THE RECIPROCITY THEOREM APPLIED TO FIND THE BEST COUPLING INCIDENCE

Size: px
Start display at page:

Download "THE RECIPROCITY THEOREM APPLIED TO FIND THE BEST COUPLING INCIDENCE"

Transcription

1 THE RECIPROCITY THEOREM APPLIED TO FIND THE BEST COUPLING INCIDENCE RECHERCHE DE LA DIRECTION D INCIDENCE DE PLUS FORT COUPLAGE A L AIDE DU THEOREME DE RECIPROCITE Jean-Pierre ADAM 1, Jean-Chrisophe JOLY 2, Bernard PECQUEUX 2, Didier ASFAUX 1 1 IEEA, 13 promenade Paul Doumer, 924 Courbevoie, Frane 2 Cenre d Eudes de Grama, DGA/DET/CEG, 465 Grama, Frane jean-pierre.adam@lub-inerne.fr Absra This doumen presens an appliaion of he eleromagneism reiproiy heorem in he ime domain. The far field radiaed by a sysem in a given direion is used o evaluae he effe of an iniden plane wave oming from ha direion. The useful formulas are derived for a urren soure and a volage soure. These resuls are applied wih he FDTD sofware Gorf3D. A single run wih a sysem radiaing in N direions enables o predi he resul of N runs wih a sysem illuminaed by a plane wave. Appliaion examples are used o esimae he ompuaion ime gain. Key words : Reiproiy heorem, ime domain, FDTD Résumé Ce doumen présene une appliaion du héorème de réiproié en éleromagnéisme dans le domaine emporel. La forme emporelle du hamp rayonné par un sysème dans une direion es uilisée pour déerminer l effe d une onde plane provenan de ee direion. Les relaions uiles son monrées pour une soure de ouran e une soure de ension. Ces résulas son mis en œuvre à l aide du ode DFDT Gorf3D. Un seul as de alul déermine le hamp rayonné dans N direions e perme de remplaer N as de alul ave une onde plane inidene. Des appliaions illusren la méhode e permeen d esimer le gain de emps de alul. Mos lés : Théorème de réiproié, domaine emporel, DFDT 1) INTRODUCTION The reiproiy heorem is a powerful simplifiaion ool in eleromagneism. I is ofen applied in he frequeny domain. On he onrary, he appliaion of his priniple in he ime domain is no so ommon. This paper deals wih his problem and illusraes i wih appliaions using he FDTD (Finie Differenes in Time Domain) Gorf3D ode. In hese examples, he parameer under sudy is he peak value of a wire urren or load volage when a sysem is illuminaed by an iniden plane wave. This sae will be alled reepion. In he seond sae alled ransmission, he load is replaed by a generaor. The reiproiy heorem is he link beween boh saes. Here, i is used o deermine he influene of he inidene direion and of he polarizaion of he plane wave. 2) TIME DOMAIN RECIPROCITY THEOREM A full proof of a general ime domain reiproiy heorem is no he aim of his work. A saemen and proof of suh a heorem may be found in [1] for example. The presen paper is appliaion oriened. However, i may be useful o reall some formulas and inerpreaions. The saring poin is a onsequene of he reiproiy heorem applied o an anenna in he frequeny domain : he behavior of a reeiving anenna only depends on he iniden

2 plane wave and he behavior of he anenna when i is ransmiing. For he load, a reeiving anenna an be represened as a Thevenin equivalen soure. The impedane of his soure is he same as he impedane of he anenna as a ransmier. When he anenna is illuminaed by an iniden eleri field E r oming from he direion u r, he open irui volage V o of his soure is given by (f. [2]) : V r r F(. E = (1) I ( ) o ( ω where F r is dedued from : r exp( ikr) r E = F( (2) r E r is he ransmied eleri far field a a disane r in he direion u r, when he anenna is fed by a urren soure I. is he impedane of he surrounding medium. A dire ransposiion of V o expression in he ime domain would imply onvoluions. In order o avoid hese CPU (Cenral Proessing Uni) ime onsuming operaions, he feeding urren I is hosen o simplify he expression. A simple hoie onsiss in seing he same ime dependeny for he urren I as for he iniden field E r. In ha ase he formula (1) is simplified as following : V o = r E (3) equivalen in he ime domain o : V o ( ) = r E ( τ ) dτ (4) The sep beween (3) and (4) is obvious, bu i shows he major differene beween he frequeny domain and he ime domain. In (3), for a given frequeny, he magniude of V o ( is proporional o he magniude of E (. This is he familiar onsequene of he reiproiy heorem in he frequeny domain : he reeiving paern is he ransmiing paern. The formula (4) shows ha hey are no exaly he same in he ime domain. Indeed, V o () is proporional o he ime inegral of E (). This saemen is alled derivaive relaion for ransmission and reepion in [3]. For simplifiaion purposes, here are omissions in (3) and (4). The phase is no aken ino aoun beause i simply adds a delay in he ime domain. In addiion, he salar produ is omied beause he omponens E θ and E φ (spherial oordinaes) of he radiaed field are separaely reaed. This is illusraed wih an arbirary linear polarizaion. The polarizaion angle is noed α. Formulas (1) and (2) are hen replaed by : E( V o = r( Eθ os( α) + Eϕ sin( α)) (5) I ( ) ω Anoher remark is ha he relaion ould be even simpler if he urren I is he inegraed form of he iniden field E r. Bu suh a urren waveform is no always easily available in he onsidered sofware. An analog resul is obained when he anenna is fed by a volage soure. In ha ase, he ransmied eleri far field is relaed o he shor irui urren I s observed when he anenna is illuminaed by a plane wave. This relaionship is : I s ( ) = r E ( τ ) dτ (6)

