Efficient Algorithm of Well-Localized Bases Construction for OFTDM Systems

Size: px
Start display at page:

Download "Efficient Algorithm of Well-Localized Bases Construction for OFTDM Systems"

Transcription

1 6 TH SEA OF FSH-USSA UVESTY COOPEATO TELECOUCATOS Efficient Algorithm of Well-Localized ases Construction for OFTD Systems Dmitry Petrov.V.Lomonosov oscow State University Physical Faculty Flotsaya str oscow ussia. dapetroff@gmail.com Abstract This article presents the research wor related to the development of enhanced modulation technique with Orthogonal Time-Frequency Division ultiplexing (OFTD). Utilization of well localized bases allows to improve considerably the efficiency and robustness against intercarrier (C) and intersymbol interference (S) of now existing wideband wireless digital communication systems. Until recently one of the main disadvantages of well-localized bases was the complexity of their construction algorithm. This fact restricted the area of their practical implementation. The algebraic procedure of orthogonal well-localized Weyl- Heisenberg basis construction is considered in the paper. Several basis orthogonality conditions are observed. They allow to formulate computationally efficient orthogonalization procedure on the base of fast Fourier transform. This approach can receive wide implementation in wideband mobile networs (Wi-ax) digital television (DV-T/H) and other telecommunication systems. ndex Terms: well-localized bases OFD OFTD orthogonalization wideband signals.. TODUCTO Construction of wireless high-speed digital communication systems often faces with the situation when real radio channels are time-frequency dispersive. Signal coming to the receiving point have multiple reflections form the media inhomogeneitis (city buildings moving objects atmospheric layers etc.). Among the examples of such channels are short and ultra short radio lines wideband mobile (mobile Wi-ax) and digital TV (DV-T/H) radio lines. ecause of time-frequency dispersion of the signal on the receiver side such effects as multipath propagation amplitude/phase fading Doppler spectrum spreading frequency offset are observed. Their influence results in intercarrier (C) and intersymbol (S) interference which worsen considerably receiving characteristics. n addition such interchannel interferences could not be compensated or filtrated by the ordinary digital processing methods. At present Orthogonal Frequency Division ultiplexing (OFD) is one of the most efficient and widely spread technologies of data transmission in such highly dispersive channels. The structure and the properties of OFD signals are determined by the basis used for its construction. asic functions are taen as the intervals of harmonics with frequencies multiple to some offset frequency o. Their amplitude spectrum has narrow main lobe and slowly decay tails lie sin x x function. This basis can be constructed by uniform shifts of rectangular impulse within the given frequency range. The signal is generated as the liner combination of real or complex information symbols (determined by the signal constellation: QA PSK ets.). Channel equalization is simplified because OFD may be 106

