} bcm purly ral i this limit: Static Plarizati: b (0) m sc whr b 0 3 m ad sic Et Static Elctricity Suscptibility: b sc (0) ad 0 m k m Static Id Rracti: 0 0 (0) K (0) But: K 0 0 Static Dilctric Cstat: K b sc m But: 0 0 b sc ad thus: K 0 0 ad: K m 0 0 Nt that th static dilctric cstat {as masurd at = 0 Hz/DC} is b sc m K 0.0 bcaus it ctais irmati abut all th {quatum mchaical} rsacs/citd stats 0 89 prst i th disprsiv, liar mdium, v it th -ray rgi at 0 Hz ad byd!!! Equivaltly, armd w with this kwldg th micrscpic bhavir a disprsiv, liar mdium, a lctric suscptibility 0 > 0 {r quivaltly, a dilctric cstat K 0 >} istatly tlls us that thr ar idd {quatum mchaical} rsacs/citd stats prst i th {cmpsit} atms/mlculs that mak up th macrscpic matrial th disprsiv, liar mdium!!! 4 Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd.

25 UIUC Physics 436 EM Filds & Surcs II Fall Smstr, 05 Lct. Nts 7.5 Pr. Stv Errd A wdrul macrscpic ampl disprsi i atur is th raibw. At th micrscpic lvl, th rqucy-dpdc th id rracti light () ariss as a csquc th rsat bhavir quatum mchaical bud stats lctrs i th atms th watr mlcul (HO) rspdig t EM light wavs{= visibl light phts} cmig rm ur su. I such cmpsit bhavir istd at th micrscpic lvl, thr wuld b raibws t y i th macrscpic vryday wrld! Eprimtal masurmts th absrpti cicit pur watr: Visibl Light Vilt Rd UV Rgi IR Rgi Absrpti cicit pur watr - HO is larg i UV ad IR rgis du t rsacs! Prssr Stv Errd, Dpartmt Physics, Uivrsity Illiis at Urbaa-Champaig, Illiis All Rights Rsrvd. 5

Bohr type models of the atom give a totally incorrect picture of the atom and are of only historical significance.

Bohr type models of the atom give a totally incorrect picture of the atom and are of only historical significance. VISUAL PHYSICS ONLIN BOHR MODL OF TH ATOM Bhr typ mdls f th atm giv a ttally icrrct pictur f th atm ad ar f ly histrical sigificac. Fig.. Bhr s platary mdl f th atm. Hwvr, th Bhr mdls wr a imprtat stp

More information

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime Ctiuus-Tim Furir Dfiiti Th CTFT f a ctiuustim sigal x a (t is giv by Xa ( jω xa( t jωt Oft rfrrd t as th Furir spctrum r simply th spctrum f th ctiuus-tim sigal dt Ctiuus-Tim Furir Dfiiti Th ivrs CTFT

More information

Topic 5: Discrete-Time Fourier Transform (DTFT)

Topic 5: Discrete-Time Fourier Transform (DTFT) ELEC36: Signals And Systms Tpic 5: Discrt-Tim Furir Transfrm (DTFT) Dr. Aishy Amr Cncrdia Univrsity Elctrical and Cmputr Enginring DT Furir Transfrm Ovrviw f Furir mthds DT Furir Transfrm f Pridic Signals

More information

Some Families of Higher Order Three-Step Iterative Techniques. where is a real number and y (5)

Some Families of Higher Order Three-Step Iterative Techniques. where is a real number and y (5) Lif Scic Jural 03;0s http://www.lifscicsit.cm Sm Familis f Highr Orr Thr-Stp Itrativ Tchiqus Nair Ahma Mir Sahr Akmal Kha Naila Rafiq Nusrut Yasmi. Dpartmt f Basic Scics Riphah Itratial Uivrsit Islamaba

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information

Lectur 22. RF and Microwave Circuit Design Γ-Plane and Smith Chart Analysis. ECE 303 Fall 2005 Farhan Rana Cornell University

Lectur 22. RF and Microwave Circuit Design Γ-Plane and Smith Chart Analysis. ECE 303 Fall 2005 Farhan Rana Cornell University ctur RF ad Micrwav Circuit Dig -Pla ad Smith Chart Aalyi I thi lctur yu will lar: -pla ad Smith Chart Stub tuig Quartr-Wav trafrmr ECE 33 Fall 5 Farha Raa Crll Uivrity V V Impdac Trafrmati i Tramii i ω

