SG39 Meeting May 16-17, Update on Continuous Energy Cross Section Adjustment. UC Berkeley / INL collaboration

Size: px
Start display at page:

Download "SG39 Meeting May 16-17, Update on Continuous Energy Cross Section Adjustment. UC Berkeley / INL collaboration"

Transcription

1 SG39 Meeting May 16-17, 2017 Update on Continuous Energy Cross Section Adjustment. UC Berkeley / INL collaboration

2 Outline Presentation of the proposed methodology (you've already seen this) Results from 239 Pu adjustment from Jezebel integral experiment: k e F28/F25 F37/F25 F49/F25 Comparison against ERANOS Conclusions

3 Continuous-energy rst order uncertainty propagation Var [R] = E max E max S R Σ [ (E) COV Σ(E), Σ(E ) ] SΣ R ( E ) de de E min E min (1) COV [Σ(E), Σ(E )] is the continuous-energy covariance matrix S R Σ (E) is the sensitivity density function for the generic response R Multi-group discretization is usually introduced here

4 Multi-group discretization of the covariance matrix Figure: Comparison between the multi-group (left) and continuous (right) 239 Pu capture cross correlation matrices adopted in the adjustment process.

5 Multi-group discretization of the covariance matrix 239 Pu capture uncert.: "continuous-energy" vs multi-group Rel. standard dev [%] "Continuous-energy" uncertainty (used by XGPT-based nuclear data assimilation) Multi-group uncertainty (used by GPT-based nuclear data assimilation) Ref. capture xs [b] Energy [ev] Figure: Comparison between 239 Pu capture cross section relative uncertainty adopted as input by the continuous and multi-group approaches.

6 Eigendecomposition of the covariance matrix COV [Σ(E), Σ(E )] = U j (E) V j U j (E ) (2) j=1 V j are the eigenvalues of the continuous energy covariance matrix corresponding to the eigenfunctions U j (E)

7 Continuous-energy uncertainty propagation (revisited) Var [R] = E max E min E max E min S R Σ (E) COV [Σ(E), Σ(E )] S R Σ (E ) de de (1) Var [R] = V j j=1 E max E min U j (E) SΣ R (E) de 2 (3)

8 Continuous-energy sensitivities Main step: calculation of integral of continuous energy sensitivity functions via Monte Carlo XGPT: SU R j = U j (E) S R Σ (E) de

9 Continuous-energy uncertainty propagation (truncated) Var [R] = ) 2 n V j (S R Uj V j j=1 j=1 ( S R U j ) 2 (4)

10 Contribution of the 239 Pu SVD bases to the uncertainties in Jezebel k eff and central reaction rate ratios (F28/F25, F37/F25, F49/F25) Basis contribution to relative variance k eff variance F28/F25 variance F37/F25 variance F49/F25 variance Index of SVD basis (sorted for each response function) Figure: Eigenfunctions contribution to the total variances in Jezebel. Response functions: k e, F28/F25, F37/F25, F49/F25. ( 239 Pu ENDF/B-VII covariances).

11 Eigenvalue decomposition lead to exponential convergence with respect to the number of the basis functions Multi-group discretization lead to slow, unpredictable convergence with respect to the number of groups Statistical eciency of Monte Carlo continuous sensitivity estimators doesn't depend on the number of eigenfunctions Statistical eciency of Monte Carlo multi-group sensitivity estimators degrades quickly when adopting ner energy grids

12 Example of basis functions from 239 Pu ENDF/B-VII SVD of 239 Pu covariance matrix - Top contributors to F28/F25 uncert. Basis #2 for F28/F25 uncertainty % of the total variance SVD relative basis function [a.u.] Elastic Capture Inelastic Fission n,2n khi mubar nubar Energy [ev]

13 Example of basis functions from 239 Pu ENDF/B-VII SVD of 239 Pu covariance matrix - Top contributors to k eff uncertainty Basis #3 for keff uncert % of the total variance pcm (rel. std) SVD relative basis function [a.u.] 0.0 Elastic Capture Inelastic Fission n,2n khi mubar nubar Energy [ev]

14 Example of basis functions from 239 Pu ENDF/B-VII SVD of 239 Pu covariance matrix - Top contributors to F28/F25 uncert. Basis #4 for F28/F25 uncertainty - 9.2% of the total variance SVD relative basis function [a.u.] 0.0 Elastic Capture Inelastic Fission n,2n khi mubar nubar Energy [ev]

15 Multi-group/GPT starting point Multi-group sensitivity coecients: S R Σ = ( S R Σ 1, S R Σ 2 S R Σ N ) (5) Prior multi-group covariance matrices: Var(Σ 1 ) COV [Σ 1, Σ 2 ] COV [Σ 1, Σ N ] COV [Σ 2, Σ 1 ] Var(Σ 2 ) COV [Σ 2, Σ N ] COV [Σ, Σ] = COV [Σ N 1, Σ 1 ] COV [Σ N, Σ 1 ] Var(Σ N ) (6)

16 Continuous-energy/XGPT starting point Eigenfunctions sensitivities: S R U = ( S R U 1, S R U 2 S R U n ) (7) Projection of the (prior) covariance matrices: V V 2 0 COV [U, U] = V n (8)

17 That's it! S R Σ and COV [Σ, Σ] are replaced by SR U and COV [U, U] The continuous-energy adjustment process follows the standard, legacy multi-group approach...

18 Adjustment parameters U = [ U1, U2 Un ] T : U = M G T [ G M G T + V e + V m ] 1 D R (9) M is the prior covariance of the continuous functions prior COV [U, U] V e and V m : matrices of the experimental and modeling errors D R contains the relative dierences between the calculated and measured experiments. [ ] T G is the matrix of the sensitivities: G = S R 1 U SR 2 U SR N U

19 U = M G T [ G M G T + V e + V m ] 1 D R (9) adjusted Σ (E) prior Σ (E) 1 + n Uj U j (E) j=1 (10)

20 Adjusted continuous energy covariance adjusted COV [U, U] via the Generalized Least Squares Method is obtained as: adjusted COV [U, U] prior COV [U, U] = = M G T [ G M G T + V e + V m ] 1 G M (11) adjusted COV [U, U] contains the correlations among the basis functions introduced by the experiments. adjusted COV [ Σ(E), Σ(E ) ] [ U 1 (E)... U n (E) ] U 1 (E ) adjusted COV [U, U]. U n (E ) (12)

21 Case study: Jezebel 239 Pu Comparison against multi-group/gpt Conclusion and future works Case study: Jezebel 239 Pu Relative experimental uncertainties k e F28/F25 F37/F25 F49/F Experimental correlation matrix k e F28/F25 F37/F25 F49/F25 k e F28/F F37/F F49/F Table: Experimental uncertainties and correlation matrix for the four considered response functions.