2 6 TH SEA OF FSH-USSA UVESTY COOPEATO TELECOUCATOS viewed as many slowly-modulated narrowband signals rather than one rapidly-modulated wideband signal. Physically the appearance of C and S in time-frequency dispersive channels is caused by the loss of orthogonally of disturbed basic functions. As a result the demodulation procedure in the receiver becomes nonimal. The reason of connection breas when a subscriber enlarges its velocity or when the signal/noise limit is exceed is synchronization upset or inaccurate assessment of channel parameters in the conditions of strong frequency dispersion (strong C). The low symbol rate of OFD systems maes the use of a guard interval between symbols affordable maing it possible to handle time-spreading and eliminate S. The effect of time dispersion can be completely compensated but with the loss of spectral and energy efficiency. evertheless the rectangular form of forming function is not imal from the point of C. n addition the level of out-of-band emission in the classical OFD systems is overrated. This is why the problem of intercarrier interference rests actual for OFD systems and in many cases doesn t have satisfactory decision. This article presents the research wor related to the development of enhanced modulation technique with Orthogonal Time-Frequency Division ultiplexing (OFTD) affording to cope with main disadvantages of classical OFD mentioned earlier. n OFTD systems special orthogonal well-localized bases are used to cope with channel time-frequency dispersion [1]. t can be shown that tightly paced orthogonal bases can be constructed only of several initializing function. So in contrast to OFD two forming function differing in faze are used for basis generation (generalized Weyl-Heisenberg basis). n addition there are used shifts not only in frequency domain (OFD) but also in time. These bases minimize the level of channel interference simultaneously in time and frequency domain but do not spoil system s spectral efficiency. Until recently one of the main disadvantages of well-localized bases was the complexity of their construction algorithm. This fact didn t allow to use such bases in portable devices. n this article several basis orthogonality conditions are observed. They allow to formulate practical and computationally efficient orthogonalization procedure on the base of fast Fourier transform. Thus the potential spectrum of implementations of OFTD technology can be considerably broaden. Orthogonal Weyl-Heisenberg basis J. WEYL-HESEEG ASES and transmitted OFTD signal s t in discrete time can be equivalently presented in the following form 1 L1 L1 s n c n c n n J 0 l0 l0 l l l l (1) n gnl j n l mod exp / exp (3) J l n ln (4) njgn l j n l mod () 107

3 6 TH SEA OF FSH-USSA UVESTY COOPEATO TELECOUCATOS where cl e( al ) and cl m( al ) are real and imaginary parts of complex information QA symbols a l ; sn snt ; gn gnt and gn - initializing functions; J L - number of subcarriers L - any natural number unequal zero; - phase parameter. The system of basic functions J on the Hilbert space of discrete functions on J where * is the sign of complex conjugation. is orthogonal in terms of real scalar product defined 1 x n y n e x n y* n (5) n0 Orthogonality condition of basis J where is U U - square J in matrix form is e U* U (6) identity matrix; U U U is a bloc matrix with blocs matrixes constructed from columns of basic functions ψ T and l l l l 0... L 1. ψ T for all indexes l l l Equation (1) describes the modulation algorithm of OFD/OQA signal in discrete time. Appropriate demodulation algorithm has the form n n c sn n c s (7) l l l l.. WELL-LOCALZED WEYL-HESEEG ASES COSTUCTO t is necessary to solve the problem of orthogonal Weyl-Heisenberg basis synthesis to construct a robust OFD/OQA system. Ambiguity function for the basis s prototype function g t f Agt f gx t g* x t exp jfxdx has to possess maximum localization simultaneously in time and frequency domain. This criteria is analogous to orthogonal system finding which minimizes the left part of inequality responding to the Heisenberg uncertainty principle 4 gt () ( t) g() t dt ( f ) Fg() t df (8) 16 where Fg() t is the Fourier transform of function gt (). t is nown [] that equality in (8) is satisfied for Gaussian function 1 4 g0 t exp t. (9) 108

4 6 TH SEA OF FSH-USSA UVESTY COOPEATO TELECOUCATOS So prototype function g0 t is the best one from the point of localization. Unfortunately the basis constructed from Gaussian function as a prototype function (Gabor basis) is not orthogonal. n the article [1] it was proposed an orthogonalization algorithm. The following problem was solved: Problem 1. On the subset A of complex matrixes of size which satisfy orthogonality condition it is necessary to find an imal matrix * e( ) UU UA U which minimizes the following functional: U :min G U UA E (10) where G is the Gabor basis matrix and The algorithm consists of several successive steps: 1. Gabor basis matrix A tr( AA *) is a Frobenius norm. E G G G is constructed where 0 exp mod. G nl g nl j n 3. G n l jg0 n /l exp j n. mod 4. Extended real Gabor matrix is constructed eg 5. G. m G 6. Spectral decomposition of matrix GG * is performed: GG* SΛS * 7. The following matrixes are calculated 1 Σ Λ 8. The imal real matrix is calculated V SW * 9. atrix V is decomposed in two parts W G * SΣ V1 10. V V 11. The imal matrix of orthogonal Weyl-Heisenberg basis is constructed U V1 jv. Optimal prototype function gn is specified be the first gnu n1. column of imal matrix: This algorithm allows to solve Problem 1 and thus to find orthogonal Weyl-Heisenberg basis which has the best localization characteristics because it is the closest to Gabor basis under the Frobenius norm

