Modelling and simulation of dependence structures in nonlife insurance with Bernstein copulas

Size: px
Start display at page:

Download "Modelling and simulation of dependence structures in nonlife insurance with Bernstein copulas"

Transcription

1 Moellng an smulaton of epenence structures n nonlfe nsurance wth Bernsten copulas Prof. Dr. Detmar Pfefer Dept. of Mathematcs, Unversty of Olenburg an AON Benfel, Hamburg Dr. Doreen Straßburger Dept. of Mathematcs, Unversty of Olenburg an mgm consultng partners, Hamburg Jörg Phlpps Dept. of Mathematcs, Unversty of Olenburg e-mals: etmar.pfefer@un-olenburg.e oreen.strassburger@un-olenburg.e joerg.phlpps@un-olenburg.e Abstract: In ths paper we revew Bernsten an gr-type copulas for arbtrary mensons an general gr resolutons n connecton wth screte ranom vectors possessng unform margns. We further suggest a pragmatc way to ft the epenence structure of multvarate ata to Bernsten copulas va gr-type copulas an emprcal contngency tables. Fnally, we scuss a Monte Carlo stuy for the smulaton an PML estmaton for aggregate epenent losses form observe wnstorm an floong ata.

2 Moellng an smulaton of epenence structures n nonlfe nsurance wth Bernsten copulas. Introucton The use of copulas for moellng an smulaton purposes especally n nonlfe nsurance (nternal moels) has attane ncreasng nterest n the recent years, see e.g. [3], Chapter 5 an the references gven there. However, the scusson of potental copula moels has so far mostly focusse on ether the ellptcal case (e.g. Gaussan an t-copula) or the Archmean case (e.g. Gumbel-, Clayton-, Frank-copula an others). Although the use of Bernsten polynomals n one an more varables or n one an more mensons (especally Bézer curves an surfaces) has a long traton n numercal analyss an computer ae esgn, t seems that the true mpact of Bernsten polynomals on copula moels has been scovere only more recently, frst n the framework of approxmaton theory (see e.g. [], [5], [7], [8]) an later n partcular n connecton wth applcatons n fnance (see e.g. [2], [3], [0], []). Bernsten copulas possess several benefts compare to the tratonal approaches: Bernsten copulas allow for a very flexble, non-parametrc an essentally non-symmetrc escrpton of epenence structures also n hgher mensons Bernsten copulas approxmate any gven copula arbtrarly well Bernsten copula enstes are gven n an explct form an can hence be easly use for Monte Carlo smulaton stues. In ths paper, we take a specal smple look on the constructon of Bernsten copulas through screte ranom vectors wth unform margns, an pont out ther connecton to gr-type copulas scusse n [4] (also calle checkerboar copulas n [2] an [5]). Ths vew whch can also be foun n [2] an [5], however restrcte to the bvarate case, opens a pragmatc approach to ft the epenence structure of observe ata to Bernsten copulas va gr-type copulas an (multvarate) contngency tables. As an example, we present a Monte Carlo stuy on the aggregate rsk strbuton for epenent wnstorm an floong losses. 2. Some smple mathematcal facts on Bernsten polynomals an copulas Lemma. Let Further, m k m k Bmkz (,, ) = z( z), 0 z, k = 0,, m. Then we have k mb( m, k, z) z= for k = 0,, m. 0 B( mkz,, ) = mbm [ (, k, z) Bm (, kz), ] for k = 0,, m z wth the conventon Bm (,, z) = Bm (, mz, ) = 0.

3 Moellng an smulaton of epenence structures n nonlfe nsurance wth Bernsten copulas Proof: 0 m m ( k ) ( m mb( m, k, z) z m Beta( k, m k) m Γ + Γ k) = + = k k Γ ( m + ) mm ( )! k!( m k )! = =. k!( m k )! m! Further, for 0 < k< m, m m Bmkz (,, ) = k z ( z ) ( m k ) z ( z ) z k k k m k k m k m m = m z ( z) m z ( z) k k k ( m ) ( k ) k m k [ (,, ) (,, )] = m B m k z B m k z whch, by the above conventon, also hols for k { m} 0,. Theorem. For let U = U,, U be a ranom vector whose margnal component U follows a screte unform strbuton over T : = 0,,, m wth, =,,. Let further enote Then ( ) p k k P U k (,, ): = { = } for all ( m m = { } ) m k,, k T. = cu (,, u) : = pk (,, k) mbm (, k, u), ( u,, u) [ 0, k= 0 k = 0 = efnes the ensty of a -mensonal copula, calle Bernsten copula. We call c the Bernsten copula ensty nuce by U. ] Proof. For fxe j we obtan, accorng to the Lemma above, m m (,, ) j = (,, ) (,, ) j ( j, j, j) cu u u pk k mbm k u mbm k u u 0 k= 0 k = 0 = 0 j m m (,, ) (,, ) = pk k mbm k u k= 0 k = 0 = j j 2