22 Case study: Jezebel 239 Pu Comparison against multi-group/gpt Conclusion and future works Case study: Jezebel 239 Pu Relative modeling uncertainties k e F28/F25 F37/F25 F49/F Modeling correlation matrix k e F28/F25 F37/F25 F49/F25 k e F28/F F37/F F49/F Table: Modeling uncertainties and correlation matrix for the four considered response functions.

23 Case study: Jezebel 239 Pu Comparison against multi-group/gpt Conclusion and future works Case study: Jezebel 239 Pu Exp. Calc. Calc. (this work) (WPEC-SG33) k e F28/F F37/F F49/F Table: Experimental and calculated values.

24 Case study: Jezebel 239 Pu Comparison against multi-group/gpt Conclusion and future works Continuous vs. multi-group: uncertainty reduction Prior rel. uncert. (%) Post rel. uncert. (%) multi-group XGPT multi-group XGPT k e F28/F F37/F F49/F Table: Comparison of prior (input) and post (adjusted) nuclear data uncertainties estimated by the multi-group and continuous approaches for the four response functions.

25 Case study: Jezebel 239 Pu Comparison against multi-group/gpt Conclusion and future works Continuous vs. multi-group: uncertainty reduction 20 Change in nuclear data uncertainty after XS adjustment 239 Pu elastic scattering cross section 20 Change in nuclear data uncertainty after XS adjustment 239 Pu elastic scattering cross section Prior - Multigroup (ERANOS) Adjusted - Multigroup (ERANOS) Prior - XGPT (SERPENT) Adjusted - XGPT (SERPENT) Cross section uncertainty (%) Cross section uncertainty (%) Energy [MeV] Energy [MeV] Figure: 239 Pu elastic scattering uncertainty before and after the adjustment process. Multi-group (left) and continuous energy (right) results.

26 Case study: Jezebel 239 Pu Comparison against multi-group/gpt Conclusion and future works Continuous vs. multi-group: uncertainty reduction 60 Change in nuclear data uncertainty after XS adjustment 239 Pu inelastic scattering cross section 60 Change in nuclear data uncertainty after XS adjustment 239 Pu inelastic scattering cross section Prior - Multigroup (ERANOS) Prior - XGPT (SERPENT) 50 Adjusted - Multigroup (ERANOS) 50 Adjusted - XGPT (SERPENT) Cross section uncertainty (%) Cross section uncertainty (%) Energy [MeV] Energy [MeV] Figure: 239 Pu inelastic scattering uncertainty before and after the adjustment process. Multi-group (left) and continuous energy (right) results.

27 Case study: Jezebel 239 Pu Comparison against multi-group/gpt Conclusion and future works Negative correlations Figure: 239 Pu inelastic scattering correlation matrix in the 1 kev 20 MeV energy region. Before (left) and after (center) the continuous energy adjustment process, and Prior Post dierence is shown on the right.

28 Case study: Jezebel 239 Pu Comparison against multi-group/gpt Conclusion and future works Continuous vs. multi-group: XS adjustment Nuclear data change after XS adjustment 239 Pu elastic scattering cross section 6 Relative cross section change (%) Multigroup (ERANOS) XGPT (SERPENT) Energy [MeV] Figure: 239 Pu elastic scattering cross section before and after the adjustment process. Multi-group (red) and continuous energy (black) results.

29 Case study: Jezebel 239 Pu Comparison against multi-group/gpt Conclusion and future works Continuous vs. multi-group: XS adjustment Nuclear data change after XS adjustment 239 Pu inelastic scattering cross section 0-5 Relative cross section change (%) Multigroup (ERANOS) XGPT (SERPENT) Energy [MeV] Figure: 239 Pu inelastic scattering cross section before and after the adjustment process. Multi-group (red) and continuous energy (black) results.

30 Case study: Jezebel 239 Pu Comparison against multi-group/gpt Conclusion and future works Continuous vs. multi-group: Post C/E Prior C/E Post C/E multi-group 1 XGPT multi-group XGPT k e F28/F F37/F F49/F Table: Comparison of prior and post C/E estimated by the multi-group and continuous approaches for the four response functions.

31 Case study: Jezebel 239 Pu Comparison against multi-group/gpt Conclusion and future works Conclusions Main goal: new methodology for continous-energy XS adjustment Shorten the distance between evaluators and Monte Carlo users (?) Enable the adoption of integral experiments in a simple, eective and timely way ( 35 Cl (n, p), 233 U (n, γ)... )

32 Case study: Jezebel 239 Pu Comparison against multi-group/gpt Conclusion and future works Conclusions Main goal: new methodology for continous-energy XS adjustment Shorten the distance between evaluators and Monte Carlo users (?) Enable the adoption of integral experiments in a simple, eective and timely way ( 35 Cl (n, p), 233 U (n, γ)... ) First tests are promising... we need to move to broader case studies. Anyone wants to help/contribute??? In the resonance region, resonance parameters XS sensitivities (after MF-32 decompositions) and scattering radii are the basis functions for the continuous adjustment

33 Case study: Jezebel 239 Pu Comparison against multi-group/gpt Conclusion and future works Lessons learned (random thoughts) and ongoing works Please, leave MF-32 in the ENDF les In the future, storing MF-33 in the form of eigenvectors/eigenvalues might save, memory, CPU, and headaches Now working on secondaries distribution adjustment... Legendre or double dierential? Next step: URR adjustment (this might take some time!)

34 Questions? Suggestions? Ideas?

Implementation of new adjoint-based methods for sensitivity analysis and uncertainty quantication in Serpent

Implementation of new adjoint-based methods for sensitivity analysis and uncertainty quantication in Serpent Serpent UGM 2015 Knoxville, 1316 October 2015 Implementation of new adjoint-based methods for sensitivity analysis and uncertainty quantication in Serpent Manuele Auero & Massimiliano Fratoni UC Berkeley

More information

Perturbation/sensitivity calculations with Serpent

Perturbation/sensitivity calculations with Serpent SERPENT workshop Cambridge, 17-19 September 2014 Perturbation/sensitivity calculations with Serpent Manuele Auero, Adrien Bidaud, Pablo Rubiolo LPSC/CNRS Grenoble Calculating the complete β e...coupling

More information

Uncertainty quantification using SCALE 6.2 package and GPT techniques implemented in Serpent 2

Uncertainty quantification using SCALE 6.2 package and GPT techniques implemented in Serpent 2 6th International Serpent User Group Meeting Politecnico di Milano, Milan, Italy September 26 th -30 th, 2016 Uncertainty quantification using SCALE 6.2 package and GPT techniques implemented in Serpent

More information

PIA and REWIND: Two New Methodologies for Cross Section Adjustment. G. Palmiotti and M. Salvatores