3 A serial impedane an be added beside he volage generaor in ransmiing mode. In reeiving mode, he generaor is replaed by a shor irui and he urren a his poin is dedued from formula (6). If his poin is near enough he serial impedane o mee he elerosai ondiion, hen he observed urren is he same as he one flowing hrough he impedane. In oher words, he mehod ould easily be exended o ompue a load urren. In addiion, he volage indued in a small dipole is proporional o he eleri near field omponen whih is parallel o he dipole. As a onsequene, he reiproiy heorem may be applied o he far field radiaed by his small dipole fed by a urren soure in order o evaluae he emporal variaion of he near field a he loaion of he dipole when he sysem is illuminaed by a plane wave. 3) APPLICATIONS The ime domain appliaions of he reiproiy heorem are usually found in he field of he UWB (Ulra- Wideband) anennas (f. [3]). In his work, i is used for EMC (Eleromagnei Compaibiliy) appliaions : he influene of he inidene direion of an EMP (Eleromagnei Pulse) is sudied. The simulaions are performed wih he FDTD sofware Gorf3D developed by he DGA (Frenh Defense Adminisraion). A desripion of he FDTD mehod may be found in [4] and some deails of is sofware implemenaion are presened in [5]. The ool inludes a near field o far field ransformaion rouine, allowing onsequenly ompuing he field radiaed ouside he FDTD domain. This ransformaion is performed in he ime domain. The firs example is a verial monopole anenna plaed over a perfe ground and fed by a urren soure. The reiproiy heorem is applied o ompue he maximum value of he open irui volage ha would be implied by an iniden plane wave. This iniden plane wave is verially polarized. In his work, he maximum value of he volage is sudied. However, his is no a limiaion : any oher ime domain reamen is appliable, like for example derivaion, inegraion, filering, FFT Figure 1 presens he resuls obained for differen monopole lenghs. This figure also shows he frequeny sperum of he pulse used o feed he anenna. This sperum drops down afer 3 MHz. This frequeny orresponds o a wavelengh λ of 1 m. For small monopoles (lengh below λ/4 =.25 m), he maximum value is ahieved wih an iniden plane wave perpendiular o he wire. This resul is lassial in he frequeny domain. For longer monopoles, he maximum oupling is reahed wih a non-zero elevaion angle. E L Wire Iniden plane wave elev Vo() Perfe ground (a) (b) Figure 1: (a) upper par : monopole anenna in reeiving mode; lower par : frequeny sperum of he iniden plane wave (reeiving mode) and of he feeding urren (ransmiing mode). (b) maximum value of he open irui volage (dedued by reiproiy) as a funion of inidene direion, for differen monopole lenghs.

4 The erm anenna inludes he radiaing elemen and he whole arrier, as presened in figure 2. This shielded ruk arries a verial monopole anenna. The sruure is plaed over a perfe ground. Like in he previous example, he maximum value of he open irui volage indued a he monopole feed por when illuminaed by a verially polarized plane wave is analyzed. This polarizaion is hosen o maximize he oupling wih he wire anenna. The waveform is presened in figure 2a. I orresponds o a ypial EMP waveform. Again, he reiproiy heorem is used o redue he ase in only one simulaion run in ransmiing mode. The influene of he inidene direion has been invesigaed. (a) (b) () (d) Figure 2: (a) waveform of he iniden field (reeiving mode) and of he feeding urren (ransmiing mode). (b) eleri field (log sale) for a given ime during he simulaion of he monopole fed by a urren soure. () and (d) maximum value of he open irui volage indued in he anenna por as a funion of he direion of inidene. () and (d) are dedued from he simulaion shown in (b) wih he use of he reiproiy heorem. This omplex example is a good ase for esimaing he CPU ime reduion. The simulaions were performed on a sandard ompuer wih an AMD Ahlon proessor. The FDTD domain onains 1.5 millions ells. A dire ompuaion of he reeiving mode requires 855 runs of 1 minues, oaling 142 hours. The ransmiing mode ombined wih he reiproiy requires 1 simulaion of 16 hours wih defaul onfiguraion. The ime onsuming near o far field ransformaion is he ause of he CPU ime inrease. This ompuaion ime an be dropped o 3 minues by uning he under sampling opions of he near o far field ransformaion. Despie his drawbak, he use of he proposed mehod provides a signifian speed up of 284 imes. This observaion is pariularly rue if he number of onsidered inidenes is imporan. The nex example is based on he same sruure and implies he same EMP. However, wo oher eleromagnei weak poins are onsidered : a horizonal slo a he rear of he ruk and a longer verial wire going hrough he roof of he ruk. The observed parameer is he maximum value of he eleri field a he ener of he ruk when an EMP illuminaes i. In order o apply he reiproiy heorem as i was presened previously, he observaion poin is replaed by a small dipole (a one FDTD ell size long wire). This verial dipole is a sensor able o measure he verial omponen of he eleri field. The figure 3 presens he resuls for hree differen onfiguraions : wire alone, slo alone, wire and slo. These differen resuls may be used o invesigae he privileged peneraion way for a given direion of inidene. For example, he slo is he main oupling way for a wave oming from he rear of he ruk. On he onrary, he oupling hrough he wire seems o be raher omnidireional.