5 6 TH SEA OF FSH-USSA UVESTY COOPEATO TELECOUCATOS Unfortunately this algorithm is based on the matrix orthogonal decomposition. This operation is computationally inefficient so we need some other algorithm to use it in real systems. n fact the structure of Weyl-Heizenberg basis is determined by its forming function. So basis construction algorithm can be simplified by using gn criteria in instead of basis orthogonality conditions. Consider a particular case when -symmetry gn g n * of symmetry is mod V. ASS OTHOGOALTY CODTOS gn function s orthogonality gn is a real function and has a property of conjugate. Optimal value if faze parameter corresponding to this type []. Under these conditions it can be shown that the basis [3] E glm gl m J g n n n l m l l m m 4 g n g n l exp j mn mj ; l J lm L is orthogonal in term of ordinary scalar production if and only if the the Weyl-Heizenberg basis constracted on the base of the same function gn is also orthogonal but in terms of real scalar production. The following theorem is valid: Theorem 1. ecessary and sufficient condition of E J (and also J orthogonality in time domain is the following equality (11) ) basis L1 g n r g n r l 0. l n J l JL r 0 (1) The next step is to come from the orthogonality of basis E J to the orthogonality of Wiener basis. Definition 1. The set of functions f0 f1... f 1 of linear space V ( is the space of -periodical complex discrete functions) is called Wiener basis if descrete-periodical J g J form the basis of analog of Wiener theorem is valid for them: functions 1 0 space V if and only if g can be represented in the following form J 1 g a f and all a are nonzero. Thus the existence of Wiener basis is necessary and sufficient for the existence of function g whose vector of shifts is the basis of space V. gn g g gn g nj... gnj1j Definition. Transform which allows to pass from the vector of shifts to the orthogonal Wiener basis is called Wiener transform and can be written in the following form T 0 110

6 6 TH SEA OF FSH-USSA UVESTY COOPEATO TELECOUCATOS The inverse Wiener transform is j n g n r exp r. L r0 L L1 g n L1 1 L Theorem. ecessary and sufficient condition of E J (and also J 0 orthogonality in time domain is the following equality n n L n. ) basis 4. (13) V. EFFCET OTHOGOALZATO ALGOTH Orthogonality condition (13) allows to formulate an effective orthogonalization procedure. Firstly a real conjugate -symmetrical function gon n J should be chosen. To receive an orthogonal well-localized basis n also have to possess a good localization. For go example Gaussian function has the best time-frequency localization. Secondly the Wiener basis is constructed in the following from: n L1 where o n n n n L n n n j n g nr exp r L. t is obvious that the calculation of r0 L n in every point n J comes to a discrete Fourier transform. Thus computationally efficient fast Fourier algorithm can be implemented times. t is easy to test directly that Wiener basis (14) satisfies orthogonality condition(13). So inverse Wiener transform can be used to receive the required forming function gn of Weil- Heisenberg basis. V. ODELG ESULTS Two algorithms (on base on orthogonal decomposition and on base on FFT) of orthogonal well-localized bases were compared. t was discovered that these methods have the same output i.e. forming function constructed from the same go n (Gaussian function) match perfectly. Graphs of ideally localized Gabor basic function basic function centre of the interval close enough. (14) go n and imal Weyl-Heisenberg gn are shown in Fig.1. For clearness basic function are transmitted in the J. t is apparent that basic functions gn and g n are ACKOWLEDGET 0 The author would lie to than professor V.P. Volchov from oscow state University of Telecommunications and nformatics and professor A.. ogolubov from.v. Lomonosov oscow State University for invaluable help and support during the preparation of this wor. 111