More information

Outline. Ionizing Radiation. Introduction. Ionizing radiation

Outline. Ionizing Radiation. Introduction. Ionizing radiation Outli Ioizig Radiatio Chaptr F.A. Attix, Itroductio to Radiological Physics ad Radiatio Dosimtry Radiological physics ad radiatio dosimtry Typs ad sourcs of ioizig radiatio Dscriptio of ioizig radiatio

More information

Chapter 2 Linear Waveshaping: High-pass Circuits

Chapter 2 Linear Waveshaping: High-pass Circuits Puls and Digital Circuits nkata Ra K., Rama Sudha K. and Manmadha Ra G. Chaptr 2 Linar Wavshaping: High-pass Circuits. A ramp shwn in Fig.2p. is applid t a high-pass circuit. Draw t scal th utput wavfrm

More information

Effect of sampling on frequency domain analysis

Effect of sampling on frequency domain analysis LIGO-T666--R Ec sampling n rquncy dmain analysis David P. Nrwd W rviw h wll-knwn cs digial sampling n h rquncy dmain analysis an analg signal, wih mphasis n h cs upn ur masurmns. This discussin llws h

More information

coulombs or esu charge. It s mass is about 1/1837 times the mass of hydrogen atom. Thus mass of electron is

coulombs or esu charge. It s mass is about 1/1837 times the mass of hydrogen atom. Thus mass of electron is 1 ATOMIC STRUCTURE Fudamtal Particls: Mai Fudamtal Particl : (a) Elctro: It is a fudamtal particl of a atom which carris a uit gativ charg. It was discovrd by J.J. Thomso (1897) from th studis carrid out

More information

Lecture 27: The 180º Hybrid.

Lecture 27: The 180º Hybrid. Whits, EE 48/58 Lctur 7 Pag f 0 Lctur 7: Th 80º Hybrid. Th scnd rciprcal dirctinal cuplr w will discuss is th 80º hybrid. As th nam implis, th utputs frm such a dvic can b 80º ut f phas. Thr ar tw primary

More information

Lecture 26: Quadrature (90º) Hybrid.

Lecture 26: Quadrature (90º) Hybrid. Whits, EE 48/58 Lctur 26 Pag f Lctur 26: Quadratur (9º) Hybrid. Back in Lctur 23, w bgan ur discussin f dividrs and cuplrs by cnsidring imprtant gnral prprtis f thrand fur-prt ntwrks. This was fllwd by

More information

Ideal crystal : Regulary ordered point masses connected via harmonic springs

Ideal crystal : Regulary ordered point masses connected via harmonic springs Statistical thrmodyamics of crystals Mooatomic crystal Idal crystal : Rgulary ordrd poit masss coctd via harmoic sprigs Itratomic itractios Rprstd by th lattic forc-costat quivalt atom positios miima o

More information

Time Dependent Solutions: Propagators and Representations

Time Dependent Solutions: Propagators and Representations Tim Dpdt Solutios: Propagators ad Rprstatios Michal Fowlr, UVa 1/3/6 Itroductio W v spt most of th cours so far coctratig o th igstats of th amiltoia, stats whos tim dpdc is mrly a chagig phas W did mtio

More information

5.1 The Nuclear Atom

5.1 The Nuclear Atom Sav My Exams! Th Hom of Rvisio For mor awsom GSE ad lvl rsourcs, visit us at www.savmyxams.co.uk/ 5.1 Th Nuclar tom Qustio Papr Lvl IGSE Subjct Physics (0625) Exam oard Topic Sub Topic ooklt ambridg Itratioal

More information

Physics 2D Lecture Slides Lecture 14: Feb 3 rd 2004

Physics 2D Lecture Slides Lecture 14: Feb 3 rd 2004 Bria Wcht, th TA is back! Pl. giv all rgrad rqusts to him Quiz 4 is This Friday Physics D Lctur Slids Lctur 14: Fb 3 rd 004 Vivk Sharma UCSD Physics Whr ar th lctros isid th atom? Early Thought: Plum puddig

More information

ALOHA Product no.: 03007

ALOHA Product no.: 03007 EN s l d m S vrsatil, s yu! Yur styl is vry prsal as is yur MySpdy. Attach f ths trdy spdmtrs t yur bik ad shw vry wh yu rally ar. Satch up yur favrit dsig ad xprss yur idividuality mr tha vr wh ut ad