4 Moellng an smulaton of epenence structures n nonlfe nsurance wth Bernsten copulas for ( u u u u ) [ ],,,,, 0, j j+ m mj mj+ m mj = p( k,, k ) mb( m, k, u k= 0 kj = 0 kj+ = 0 k= 0 kj= 0 = j m mj mj+ m = P { U k } = mb( m, k, u k= 0 kj = 0 kj+ = 0 k= 0 = = j j ( j j+ ) [,, j, j+,, ] = : c u,, u, u,, u [,,,.e. j, j +,, ] c s also a Bernsten copula, but of menson nstea of. (Note that for j =, the symbol [,, j, j+,, ] reas [2,, ], lkewse for j =, corresponngly for the vectors of varables.) Contnung ntegraton accorng to the remanng varables except for the varable for fxe r, we en up wth mr [ r] c ur c u u u ur ur+ u P Ur kr mrb mr k u 0 0 kr = 0 for all ( ) = (,, ) = ( = ) (,, ) r r m =,, =,, = ( ) = mr mr mr r k m k mrb( mr kr ur) B( mr kr ur) ur ur kr 0m = r kr= 0 k= 0 k unform strbuton over ] u [0, r whch proves that the r-th margnal ensty of c s that of a contnuous [ ] 0,, for every r. u r ) ) Note that the lne of proof above shows that f = ( V V ) V,, s a ranom vector wth jont Bernsten copula ensty c as above, then also any partal ranom vector ( V V ) n< an < < n possesses a Bernsten copula ensty [,, c ] n gven by,, wth n m m ( ) n n n [,, ] n n c u, u { } (,, ), (,, ) [ 0, ]. = n P U = k m B m k u u u n k = 0 k = 0 = = n Ths means that the Bernsten copula ensty ranom vector ( U,, ). U n [,, n ] c s just the ensty nuce by the partal By ntegraton, we obtan the Bernsten copula C nuce by U as x x m m C( x,, x ): = c( u,, u ) u u = P { U < k } B( m, k, x ), 0 0 k= 0 k = 0 = = 3

5 Moellng an smulaton of epenence structures n nonlfe nsurance wth Bernsten copulas for ( x x ) [ ],, 0,. Ths can be verfe by partal fferentaton of C, usng the above Lemma, an some rearrangements n the summaton: m m C( x,, x ) = P { U k } < B( m, k, x ) m B( m, k, x ) B( m, k, x ) u r r r r r r r r k= 0 k = 0 = = r m m = P U k U k < = B m k x m B m k x whch, by teraton, fnally leas to { } { } (,, ) (,, ) r r r r r r k= 0 k = 0 = = r r u u C( x,, x ) = c( x,, x ), ( x,, x ) [ 0,]. There s also a natural relatonshp between Bernsten an gr-type copulas as scusse n [2], [5] an [4]. We refer to a slghtly more general setup here. Defnton. Uner the assumptons of the above theorem efne the ntervals kj kj+ Ik :,,, k = j= mj m for all possble choces ( k,, k) T. Then the functon = j m m * c : m p( k,, k ) = = k= 0 k = 0 Ik,, k s the ensty of a -mensonal copula, calle gr-type copula nuce by U. Here enotes the ncator ranom varable of the set A, as usual. A A natural nterpretaton of ths copula s as follows: a ranom vector W = ( W W ) follows a gr-type copula ff the contonal strbuton fulflls the contons ( U = (,, ) ) = U ( k, ) W P k k I,k for all ( k,, k ) T, =,, where U ( B) enotes the contnuous unform strbuton over a -mensonal Borel set B wth postve Lebesgue measure an ( k,, k) Ik U= W,,k (.e., U enotes n some sense the coornates of W w.r.t. the gr nuce by the ). Ik,, k Hence the Bernsten copula nuce by U can be regare as a naturally smoothe verson of the gr-type copula nuce by U, replacng the ncator functons 4

6 Moellng an smulaton of epenence structures n nonlfe nsurance wth Bernsten copulas ( u,, u ) ( u ) by the polynomals Bm ( k u) ( u u) [ ] = Ik,, k k k, + = m m =,,,,, 0,. Example. The followng graphs show the smoothng effect n case =. m = 5 m = 0 Natural generalzatons of Bernsten an gr-type copulas are obtane f we look at sutable parttons of unty,.e. famles of non-negatve functons { φ( mk,, ) 0 k m, m } efne on the unt nterval [ 0, ] wth the followng propertes (see e.g. [5] or [7]): φ ( mku,, ) u= for k = 0,, m m 0 m φ( mk,, ) = for m. k= 0 In ths case, a -mensonal copula ensty c φ nuce by U s gven by m m φ c ( u,, u) : = P { U = k} mφ ( m, k, u), ( u,, u ) [ 0,. ] k= 0 k = 0 = = The copula tself s accorngly gven by m m φ C ( u,, u) : = P { U < k} φ ( m, k, u), ( u,, u) [ 0,]. k= 0 k = 0 = = (cf. [2] an [5] for the bvarate case wth m = m ). 2 5

7 Moellng an smulaton of epenence structures n nonlfe nsurance wth Bernsten copulas Note that m k φ( mku,, ) = Bm (, ku, ) = u( u) k m k n case of Bernsten copulas an = ( mku,, ) k k φ +, m m ( u) for 0 k m, m n case of gr-type copulas. Example 2. Suppose that for menson = 2 the jont strbuton of U = ( U, U 2 ) s gven by the followng table. ( U = ( j) ) P, ,02 0 0,08 0,5 0 0,03 0,2 0,0 j 2 0,3 0,07 0, ,0 0,5 0 0 The graphs below show jontly the gr-type an the Bernsten copula ensty nuce by U. 3. Fttng emprcal ata to gr-type an Bernsten copulas In ths secton, we shall restrct ourselves to the case = 2, metho propose here works accorngly n any menson. for smplcty. However, the Suppose that a bvarate ata set of observatons s gven, for nstance a tme seres of (economcally ajuste) wnstorm an floong losses. One possble way to extract the 6