7 6 TH SEA OF FSH-USSA UVESTY COOPEATO TELECOUCATOS Gbor basis Optimal basis 0.5 asic Functions Samples n Figure 1. Excellently localized Gaussian function and received imal forming function EFEECES [1] Volchov V.P.: Signal bases with good time-frequency localization. Electrosvyaz no. pp. 1-5 (007) [] Gabor D.: Theory of communication. J. nst. Elect. Eng. vol.93 no. 3 pp London (1946) [3] Volchov V.P. Petrov D.A.: Orthogonal Weyl-Heizenberg basis imization for digital communication systems based on OFD/OQA. Scientific vedomosti elsu nformatics Series 1(56) Vol. 9/1 pp [4] Petrov D. A.: Orthogonality Criterions of Well-Localized ases. umerical ethods and Programming (Scientific Journal) Vol. 10 Section 1. umerical methods and applications pp (009) 11

FBMC/OQAM transceivers for 5G mobile communication systems. François Rottenberg

FBMC/OQAM transceivers for 5G mobile communication systems. François Rottenberg FBMC/OQAM transceivers for 5G mobile communication systems François Rottenberg Modulation Wikipedia definition: Process of varying one or more properties of a periodic waveform, called the carrier signal,

More information

Optimized Impulses for Multicarrier Offset-QAM

Optimized Impulses for Multicarrier Offset-QAM Optimized Impulses for ulticarrier Offset-QA Stephan Pfletschinger, Joachim Speidel Institut für Nachrichtenübertragung Universität Stuttgart, Pfaffenwaldring 47, D-7469 Stuttgart, Germany Abstract The

More information

Intercarrier and Intersymbol Interference Analysis of OFDM Systems on Time-Varying channels

Intercarrier and Intersymbol Interference Analysis of OFDM Systems on Time-Varying channels Intercarrier and Intersymbol Interference Analysis of OFDM Systems on Time-Varying channels Van Duc Nguyen, Hans-Peter Kuchenbecker University of Hannover, Institut für Allgemeine Nachrichtentechnik Appelstr.

More information

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 6 December 2006 This examination consists of

More information

Spectrally Concentrated Impulses for Digital Multicarrier Modulation

Spectrally Concentrated Impulses for Digital Multicarrier Modulation Spectrally Concentrated Impulses for Digital ulticarrier odulation Dipl.-Ing. Stephan Pfletschinger and Prof. Dr.-Ing. Joachim Speidel Institut für Nachrichtenübertragung, Universität Stuttgart, Pfaffenwaldring

More information

Root-MUSIC Time Delay Estimation Based on Propagator Method Bin Ba, Yun Long Wang, Na E Zheng & Han Ying Hu

Root-MUSIC Time Delay Estimation Based on Propagator Method Bin Ba, Yun Long Wang, Na E Zheng & Han Ying Hu International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 15) Root-MUSIC ime Delay Estimation Based on ropagator Method Bin Ba, Yun Long Wang, Na E Zheng & an Ying

More information

Elec4621 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis

Elec4621 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis Elec461 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis Dr. D. S. Taubman May 3, 011 In this last chapter of your notes, we are interested in the problem of nding the instantaneous

More information

EE303: Communication Systems

EE303: Communication Systems EE303: Communication Systems Professor A. Manikas Chair of Communications and Array Processing Imperial College London Introductory Concepts Prof. A. Manikas (Imperial College) EE303: Introductory Concepts

More information

12.4 Known Channel (Water-Filling Solution)

12.4 Known Channel (Water-Filling Solution) ECEn 665: Antennas and Propagation for Wireless Communications 54 2.4 Known Channel (Water-Filling Solution) The channel scenarios we have looed at above represent special cases for which the capacity