PIA and REWIND: Two New Methodologies for Cross Section Adjustment. G. Palmiotti and M. Salvatores PIA and REWIND: Two New Methodologies for Cross Section Adjustment G. Palmiotti and M. Salvatores Nuclear Systems Design and Analysis Division, Idaho National Laboratory, P.O. Box 1625, MS 3860, Idaho

More information

Preliminary Uncertainty Analysis at ANL

Preliminary Uncertainty Analysis at ANL Preliminary Uncertainty Analysis at ANL OECD/NEA WPEC Subgroup 33 Meeting November 30, 2010 Paris, France W. S. Yang, G. Aliberti, R. D. McKnight Nuclear Engineering Division Argonne National Laboratory

More information

Convergence Analysis and Criterion for Data Assimilation with Sensitivities from Monte Carlo Neutron Transport Codes

Convergence Analysis and Criterion for Data Assimilation with Sensitivities from Monte Carlo Neutron Transport Codes PHYSOR 2018: Reactor Physics paving the way towards more efficient systems Cancun, Mexico, April 22-26, 2018 Convergence Analysis and Criterion for Data Assimilation with Sensitivities from Monte Carlo

More information

A-priori and a-posteriori covariance data in nuclear cross section adjustments: issues and challenges

A-priori and a-posteriori covariance data in nuclear cross section adjustments: issues and challenges A-priori and a-posteriori covariance data in nuclear cross section adjustments: issues and challenges G. Palmiotti 1, M.Salvatores 1,2, and G.Aliberti 3 1 Idaho National Laboratory, 2 Consultant, 3 Argonne

More information

Development of Multigroup Cross Section Generation Code MC 2-3 for Fast Reactor Analysis

Development of Multigroup Cross Section Generation Code MC 2-3 for Fast Reactor Analysis Development o Multigroup Cross Section Generation Code MC 2-3 or Fast Reactor Analysis International Conerence on Fast Reactors and Related Fuel Cycles December 7-11, 2009 Kyoto, Japan Changho Lee and

More information

Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2

Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2 Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2 E. Fridman 1, R. Rachamin 1, C. Wemple 2 1 Helmholtz Zentrum Dresden Rossendorf 2 Studsvik Scandpower Inc. Text optional: Institutsname Prof. Dr.

More information

Challenges in nuclear data evaluation of actinide nuclei

Challenges in nuclear data evaluation of actinide nuclei Challenges in nuclear data evaluation of actinide nuclei 1 Roberto Capote NAPC - Nuclear Data Section, IAEA, Vienna, Austria Thanks to: Organizers for the invitation/support All collaborators o A. Trkov

More information

Potential Use of beta-eff and other Benchmarks for Adjustment

Potential Use of beta-eff and other Benchmarks for Adjustment Potential Use of beta-eff and other Benchmarks for Adjustment Ivo Kodeli SG39 Meeting, NEA, May 19, 2015 Analysed benchmarks from ICSBEP and IRPhE SNEAK-7A & -7B: MOX fuel reflected by metallic depleted

More information

PIA: Progressive Incremental Adjustment

PIA: Progressive Incremental Adjustment PIA: Progressive Incremental Adjustment G. Palmiotti 1, M.Salvatores 1,2 1 Idaho National Laboratory, 2 Consultant, November 28, 2014 December 2012 SG39, Paris, France The problem of compensations In many

More information

NUCLEAR DATA VERIFICATION USING GALILEE AND TRIPOLI-4

NUCLEAR DATA VERIFICATION USING GALILEE AND TRIPOLI-4 NUCLEAR DATA VERIFICATION USING GALILEE AND TRIPOLI-4 C. Jouanne (CEA Saclay) WPEC-SG43 MAY 2018 PAGE 1 VERIFICATION GALILEE-1 Code : GALVANE Module (GALilée Verification of the Accuracy of Nuclear Evaluations)

More information

WPEC Sub group 34 Coordinated evaluation of 239 Pu in the resonance region

WPEC Sub group 34 Coordinated evaluation of 239 Pu in the resonance region WPEC Sub group 34 Coordinated evaluation of 239 Pu in the resonance region Coordinator C. De Saint Jean / Monitor R. D. McKnight Subgroup report Based on Contributions from ORNL/LANL and CEA Cadarache

More information

Investigating Effects of Sensitivity Uncertainties

Investigating Effects of Sensitivity Uncertainties Investigating Effects of Sensitivity Uncertainties Daniel Siefman Gainesville, FL USA November 5 th -10 th, 2017 1 Introduction Want to use Serpent2.1.29 to do uncertainty quantification and data assimilation

More information

TMS On-the-fly Temperature Treatment in Serpent

TMS On-the-fly Temperature Treatment in Serpent TMS On-the-fly Temperature Treatment in Serpent Tuomas Viitanen & Jaakko Leppänen Serpent User Group Meeting, Cambridge, UK September 17 19, 2014 Effects of thermal motion on neutron transport On reaction

More information

ANALYSIS OF THE COOLANT DENSITY REACTIVITY COEFFICIENT IN LFRs AND SFRs VIA MONTE CARLO PERTURBATION/SENSITIVITY

ANALYSIS OF THE COOLANT DENSITY REACTIVITY COEFFICIENT IN LFRs AND SFRs VIA MONTE CARLO PERTURBATION/SENSITIVITY ANALYSIS OF THE COOLANT DENSITY REACTIVITY COEFFICIENT IN LFRs AND SFRs VIA MONTE CARLO PERTURBATION/SENSITIVITY Manuele Aufiero, Michael Martin and Massimiliano Fratoni University of California, Berkeley,

More information

Sensitivity and Uncertainty Analysis of the k eff and b eff for the ICSBEP and IRPhE Benchmarks

Sensitivity and Uncertainty Analysis of the k eff and b eff for the ICSBEP and IRPhE Benchmarks Sensitivity and Uncertainty Analysis of the k eff and b eff for the ICSBEP and IRPhE Benchmarks ANDES Workpackage N : 3, Deliverable D3.3 Ivo Kodeli Jožef Stefan Institute, Slovenia ivan.kodeli@ijs.si

More information

A.BIDAUD, I. KODELI, V.MASTRANGELO, E.SARTORI

A.BIDAUD, I. KODELI, V.MASTRANGELO, E.SARTORI SENSITIVITY TO NUCLEAR DATA AND UNCERTAINTY ANALYSIS: THE EXPERIENCE OF VENUS2 OECD/NEA BENCHMARKS. A.BIDAUD, I. KODELI, V.MASTRANGELO, E.SARTORI IPN Orsay CNAM PARIS OECD/NEA Data Bank, Issy les moulineaux

More information

Nuclear data sensitivity and uncertainty assessment of sodium voiding reactivity coefficients of an ASTRID-like Sodium Fast Reactor