8 Moellng an smulaton of epenence structures n nonlfe nsurance wth Bernsten copulas epenence structure from the ata s the emprcal copula scatterplot, whch s a plot of the jont relatve ranks of the ata. The followng fgure shows such a plot for a seres of n = 34 observaton years. ranks of wnstorm losses In a frst step, we want to ft these ata to a gr-type copula wth a gven gr resoluton, say m = m2 = m= 0. Countng the relatve frequency of the ata ponts n each of the m m2 = 00 target cells, we obtan the followng contngency table a j (matrx notaton: = row nex, j = column nex; roune to 3 ecmal places). upper cell bounary 0, 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9,0 sum,0 0,000 0,000 0,000 0,000 0,000 0,029 0,029 0,029 0,000 0,000 0,009 0,9 0,029 0,000 0,000 0,000 0,000 0,000 0,029 0,000 0,000 0,029 0,009 0,8 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,029 0,029 0,059 0,02 0,7 0,000 0,029 0,000 0,000 0,000 0,029 0,000 0,000 0,029 0,000 0,009 0,6 0,000 0,029 0,029 0,029 0,000 0,000 0,000 0,029 0,000 0,000 0,02 0,5 0,000 0,029 0,000 0,029 0,000 0,000 0,000 0,000 0,029 0,000 0,009 0,4 0,029 0,000 0,000 0,000 0,029 0,029 0,029 0,000 0,000 0,000 0,02 0,3 0,000 0,000 0,000 0,059 0,000 0,000 0,000 0,029 0,000 0,000 0,009 0,2 0,029 0,029 0,000 0,000 0,059 0,000 0,000 0,000 0,000 0,000 0,02 0, 0,000 0,000 0,059 0,000 0,000 0,029 0,000 0,000 0,000 0,000 0,009 sum 0,009 0,02 0,009 0,02 0,009 0,02 0,009 0,02 0,009 0,009 Obvously, the observe margnal sums are not equal to = We therefore conser the m 0. followng optmzaton problem, n orer to approxmate the contngency table a j by a unform contngency table x j : 7

9 Moellng an smulaton of epenence structures n nonlfe nsurance wth Bernsten copulas k = j= mn! m m 2 ( xj aj) subject to = j= m m x = x j = = an x, 0 for k, =,, m m 0 k The explct soluton of such a problem s n general not straghtforwar to fn, although there exsts a soluton ue to the Karush-Kuhn-Tucker theorem from optmzaton theory. Usng a sutable software package lke octave (a publc oman computer algebra system), we obtan the followng soluton (roune to 3 ecmal places); see the coe lstng n the Appenx. upper cell bounary 0, 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9,0 sum,0 0,005 0,00 0,003 0,000 0,005 0,026 0,03 0,026 0,00 0,00 0, 0,9 0,034 0,000 0,002 0,000 0,004 0,000 0,030 0,000 0,00 0,030 0, 0,8 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,020 0,025 0,054 0, 0,7 0,005 0,030 0,002 0,000 0,005 0,025 0,00 0,000 0,03 0,00 0, 0,6 0,00 0,027 0,028 0,02 0,00 0,000 0,000 0,022 0,000 0,000 0, 0,5 0,005 0,030 0,002 0,025 0,005 0,000 0,00 0,000 0,03 0,00 0, 0,4 0,028 0,000 0,000 0,000 0,028 0,09 0,025 0,000 0,000 0,000 0, 0,3 0,005 0,00 0,003 0,054 0,005 0,000 0,002 0,026 0,002 0,002 0, 0,2 0,03 0,009 0,000 0,000 0,042 0,004 0,009 0,005 0,009 0,009 0, 0, 0,005 0,00 0,06 0,000 0,005 0,025 0,00 0,000 0,00 0,00 0, sum 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, A more pragmatc way to fn at least a goo suboptmal soluton that can be easly mplemente e.g. n spreasheets s as follows. Conser the above optmzaton problem wthout the non-negatvty contons frst. The equvalent Lagrange problem (whch leas to a system of lnear equatons) s easy to solve an gves the (general) soluton x j a a a = a + + for, j=,, m, j j m m 2 m m where the nex means summaton, as usual. For the ata set above, we thus obtan 8

10 Moellng an smulaton of epenence structures n nonlfe nsurance wth Bernsten copulas upper cell bounary 0, 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9,0 sum,0 0,002-0,00 0,002-0,00 0,002 0,029 0,032 0,029 0,002 0,002 0, 0,9 0,032-0,00 0,002-0,00 0,002-0,00 0,032-0,00 0,002 0,032 0, 0,8-0,00-0,004-0,00-0,004-0,00-0,004-0,00 0,026 0,029 0,058 0, 0,7 0,002 0,029 0,002-0,00 0,002 0,029 0,002-0,00 0,032 0,002 0, 0,6-0,00 0,026 0,029 0,026-0,00-0,004-0,00 0,026-0,00-0,00 0, 0,5 0,002 0,029 0,002 0,029 0,002-0,00 0,002-0,00 0,032 0,002 0, 0,4 0,029-0,004-0,00-0,004 0,029 0,026 0,029-0,004-0,00-0,00 0, 0,3 0,002-0,00 0,002 0,058 0,002-0,00 0,002 0,029 0,002 0,002 0, 0,2 0,029 0,026-0,00-0,004 0,058-0,004-0,00-0,004-0,00-0,00 0, 0, 0,002-0,00 0,06-0,00 0,002 0,029 0,002-0,00 0,002 0,002 0, sum 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Seemngly, ths soluton s not feasble snce t contans negatve entres. A smple way to a: = mn x, j m an overcome ths problem s a cell-wse atve correcton wth { j } xj + a consecutve normng; the fnal resultng contngency table y j = s gven by + a m upper cell bounary 0, 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9,0 sum,0 0,004 0,002 0,004 0,002 0,004 0,024 0,026 0,024 0,004 0,004 0, 0,9 0,026 0,002 0,004 0,002 0,004 0,002 0,026 0,002 0,004 0,026 0, 0,8 0,002 0,000 0,002 0,000 0,002 0,000 0,002 0,022 0,024 0,046 0, 0,7 0,004 0,024 0,004 0,002 0,004 0,024 0,004 0,002 0,026 0,004 0, 0,6 0,002 0,022 0,024 0,022 0,002 0,000 0,002 0,022 0,002 0,002 0, 0,5 0,004 0,024 0,004 0,024 0,004 0,002 0,004 0,002 0,026 0,004 0, 0,4 0,024 0,000 0,002 0,000 0,024 0,022 0,024 0,000 0,002 0,002 0, 0,3 0,004 0,002 0,004 0,046 0,004 0,002 0,004 0,024 0,004 0,004 0, 0,2 0,024 0,022 0,002 0,000 0,046 0,000 0,002 0,000 0,002 0,002 0, 0, 0,004 0,002 0,048 0,002 0,004 0,024 0,004 0,002 0,004 0,004 0, sum 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Note that ths matrx was use to fee the octave workng sheet as an ntal soluton. The quaratc error between the contngency table y j an the orgnal a j s 0,00279 whle the quaratc error for the optmal soluton s 0, an hence only very slghtly smaller. For the remaner of the paper, we shall therefore use the contngency table y j, for smplcty; the optmal contngency table wll prouce manly the same results here. 9