More information

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels EE6604 Personal & Mobile Communications Week 15 OFDM on AWGN and ISI Channels 1 { x k } x 0 x 1 x x x N- 2 N- 1 IDFT X X X X 0 1 N- 2 N- 1 { X n } insert guard { g X n } g X I n { } D/A ~ si ( t) X g X

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

Lecture 2. Fading Channel

Lecture 2. Fading Channel 1 Lecture 2. Fading Channel Characteristics of Fading Channels Modeling of Fading Channels Discrete-time Input/Output Model 2 Radio Propagation in Free Space Speed: c = 299,792,458 m/s Isotropic Received

More information

Maximum Likelihood Sequence Detection

Maximum Likelihood Sequence Detection 1 The Channel... 1.1 Delay Spread... 1. Channel Model... 1.3 Matched Filter as Receiver Front End... 4 Detection... 5.1 Terms... 5. Maximum Lielihood Detection of a Single Symbol... 6.3 Maximum Lielihood

More information

Maximum Achievable Diversity for MIMO-OFDM Systems with Arbitrary. Spatial Correlation

Maximum Achievable Diversity for MIMO-OFDM Systems with Arbitrary. Spatial Correlation Maximum Achievable Diversity for MIMO-OFDM Systems with Arbitrary Spatial Correlation Ahmed K Sadek, Weifeng Su, and K J Ray Liu Department of Electrical and Computer Engineering, and Institute for Systems

More information

FRAMES AND TIME-FREQUENCY ANALYSIS

FRAMES AND TIME-FREQUENCY ANALYSIS FRAMES AND TIME-FREQUENCY ANALYSIS LECTURE 5: MODULATION SPACES AND APPLICATIONS Christopher Heil Georgia Tech heil@math.gatech.edu http://www.math.gatech.edu/ heil READING For background on Banach spaces,

More information

Lecture 7 MIMO Communica2ons

Lecture 7 MIMO Communica2ons Wireless Communications Lecture 7 MIMO Communica2ons Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2014 1 Outline MIMO Communications (Chapter 10

More information

Direct-Sequence Spread-Spectrum

Direct-Sequence Spread-Spectrum Chapter 3 Direct-Sequence Spread-Spectrum In this chapter we consider direct-sequence spread-spectrum systems. Unlike frequency-hopping, a direct-sequence signal occupies the entire bandwidth continuously.

More information

TIME-FREQUENCY ANALYSIS: TUTORIAL. Werner Kozek & Götz Pfander

TIME-FREQUENCY ANALYSIS: TUTORIAL. Werner Kozek & Götz Pfander TIME-FREQUENCY ANALYSIS: TUTORIAL Werner Kozek & Götz Pfander Overview TF-Analysis: Spectral Visualization of nonstationary signals (speech, audio,...) Spectrogram (time-varying spectrum estimation) TF-methods

More information

Multicarrier transmission DMT/OFDM

Multicarrier transmission DMT/OFDM W. Henkel, International University Bremen 1 Multicarrier transmission DMT/OFDM DMT: Discrete Multitone (wireline, baseband) OFDM: Orthogonal Frequency Division Multiplex (wireless, with carrier, passband)

More information

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise.

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise. Data Detection for Controlled ISI *Symbol by symbol suboptimum detection For the duobinary signal pulse h(nt) = 1 for n=0,1 and zero otherwise. The samples at the output of the receiving filter(demodulator)

More information

Empirical Mean and Variance!

Empirical Mean and Variance! Global Image Properties! Global image properties refer to an image as a whole rather than components. Computation of global image properties is often required for image enhancement, preceding image analysis.!

More information

CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015

CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015 CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015 [Most of the material for this lecture has been taken from the Wireless Communications & Networks book by Stallings (2 nd edition).] Effective

More information

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz.