Nuclear data sensitivity and uncertainty assessment of sodium voiding reactivity coefficients of an ASTRID-like Sodium Fast Reactor Nuclear data sensitivity and uncertainty assessment of sodium voiding reactivity coefficients of an ASTRID-like Sodium Fast Reactor García-Herranz Nuria 1,*, Panadero Anne-Laurène 2, Martinez Ana 1, Pelloni

More information

Statistical Model Calculations for Neutron Radiative Capture Process

Statistical Model Calculations for Neutron Radiative Capture Process Statistical Nuclear Physics and its Applications in Astrophysics, Jul. 8-, 2008 Statistical Model Calculations for Neutron Radiative Capture Process T. Kawano T-6 Nuclear Physics Los Alamos National Laboratory

More information

SENSITIVITY AND PERTURBATION THEORY IN FAST REACTOR CORE DESIGN

SENSITIVITY AND PERTURBATION THEORY IN FAST REACTOR CORE DESIGN Journal of ELECTRICAL ENGINEERING, VOL. 65, NO. 7s, 214, 25 29 SENSITIVITY AND PERTURBATION THEORY IN FAST REACTOR CORE DESIGN Jakub Lüley Branislav Vrban Štefan Čerba Ján Haščík Vladimír Nečas Sang-Ji

More information

PROPAGATION OF NUCLEAR DATA UNCERTAINTIES IN FUEL CYCLE USING MONTE-CARLO TECHNIQUE

PROPAGATION OF NUCLEAR DATA UNCERTAINTIES IN FUEL CYCLE USING MONTE-CARLO TECHNIQUE PROPAGATION OF NUCLEAR DATA UNCERTAINTIES IN FUEL CYCLE CALCULATIONS USING MONTE-CARLO TECHNIQUE C.J. Díez (1), O. Cabellos (1), J.S. Martínez (1) (1) Universidad Politécnica de Madrid (UPM) International

More information

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies May 2010

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies May 2010 2141-34 Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies 3-14 May 2010 Monte Carlo Approaches for Model Evaluation of Cross Sections and Uncertainties CAPOTE R. IAEA

More information

Temperature treatment capabilites in Serpent 2(.1.24)

Temperature treatment capabilites in Serpent 2(.1.24) Temperature treatment capabilites in Serpent 2(.1.24) Tuomas Viitanen Serpent User Group Meeting Knoxville, TN, USA OCt. 13 16, 2015 Introduction Temperature affects the neutron transport through: - Reaction

More information

CASMO-5/5M Code and Library Status. J. Rhodes, K. Smith, D. Lee, Z. Xu, & N. Gheorghiu Arizona 2008

CASMO-5/5M Code and Library Status. J. Rhodes, K. Smith, D. Lee, Z. Xu, & N. Gheorghiu Arizona 2008 CASMO-5/5M Code and Library Status J. Rhodes, K. Smith, D. Lee, Z. Xu, & N. Gheorghiu Arizona 2008 CASMO Methodolgy Evolution CASMO-3 Homo. transmission probability/external Gd depletion CASMO-4 up to

More information

Needs for Nuclear Reactions on Actinides

Needs for Nuclear Reactions on Actinides Needs for Nuclear Reactions on Actinides Mark Chadwick Los Alamos National Laboratory Talk at the Workshop on Nuclear Data Needs & Capabilities for Applications, May 27-29, 2015 Nuclear Data for National

More information

IMPACT OF THE FISSION YIELD COVARIANCE DATA IN BURN-UP CALCULATIONS

IMPACT OF THE FISSION YIELD COVARIANCE DATA IN BURN-UP CALCULATIONS IMPACT OF THE FISSION YIELD COVARIANCE DATA IN BRN-P CALCLATIONS O. Cabellos, D. Piedra, Carlos J. Diez Department of Nuclear Engineering, niversidad Politécnica de Madrid, Spain E-mail: oscar.cabellos@upm.es

More information

Covariance Generation using CONRAD and SAMMY Computer Codes

Covariance Generation using CONRAD and SAMMY Computer Codes Covariance Generation using CONRAD and SAMMY Computer Codes L. Leal a, C. De Saint Jean b, H. Derrien a, G. Noguere b, B. Habert b, and J. M. Ruggieri b a Oak Ridge National Laboratory b CEA, DEN, Cadarache

More information

Lecture 3 Nuclear Data Neutron Interactions and Applications Spring 2010

Lecture 3 Nuclear Data Neutron Interactions and Applications Spring 2010 Lecture 3 Nuclear Data 22.106 Neutron Interactions and Applications Spring 2010 Common Misconceptions It s just a bunch of numbers ust give me the right value and stop changing it. Traditional evaluation

More information

Complete activation data libraries for all incident particles, all energies and including covariance data

Complete activation data libraries for all incident particles, all energies and including covariance data Complete activation data libraries for all incident particles, all energies and including covariance data Arjan Koning NRG Petten, The Netherlands Workshop on Activation Data EAF 2011 June 1-3 2011, Prague,

More information

First ANDES annual meeting

First ANDES annual meeting First ANDES Annual meeting 3-5 May 011 CIEMAT, Madrid, Spain 1 / 0 *C.J. Díez e-mail: cj.diez@upm.es carlosjavier@denim.upm.es UNCERTAINTY METHODS IN ACTIVATION AND INVENTORY CALCULATIONS Carlos J. Díez*,

More information

Nuclear Data Uncertainty Analysis in Criticality Safety. Oliver Buss, Axel Hoefer, Jens-Christian Neuber AREVA NP GmbH, PEPA-G (Offenbach, Germany)

Nuclear Data Uncertainty Analysis in Criticality Safety. Oliver Buss, Axel Hoefer, Jens-Christian Neuber AREVA NP GmbH, PEPA-G (Offenbach, Germany) NUDUNA Nuclear Data Uncertainty Analysis in Criticality Safety Oliver Buss, Axel Hoefer, Jens-Christian Neuber AREVA NP GmbH, PEPA-G (Offenbach, Germany) Workshop on Nuclear Data and Uncertainty Quantification

More information

Perspective on CIELO. Michael Dunn Nuclear Data & Criticality Safety Group Leader. NEMEA-7 / CIELO Workshop Geel, Belgium November 5-8, 2013

Perspective on CIELO. Michael Dunn Nuclear Data & Criticality Safety Group Leader. NEMEA-7 / CIELO Workshop Geel, Belgium November 5-8, 2013 Perspective on CIELO Michael Dunn Nuclear Data & Criticality Safety Group Leader NEMEA-7 / CIELO Workshop Geel, Belgium November 5-8, 2013 Introductory Comments Perspective from multiple view points ORNL