11 Moellng an smulaton of epenence structures n nonlfe nsurance wth Bernsten copulas The table y j can be use to efne the jont strbuton of the screte ranom vector U = ( U, U nucng the gr-type an Bernsten copulas, smlar as n [2]. Note that n 2) orer to obtan a physcally correct corresponence to the emprcal copula scatterplot, we have to efne ( ) PU, U2 j ym, j + = = = for, j= 0,, m. The followng graphs show the resultng copula enstes. jont plot of the gr-type an Bernsten copula ensty nuce by U plot of the Bernsten copula ensty contour plot of the Bernsten copula ensty, wth orgnal scatterplot supermpose 0

12 Moellng an smulaton of epenence structures n nonlfe nsurance wth Bernsten copulas 4. Smulatng from Bernsten copulas Snce Bernsten copula enstes are polynomals n varables, they are boune over the unt cube [ 0, by a constant M > 0, say whch makes a stochastc smulaton qute easy. ] The most convenent way s an applcaton of the multvarate acceptance-rejecton metho (see e.g. [4], secton 2.5.): Step : generate + nepenent unformly strbute ranom numbers u,, u +. Step 2: check whether cu (,, u) > Mu. + If so, go to Step 3, otherwse go to Step. Step 3: use ( u,, u ) as a sample from the Bernsten copula. The average rate of samples obtane by ths proceure s / M, as usual. Note that n our example, M = 2,35 s suffcent. From the 34 year tme seres of the logarthms of wnstorm an floong losses above the followng margnal strbutons were estmate, on the bass of a Q-Q-plot ( μ = locaton parameter, σ = scale parameter): Q-Q-plots for log losses; left: wnstorm, rght: floong Log wnstorm losses Log floong losses Dstrbuton Gumbel Normal Parameters μ = 6,367 μ = 6,625 σ = 0,8872 σ = 0,9777 I.e., the wnstorm losses are consere to be Fréchet strbute wth extremal nex α= / σ=,27 an the floong losses are consere to follow a lognormal strbuton. The followng graphs show the results of a fourfol Monte Carlo smulaton for the aggregate rsk (wnstorm an floong) on the bass of 000 pars of ponts smulate from Bernsten copulas accorng to secton 3 an the margnal strbutons specfe above. The four cases consere are:

13 Moellng an smulaton of epenence structures n nonlfe nsurance wth Bernsten copulas re lne: Bernsten copula on the bass of a 4 x 4 gr (smlar to secton 3) green lne: Bernsten copula on the bass of a 0 x 0 gr (exact ata from secton 3) blue lne: nepenence case orange lne: Gaussan copula estmate from orgnal ata Dscusson: All four copula moels are qute close n the range of a return pero of 50 years. Sgnfcant fferences occur for hgher return peros. It s nterestng to observe that the PML estmates on the bass of Bernsten copulas le between the nepenence case (lower boun) an the Gaussan copula (upper boun) n the range of 60 to 95 years return pero. The two Bernsten copula approaches are surprsngly close n the range up to a return pero of 00 years, although the copula enstes are clearly fferent. 2

14 Moellng an smulaton of epenence structures n nonlfe nsurance wth Bernsten copulas 4x4 gr 0x0 gr contour plot of Bernsten copula enstes Note that the coarser gr prouces a sngle peak of the ensty n the rght top corner whle the fner gr prouces two stnct peaks there. Ths effect results n a substantally hgher PML estmate for return peros above 70 years for the Bernsten copula on the 4x4 gr, even hgher than the Gaussan copula above 200 years return pero. Concluson. Usng Bernsten or gr-type copulas for moellng epenence structures gves n general a better ft to local unsymmetres than other (classcal) copulas can acheve, but a goo compromse has to be foun between the number of ata ponts an the unerlyng gr resoluton. Also, as s ponte out n [2], both types of copulas show a zero upper tal epenence snce the enstes are boune. However, snce Monte Carlo stues as performe here are always fnte, ths problem can be reuce for practcal purposes by choosng a hgher gr resoluton. 3

15 Moellng an smulaton of epenence structures n nonlfe nsurance wth Bernsten copulas Acknowlegement. We woul lke to thank Lena Reh for some stmulatng scussons on the topc of copulas an pontng out some of the references to us. Appenx octave source coe for the KKT-optmzaton problem from secton 3 functon x=bernstenopt(a,x) %A s the contngency table [a_j] obtane by the ata an x s the ntal value. %A possble ntal value s the approxmatve soluton presente n the paper m=length(a); %reshapng matrces to vectors a=-vec(a); X0=vec(x); % postvty lb=[:m^2]'*0; % equalty constrant b=[2:2*m]'*0+/m; % equalty constrant column sum= B=[ ]; for =:m Bnew=[ ]; for j=2: Bnew=[Bnew,[:m]*0]; en Bnew=[Bnew,[:m]*0+]; for j=+:m Bnew=[Bnew,[:m]*0]; en B=[B;Bnew]; en % equalty constrant row sum= for =2:m Bnew=[ ]; C=[:m]*0; C()=; for j=:m Bnew=[Bnew,C]; en B=[B;Bnew]; en % octave quaratc optmzaton tool [X, OBJ, INFO, LAMBDA] = qp (X0, eye(m^2), a, B, b, lb, [ ], [ ], eye(m^2), [ ]); %reshapng vectors to matrces x=reshape(x,m,m); 4