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz. CHAPTER 4 Problem 4. : Based on the info about the scattering function we know that the multipath spread is T m =ms, and the Doppler spread is B d =. Hz. (a) (i) T m = 3 sec (ii) B d =. Hz (iii) ( t) c

More information

Example: Bipolar NRZ (non-return-to-zero) signaling

Example: Bipolar NRZ (non-return-to-zero) signaling Baseand Data Transmission Data are sent without using a carrier signal Example: Bipolar NRZ (non-return-to-zero signaling is represented y is represented y T A -A T : it duration is represented y BT. Passand

More information

BLIND CFO ESTIMATION USING APPROXIMATE CONJUGATE- SYMMETRY PROPERTY IN OFDM/OQAM

BLIND CFO ESTIMATION USING APPROXIMATE CONJUGATE- SYMMETRY PROPERTY IN OFDM/OQAM BLIND CFO ESTIMATION USING APPROXIMATE CONJUGATE- SYMMETRY PROPERTY IN OFDM/OQAM S.MD.IMRAN (PG Scholar) 1 B.SIVA REDDY (Ph.D) 2 1 Dept of ECE, G Pulla Reddy College of Engineering & Technology, Kurnool,

More information

EE401: Advanced Communication Theory

EE401: Advanced Communication Theory EE401: Advanced Communication Theory Professor A. Manikas Chair of Communications and Array Processing Imperial College London Introductory Concepts Prof. A. Manikas (Imperial College) EE.401: Introductory

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 1 ECE6604 PERSONAL & MOBILE COMMUNICATIONS Week 3 Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 2 Multipath-Fading Mechanism local scatterers mobile subscriber base station

More information

Square Root Raised Cosine Filter

Square Root Raised Cosine Filter Wireless Information Transmission System Lab. Square Root Raised Cosine Filter Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal design

More information

Signal Design for Band-Limited Channels

Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Signal Design for Band-Limited Channels Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal

More information

EE5713 : Advanced Digital Communications

EE5713 : Advanced Digital Communications EE5713 : Advanced Digital Communications Week 12, 13: Inter Symbol Interference (ISI) Nyquist Criteria for ISI Pulse Shaping and Raised-Cosine Filter Eye Pattern Equalization (On Board) 20-May-15 Muhammad

More information

Summary: ISI. No ISI condition in time. II Nyquist theorem. Ideal low pass filter. Raised cosine filters. TX filters

Summary: ISI. No ISI condition in time. II Nyquist theorem. Ideal low pass filter. Raised cosine filters. TX filters UORIAL ON DIGIAL MODULAIONS Part 7: Intersymbol interference [last modified: 200--23] Roberto Garello, Politecnico di orino Free download at: www.tlc.polito.it/garello (personal use only) Part 7: Intersymbol

More information

EUSIPCO

EUSIPCO EUSIPCO 3 569736677 FULLY ISTRIBUTE SIGNAL ETECTION: APPLICATION TO COGNITIVE RAIO Franc Iutzeler Philippe Ciblat Telecom ParisTech, 46 rue Barrault 753 Paris, France email: firstnamelastname@telecom-paristechfr

More information

Time Evolution in Diffusion and Quantum Mechanics. Paul Hughes & Daniel Martin

Time Evolution in Diffusion and Quantum Mechanics. Paul Hughes & Daniel Martin Time Evolution in Diffusion and Quantum Mechanics Paul Hughes & Daniel Martin April 29, 2005 Abstract The Diffusion and Time dependent Schrödinger equations were solved using both a Fourier based method

More information

Basic Calculus Review

Basic Calculus Review Basic Calculus Review Lorenzo Rosasco ISML Mod. 2 - Machine Learning Vector Spaces Functionals and Operators (Matrices) Vector Space A vector space is a set V with binary operations +: V V V and : R V

More information

Preamble-Based Channel Estimation for CP-OFDM and OFDM/OQAM Systems: A Comparative Study