More information

Chapter 5: Applications Fission simulations

Chapter 5: Applications Fission simulations Chapter 5: Applications Fission simulations 1 Using fission in FISPACT-II FISPACT-II is distributed with a variety of fission yields and decay data, just as incident particle cross sections, etc. Fission

More information

Methods and Issues for the Combined Use of Integral Experiments and Covariance Data: Results of a NEA International Collaborative Study

Methods and Issues for the Combined Use of Integral Experiments and Covariance Data: Results of a NEA International Collaborative Study Methods and Issues for the Combined Use of Integral Experiments and Covariance Data: Results of a NEA International Collaborative Study M. Salvatores, 1, 2, G. Palmiotti, 2 G. Aliberti, 3 P. Archier, 1

More information

Status Report of WPEC Subgroup 7 April Nuclear Data Standards Coordinator: A. D. Carlson

Status Report of WPEC Subgroup 7 April Nuclear Data Standards Coordinator: A. D. Carlson Status Report of WPEC Subgroup 7 April 2005 Nuclear Data Standards Coordinator: A. D. Carlson Introduction The standards are the basis for the neutron reaction cross section libraries. It is important

More information

Sensitivity and Uncertainty Analysis Methodologies for Fast Reactor Physics and Design at JAEA

Sensitivity and Uncertainty Analysis Methodologies for Fast Reactor Physics and Design at JAEA Sensitivity and Uncertainty Analysis Methodologies for Fast Reactor Physics and Design at JAEA Kick off meeting of NEA Expert Group on Uncertainty Analysis for Criticality Safety Assessment IRSN, France

More information

INTERCOMPARISON OF CALCULATIONS FOR GODIVA AND JEZEBEL

INTERCOMPARISON OF CALCULATIONS FOR GODIVA AND JEZEBEL JEFF Report 16 INTERCOMPARISON OF CALCULATIONS FOR GODIVA AND JEZEBEL An intercomparison study organised by the JEFF Project, with contributions from Britain, France, the Netherlands and Switzerland December

More information

New Approaches and Applications for Monte Carlo Perturbation Theory.

New Approaches and Applications for Monte Carlo Perturbation Theory. New Approaches and Applications for Monte Carlo Perturbation Theory Manuele Aufiero a,, Adrien Bidaud b, Dan Kotlyar c, Jaakko Leppänen d, Giuseppe Palmiotti e, Massimo Salvatores e, Sonat Sen e, Eugene

More information

Benchmark of ENDF/B-VII.1 and JENDL-4.0 on Reflector Effects

Benchmark of ENDF/B-VII.1 and JENDL-4.0 on Reflector Effects 1st Meeting of WPEC Subgroup 35 on Scattering Angular Distribution in the Fast Energy Range May 22, 2012 NEA Headquarters, Issy-les-Moulineaux, France Benchmark of ENDF/B-VII.1 and JENDL-4.0 on Reflector

More information

ORNL Nuclear Data Evaluation Accomplishments for FY 2013

ORNL Nuclear Data Evaluation Accomplishments for FY 2013 ORNL Nuclear Data Evaluation Accomplishments for FY 2013 L. Leal, V. Sobes, M. Pigni, K. Guber, G. Arbanas, D. Wiarda, M. Dunn (ORNL) and E. Ivanov, T. Ivanova, E. Letang (Institut de Radioprotection et

More information

TENDL 2017: better cross sections, better covariances

TENDL 2017: better cross sections, better covariances WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN D. Rochman TENDL 2017: better cross sections, better covariances Workshop on TALYS/TENDL Developments, 13 15 November 2017, Prague, Czech Republic Summary Short history,

More information

R&D in Nuclear Data for Reactor Physics Applications in CNL (CNL = Canadian Nuclear Laboratories) D. Roubtsov

R&D in Nuclear Data for Reactor Physics Applications in CNL (CNL = Canadian Nuclear Laboratories) D. Roubtsov R&D in Nuclear Data for Reactor Physics Applications in CNL (CNL = Canadian Nuclear Laboratories) D. Roubtsov Nuclear Science Division, CNL, Chalk River, Canada -1- Improvement of TSL (Thermal Scattering

More information

Reconstruction of Neutron Cross-sections and Sampling

Reconstruction of Neutron Cross-sections and Sampling Reconstruction of Neutron Cross-sections and Sampling Harphool Kumawat Nuclear Physics Division, BARC 1 Outline Introduction Reconstruction of resonance cross-section Linearization of cross-section Unionization

More information

Sodium void coefficient map by Serpent

Sodium void coefficient map by Serpent Wir schaffen Wissen heute für morgen Paul Scheer Institut 4th Annual Serpent Users Group Meeting (Cambridge Sept 17-19, 2014): Sandro Pelloni Sodium void coefficient map by Serpent PSI, 8. September 2014

More information

Vladimir Sobes 2, Luiz Leal 3, Andrej Trkov 4 and Matt Falk 5

Vladimir Sobes 2, Luiz Leal 3, Andrej Trkov 4 and Matt Falk 5 A Study of the Required Fidelity for the Representation of Angular Distributions of Elastic Scattering in the Resolved Resonance Region for Nuclear Criticality Safety Applications 1 Vladimir Sobes 2, Luiz

More information

(NUCLEAR) DATA EVALUATION METHODOLOGY INCLUDING ESTIMATES OF COVARIANCE

(NUCLEAR) DATA EVALUATION METHODOLOGY INCLUDING ESTIMATES OF COVARIANCE (NUCLEAR) DATA EVALUATION METHODOLOGY INCLUDING ESTIMATES OF COVARIANCE Roberto Capote International Atomic Energy Agency NAPC - Nuclear Data Section Thanks to my collaborators Andrej Trkov Josef Stefan

More information

Upcoming features in Serpent photon transport mode

Upcoming features in Serpent photon transport mode Upcoming features in Serpent photon transport mode Toni Kaltiaisenaho VTT Technical Research Centre of Finland Serpent User Group Meeting 2018 1/20 Outline Current photoatomic physics in Serpent Photonuclear

More information

1 v. L18.pdf Spring 2010, P627, YK February 22, 2012

1 v. L18.pdf Spring 2010, P627, YK February 22, 2012 L18.pdf Spring 2010, P627, YK February 22, 2012 18 T2 Nuclear Information Service at LANL: http://t2.lanl.gov/data/ ENDF/B VI Neutron Data : http://t2.lanl.gov/cgi bin/nuclides/endind Thermal neutron x

More information

COVARIANCE DATA FOR 233 U IN THE RESOLVED RESONANCE REGION FOR CRITICALITY SAFETY APPLICATIONS

COVARIANCE DATA FOR 233 U IN THE RESOLVED RESONANCE REGION FOR CRITICALITY SAFETY APPLICATIONS Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications Palais des Papes, Avignon, France, September 12-15, 2005, on CD-ROM, American Nuclear Society, LaGrange