16 Moellng an smulaton of epenence structures n nonlfe nsurance wth Bernsten copulas References [] T. BOUEZMARNI, J. V.K. ROMBOUTS, A. TAAMOUTI (2008): Asymptotc propertes of the Bernsten ensty copula for epenent ata. CORE scusson paper 2008/45, Leuven Unversty, Belgum. [2] V. DURRLEMAN, A. NIKEGHBALI, T. RONCALLI (2000): Copulas approxmaton an new famles. Groupe e Recherche Opératonelle, Crét Lyonnas, France, Workng Paper. [3] V. DURRLEMAN, A. NIKEGHBALI, T. RONCALLI (2000): Whch copula s the rght one? Groupe e Recherche Opératonelle, Crét Lyonnas, France, Workng Paper. [4] D. PFEIFER, D. STRAßBURGER (2005): Depenence matters! Paper presente at the 36th Internatonal ASTIN Colloquum, September 4 7, 2005, ETH Zürch. [5] T. KULPA (999): On approxmaton of copulas. Internat. J. Math. & Math. Sc. 22, [6] A. MCNEIL, R. FEY, P. EMBRECHTS (2005) : Quanttatve Rsk Management. Concepts, Technques, Tools. Prnceton Unversty Press, Prnceton, N.J. [7] X. LI, P. MIKUSIŃSKI, H. SHERWOOD, M.D. TAYLOR (997): On approxmaton of copulas. In: V. Beneš an J. Štěpán (Es.), Dstrbutons wth Gven Margnals an Moment Problems, Kluwer Acaemc Publshers, Dorrecht. [8] X. LI, P. MIKUSIŃSKI, H. SHERWOOD, M.D. TAYLOR (998): Strong approxmaton of copulas. J. Math. Anal. Appl. 225, [9] R.Y. RUBINSTEIN, D.P. KROESE (2008) : Smulaton an the Monte Carlo Metho. Wley, N.Y. [0] SANCETTA, S.E. SATCHELL (2004): The Bernsten copula an ts applcatons to moellng an approxmatons of multvarate strbutons. Econometrc Theory 20(3), [] M. SALMON, C. SCHLEICHER (2007): Prcng multvarate currency optons wth copulas. In: Copulas. From Theory to Applcaton n Fnance, J. Rank (e.), Rsk Books, Lonon,

Modelling and simulation of dependence structures in nonlife insurance with Bernstein copulas

Modelling and simulation of dependence structures in nonlife insurance with Bernstein copulas Moellng an smulaton of epenence structures n nonlfe nsurance wth Bernsten copulas Prof. Dr. Detmar Pfefer Dept. of Mathematcs, Unversty of Olenburg an AON Benfel, Hamburg Dr. Doreen Straßburger Dept. of

More information

Modelling and simulation of dependence structures in nonlife insurance with Bernstein copulas

Modelling and simulation of dependence structures in nonlife insurance with Bernstein copulas Moelling an simulation of epenence structures in nonlife insurance with Bernstein copulas Prof. Dr. Dietmar Pfeifer Dept. of Mathematics, University of Olenburg an AON Benfiel, Hamburg Dr. Doreen Straßburger

More information

Chapter 2 Transformations and Expectations. , and define f

Chapter 2 Transformations and Expectations. , and define f Revew for the prevous lecture Defnton: support set of a ranom varable, the monotone functon; Theorem: How to obtan a cf, pf (or pmf) of functons of a ranom varable; Eamples: several eamples Chapter Transformatons

More information

New Liu Estimators for the Poisson Regression Model: Method and Application

New Liu Estimators for the Poisson Regression Model: Method and Application New Lu Estmators for the Posson Regresson Moel: Metho an Applcaton By Krstofer Månsson B. M. Golam Kbra, Pär Sölaner an Ghaz Shukur,3 Department of Economcs, Fnance an Statstcs, Jönköpng Unversty Jönköpng,

More information

A MULTIDIMENSIONAL ANALOGUE OF THE RADEMACHER-GAUSSIAN TAIL COMPARISON

A MULTIDIMENSIONAL ANALOGUE OF THE RADEMACHER-GAUSSIAN TAIL COMPARISON A MULTIDIMENSIONAL ANALOGUE OF THE RADEMACHER-GAUSSIAN TAIL COMPARISON PIOTR NAYAR AND TOMASZ TKOCZ Abstract We prove a menson-free tal comparson between the Euclean norms of sums of nepenent ranom vectors

More information

Explicit bounds for the return probability of simple random walk

Explicit bounds for the return probability of simple random walk Explct bouns for the return probablty of smple ranom walk The runnng hea shoul be the same as the ttle.) Karen Ball Jacob Sterbenz Contact nformaton: Karen Ball IMA Unversty of Mnnesota 4 Ln Hall, 7 Church

More information

Large-Scale Data-Dependent Kernel Approximation Appendix

Large-Scale Data-Dependent Kernel Approximation Appendix Large-Scale Data-Depenent Kernel Approxmaton Appenx Ths appenx presents the atonal etal an proofs assocate wth the man paper [1]. 1 Introucton Let k : R p R p R be a postve efnte translaton nvarant functon

More information

Visualization of 2D Data By Rational Quadratic Functions

Visualization of 2D Data By Rational Quadratic Functions 7659 Englan UK Journal of Informaton an Computng cence Vol. No. 007 pp. 7-6 Vsualzaton of D Data By Ratonal Quaratc Functons Malk Zawwar Hussan + Nausheen Ayub Msbah Irsha Department of Mathematcs Unversty

More information

A MULTIDIMENSIONAL ANALOGUE OF THE RADEMACHER-GAUSSIAN TAIL COMPARISON

A MULTIDIMENSIONAL ANALOGUE OF THE RADEMACHER-GAUSSIAN TAIL COMPARISON A MULTIDIMENSIONAL ANALOGUE OF THE RADEMACHER-GAUSSIAN TAIL COMPARISON PIOTR NAYAR AND TOMASZ TKOCZ Abstract We prove a menson-free tal comparson between the Euclean norms of sums of nepenent ranom vectors