More information

EE 119 Homework 6 Solution

EE 119 Homework 6 Solution EE 9 Hmwrk 6 Slutin Prr: J Bkr TA: Xi Lu Slutin: (a) Th angular magniicatin a tlcp i m / th cal lngth th bjctiv ln i m 4 45 80cm (b) Th clar aprtur th xit pupil i 35 mm Th ditanc btwn th bjctiv ln and

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

The pn junction: 2 Current vs Voltage (IV) characteristics

The pn junction: 2 Current vs Voltage (IV) characteristics Th pn junction: Currnt vs Voltag (V) charactristics Considr a pn junction in quilibrium with no applid xtrnal voltag: o th V E F E F V p-typ Dpltion rgion n-typ Elctron movmnt across th junction: 1. n

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information

PREPARATORY MATHEMATICS FOR ENGINEERS

PREPARATORY MATHEMATICS FOR ENGINEERS CIVE 690 This qusti ppr csists f 6 pritd pgs, ch f which is idtifid by th Cd Numbr CIVE690 FORMULA SHEET ATTACHED UNIVERSITY OF LEEDS Jury 008 Emiti fr th dgr f BEg/ MEg Civil Egirig PREPARATORY MATHEMATICS

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

Multiple Short Term Infusion Homework # 5 PHA 5127

Multiple Short Term Infusion Homework # 5 PHA 5127 Multipl Short rm Infusion Homwork # 5 PHA 527 A rug is aministr as a short trm infusion. h avrag pharmacokintic paramtrs for this rug ar: k 0.40 hr - V 28 L his rug follows a on-compartmnt boy mol. A 300

More information

Chapter 4. Problem Solutions

Chapter 4. Problem Solutions Chapter 4. Prblem Slutis. The great majrity f alpha particles pass thrugh gases ad thi metal fils with deflectis. T what cclusi abut atmic structure des this bservati lead? The fact that mst particles

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

Frequency Measurement in Noise

Frequency Measurement in Noise Frqucy Masurmt i ois Porat Sctio 6.5 /4 Frqucy Mas. i ois Problm Wat to o look at th ct o ois o usig th DFT to masur th rqucy o a siusoid. Cosidr sigl complx siusoid cas: j y +, ssum Complx Whit ois Gaussia,

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Solid State Device Fundamentals

Solid State Device Fundamentals 8 Biasd - Juctio Solid Stat Dvic Fudamtals 8. Biasd - Juctio ENS 345 Lctur Cours by Aladr M. Zaitsv aladr.zaitsv@csi.cuy.du Tl: 718 98 81 4N101b Dartmt of Egirig Scic ad Physics Biasig uiolar smicoductor

More information

Frequency Response. Lecture #12 Chapter 10. BME 310 Biomedical Computing - J.Schesser

Frequency Response. Lecture #12 Chapter 10. BME 310 Biomedical Computing - J.Schesser Frquncy Rspns Lcur # Chapr BME 3 Bimdical Cmpuing - J.Schssr 99 Idal Filrs W wan sudy Hω funcins which prvid frquncy slciviy such as: Lw Pass High Pass Band Pass Hwvr, w will lk a idal filring, ha is,

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Chapter 6: Polarization and Crystal Optics

Chapter 6: Polarization and Crystal Optics Chaptr 6: Polarization and Crystal Optics * P6-1. Cascadd Wav Rtardrs. Show that two cascadd quartr-wav rtardrs with paralll fast axs ar quivalnt to a half-wav rtardr. What is th rsult if th fast axs ar

More information

Chapter 6: Polarization and Crystal Optics

Chapter 6: Polarization and Crystal Optics Chaptr 6: Polarization and Crystal Optics * P6-1. Cascadd Wav Rtardrs. Show that two cascadd quartr-wav rtardrs with paralll fast axs ar quivalnt to a half-wav rtardr. What is th rsult if th fast axs ar

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

Even/Odd Mode Analysis of the Wilkinson Divider

Even/Odd Mode Analysis of the Wilkinson Divider //9 Wilkinn Dividr Evn and Odd Md Analyi.dc / Evn/Odd Md Analyi f th Wilkinn Dividr Cnidr a matchd Wilkinn pwr dividr, with a urc at prt : Prt Prt Prt T implify thi chmatic, w rmv th grund plan, which