More information

Testing of Nuclear Data Libraries for Fission Products

Testing of Nuclear Data Libraries for Fission Products Testing of Nuclear Data Libraries for Fission Products A.V. Ignatyuk, S.M. Bednyakov, V.N. Koshcheev, V.N. Manokhin, G.N. Manturov, and G.Ya. Tertuchny Institute of Physics and Power Engineering, 242 Obninsk,

More information

SENSITIVITY ANALYSIS OF ALLEGRO MOX CORE. Bratislava, Iľkovičova 3, Bratislava, Slovakia

SENSITIVITY ANALYSIS OF ALLEGRO MOX CORE. Bratislava, Iľkovičova 3, Bratislava, Slovakia SENSITIVITY ANALYSIS OF ALLEGRO MOX CORE Jakub Lüley 1, Ján Haščík 1, Vladimír Slugeň 1, Vladimír Nečas 1 1 Institute of Nuclear and Physical Engineering, Slovak University of Technology in Bratislava,

More information

TENDL-2011 processing and criticality benchmarking

TENDL-2011 processing and criticality benchmarking JEF/DOC-1438 TENDL-2011 processing and criticality benchmarking Jean-Christophe C Sublet UK Atomic Energy Authority Culham Science Centre, Abingdon, OX14 3DB United Kingdom CCFE is the fusion research

More information

In the Memory of John Rowlands

In the Memory of John Rowlands Introduction of the Resonance dependent scattering kernel in SERPENT In the Memory of John Rowlands Institute for Neutron Physics and Reactor Technology R. Dagan Institute for Neutron Physics and Reactor

More information

Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances

Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances Kasufumi TSUJIMOTO Center for Proton Accelerator Facilities, Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken

More information

EVALUATION OF NEUTRON INDUCED REACTIONS ON 238 U NUCLEUS

EVALUATION OF NEUTRON INDUCED REACTIONS ON 238 U NUCLEUS EVALUATION OF NEUTRON INDUCED REACTIONS ON 238 U NUCLEUS UN complex 1/27 Roberto Capote, NAPC - Nuclear Data Section, IAEA, Austria Andrej Trkov, Jozef Stefan Institute, Slovenia Mihaela Sin, University

More information

Experimental Activities in China

Experimental Activities in China Experimental Activities in China Yu Hongwei China Nuclear Data Center China Institute of Atomic Energy WPEC Meeting, June 5-6, 2008 Facilities CIAE: China s first experimental heavy water reactor, the

More information

ENDF8. M.B. Chadwick LANL. Mark Chadwick, LANL. WPEC-SG40 (CIELO), Paris, May17, Operated by Los Alamos National Security, LLC for NNSA

ENDF8. M.B. Chadwick LANL. Mark Chadwick, LANL. WPEC-SG40 (CIELO), Paris, May17, Operated by Los Alamos National Security, LLC for NNSA ENDF8 M.B. Chadwick LANL Mark Chadwick, LANL WPEC-SG40 (CIELO), Paris, May17, 2017 International CIELO Collaboration Experiments: Some of the many experimental facilities that measured new data supporting

More information

Presentation for the CIELO Meeting of the NEA 9-11 May 2016 Paris, France. The Chinese work on 56 Fe

Presentation for the CIELO Meeting of the NEA 9-11 May 2016 Paris, France. The Chinese work on 56 Fe The Chinese work on 56 Fe Jing QIAN, Zhigang GE, Tingjin LIU, Hanlin LU, Xichao RUAN Guochang CHEN,Huanyu Huanyu ZHANG,Yangbo NIE China Nuclear Data Center(CNDC) China Institute of Atomic Energy(CIAE)

More information

Processing of incident-neutron sub-library from ENDF/B-VII.1, JENDL-4.0 and JEFF-3.1.1

Processing of incident-neutron sub-library from ENDF/B-VII.1, JENDL-4.0 and JEFF-3.1.1 Processing of incident-neutron sub-library from ENDF/B-VII.1, JENDL-4. and JEFF-3.1.1 M.P.W. Chin, A. Ferrari, V. Vlachoudis CERN (European Organization for Nuclear Research), CH-1211 Geneva, Switzerland

More information

CROSS SECTION WEIGHTING SPECTRUM FOR FAST REACTOR ANALYSIS

CROSS SECTION WEIGHTING SPECTRUM FOR FAST REACTOR ANALYSIS 2009 International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro,RJ, Brazil, September27 to October 2, 2009 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-03-8 CROSS SECTION

More information

Status and future plan of JENDL. Osamu Iwamoto Nuclear Data Center Japan Atomic Energy Agency

Status and future plan of JENDL. Osamu Iwamoto Nuclear Data Center Japan Atomic Energy Agency Status and future plan of JENDL Osamu Iwamoto Nuclear Data Center Japan Atomic Energy Agency 1 Introduction JENDL-4.0 was released in 2010 with improving fissionproduct, minor-actinide, and covariance.

More information

Improved modelling of the neutron source for neutron activation experiments

Improved modelling of the neutron source for neutron activation experiments Improved modelling of the neutron source for neutron activation experiments Steven Lilley, R Pampin, L Packer Neutronics and Nuclear Data Group NPL Neutron Users Club November 2011 CCFE is the fusion research

More information

Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment

Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment Axel Hoefer, Oliver Buss AREVA GmbH Erlangen Radiology, Radiation Protection & Criticality Safety Analysis ANS Winter Meeting,

More information

TENDL-TMC for dpa and pka

TENDL-TMC for dpa and pka WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN D. Rochman, A.J. Koning, J.C. Sublet, M. Gilbert, H. Sjöstrand, P. Helgesson and H. Ferroukhi TENDL-TMC for dpa and pka Technical Meeting on Uncertainties for Radiation

More information

Low Energy Neutron Verification in GEANT4: to 4.9.5

Low Energy Neutron Verification in GEANT4: to 4.9.5 Low Energy Neutron Verification in GEANT4: 4.9.3 to 4.9.5 Kimberly J. Palladino MiniCLEAN Collaboration Presenting the work of Katie Harrington, Peder Bruusgaard, Will Yashar What we've studied Neutron

More information

Photon transport mode in Serpent 2

Photon transport mode in Serpent 2 Photon transport mode in Serpent 2 Toni Kaltiaisenaho VTT Technical Research Centre of Finland, LTD Serpent User Group Meeting, Knoxville, TN October 13 16, 215 October 14, 215 1/21 Outline Photon physics

More information

Nuclear Data Section Department of Nuclear Sciences and Applications

Nuclear Data Section Department of Nuclear Sciences and Applications Advances in Nuclear Data RA Forrest Nuclear Data Section Department of Nuclear Sciences and Applications Introduction Nuclear Data underpin all of Nuclear Science and Technology Nuclear Data include static