5 (a) (b) wire () slo (d) wire and slo Figure 3: (a) eleri field (log sale) for a given ime during he simulaion of a small wire fed by a urren soure. There is a horizonal slo in he rear fae. A verial wire goes hrough he roof of he ruk. (b), () and (d) maximum value of he verial omponen of he eleri field a he small wire loaion for differen direions of inidene. (d) resuls are dedued by reiproiy from he ompuaion shown in (a). (b) and () resuls are also dedued by reiproiy, bu he slo and he wire are respeively absen. 4) CONCLUSION The reiproiy heorem is applied in he ime domain wih a FDTD sofware. This mehod provides a fas evaluaion of he bes oupling direion of inidene. However, he resuls are available for only one observaion poin in he sruure. This poin is he soure poin in he ransmiing mode. For example, he mehod is unable o predi a near field map. This seems o be he main limiaion. This mehod is perfely suied o sudy he influene of he inidene direion on a volage or a urren a a pariular loaion, for example he inpu por of a vulnerable devie. REFERENCES [1] B. Ru-Shao Cheo, A Reiproiy Theorem for Eleromagnei Fields wih General Time Dependene, IEEE Trans. Anennas Propaga., vol. AP-13, pp , Marh [2] S.W. Lee, Theorems and Formulas, in Anenna Handbook, Anenna fundamenals and mahemaial ehniques, vol. 1, hap. 2, Edied by Lo and Lee, Chapman & Hall, [3] Glenn S. Smih, A Dire Derivaion of a Single-Anenna Reiproiy Relaion for he Time Domain, IEEE Trans. Anennas Propaga., vol. 52, no. 6, pp , June 24. [4] Allen Taflove, Compuaional Elerodynamis, The Finie-Differene Time-Domain Mehod, Areh House, [5] L. Morel, B. Pequeux, R. Vézine, Noie d insallaion e d uilisaion de la version exporable du ode GORF3D, Noe inerne CEG I94-28, Oober 1994.

B Signals and Systems I Solutions to Midterm Test 2. xt ()

B Signals and Systems I Solutions to Midterm Test 2. xt () 34-33B Signals and Sysems I Soluions o Miderm es 34-33B Signals and Sysems I Soluions o Miderm es ednesday Marh 7, 7:PM-9:PM Examiner: Prof. Benoi Boule Deparmen of Elerial and Compuer Engineering MGill

More information

EE40 Summer 2005: Lecture 2 Instructor: Octavian Florescu 1. Measuring Voltages and Currents

EE40 Summer 2005: Lecture 2 Instructor: Octavian Florescu 1. Measuring Voltages and Currents Announemens HW # Due oday a 6pm. HW # posed online oday and due nex Tuesday a 6pm. Due o sheduling onflis wih some sudens, lasses will resume normally his week and nex. Miderm enaively 7/. EE4 Summer 5:

More information

(Radiation Dominated) Last Update: 21 June 2006

(Radiation Dominated) Last Update: 21 June 2006 Chaper Rik s Cosmology uorial: he ime-emperaure Relaionship in he Early Universe Chaper he ime-emperaure Relaionship in he Early Universe (Radiaion Dominaed) Las Updae: 1 June 006 1. Inroduion n In Chaper

More information

Generalized electromagnetic energy-momentum tensor and scalar curvature of space at the location of charged particle

Generalized electromagnetic energy-momentum tensor and scalar curvature of space at the location of charged particle Generalized eleromagnei energy-momenum ensor and salar urvaure of spae a he loaion of harged parile A.L. Kholmeskii 1, O.V. Missevih and T. Yarman 3 1 Belarus Sae Universiy, Nezavisimosi Avenue, 0030 Minsk,

More information

Linear Quadratic Regulator (LQR) - State Feedback Design

Linear Quadratic Regulator (LQR) - State Feedback Design Linear Quadrai Regulaor (LQR) - Sae Feedbak Design A sysem is expressed in sae variable form as x = Ax + Bu n m wih x( ) R, u( ) R and he iniial ondiion x() = x A he sabilizaion problem using sae variable

More information

A New Formulation of Electrodynamics

A New Formulation of Electrodynamics . Eleromagnei Analysis & Appliaions 1 457-461 doi:1.436/jemaa.1.86 Published Online Augus 1 hp://www.sirp.org/journal/jemaa A New Formulaion of Elerodynamis Arbab I. Arbab 1 Faisal A. Yassein 1 Deparmen