More information

PHA 5127 Answers Homework 2 Fall 2001

PHA 5127 Answers Homework 2 Fall 2001 PH 5127 nswrs Homwork 2 Fall 2001 OK, bfor you rad th answrs, many of you spnt a lot of tim on this homwork. Plas, nxt tim if you hav qustions plas com talk/ask us. Thr is no nd to suffr (wll a littl suffring

More information

2. Laser physics - basics

2. Laser physics - basics . Lasr physics - basics Spontanous and stimulatd procsss Einstin A and B cofficints Rat quation analysis Gain saturation What is a lasr? LASER: Light Amplification by Stimulatd Emission of Radiation "light"

More information

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

ECE602 Exam 1 April 5, You must show ALL of your work for full credit. ECE62 Exam April 5, 27 Nam: Solution Scor: / This xam is closd-book. You must show ALL of your work for full crdit. Plas rad th qustions carfully. Plas chck your answrs carfully. Calculators may NOT b

More information

1/16/2013. NB 2: The photophysics Is hidden in σ. No population inversion! g n. Large Saturation: g n g n. in cm c EINSTEIN COEFFICIENT

1/16/2013. NB 2: The photophysics Is hidden in σ. No population inversion! g n. Large Saturation: g n g n. in cm c EINSTEIN COEFFICIENT /6/0 EINSTEIN COEFFICIENT # trasts / scd: P g B # mlculs dgracy Radat dsty =# phts/ut rq. NB : Th phtphyscs Is hdd σ 8 B h dt Ampltud TRANSITION OENT (S w hav t d much yt) P g B A P g B A Stmulatd mss

More information

The real E-k diagram of Si is more complicated (indirect semiconductor). The bottom of E C and top of E V appear for different values of k.

The real E-k diagram of Si is more complicated (indirect semiconductor). The bottom of E C and top of E V appear for different values of k. Modr Smcoductor Dvcs for Itgratd rcuts haptr. lctros ad Hols Smcoductors or a bad ctrd at k=0, th -k rlatoshp ar th mmum s usually parabolc: m = k * m* d / dk d / dk gatv gatv ffctv mass Wdr small d /

More information

Sub-Wavelength Resonances in Metamaterial-Based Multi-Cylinder Configurations

Sub-Wavelength Resonances in Metamaterial-Based Multi-Cylinder Configurations Matrial 211, 4, 117-13; di:1.339/ma41117 Articl OPEN ACCESS matrial ISSN 1996-1944 www.mdpi.cm/jural/matrial Sub-Wavlgth Rac i Mtamatrial-Bad Multi-Cylidr Cfigurati Saml Arlaagić * ad Olav Bribjrg Dpartmt

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Calculus Modul C Diffrntiation of Eponntial Functions Copyright This publication Th Northrn Albrta Institut of Tchnology 007. All Rights Rsrvd. LAST REVISED March, 009 Introduction to Diffrntiation of

More information

Part 7: Capacitance And Capacitors

Part 7: Capacitance And Capacitors Part 7: apacitanc And apacitors 7. Elctric harg And Elctric Filds onsidr a pair of flat, conducting plats, arrangd paralll to ach othr (as in figur 7.) and sparatd by an insulator, which may simply b air.

More information

The Excel FFT Function v1.1 P. T. Debevec February 12, The discrete Fourier transform may be used to identify periodic structures in time ht.

The Excel FFT Function v1.1 P. T. Debevec February 12, The discrete Fourier transform may be used to identify periodic structures in time ht. The Excel FFT Fucti v P T Debevec February 2, 26 The discrete Furier trasfrm may be used t idetify peridic structures i time ht series data Suppse that a physical prcess is represeted by the fucti f time,

More information

:2;$-$(01*%<*=,-./-*=0;"%/;"-*

:2;$-$(01*%<*=,-./-*=0;%/;-* !"#$%'()%"*#%*+,-./-*+01.2(.*3+456789*!"#$%"'()'*+,-."/0.%+1'23"45'46'7.89:89'/' ;8-,"$4351415,8:+#9' Dr. Ptr T. Gallaghr Astrphyscs Rsarch Grup Trnty Cllg Dubln :2;$-$(01*%

More information

Cosmology. Outline. Relativity and Astrophysics Lecture 17 Terry Herter. Redshift (again) The Expanding Universe Applying Hubble s Law