More information

Calculation of uncertainties on DD, DT n/γ flux at potential irradiation positions (vertical ports) and KN2 U3 by TMC code (L11) Henrik Sjöstrand

Calculation of uncertainties on DD, DT n/γ flux at potential irradiation positions (vertical ports) and KN2 U3 by TMC code (L11) Henrik Sjöstrand Calculation of uncertainties on DD, DT n/γ flux at potential irradiation positions (vertical ports) and KN2 U3 by TMC code (L11) Henrik Sjöstrand Acknowledgements Henrik Sjöstrand and JET Contributors*

More information

Nuclear Data Uncertainty Quantification for Applications in Energy, Security, and Isotope Production

Nuclear Data Uncertainty Quantification for Applications in Energy, Security, and Isotope Production Nuclear Data Uncertainty Quantification for Applications in Energy, Security, and Isotope Production I. Gauld M. Williams M. Pigni L. Leal Oak Ridge National Laboratory Reactor and Nuclear Systems Division

More information

VERDI a double (v, E) fission-fragment fragment spectrometer

VERDI a double (v, E) fission-fragment fragment spectrometer EFNUDAT Slow and Resonance Neutrons, Budapest (HU), Sep. 23-25, 2009 1 VERDI a double (v, E) fission-fragment fragment spectrometer S. Oberstedt, R. Borcea,, Th. Gamboni,, W. Geerts, F.-J. Hambsch, A.

More information

Coordinated evaluation of 239Pu in the resonance region

Coordinated evaluation of 239Pu in the resonance region Coordinated evaluation of 239Pu in the resonance region Contribution of the Nuclear Data roup of Cadarache WPEC/S 34, NEA, may 202 illes Noguere SPRC/LEPh, CEA Cadarache, F-308Saint Paul Les Durance Outlines

More information

CIELO Project. M. Herman 1) D. Brown 1), R. Capote 2), G. Nobre 1), A. Trkov 2) for the CIELO Collaboration 3)

CIELO Project. M. Herman 1) D. Brown 1), R. Capote 2), G. Nobre 1), A. Trkov 2) for the CIELO Collaboration 3) 56Fe Evaluation for the CIELO Project M. Herman 1) D. Brown 1), R. Capote 2), G. Nobre 1), A. Trkov 2) for the CIELO Collaboration 3) 1) National Nuclear Data Center, Brookhaven National Laboratory, USA

More information

Extension of the MCBEND Monte Carlo Code to Perform Adjoint Calculations using Point Energy Data

Extension of the MCBEND Monte Carlo Code to Perform Adjoint Calculations using Point Energy Data Extension of the MCBEND Monte Carlo Code to Perform Adjoint Calculations using Point Energy Data Malcolm Grimstone Abstract In radiation transport calculations there are many situations where the adjoint

More information

A PERTURBATION ANALYSIS SCHEME IN WIMS USING TRANSPORT THEORY FLUX SOLUTIONS

A PERTURBATION ANALYSIS SCHEME IN WIMS USING TRANSPORT THEORY FLUX SOLUTIONS A PERTURBATION ANALYSIS SCHEME IN WIMS USING TRANSPORT THEORY FLUX SOLUTIONS J G Hosking, T D Newton, B A Lindley, P J Smith and R P Hiles Amec Foster Wheeler Dorchester, Dorset, UK glynn.hosking@amecfw.com

More information

The updated version of the Chinese Evaluated Nuclear Data Library (CENDL-3.1) and China nuclear data evaluation activities

The updated version of the Chinese Evaluated Nuclear Data Library (CENDL-3.1) and China nuclear data evaluation activities International Conference on Nuclear Data for Science and Technology 2007 DOI: 10.1051/ndata:07570 Invited The updated version of the Chinese Evaluated Nuclear Data Library (CENDL-3.1) and China nuclear

More information

Improved PWR Simulations by Monte-Carlo Uncertainty Analysis and Bayesian Inference

Improved PWR Simulations by Monte-Carlo Uncertainty Analysis and Bayesian Inference Improved PWR Simulations by Monte-Carlo Uncertainty Analysis and Bayesian Inference E. Castro, O. Buss, A. Hoefer PEPA1-G: Radiology & Criticality, AREVA GmbH, Germany Universidad Politécnica de Madrid

More information

VIII. Neutron Moderation and the Six Factors

VIII. Neutron Moderation and the Six Factors Introduction VIII. Neutron Moderation and the Six Factors 130 We continue our quest to calculate the multiplication factor (keff) and the neutron distribution (in position and energy) in nuclear reactors.

More information

Using the Application Builder for Neutron Transport in Discrete Ordinates

Using the Application Builder for Neutron Transport in Discrete Ordinates Using the Application Builder for Neutron Transport in Discrete Ordinates C.J. Hurt University of Tennessee Nuclear Engineering Department (This material is based upon work supported under a Department

More information

Present Status and Plans of JENDL FP Data Evaluation Project

Present Status and Plans of JENDL FP Data Evaluation Project Present Status and Plans of JENDL FP Data Evaluation Project KAWANO Toshihiko and FP Nuclear Data Evaluation Working Group 1 Interdisciplinary Graduate School of Engineering Sciences, Kyushu University

More information

B. Morillon, L. Leal?, G. Noguere y, P. Romain, H. Duarte. April U, 238 U and 239 Pu JEFF-3.3T1 evaluations

B. Morillon, L. Leal?, G. Noguere y, P. Romain, H. Duarte. April U, 238 U and 239 Pu JEFF-3.3T1 evaluations B. Morillon, L. Leal?, G. Noguere y, P. Romain, H. Duarte CEA,DAM,DIF F-9297 Arpajon, France y CEA,DEN Cadarache, France? IRSN 92260 Fontenay-aux-Roses, France April 206 239 Pu : what's new New FILES 2,

More information

The Updated Version of Chinese Evaluated Nuclear Data Library (CENDL-3.1)

The Updated Version of Chinese Evaluated Nuclear Data Library (CENDL-3.1) Journal of the Korean Physical Society, Vol. 59, No. 2, August 2011, pp. 1052 1056 The Updated Version of Chinese Evaluated Nuclear Data Library (CENDL-3.1) Z. G. Ge, Z. X. Zhao and H. H. Xia China Nuclear

More information

In collaboration with NRG

In collaboration with NRG COMPARISON OF MONTE CARLO UNCERTAINTY PROPAGATION APPROACHES IN ACTIVATION CALCULATIONS Carlos J. Díez*, O. Cabellos, J.S. Martínez Universidad Politécnica de Madrid (UPM) CCFE (UK), January 24, 2012 In