More information

CENTRAL LIMIT THEORY FOR THE NUMBER OF SEEDS IN A GROWTH MODEL IN d WITH INHOMOGENEOUS POISSON ARRIVALS

CENTRAL LIMIT THEORY FOR THE NUMBER OF SEEDS IN A GROWTH MODEL IN d WITH INHOMOGENEOUS POISSON ARRIVALS The Annals of Apple Probablty 1997, Vol. 7, No. 3, 82 814 CENTRAL LIMIT THEORY FOR THE NUMBER OF SEEDS IN A GROWTH MODEL IN WITH INHOMOGENEOUS POISSON ARRIVALS By S. N. Chu 1 an M. P. Qune Hong Kong Baptst

More information

p(z) = 1 a e z/a 1(z 0) yi a i x (1/a) exp y i a i x a i=1 n i=1 (y i a i x) inf 1 (y Ax) inf Ax y (1 ν) y if A (1 ν) = 0 otherwise

p(z) = 1 a e z/a 1(z 0) yi a i x (1/a) exp y i a i x a i=1 n i=1 (y i a i x) inf 1 (y Ax) inf Ax y (1 ν) y if A (1 ν) = 0 otherwise Dustn Lennon Math 582 Convex Optmzaton Problems from Boy, Chapter 7 Problem 7.1 Solve the MLE problem when the nose s exponentally strbute wth ensty p(z = 1 a e z/a 1(z 0 The MLE s gven by the followng:

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

ENTROPIC QUESTIONING

ENTROPIC QUESTIONING ENTROPIC QUESTIONING NACHUM. Introucton Goal. Pck the queston that contrbutes most to fnng a sutable prouct. Iea. Use an nformaton-theoretc measure. Bascs. Entropy (a non-negatve real number) measures

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

GENERIC CONTINUOUS SPECTRUM FOR MULTI-DIMENSIONAL QUASIPERIODIC SCHRÖDINGER OPERATORS WITH ROUGH POTENTIALS

GENERIC CONTINUOUS SPECTRUM FOR MULTI-DIMENSIONAL QUASIPERIODIC SCHRÖDINGER OPERATORS WITH ROUGH POTENTIALS GENERIC CONTINUOUS SPECTRUM FOR MULTI-DIMENSIONAL QUASIPERIODIC SCHRÖDINGER OPERATORS WITH ROUGH POTENTIALS YANG FAN AND RUI HAN Abstract. We stuy the mult-mensonal operator (H xu) n = m n = um + f(t n

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

A Robust Method for Calculating the Correlation Coefficient

A Robust Method for Calculating the Correlation Coefficient A Robust Method for Calculatng the Correlaton Coeffcent E.B. Nven and C. V. Deutsch Relatonshps between prmary and secondary data are frequently quantfed usng the correlaton coeffcent; however, the tradtonal

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

WHY NOT USE THE ENTROPY METHOD FOR WEIGHT ESTIMATION?

WHY NOT USE THE ENTROPY METHOD FOR WEIGHT ESTIMATION? ISAHP 001, Berne, Swtzerlan, August -4, 001 WHY NOT USE THE ENTROPY METHOD FOR WEIGHT ESTIMATION? Masaak SHINOHARA, Chkako MIYAKE an Kekch Ohsawa Department of Mathematcal Informaton Engneerng College

More information

Lecture 9 Sept 29, 2017

Lecture 9 Sept 29, 2017 Sketchng Algorthms for Bg Data Fall 2017 Prof. Jelan Nelson Lecture 9 Sept 29, 2017 Scrbe: Mtal Bafna 1 Fast JL transform Typcally we have some hgh-mensonal computatonal geometry problem, an we use JL

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

On Liu Estimators for the Logit Regression Model

On Liu Estimators for the Logit Regression Model CESIS Electronc Workng Paper Seres Paper No. 59 On Lu Estmators for the Logt Regresson Moel Krstofer Månsson B. M. Golam Kbra October 011 The Royal Insttute of technology Centre of Excellence for Scence

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES BÂRZĂ, Slvu Faculty of Mathematcs-Informatcs Spru Haret Unversty barza_slvu@yahoo.com Abstract Ths paper wants to contnue

More information

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty Addtonal Codes usng Fnte Dfference Method Benamn Moll 1 HJB Equaton for Consumpton-Savng Problem Wthout Uncertanty Before consderng the case wth stochastc ncome n http://www.prnceton.edu/~moll/ HACTproect/HACT_Numercal_Appendx.pdf,

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis A Appendx for Causal Interacton n Factoral Experments: Applcaton to Conjont Analyss Mathematcal Appendx: Proofs of Theorems A. Lemmas Below, we descrbe all the lemmas, whch are used to prove the man theorems

More information

An (almost) unbiased estimator for the S-Gini index

An (almost) unbiased estimator for the S-Gini index An (almost unbased estmator for the S-Gn ndex Thomas Demuynck February 25, 2009 Abstract Ths note provdes an unbased estmator for the absolute S-Gn and an almost unbased estmator for the relatve S-Gn for

More information

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14 APPROXIMAE PRICES OF BASKE AND ASIAN OPIONS DUPON OLIVIER Prema 14 Contents Introducton 1 1. Framewor 1 1.1. Baset optons 1.. Asan optons. Computng the prce 3. Lower bound 3.1. Closed formula for the prce

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

On a one-parameter family of Riordan arrays and the weight distribution of MDS codes

On a one-parameter family of Riordan arrays and the weight distribution of MDS codes On a one-parameter famly of Roran arrays an the weght strbuton of MDS coes Paul Barry School of Scence Waterfor Insttute of Technology Irelan pbarry@wte Patrck Ftzpatrck Department of Mathematcs Unversty

More information

On the First Integrals of KdV Equation and the Trace Formulas of Deift-Trubowitz Type