Cosmology. Outline. Relativity and Astrophysics Lecture 17 Terry Herter. Redshift (again) The Expanding Universe Applying Hubble s Law Csmlgy Csmlgy Rlativity and Astrphysics ctur 17 Trry Hrtr Outlin Rdshit (again) Th Expanding Univrs Applying Hubbl s aw Distanc rm Rdshit Csmlgical Principl Olbrs Paradx A90-17 Csmlgy A90-17 1 Csmlgy Rdshit

More information

ME311 Machine Design

ME311 Machine Design ME311 Machin Dsign Lctur 4: Strss Concntrations; Static Failur W Dornfld 8Sp017 Fairfild Univrsit School of Enginring Strss Concntration W saw that in a curvd bam, th strss was distortd from th uniform

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Integration by Parts

Integration by Parts Intgration by Parts Intgration by parts is a tchniqu primarily for valuating intgrals whos intgrand is th product of two functions whr substitution dosn t work. For ampl, sin d or d. Th rul is: u ( ) v'(

More information

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C Tchniqus of Intgration c Donald Kridr and Dwight Lahr In this sction w ar going to introduc th first approachs to valuating an indfinit intgral whos intgrand dos not hav an immdiat antidrivativ. W bgin

More information

Chapter 3.1: Polynomial Functions

Chapter 3.1: Polynomial Functions Ntes 3.1: Ply Fucs Chapter 3.1: Plymial Fuctis I Algebra I ad Algebra II, yu ecutered sme very famus plymial fuctis. I this secti, yu will meet may ther members f the plymial family, what sets them apart

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condnsd Mattr Physics pcific hat M.P. Vaughan Ovrviw Ovrviw of spcific hat Hat capacity Dulong-Ptit Law Einstin modl Dby modl h Hat Capacity Hat capacity h hat capacity of a systm hld at

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

Gradebook & Midterm & Office Hours

Gradebook & Midterm & Office Hours Your commnts So what do w do whn on of th r's is 0 in th quation GmM(1/r-1/r)? Do w nd to driv all of ths potntial nrgy formulas? I don't undrstand springs This was th first lctur I actually larnd somthing

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Eigenvalue Distributions of Quark Matrix at Finite Isospin Chemical Potential

Eigenvalue Distributions of Quark Matrix at Finite Isospin Chemical Potential Tim: Tusday, 5: Room: Chsapak A Eignvalu Distributions of Quark Matri at Finit Isospin Chmical Potntial Prsntr: Yuji Sasai Tsuyama National Collg of Tchnology Co-authors: Grnot Akmann, Atsushi Nakamura

More information

Topic 1.3 BONDING. Types of bond States of matter Structure and physical properties Molecular shapes Intermolecular forces

Topic 1.3 BONDING. Types of bond States of matter Structure and physical properties Molecular shapes Intermolecular forces Tpic 1.3 ONDING Typs f bnd Stats f mattr Structur and physical prprtis Mlcular shaps Intrmlcular frcs Mill ill unty igh Schl TYPES OF OND Atms bnd t ach thr in n f fur ways: i) inic bnding An inic bnd

More information

Exam 1. It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator.

Exam 1. It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator. Exam N a m : _ S O L U T I O N P U I D : I n s t r u c t i o n s : It is important that you clarly show your work and mark th final answr clarly, closd book, closd nots, no calculator. T i m : h o u r

More information

Chapter 8: Electron Configurations and Periodicity

Chapter 8: Electron Configurations and Periodicity Elctron Spin & th Pauli Exclusion Principl Chaptr 8: Elctron Configurations and Priodicity 3 quantum numbrs (n, l, ml) dfin th nrgy, siz, shap, and spatial orintation of ach atomic orbital. To xplain how

More information

ARC Window System. General Information: Determine your window type and turn to the specific pages for the. Type #1 Arc. Windows. Type #2 Arc Windows

ARC Window System. General Information: Determine your window type and turn to the specific pages for the. Type #1 Arc. Windows. Type #2 Arc Windows I-1 ARC Wid Systm This systm quis a additial tip t th jb sit ad cdiati bt th km ad th istall. Tip #1- Masu th id. Tip #2- Fi-tu th fit t th id, th s th tatmt. Tip #3- Istall fial tatmt. As ith ay typ f