More information

Resonance Evaluations of 235 U for the CIELO Project

Resonance Evaluations of 235 U for the CIELO Project Resonance Evaluations of 235 U for the CIELO Project L. Leal 1), A. Kahler 2), G. Noguere 3), O. Bouland 3), Y. Penneliau 3) 1) Oak Ridge National Laboratory 2) Los Alamos National Laboratory 3) CEA/Cadarache

More information

Considerations for Measurements in Support of Thermal Scattering Data Evaluations. Ayman I. Hawari

Considerations for Measurements in Support of Thermal Scattering Data Evaluations. Ayman I. Hawari OECD/NEA Meeting: WPEC SG42 Thermal Scattering Kernel S(a,b): Measurement, Evaluation and Application May 13 14, 2017 Paris, France Considerations for Measurements in Support of Thermal Scattering Data

More information

Monte Carlo Methods for Uncertainly Analysis Using the Bayesian R-Matrix Code SAMMY

Monte Carlo Methods for Uncertainly Analysis Using the Bayesian R-Matrix Code SAMMY Monte Carlo Methods for Uncertainly Analysis Using the Bayesian R-Matrix Code SAMMY M.J. Rapp *, D.P. Barry, G. Leinweber, R.C. Block, and B.E. Epping Bechtel Marine Propulsion Corporation Knolls Atomic

More information

Nuclear Data for Innovative Fast Reactors: Impact of Uncertainties and New Requirements

Nuclear Data for Innovative Fast Reactors: Impact of Uncertainties and New Requirements Nuclear Data for Innovative Fast Reactors: Impact of Uncertainties and New Requirements G.Palmiotti 1, M.Salvatores 1, 2, M. Assawaroongruengchot 1 1 Idaho National Laboratory, 2525 Fremont Ave. P.O. Box

More information

FULL CORE POWER AND ISOTOPIC OSCILLATIONS WITH VARIOUS DEPLETION SCHEMES

FULL CORE POWER AND ISOTOPIC OSCILLATIONS WITH VARIOUS DEPLETION SCHEMES FULL CORE POWER AND ISOTOPIC OSCILLATIONS WITH VARIOUS DEPLETION SCHEMES A N D R E W J O H N S O N C O M P U TAT I O N A L R E A C T O R E N G I N E E R I N G OUTLINE Governing depletion equations Summary

More information

Neutron-induced reactions on U and Th a new approach via AMS in collaboration with: KIT (Karlsruhe): F. Käppeler, I. Dillmann

Neutron-induced reactions on U and Th a new approach via AMS in collaboration with: KIT (Karlsruhe): F. Käppeler, I. Dillmann Neutron-induced reactions on U and Th a new approach via AMS in collaboration with: KIT (Karlsruhe): F. Käppeler, I. Dillmann IRMM / Geel: A. Plompen, A. Krasa IKI Budapest: T. Belgya, L. Szentmiklosi

More information

Sensitivity Computation with Monte Carlo Methods

Sensitivity Computation with Monte Carlo Methods Sensitivity Computation with Monte Carlo Methods (Action C8, WPEC/Sg.39) E. Ivanov T. Ivanova WPEC/Sg. 39 Meeting Novembre 27-28, 2014 NEA, Issy-les-Moulineaux, 1 France General Remarks Objective of the

More information

Unified Monte Carlo evaluation method

Unified Monte Carlo evaluation method Unified Monte Carlo evaluation method IAEA Roberto Capote and Andrej Trkov IAEA Nuclear Data Section, Vienna, Austria Donald L. Smith, Argonne National Laboratory, USA (Nuclear) Data Evaluation & correl

More information

Status of MORET5 source convergence improvements and benchmark proposal for Monte Carlo depletion calculations

Status of MORET5 source convergence improvements and benchmark proposal for Monte Carlo depletion calculations Status of MORET5 source convergence improvements and benchmark proposal for Monte Carlo depletion calculations Y. Richet ; W. Haeck ; J. Miss Criticality analysis department Study, Research, Codes Development

More information

Elastic scattering. Elastic scattering

Elastic scattering. Elastic scattering Elastic scattering Now we have worked out how much energy is lost when a neutron is scattered through an angle, θ We would like to know how much energy, on average, is lost per collision In order to do

More information

Chapter V: Interactions of neutrons with matter

Chapter V: Interactions of neutrons with matter Chapter V: Interactions of neutrons with matter 1 Content of the chapter Introduction Interaction processes Interaction cross sections Moderation and neutrons path For more details see «Physique des Réacteurs

More information

Evaluation and Propagation of the 239 Pu Fission Cross-Section Uncertainties Using a Monte Carlo Technique

Evaluation and Propagation of the 239 Pu Fission Cross-Section Uncertainties Using a Monte Carlo Technique NUCLEAR SCIENCE AND ENGINEERING: 153, 1 7 ~2006! Evaluation and Propagation of the 239 Pu Fission Cross-Section Uncertainties Using a Monte Carlo Technique T. Kawano,* K. M. Hanson, S. Franle, P. Talou,

More information

Energy Dependence of Neutron Flux

Energy Dependence of Neutron Flux Energy Dependence of Neutron Flux B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Contents We start the discussion of the energy

More information

VERIFICATION OFENDF/B-VII.0, ENDF/B-VII.1 AND JENDL-4.0 NUCLEAR DATA LIBRARIES FOR CRITICALITY CALCULATIONS USING NEA/NSC BENCHMARKS

VERIFICATION OFENDF/B-VII.0, ENDF/B-VII.1 AND JENDL-4.0 NUCLEAR DATA LIBRARIES FOR CRITICALITY CALCULATIONS USING NEA/NSC BENCHMARKS VERIFICATION OFENDF/B-VII.0, ENDF/B-VII.1 AND JENDL-4.0 NUCLEAR DATA LIBRARIES FOR CRITICALITY CALCULATIONS USING NEA/NSC BENCHMARKS Amine Bouhaddane 1, Gabriel Farkas 1, Ján Haščík 1, Vladimír Slugeň

More information

Analysis of the TRIGA Reactor Benchmarks with TRIPOLI 4.4

Analysis of the TRIGA Reactor Benchmarks with TRIPOLI 4.4 BSTRCT nalysis of the TRIG Reactor Benchmarks with TRIPOLI 4.4 Romain Henry Jožef Stefan Institute Jamova 39 SI-1000 Ljubljana, Slovenia romain.henry@ijs.si Luka Snoj, ndrej Trkov luka.snoj@ijs.si, andrej.trkov@ijs.si

More information

Improved nuclear data for material damage applications in LWR spectra

Improved nuclear data for material damage applications in LWR spectra Improved nuclear data for material damage applications in LWR spectra Focus on uncertainties, 59 Ni, and stainless steel Petter Helgesson,2 Henrik Sjöstrand Arjan J. Koning 3, Dimitri Rochman 4 Stephan

More information