More information

mywbut.com Lesson 11 Study of DC transients in R-L-C Circuits

mywbut.com Lesson 11 Study of DC transients in R-L-C Circuits mywbu.om esson Sudy of DC ransiens in R--C Ciruis mywbu.om Objeives Be able o wrie differenial equaion for a d iruis onaining wo sorage elemens in presene of a resisane. To develop a horough undersanding

More information

Analysis of Tubular Linear Permanent Magnet Motor for Drilling Application

Analysis of Tubular Linear Permanent Magnet Motor for Drilling Application Analysis of Tubular Linear Permanen Magne Moor for Drilling Appliaion Shujun Zhang, Lars Norum, Rober Nilssen Deparmen of Eleri Power Engineering Norwegian Universiy of Siene and Tehnology, Trondheim 7491

More information

Mass Transfer Coefficients (MTC) and Correlations I

Mass Transfer Coefficients (MTC) and Correlations I Mass Transfer Mass Transfer Coeffiiens (MTC) and Correlaions I 7- Mass Transfer Coeffiiens and Correlaions I Diffusion an be desribed in wo ways:. Deailed physial desripion based on Fik s laws and he diffusion

More information

Capacitance and Inductance. The Capacitor

Capacitance and Inductance. The Capacitor apaiane and Induane OUTINE apaiors apaior volage, urren, power, energy Induors eure 9, 9/9/5 Reading Hambley haper 3 (A) EE4 Fall 5 eure 9, Slide The apaior Two onduors (a,b) separaed by an insulaor: differene

More information

5.2 Design for Shear (Part I)

5.2 Design for Shear (Part I) 5. Design or Shear (Par I) This seion overs he ollowing opis. General Commens Limi Sae o Collapse or Shear 5..1 General Commens Calulaion o Shear Demand The objeive o design is o provide ulimae resisane

More information

TRANSMISSION LINES AND WAVEGUIDES. Uniformity along the Direction of Propagation

TRANSMISSION LINES AND WAVEGUIDES. Uniformity along the Direction of Propagation TRANSMISSION LINES AND WAVEGUIDES Uniformi along he Direion of Propagaion Definiion: Transmission Line TL is he erm o desribe ransmission ssems wih wo or more mealli onduors eleriall insulaed from eah

More information

Energy Momentum Tensor for Photonic System

Energy Momentum Tensor for Photonic System 018 IJSST Volume 4 Issue 10 Prin ISSN : 395-6011 Online ISSN : 395-60X Themed Seion: Siene and Tehnology Energy Momenum Tensor for Phooni Sysem ampada Misra Ex-Gues-Teaher, Deparmens of Eleronis, Vidyasagar

More information

ELEG 205 Fall Lecture #13. Mark Mirotznik, Ph.D. Professor The University of Delaware Tel: (302)

ELEG 205 Fall Lecture #13. Mark Mirotznik, Ph.D. Professor The University of Delaware Tel: (302) ELEG 205 Fall 2017 Leure #13 Mark Miroznik, Ph.D. Professor The Universiy of Delaware Tel: (302831-4221 Email: mirozni@ee.udel.edu Chaper 8: RL and RC Ciruis 1. Soure-free RL iruis (naural response 2.

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

Amit Mehra. Indian School of Business, Hyderabad, INDIA Vijay Mookerjee

Amit Mehra. Indian School of Business, Hyderabad, INDIA Vijay Mookerjee RESEARCH ARTICLE HUMAN CAPITAL DEVELOPMENT FOR PROGRAMMERS USING OPEN SOURCE SOFTWARE Ami Mehra Indian Shool of Business, Hyderabad, INDIA {Ami_Mehra@isb.edu} Vijay Mookerjee Shool of Managemen, Uniersiy

More information

Lorentz Transformation Properties of Currents for the Particle-Antiparticle Pair Wave Functions

Lorentz Transformation Properties of Currents for the Particle-Antiparticle Pair Wave Functions Open Aess Library Journal 17, Volume 4, e373 ISSN Online: 333-971 ISSN Prin: 333-975 Lorenz Transformaion Properies of Currens for he Parile-Aniparile Pair Wave Funions Raja Roy Deparmen of Eleronis and

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Derivation of longitudinal Doppler shift equation between two moving bodies in reference frame at rest

Derivation of longitudinal Doppler shift equation between two moving bodies in reference frame at rest Deriaion o longiudinal Doppler shi equaion beween wo moing bodies in reerene rame a res Masanori Sao Honda Eleronis Co., d., Oyamazuka, Oiwa-ho, Toyohashi, ihi 44-393, Japan E-mail: msao@honda-el.o.jp

More information

( ) = Q 0. ( ) R = R dq. ( t) = I t

( ) = Q 0. ( ) R = R dq. ( t) = I t ircuis onceps The addiion of a simple capacior o a circui of resisors allows wo relaed phenomena o occur The observaion ha he ime-dependence of a complex waveform is alered by he circui is referred o as