More information

Lecture 14. Time Harmonic Fields

Lecture 14. Time Harmonic Fields Lcu 4 Tim amic Filds I his lcu u will la: Cmpl mahmaics f im-hamic filds Mawll s quais f im-hamic filds Cmpl Pig vc C 303 Fall 007 Faha aa Cll Uivsi Tim-amic Filds ad -filds f a pla wav a (fm las lcu:

More information

9.5 Complex variables

9.5 Complex variables 9.5 Cmpl varabls. Cnsdr th funtn u v f( ) whr ( ) ( ), f( ), fr ths funtn tw statmnts ar as fllws: Statmnt : f( ) satsf Cauh mann quatn at th rgn. Statmnt : f ( ) ds nt st Th rrt statmnt ar (A) nl (B)

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

11: Echo formation and spatial encoding

11: Echo formation and spatial encoding 11: Echo formation and spatial ncoding 1. What maks th magntic rsonanc signal spatiall dpndnt? 2. How is th position of an R signal idntifid? Slic slction 3. What is cho formation and how is it achivd?

More information

Further Results on Pair Sum Graphs

Further Results on Pair Sum Graphs Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt

More information

The failure of the classical mechanics

The failure of the classical mechanics h failur of th classical mchanics W rviw som xprimntal vidncs showing that svral concpts of classical mchanics cannot b applid. - h blac-body radiation. - Atomic and molcular spctra. - h particl-li charactr

More information

RMO Sample Paper 1 Solutions :

RMO Sample Paper 1 Solutions : RMO Sample Paper Slutis :. The umber f arragemets withut ay restricti = 9! 3!3!3! The umber f arragemets with ly e set f the csecutive 3 letters = The umber f arragemets with ly tw sets f the csecutive

More information

Exam 2 Thursday (7:30-9pm) It will cover material through HW 7, but no material that was on the 1 st exam.

Exam 2 Thursday (7:30-9pm) It will cover material through HW 7, but no material that was on the 1 st exam. Exam 2 Thursday (7:30-9pm) It will covr matrial through HW 7, but no matrial that was on th 1 st xam. What happns if w bash atoms with lctrons? In atomic discharg lamps, lots of lctrons ar givn kintic

More information

Pipe flow friction, small vs. big pipes

Pipe flow friction, small vs. big pipes Friction actor (t/0 t o pip) Friction small vs larg pips J. Chaurtt May 016 It is an intrsting act that riction is highr in small pips than largr pips or th sam vlocity o low and th sam lngth. Friction

More information

Diploma Macro Paper 2

Diploma Macro Paper 2 Diploma Macro Papr 2 Montary Macroconomics Lctur 6 Aggrgat supply and putting AD and AS togthr Mark Hays 1 Exognous: M, G, T, i*, π Goods markt KX and IS (Y, C, I) Mony markt (LM) (i, Y) Labour markt (P,

More information

1 General boundary conditions in diffusion

1 General boundary conditions in diffusion Gnral boundary conditions in diffusion Πρόβλημα 4.8 : Δίνεται μονοδιάτατη πλάκα πάχους, που το ένα άκρο της κρατιέται ε θερμοκραία T t και το άλλο ε θερμοκραία T 2 t. Αν η αρχική θερμοκραία της πλάκας

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Exercises for lectures 23 Discrete systems

Exercises for lectures 23 Discrete systems Exrciss for lcturs 3 Discrt systms Michal Šbk Automatické říí 06 30-4-7 Stat-Spac a Iput-Output scriptios Automatické říí - Kybrtika a robotika Mols a trasfrs i CSTbx >> F=[ ; 3 4]; G=[ ;]; H=[ ]; J=0;

More information

Wavelength Scheduling in Time-domain Wavelength Interleaved Networks

Wavelength Scheduling in Time-domain Wavelength Interleaved Networks Wavlgth Schdulig i Tim-dmai Wavlgth Itrlavd twrks Ya Li, Sajay Raka ad Sartaj Sahi Dpartmt f Cmputr ad Ifrmati Scic ad Egirig Uivrsity f lrida, Gaisvill, lrida 326 Email: {yali, raka, sahi}@cis.ufl.du

More information

Electrons and Conductors

Electrons and Conductors Elctrons and Conductors Atoms consist primarily of lctrons, protons, and nutrons. A modifid Bohr modl of th atom is shown blow. nuclus composd of a clustr of protons and nutrons orbital lctrons lctron

More information

Definition1: The ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions.