On the First Integrals of KdV Equation and the Trace Formulas of Deift-Trubowitz Type 2th WSEAS Int. Conf. on APPLIED MATHEMATICS, Caro, Egypt, December 29-3, 2007 25 On the Frst Integrals of KV Equaton an the Trace Formulas of Deft-Trubowtz Type MAYUMI OHMIYA Doshsha Unversty Department

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

PHZ 6607 Lecture Notes

PHZ 6607 Lecture Notes NOTE PHZ 6607 Lecture Notes 1. Lecture 2 1.1. Defntons Books: ( Tensor Analyss on Manfols ( The mathematcal theory of black holes ( Carroll (v Schutz Vector: ( In an N-Dmensonal space, a vector s efne

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

Hidden Markov Models & The Multivariate Gaussian (10/26/04) CS281A/Stat241A: Statstcal Learnng Theory Hdden Markov Models & The Multvarate Gaussan (10/26/04) Lecturer: Mchael I. Jordan Scrbes: Jonathan W. Hu 1 Hdden Markov Models As a bref revew, hdden Markov models

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 3 Contnuous Systems an Fels (Chapter 3) Where Are We Now? We ve fnshe all the essentals Fnal wll cover Lectures through Last two lectures: Classcal Fel Theory Start wth wave equatons

More information

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications Durban Watson for Testng the Lack-of-Ft of Polynomal Regresson Models wthout Replcatons Ruba A. Alyaf, Maha A. Omar, Abdullah A. Al-Shha ralyaf@ksu.edu.sa, maomar@ksu.edu.sa, aalshha@ksu.edu.sa Department

More information

A GENERALIZATION OF JUNG S THEOREM. M. Henk

A GENERALIZATION OF JUNG S THEOREM. M. Henk A GENERALIZATION OF JUNG S THEOREM M. Henk Abstract. The theorem of Jung establshes a relaton between crcumraus an ameter of a convex boy. The half of the ameter can be nterprete as the maxmum of crcumra

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0 Bézer curves Mchael S. Floater September 1, 215 These notes provde an ntroducton to Bézer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of

More information

ENGI9496 Lecture Notes Multiport Models in Mechanics

ENGI9496 Lecture Notes Multiport Models in Mechanics ENGI9496 Moellng an Smulaton of Dynamc Systems Mechancs an Mechansms ENGI9496 Lecture Notes Multport Moels n Mechancs (New text Secton 4..3; Secton 9.1 generalzes to 3D moton) Defntons Generalze coornates

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Perron Vectors of an Irreducible Nonnegative Interval Matrix Perron Vectors of an Irreducble Nonnegatve Interval Matrx Jr Rohn August 4 2005 Abstract As s well known an rreducble nonnegatve matrx possesses a unquely determned Perron vector. As the man result of

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

DEGREE REDUCTION OF BÉZIER CURVES USING CONSTRAINED CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

DEGREE REDUCTION OF BÉZIER CURVES USING CONSTRAINED CHEBYSHEV POLYNOMIALS OF THE SECOND KIND ANZIAM J. 45(003), 195 05 DEGREE REDUCTION OF BÉZIER CURVES USING CONSTRAINED CHEBYSHEV POLYNOMIALS OF THE SECOND KIND YOUNG JOON AHN 1 (Receved 3 August, 001; revsed 7 June, 00) Abstract In ths paper

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm The Expectaton-Maxmaton Algorthm Charles Elan elan@cs.ucsd.edu November 16, 2007 Ths chapter explans the EM algorthm at multple levels of generalty. Secton 1 gves the standard hgh-level verson of the algorthm.

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Yukawa Potential and the Propagator Term

Yukawa Potential and the Propagator Term PHY304 Partcle Physcs 4 Dr C N Booth Yukawa Potental an the Propagator Term Conser the electrostatc potental about a charge pont partcle Ths s gven by φ = 0, e whch has the soluton φ = Ths escrbes the

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

arxiv: v1 [math.co] 12 Sep 2014

arxiv: v1 [math.co] 12 Sep 2014 arxv:1409.3707v1 [math.co] 12 Sep 2014 On the bnomal sums of Horadam sequence Nazmye Ylmaz and Necat Taskara Department of Mathematcs, Scence Faculty, Selcuk Unversty, 42075, Campus, Konya, Turkey March

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Bounds for Spectral Radius of Various Matrices Associated With Graphs

Bounds for Spectral Radius of Various Matrices Associated With Graphs 45 5 Vol.45, No.5 016 9 AVANCES IN MATHEMATICS (CHINA) Sep., 016 o: 10.11845/sxjz.015015b Bouns for Spectral Raus of Varous Matrces Assocate Wth Graphs CUI Shuyu 1, TIAN Guxan, (1. Xngzh College, Zhejang

More information

Robust Dynamic Programming for Discounted Infinite-Horizon Markov Decision Processes with Uncertain Stationary Transition Matrice

Robust Dynamic Programming for Discounted Infinite-Horizon Markov Decision Processes with Uncertain Stationary Transition Matrice roceengs of the 2007 IEEE Symposum on Approxmate Dynamc rogrammng an Renforcement Learnng (ADRL 2007) Robust Dynamc rogrammng for Dscounte Infnte-Horzon Markov Decson rocesses wth Uncertan Statonary Transton

More information

Perfect Competition and the Nash Bargaining Solution

Perfect Competition and the Nash Bargaining Solution Perfect Competton and the Nash Barganng Soluton Renhard John Department of Economcs Unversty of Bonn Adenauerallee 24-42 53113 Bonn, Germany emal: rohn@un-bonn.de May 2005 Abstract For a lnear exchange

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES SVANTE JANSON Abstract. We gve explct bounds for the tal probabltes for sums of ndependent geometrc or exponental varables, possbly wth dfferent