More information

6.01: Introduction to EECS I Lecture 8 March 29, 2011

6.01: Introduction to EECS I Lecture 8 March 29, 2011 6.01: Inroducion o EES I Lecure 8 March 29, 2011 6.01: Inroducion o EES I Op-Amps Las Time: The ircui Absracion ircuis represen sysems as connecions of elemens hrough which currens (hrough variables) flow

More information

Scalar Hertz potentials for nonhomogeneous uniaxial dielectric magnetic mediums

Scalar Hertz potentials for nonhomogeneous uniaxial dielectric magnetic mediums Inernaional Journal of Applied Eleromagneis and Mehanis 000 3 40 3 IOS Press Salar Herz poenials for nonhomogeneous uniaxial dieleri magnei mediums Werner S. Weiglhofer Deparmen of Mahemais, Universiy

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 he Complee Response of R and RC Ciruis Exerises Ex 8.3-1 Before he swih loses: Afer he swih loses: 2 = = 8 Ω so = 8 0.05 = 0.4 s. 0.25 herefore R ( ) Finally, 2.5 ( ) = o + ( (0) o ) = 2 + V for

More information

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum MEE Engineering Mechanics II Lecure 4 Lecure 4 Kineics of a paricle Par 3: Impulse and Momenum Linear impulse and momenum Saring from he equaion of moion for a paricle of mass m which is subjeced o an

More information

Electrical and current self-induction

Electrical and current self-induction Elecrical and curren self-inducion F. F. Mende hp://fmnauka.narod.ru/works.hml mende_fedor@mail.ru Absrac The aricle considers he self-inducance of reacive elemens. Elecrical self-inducion To he laws of

More information

Sterilization D Values

Sterilization D Values Seriliaion D Values Seriliaion by seam consis of he simple observaion ha baceria die over ime during exposure o hea. They do no all live for a finie period of hea exposure and hen suddenly die a once,

More information

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance:

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance: Problem Se # Problem : a) Using phasor noaion, calculae he volage and curren waves on a ransmission line by solving he wave equaion Assume ha R, L,, G are all non-zero and independen of frequency From

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Boyce/DiPrima 9 th ed, Ch 6.1: Definition of. Laplace Transform. In this chapter we use the Laplace transform to convert a

Boyce/DiPrima 9 th ed, Ch 6.1: Definition of. Laplace Transform. In this chapter we use the Laplace transform to convert a Boye/DiPrima 9 h ed, Ch 6.: Definiion of Laplae Transform Elemenary Differenial Equaions and Boundary Value Problems, 9 h ediion, by William E. Boye and Rihard C. DiPrima, 2009 by John Wiley & Sons, In.

More information

An Inventory Model for Weibull Time-Dependence. Demand Rate with Completely Backlogged. Shortages

An Inventory Model for Weibull Time-Dependence. Demand Rate with Completely Backlogged. Shortages Inernaional Mahemaial Forum, 5, 00, no. 5, 675-687 An Invenory Model for Weibull Time-Dependene Demand Rae wih Compleely Baklogged Shorages C. K. Tripahy and U. Mishra Deparmen of Saisis, Sambalpur Universiy

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se #2 Wha are Coninuous-Time Signals??? Reading Assignmen: Secion. of Kamen and Heck /22 Course Flow Diagram The arrows here show concepual flow beween ideas.

More information

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91 ddiional Problems 9 n inverse relaionship exiss beween he ime-domain and freuency-domain descripions of a signal. Whenever an operaion is performed on he waveform of a signal in he ime domain, a corresponding

More information

Problem Set 9 Due December, 7

Problem Set 9 Due December, 7 EE226: Random Proesses in Sysems Leurer: Jean C. Walrand Problem Se 9 Due Deember, 7 Fall 6 GSI: Assane Gueye his problem se essenially reviews Convergene and Renewal proesses. No all exerises are o be

More information

Computation of the Effect of Space Harmonics on Starting Process of Induction Motors Using TSFEM

Computation of the Effect of Space Harmonics on Starting Process of Induction Motors Using TSFEM Journal of elecrical sysems Special Issue N 01 : November 2009 pp: 48-52 Compuaion of he Effec of Space Harmonics on Saring Process of Inducion Moors Using TSFEM Youcef Ouazir USTHB Laboraoire des sysèmes

More information

ES 250 Practice Final Exam

ES 250 Practice Final Exam ES 50 Pracice Final Exam. Given ha v 8 V, a Deermine he values of v o : 0 Ω, v o. V 0 Firs, v o 8. V 0 + 0 Nex, 8 40 40 0 40 0 400 400 ib i 0 40 + 40 + 40 40 40 + + ( ) 480 + 5 + 40 + 8 400 400( 0) 000

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

Hybrid probabilistic interval dynamic analysis of vehicle-bridge interaction system with uncertainties

Hybrid probabilistic interval dynamic analysis of vehicle-bridge interaction system with uncertainties 1 APCOM & SCM 11-14 h Deember, 13, Singapore Hybrid probabilisi inerval dynami analysis of vehile-bridge ineraion sysem wih unerainies Nengguang iu 1, * Wei Gao 1, Chongmin Song 1 and Nong Zhang 1 Shool