Definition1: The ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions. Dirctivity or Dirctiv Gain. 1 Dfinition1: Dirctivity Th ratio of th radiation intnsity in a givn dirction from th antnna to th radiation intnsity avragd ovr all dirctions. Dfinition2: Th avg U is obtaind

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012 Th van dr Waals intraction D. E. Sopr 2 Univrsity of Orgon 20 pril 202 Th van dr Waals intraction is discussd in Chaptr 5 of J. J. Sakurai, Modrn Quantum Mchanics. Hr I tak a look at it in a littl mor

More information

ALE 26. Equilibria for Cell Reactions. What happens to the cell potential as the reaction proceeds over time?

ALE 26. Equilibria for Cell Reactions. What happens to the cell potential as the reaction proceeds over time? Name Chem 163 Secti: Team Number: AL 26. quilibria fr Cell Reactis (Referece: 21.4 Silberberg 5 th editi) What happes t the ptetial as the reacti prceeds ver time? The Mdel: Basis fr the Nerst quati Previusly,

More information

Unit -2 THEORY OF DILUTE SOLUTIONS

Unit -2 THEORY OF DILUTE SOLUTIONS Uit - THEORY OF DILUTE SOLUTIONS 1) hat is sluti? : It is a hmgeus mixture f tw r mre cmpuds. ) hat is dilute sluti? : It is a sluti i which slute ccetrati is very less. 3) Give a example fr slid- slid

More information

Appendices on the Accompanying CD

Appendices on the Accompanying CD APPENDIX 4B Andis n th Amanyg CD TANSFE FUNCTIONS IN CONTINUOUS CONDUCTION MODE (CCM In this st, w will driv th transfr funt v / d fr th thr nvrtrs ratg CCM 4B- Buk Cnvrtrs Frm Fig. 4-7, th small signal

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim (implicit in notation and n a positiv intgr, lt ν(n dnot th xponnt of p in n, and U(n n/p ν(n, th unit

More information

CHLORIDE PENETRATION PROFILES IN EXISTING HARBOR STRUCTURES CONSTRUCTED WITH BLAST FURNACE CEMENT CONCRETE

CHLORIDE PENETRATION PROFILES IN EXISTING HARBOR STRUCTURES CONSTRUCTED WITH BLAST FURNACE CEMENT CONCRETE CHLORIDE PENETRATION PROFILES IN EXISTING HARBOR STRUCTURES CONSTRUCTED WITH BLAST FURNACE CEMENT CONCRETE M. Kubta*, Tky Istitut f Thlgy, Japa T. Sait, Tky Istitut f Thlgy, Japa N. Otsuki, Tky Istitut

More information

REFRACTIVE INDICES, ORDER PARAMETER AND DENSITY STUDY OF BKS/B07 NEMATIC LIQUID CRYSTAL

REFRACTIVE INDICES, ORDER PARAMETER AND DENSITY STUDY OF BKS/B07 NEMATIC LIQUID CRYSTAL Dpartmnt f Physical Chmistry 4-1 Rgina Elisabta Blvd, District, Bucharst phn: +40-1-14508; fax: +40-1-15949 pissn: 10-871X ISSN: 1844-0401 ARS DOCENDI PUBLISHING HOUSE Ss. Panduri 90, District 5 Bucharst

More information

Flow Switch Diaphragm Type Flow Switch IFW5 10 N Diaphragm type flow switch. Thread type. Model Body size Set flow rate

Flow Switch Diaphragm Type Flow Switch IFW5 10 N Diaphragm type flow switch. Thread type. Model Body size Set flow rate Flo Sitch Diaphragm Typ Flo Sitch IFW5 Sris [Option] Th flo sitch, IFW sris is usd for dtction and confirmation of th flo as a rlaying dvic for th gnral atr applications in som various uipmnt such as cooling

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

Case Study Vancomycin Answers Provided by Jeffrey Stark, Graduate Student

Case Study Vancomycin Answers Provided by Jeffrey Stark, Graduate Student Cas Stuy Vancomycin Answrs Provi by Jffry Stark, Grauat Stunt h antibiotic Vancomycin is liminat almost ntirly by glomrular filtration. For a patint with normal rnal function, th half-lif is about 6 hours.