More information

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method Appled Mathematcal Scences, Vol. 7, 0, no. 47, 07-0 HIARI Ltd, www.m-hkar.com Comparson of the Populaton Varance Estmators of -Parameter Exponental Dstrbuton Based on Multple Crtera Decson Makng Method

More information

Testing for seasonal unit roots in heterogeneous panels

Testing for seasonal unit roots in heterogeneous panels Testng for seasonal unt roots n heterogeneous panels Jesus Otero * Facultad de Economía Unversdad del Rosaro, Colomba Jeremy Smth Department of Economcs Unversty of arwck Monca Gulett Aston Busness School

More information

2. High dimensional data

2. High dimensional data /8/00. Hgh mensons. Hgh mensonal ata Conser representng a ocument by a vector each component of whch correspons to the number of occurrences of a partcular wor n the ocument. The Englsh language has on

More information

Simultaneous approximation of polynomials

Simultaneous approximation of polynomials Smultaneous approxmaton of polynomals Anre Kupavsk * János Pach Abstract Let P enote the famly of all polynomals of egree at most n one varable x, wth real coeffcents. A sequence of postve numbers x 1

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

An efficient method for computing single parameter partial expected value of perfect information

An efficient method for computing single parameter partial expected value of perfect information An effcent metho for computng sngle parameter partal expecte value of perfect nformaton Mark Strong,, Jeremy E. Oakley 2. School of Health an Relate Research ScHARR, Unversty of Sheffel, UK. 2. School

More information

Modelli Clamfim Equazione del Calore Lezione ottobre 2014

Modelli Clamfim Equazione del Calore Lezione ottobre 2014 CLAMFIM Bologna Modell 1 @ Clamfm Equazone del Calore Lezone 17 15 ottobre 2014 professor Danele Rtell danele.rtell@unbo.t 1/24? Convoluton The convoluton of two functons g(t) and f(t) s the functon (g

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

4DVAR, according to the name, is a four-dimensional variational method.

4DVAR, according to the name, is a four-dimensional variational method. 4D-Varatonal Data Assmlaton (4D-Var) 4DVAR, accordng to the name, s a four-dmensonal varatonal method. 4D-Var s actually a drect generalzaton of 3D-Var to handle observatons that are dstrbuted n tme. The

More information

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS These are nformal notes whch cover some of the materal whch s not n the course book. The man purpose s to gve a number of nontrval examples

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

Indeterminate pin-jointed frames (trusses)

Indeterminate pin-jointed frames (trusses) Indetermnate pn-jonted frames (trusses) Calculaton of member forces usng force method I. Statcal determnacy. The degree of freedom of any truss can be derved as: w= k d a =, where k s the number of all

More information

Time-Varying Systems and Computations Lecture 6

Time-Varying Systems and Computations Lecture 6 Tme-Varyng Systems and Computatons Lecture 6 Klaus Depold 14. Januar 2014 The Kalman Flter The Kalman estmaton flter attempts to estmate the actual state of an unknown dscrete dynamcal system, gven nosy

More information

Bayesian predictive Configural Frequency Analysis

Bayesian predictive Configural Frequency Analysis Psychologcal Test and Assessment Modelng, Volume 54, 2012 (3), 285-292 Bayesan predctve Confgural Frequency Analyss Eduardo Gutérrez-Peña 1 Abstract Confgural Frequency Analyss s a method for cell-wse

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

Lecture 17 : Stochastic Processes II

Lecture 17 : Stochastic Processes II : Stochastc Processes II 1 Contnuous-tme stochastc process So far we have studed dscrete-tme stochastc processes. We studed the concept of Makov chans and martngales, tme seres analyss, and regresson analyss

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem.

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem. prnceton u. sp 02 cos 598B: algorthms and complexty Lecture 20: Lft and Project, SDP Dualty Lecturer: Sanjeev Arora Scrbe:Yury Makarychev Today we wll study the Lft and Project method. Then we wll prove

More information

Non-negative Matrices and Distributed Control

Non-negative Matrices and Distributed Control Non-negatve Matrces an Dstrbute Control Yln Mo July 2, 2015 We moel a network compose of m agents as a graph G = {V, E}. V = {1, 2,..., m} s the set of vertces representng the agents. E V V s the set of

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

The Noether theorem. Elisabet Edvardsson. Analytical mechanics - FYGB08 January, 2016

The Noether theorem. Elisabet Edvardsson. Analytical mechanics - FYGB08 January, 2016 The Noether theorem Elsabet Evarsson Analytcal mechancs - FYGB08 January, 2016 1 1 Introucton The Noether theorem concerns the connecton between a certan kn of symmetres an conservaton laws n physcs. It

More information

Random Partitions of Samples

Random Partitions of Samples Random Parttons of Samples Klaus Th. Hess Insttut für Mathematsche Stochastk Technsche Unverstät Dresden Abstract In the present paper we construct a decomposton of a sample nto a fnte number of subsamples

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

Analytical classical dynamics

Analytical classical dynamics Analytcal classcal ynamcs by Youun Hu Insttute of plasma physcs, Chnese Acaemy of Scences Emal: yhu@pp.cas.cn Abstract These notes were ntally wrtten when I rea tzpatrck s book[] an were later revse to

More information

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution. Solutons HW #2 Dual of general LP. Fnd the dual functon of the LP mnmze subject to c T x Gx h Ax = b. Gve the dual problem, and make the mplct equalty constrants explct. Soluton. 1. The Lagrangan s L(x,

More information

UNR Joint Economics Working Paper Series Working Paper No Further Analysis of the Zipf Law: Does the Rank-Size Rule Really Exist?

UNR Joint Economics Working Paper Series Working Paper No Further Analysis of the Zipf Law: Does the Rank-Size Rule Really Exist? UNR Jont Economcs Workng Paper Seres Workng Paper No. 08-005 Further Analyss of the Zpf Law: Does the Rank-Sze Rule Really Exst? Fungsa Nota and Shunfeng Song Department of Economcs /030 Unversty of Nevada,

More information