Preamble-Based Channel Estimation for CP-OFDM and OFDM/OQAM Systems: A Comparative Study Preamble-Based Channel Estimation for CP-OFD and OFD/OQA Systems: A Comparative Study Dimitris Katselis, Eleftherios Kofidis, Athanasios Rontogiannis, and Sergios Theodoridis arxiv:0910.3928v1 [cs.it]

More information

Computation of Bit-Error Rate of Coherent and Non-Coherent Detection M-Ary PSK With Gray Code in BFWA Systems

Computation of Bit-Error Rate of Coherent and Non-Coherent Detection M-Ary PSK With Gray Code in BFWA Systems Computation of Bit-Error Rate of Coherent and Non-Coherent Detection M-Ary PSK With Gray Code in BFWA Systems Department of Electrical Engineering, College of Engineering, Basrah University Basrah Iraq,

More information

8 PAM BER/SER Monte Carlo Simulation

8 PAM BER/SER Monte Carlo Simulation xercise.1 8 PAM BR/SR Monte Carlo Simulation - Simulate a 8 level PAM communication system and calculate bit and symbol error ratios (BR/SR). - Plot the calculated and simulated SR and BR curves. - Plot

More information

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University Principles of Communications Lecture 8: Baseband Communication Systems Chih-Wei Liu 劉志尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.tw Outlines Introduction Line codes Effects of filtering Pulse

More information

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10 Digital Band-pass Modulation PROF. MICHAEL TSAI 211/11/1 Band-pass Signal Representation a t g t General form: 2πf c t + φ t g t = a t cos 2πf c t + φ t Envelope Phase Envelope is always non-negative,

More information

Digital Transmission Methods S

Digital Transmission Methods S Digital ransmission ethods S-7.5 Second Exercise Session Hypothesis esting Decision aking Gram-Schmidt method Detection.K.K. Communication Laboratory 5//6 Konstantinos.koufos@tkk.fi Exercise We assume

More information

Analog Electronics 2 ICS905

Analog Electronics 2 ICS905 Analog Electronics 2 ICS905 G. Rodriguez-Guisantes Dépt. COMELEC http://perso.telecom-paristech.fr/ rodrigez/ens/cycle_master/ November 2016 2/ 67 Schedule Radio channel characteristics ; Analysis and

More information

The Continuous-time Fourier

The Continuous-time Fourier The Continuous-time Fourier Transform Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline Representation of Aperiodic signals:

More information

Copyright license. Exchanging Information with the Stars. The goal. Some challenges

Copyright license. Exchanging Information with the Stars. The goal. Some challenges Copyright license Exchanging Information with the Stars David G Messerschmitt Department of Electrical Engineering and Computer Sciences University of California at Berkeley messer@eecs.berkeley.edu Talk

More information

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 2: Fourier Representations Jie Liang School of Engineering Science Simon Fraser University 1 Outline Chap 2.1 2.5: Signal Classifications Fourier Transform Dirac Delta Function

More information

that efficiently utilizes the total available channel bandwidth W.

that efficiently utilizes the total available channel bandwidth W. Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Introduction We consider the problem of signal

More information

Fourier Series. Spectral Analysis of Periodic Signals

Fourier Series. Spectral Analysis of Periodic Signals Fourier Series. Spectral Analysis of Periodic Signals he response of continuous-time linear invariant systems to the complex exponential with unitary magnitude response of a continuous-time LI system at

More information

Jean Morlet and the Continuous Wavelet Transform (CWT)

Jean Morlet and the Continuous Wavelet Transform (CWT) Jean Morlet and the Continuous Wavelet Transform (CWT) Brian Russell 1 and Jiajun Han 1 CREWES Adjunct Professor CGG GeoSoftware Calgary Alberta. www.crewes.org Introduction In 198 Jean Morlet a geophysicist

More information

OPTIMUM ARRAY PROCESSING AND REPRESENTATION OF NONSTATIONARY RANDOM SCATTERING (Invited Paper)