More information

PHYS ,Fall 05, Term Exam #1, Oct., 12, 2005

PHYS ,Fall 05, Term Exam #1, Oct., 12, 2005 PHYS1444-,Fall 5, Trm Exam #1, Oct., 1, 5 Nam: Kys 1. circular ring of charg of raius an a total charg Q lis in th x-y plan with its cntr at th origin. small positiv tst charg q is plac at th origin. What

More information

Solutions to Midterm II. of the following equation consistent with the boundary condition stated u. y u x y

Solutions to Midterm II. of the following equation consistent with the boundary condition stated u. y u x y Sltis t Midterm II Prblem : (pts) Fid the mst geeral slti ( f the fllwig eqati csistet with the bdary cditi stated y 3 y the lie y () Slti : Sice the system () is liear the slti is give as a sperpsiti

More information

Analysis of the power losses in the three-phase high-current busducts

Analysis of the power losses in the three-phase high-current busducts Computr Applicatios i Elctrical Egirig Vol. 3 5 Aalysis of th powr losss i th thr-phas high-currt busucts Tomasz Szczgiliak, Zygmut Piątk, Dariusz Kusiak Częstochowa Uivrsity of Tchology 4- Częstochowa,

More information

WEST VIRGINIA UNIVERSITY

WEST VIRGINIA UNIVERSITY WEST VIRGINIA UNIVERSITY PLASMA PHYSICS GROUP INTERNAL REPORT PL - 045 Mea Optical epth ad Optical Escape Factr fr Helium Trasitis i Helic Plasmas R.F. Bivi Nvember 000 Revised March 00 TABLE OF CONTENT.0

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

On the Hamiltonian of a Multi-Electron Atom

On the Hamiltonian of a Multi-Electron Atom On th Hamiltonian of a Multi-Elctron Atom Austn Gronr Drxl Univrsity Philadlphia, PA Octobr 29, 2010 1 Introduction In this papr, w will xhibit th procss of achiving th Hamiltonian for an lctron gas. Making

More information

Handout 32. Electronic Energy Transport and Thermoelectric Effects

Handout 32. Electronic Energy Transport and Thermoelectric Effects Haut lti y aspt a hmlti ts I is ltu yu will la: hmal y taspt by lts hmlti ts b t Plti t hmlti ls hmlti pw ts Las Osa (9-976) C 47 pi 9 aha Raa Cll Uisity Nt Ntati I is haut ulss stats wis w will assum

More information

1 of 42. Abbreviated title: [SAP-SVT-Nmsm-g & 137] - Updated on 31 July, 09. Shankar V.Narayanan

1 of 42. Abbreviated title: [SAP-SVT-Nmsm-g & 137]  - Updated on 31 July, 09. Shankar V.Narayanan 1 of 4 ONE EQUATION ad FOUR Subatomic Particls ad thir FOUR Itractios icludig (g &17) factors with Spac Vortx Thory (A No matrial shll modl) (Part 1 of ) (Th cotts of this txt ar th sam as i Subatomic

More information

Sec 2.3 Modeling with First Order Equations

Sec 2.3 Modeling with First Order Equations Sc.3 Modling with First Ordr Equations Mathmatical modls charactriz physical systms, oftn using diffrntial quations. Modl Construction: Translating physical situation into mathmatical trms. Clarly stat

More information

7. Differentiation of Trigonometric Function

7. Differentiation of Trigonometric Function 7. Diffrtiatio of Trigootric Fctio RADIAN MEASURE. Lt s ot th lgth of arc AB itrcpt y th ctral agl AOB o a circl of rais r a lt S ot th ara of th sctor AOB. (If s is /60 of th circfrc, AOB = 0 ; if s =

More information

IVE(TY) Department of Engineering E&T2520 Electrical Machines 1 Miscellaneous Exercises

IVE(TY) Department of Engineering E&T2520 Electrical Machines 1 Miscellaneous Exercises TRANSFORMER Q1 IE(TY) Dpartmnt of Enginring E&T50 Elctrical Machins 1 Miscllanous Exrciss Q Q3 A singl phas, 5 ka, 0/440, 60 Hz transformr gav th following tst rsults. Opn circuit tst (440 sid opn): 0

More information

15. Stress-Strain behavior of soils

15. Stress-Strain behavior of soils 15. Strss-Strain bhavior of soils Sand bhavior Usually shard undr draind conditions (rlativly high prmability mans xcss por prssurs ar not gnratd). Paramtrs govrning sand bhaviour is: Rlativ dnsity Effctiv

More information