More information

A state space approach to calculating the Beveridge Nelson decomposition

A state space approach to calculating the Beveridge Nelson decomposition Eonomis Leers 75 (00) 3 7 www.elsevier.om/ loae/ eonbase A sae spae approah o alulaing he Beveridge Nelson deomposiion James C. Morley* Deparmen of Eonomis, Washingon Universiy, Campus Box 08, Brookings

More information

Linear Circuit Elements

Linear Circuit Elements 1/25/2011 inear ircui Elemens.doc 1/6 inear ircui Elemens Mos microwave devices can be described or modeled in erms of he hree sandard circui elemens: 1. ESISTANE () 2. INDUTANE () 3. APAITANE () For he

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

The Special Theory of Relativity Chapter II

The Special Theory of Relativity Chapter II The Speial Theory of Relaiiy Chaper II 1. Relaiisi Kinemais. Time dilaion and spae rael 3. Lengh onraion 4. Lorenz ransformaions 5. Paradoes? Simulaneiy/Relaiiy If one obserer sees he eens as simulaneous,

More information

Teacher Quality Policy When Supply Matters: Online Appendix

Teacher Quality Policy When Supply Matters: Online Appendix Teaher Qualiy Poliy When Supply Maers: Online Appendix Jesse Rohsein July 24, 24 A Searh model Eah eaher draws a single ouside job offer eah year. If she aeps he offer, she exis eahing forever. The ouside

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED 0.1 MAXIMUM LIKELIHOOD ESTIMATIO EXPLAIED Maximum likelihood esimaion is a bes-fi saisical mehod for he esimaion of he values of he parameers of a sysem, based on a se of observaions of a random variable

More information

Calculation of Initial Stiffness of Semirigid Connections with Consideration of Rotational Constraint on Angle from Beam Contact Surface

Calculation of Initial Stiffness of Semirigid Connections with Consideration of Rotational Constraint on Angle from Beam Contact Surface Calulaion of Iniial Siffness of Semirigid Conneions wih Consideraion of Roaional Consrain on Angle from Beam Cona Surfae X.G. Lin Osaka Insiue of Tehnology, Japan K. Asada Oayashi Corporaion, Japan SUMMARY:

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

Economics 202 (Section 05) Macroeconomic Theory Practice Problem Set 7 Suggested Solutions Professor Sanjay Chugh Fall 2013

Economics 202 (Section 05) Macroeconomic Theory Practice Problem Set 7 Suggested Solutions Professor Sanjay Chugh Fall 2013 Deparmen of Eonomis Boson College Eonomis 0 (Seion 05) Maroeonomi Theory Praie Problem Se 7 Suggesed Soluions Professor Sanjay Chugh Fall 03. Lags in Labor Hiring. Raher han supposing ha he represenaive

More information

DIRECTION-OF-ARRIVAL ESTIMATION UNDER NOISY CONDITION USING FOUR-LINE OMNI-DIRECTIONAL MICROPHONES MOUNTED ON A ROBOT HEAD

DIRECTION-OF-ARRIVAL ESTIMATION UNDER NOISY CONDITION USING FOUR-LINE OMNI-DIRECTIONAL MICROPHONES MOUNTED ON A ROBOT HEAD 17h European Signal Proessing Conferene EUSIPCO 29 Glasgow Soland Augus 24-28 29 DIRECTION-OF-ARRIVAL ESTIMATION UNDER NOISY CONDITION USING FOUR-LINE OMNI-DIRECTIONAL MICROPHONES MOUNTED ON A ROBOT HEAD

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 5 Creep and Shrinkage Deformation

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 5 Creep and Shrinkage Deformation 1.54/1.541 Mehanis and Design of Conree ruures pring 24 Prof. Oral Buyukozurk Massahuses Insiue of Tehnology Ouline 5 1.54/1.541 Mehanis and Design of Conree ruures (3--9 Ouline 5 and hrinkage Deformaion

More information

Problem 1 / 25 Problem 2 / 10 Problem 3 / 15 Problem 4 / 30 Problem 5 / 20 TOTAL / 100

Problem 1 / 25 Problem 2 / 10 Problem 3 / 15 Problem 4 / 30 Problem 5 / 20 TOTAL / 100 Deparmen of Applied Eonomis Johns Hopkins Universiy Eonomis 60 Maroeonomi Theory and Poliy Miderm Exam Suggesed Soluions Professor Sanjay Chugh Summer 0 NAME: The Exam has a oal of five (5) problems and

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

PHYS-3301 Lecture 5. Chapter 2. Announcement. Sep. 12, Special Relativity. What about y and z coordinates? (x - direction of motion)

PHYS-3301 Lecture 5. Chapter 2. Announcement. Sep. 12, Special Relativity. What about y and z coordinates? (x - direction of motion) Announemen Course webpage hp://www.phys.u.edu/~slee/33/ Tebook PHYS-33 Leure 5 HW (due 9/4) Chaper, 6, 36, 4, 45, 5, 5, 55, 58 Sep., 7 Chaper Speial Relaiiy. Basi Ideas. Consequenes of Einsein s Posulaes

More information

A Numerical Hydraulic Fracture Model Using the Extended Finite Element Method

A Numerical Hydraulic Fracture Model Using the Extended Finite Element Method nernaional Conferene on Mehanial and ndusrial Engineering (CME'2013) Augus 28-29, 2013 Penang (Malaysia) A Numerial Hydrauli Fraure Model Using he Exended Finie Elemen Mehod Ashkan. Mahdavi, and Soheil.

More information

A comparative Study of Contact Problems Solution Based on the Penalty and Lagrange Multiplier Approaches

A comparative Study of Contact Problems Solution Based on the Penalty and Lagrange Multiplier Approaches Journal of he Serbian Soiey for ompuaional Mehanis / Vol. / o., 2007 / pp. 74-83 A omparaive Sudy of ona Problems Soluion Based on he Penaly and Lagrange Muliplier Approahes S. Vulovi, M. Zivovi,. Grujovi,

More information

Physical Limitations of Logic Gates Week 10a

Physical Limitations of Logic Gates Week 10a Physical Limiaions of Logic Gaes Week 10a In a compuer we ll have circuis of logic gaes o perform specific funcions Compuer Daapah: Boolean algebraic funcions using binary variables Symbolic represenaion

More information

Lecture 4 Notes (Little s Theorem)

Lecture 4 Notes (Little s Theorem) Lecure 4 Noes (Lile s Theorem) This lecure concerns one of he mos imporan (and simples) heorems in Queuing Theory, Lile s Theorem. More informaion can be found in he course book, Bersekas & Gallagher,

More information

Chapter 10 INDUCTANCE Recommended Problems:

Chapter 10 INDUCTANCE Recommended Problems: Chaper 0 NDUCTANCE Recommended Problems: 3,5,7,9,5,6,7,8,9,,,3,6,7,9,3,35,47,48,5,5,69, 7,7. Self nducance Consider he circui shown in he Figure. When he swich is closed, he curren, and so he magneic field,

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se # Wha are Coninuous-Time Signals??? /6 Coninuous-Time Signal Coninuous Time (C-T) Signal: A C-T signal is defined on he coninuum of ime values. Tha is:

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

3. Differential Equations

3. Differential Equations 3. Differenial Equaions 3.. inear Differenial Equaions of Firs rder A firs order differenial equaion is an equaion of he form d() d ( ) = F ( (),) (3.) As noed above, here will in general be a whole la

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

Sensor and Simulation Notes. Note 441. A Two-Channel Balanced-Dipole Antenna (BDA) With Reversible Antenna Pattern Operating at 50 Ohms

Sensor and Simulation Notes. Note 441. A Two-Channel Balanced-Dipole Antenna (BDA) With Reversible Antenna Pattern Operating at 50 Ohms Sensor and Simulaion Noes Noe 441 A Two-Channel Balanced-Dipole Anenna BDA Wih Reversible Anenna Paern Operaing a 50 Ohms Evere G. Farr Farr Research, Inc. Carl E. Baum, William D. Praher, and Tyrone Tran

More information

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p.

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p. ECE MS I DC Power P I = Inroducion o AC Power, MS I AC Power P =? A Solp //9, // // correced p4 '4 v( ) = p cos( ω ) v( ) p( ) Couldn' we define an "effecive" volage ha would allow us o use he same relaionships

More information

SIMULATION STUDY OF STOCHASTIC CHANNEL REDISTRIBUTION

SIMULATION STUDY OF STOCHASTIC CHANNEL REDISTRIBUTION Developmens in Business Simulaion and Experienial Learning, Volume 3, 3 SIMULATIO STUDY OF STOCHASTIC CHAEL REDISTRIBUTIO Yao Dong-Qing Towson Universiy dyao@owson.edu ABSTRACT In his paper, we invesigae

More information

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e PHYS67 Class 3 ourier Transforms In he limi T, he ourier series becomes an inegral ( nt f in T ce f n f f e d, has been replaced by ) where i f e d is he ourier ransform of f() which is he inverse ourier

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

LIGHT and SPECIAL RELATIVITY

LIGHT and SPECIAL RELATIVITY VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT LIGHT and SPECIAL RELATIVITY LENGTH CONTRACTION RELATIVISTIC ADDITION OF VELOCITIES Time is a relaie quaniy: differen obserers an measuremen differen ime

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

Circuit Variables. AP 1.1 Use a product of ratios to convert two-thirds the speed of light from meters per second to miles per second: 1 ft 12 in

Circuit Variables. AP 1.1 Use a product of ratios to convert two-thirds the speed of light from meters per second to miles per second: 1 ft 12 in Circui Variables 1 Assessmen Problems AP 1.1 Use a produc of raios o conver wo-hirds he speed of ligh from meers per second o miles per second: ( ) 2 3 1 8 m 3 1 s 1 cm 1 m 1 in 2.54 cm 1 f 12 in 1 mile

More information

6.003 Homework #9 Solutions

6.003 Homework #9 Solutions 6.00 Homework #9 Soluions Problems. Fourier varieies a. Deermine he Fourier series coefficiens of he following signal, which is periodic in 0. x () 0 0 a 0 5 a k sin πk 5 sin πk 5 πk for k 0 a k 0 πk j

More information

Basic solution to Heat Diffusion In general, one-dimensional heat diffusion in a material is defined by the linear, parabolic PDE

Basic solution to Heat Diffusion In general, one-dimensional heat diffusion in a material is defined by the linear, parabolic PDE New Meio e yd 5 ydrology Program Quaniaie Meods in ydrology Basi soluion o ea iffusion In general one-dimensional ea diffusion in a maerial is defined by e linear paraboli PE or were we assume a is defined

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product 11.1 APPCATON OF AMPEE S AW N SYMMETC MAGNETC FEDS - f one knows ha a magneic field has a symmery, one may calculae he magniude of by use of Ampere s law: The inegral of scalar produc Closed _ pah * d

More information

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal?

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal? EE 35 Noes Gürdal Arslan CLASS (Secions.-.2) Wha is a signal? In his class, a signal is some funcion of ime and i represens how some physical quaniy changes over some window of ime. Examples: velociy of

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

Optimal Transform: The Karhunen-Loeve Transform (KLT)

Optimal Transform: The Karhunen-Loeve Transform (KLT) Opimal ransform: he Karhunen-Loeve ransform (KL) Reall: We are ineresed in uniary ransforms beause of heir nie properies: energy onservaion, energy ompaion, deorrelaion oivaion: τ (D ransform; assume separable)

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

Learning Objectives: Practice designing and simulating digital circuits including flip flops Experience state machine design procedure

Learning Objectives: Practice designing and simulating digital circuits including flip flops Experience state machine design procedure Lab 4: Synchronous Sae Machine Design Summary: Design and implemen synchronous sae machine circuis and es hem wih simulaions in Cadence Viruoso. Learning Objecives: Pracice designing and simulaing digial

More information

EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE

EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE Version April 30, 2004.Submied o CTU Repors. EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE Per Krysl Universiy of California, San Diego La Jolla, California 92093-0085,

More information

v A Since the axial rigidity k ij is defined by P/v A, we obtain Pa 3

v A Since the axial rigidity k ij is defined by P/v A, we obtain Pa 3 The The rd rd Inernaional Conference on on Design Engineering and Science, ICDES 14 Pilsen, Czech Pilsen, Republic, Czech Augus Republic, 1 Sepember 1-, 14 In-plane and Ou-of-plane Deflecion of J-shaped

More information

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines.

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines. Mah A Final Eam Problems for onsideraion. Show all work for credi. Be sure o show wha you know. Given poins A(,,, B(,,, (,, 4 and (,,, find he volume of he parallelepiped wih adjacen edges AB, A, and A.

More information

Numerical Dispersion

Numerical Dispersion eview of Linear Numerical Sabiliy Numerical Dispersion n he previous lecure, we considered he linear numerical sabiliy of boh advecion and diffusion erms when approimaed wih several spaial and emporal

More information

Block Diagram of a DCS in 411

Block Diagram of a DCS in 411 Informaion source Forma A/D From oher sources Pulse modu. Muliplex Bandpass modu. X M h: channel impulse response m i g i s i Digial inpu Digial oupu iming and synchronizaion Digial baseband/ bandpass

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

Second-Order Boundary Value Problems of Singular Type

Second-Order Boundary Value Problems of Singular Type JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 226, 4443 998 ARTICLE NO. AY98688 Seond-Order Boundary Value Probles of Singular Type Ravi P. Agarwal Deparen of Maheais, Naional Uniersiy of Singapore,

More information

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5 Homework-8() P8.3-, 3, 8, 0, 7, 2, 24, 28,29 P8.4-, 2, 5 Secion 8.3: The Response of a Firs Order Circui o a Consan Inpu P 8.3- The circui shown in Figure P 8.3- is a seady sae before he swich closes a

More information

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition EE 224 Signals and Sysems I Complex numbers sinusodal signals Complex exponenials e jω phasor addiion 1/28 Complex Numbers Recangular Polar y z r z θ x Good for addiion/subracion Good for muliplicaion/division

More information

Unsteady Flow Problems

Unsteady Flow Problems School of Mechanical Aerospace and Civil Engineering Unseady Flow Problems T. J. Craf George Begg Building, C41 TPFE MSc CFD-1 Reading: J. Ferziger, M. Peric, Compuaional Mehods for Fluid Dynamics H.K.

More information

8.1. a) For step response, M input is u ( t) Taking inverse Laplace transform. as α 0. Ideal response, K c. = Kc Mτ D + For ramp response, 8-1

8.1. a) For step response, M input is u ( t) Taking inverse Laplace transform. as α 0. Ideal response, K c. = Kc Mτ D + For ramp response, 8-1 8. a For ep repone, inpu i u, U Y a U α α Y a α α Taking invere Laplae ranform a α e e / α / α A α 0 a δ 0 e / α a δ deal repone, α d Y i Gi U i δ Hene a α 0 a i For ramp repone, inpu i u, U Soluion anual

More information