OPTIMUM ARRAY PROCESSING AND REPRESENTATION OF NONSTATIONARY RANDOM SCATTERING (Invited Paper) OPTIMUM ARRAY PROCESSING AND REPRESENTATION OF NONSTATIONARY RANDOM SCATTERING (Invited Paper) LEON H. SIBUL, MAEX L, FOWLER, AND GAVIN J. HARBISON Applied Research Laboratory The Pennsylvania State University

More information

Adaptive Bit-Interleaved Coded OFDM over Time-Varying Channels

Adaptive Bit-Interleaved Coded OFDM over Time-Varying Channels Adaptive Bit-Interleaved Coded OFDM over Time-Varying Channels Jin Soo Choi, Chang Kyung Sung, Sung Hyun Moon, and Inkyu Lee School of Electrical Engineering Korea University Seoul, Korea Email:jinsoo@wireless.korea.ac.kr,

More information

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1 Wireless : Wireless Advanced Digital Communications (EQ2410) 1 Thursday, Feb. 11, 2016 10:00-12:00, B24 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 15 Wireless Lecture 1-6 Equalization

More information

Efficient Equalization for Wireless Communications in Hostile Environments

Efficient Equalization for Wireless Communications in Hostile Environments Efficient Equalization for Wireless Communications in Hostile Environments Thomas Strohmer Department of Mathematics University of California, Davis, USA strohmer@math.ucdavis.edu http://math.ucdavis.edu/

More information

NEURAL NETWORKS FOR TRANSMISSION OVER NONLINEAR MIMO CHANNELS

NEURAL NETWORKS FOR TRANSMISSION OVER NONLINEAR MIMO CHANNELS NEURAL NETWORKS FOR TRANSISSION OVER NONLINEAR IO CHANNELS by AL UKHTAR AL-HINAI A thesis submitted to the Department of Electrical and Computer Engineering in conformity with the requirements for the

More information

The Performance of Quaternary Amplitude Modulation with Quaternary Spreading in the Presence of Interfering Signals

The Performance of Quaternary Amplitude Modulation with Quaternary Spreading in the Presence of Interfering Signals Clemson University TigerPrints All Theses Theses 1-015 The Performance of Quaternary Amplitude Modulation with Quaternary Spreading in the Presence of Interfering Signals Allison Manhard Clemson University,

More information

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood ECE559:WIRELESS COMMUNICATION TECHNOLOGIES LECTURE 16 AND 17 Digital signaling on frequency selective fading channels 1 OUTLINE Notes Prepared by: Abhishek Sood In section 2 we discuss the receiver design

More information

Principles of Communications

Principles of Communications Principles of Communications Chapter V: Representation and Transmission of Baseband Digital Signal Yongchao Wang Email: ychwang@mail.xidian.edu.cn Xidian University State Key Lab. on ISN November 18, 2012

More information

Blind Channel Equalization in Impulse Noise

Blind Channel Equalization in Impulse Noise Blind Channel Equalization in Impulse Noise Rubaiyat Yasmin and Tetsuya Shimamura Graduate School of Science and Engineering, Saitama University 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan yasmin@sie.ics.saitama-u.ac.jp

More information

MATHEMATICAL TOOLS FOR DIGITAL TRANSMISSION ANALYSIS

MATHEMATICAL TOOLS FOR DIGITAL TRANSMISSION ANALYSIS ch03.qxd 1/9/03 09:14 AM Page 35 CHAPTER 3 MATHEMATICAL TOOLS FOR DIGITAL TRANSMISSION ANALYSIS 3.1 INTRODUCTION The study of digital wireless transmission is in large measure the study of (a) the conversion

More information

15 Singular Value Decomposition

15 Singular Value Decomposition 15 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

Upper Bounds for the Average Error Probability of a Time-Hopping Wideband System

Upper Bounds for the Average Error Probability of a Time-Hopping Wideband System Upper Bounds for the Average Error Probability of a Time-Hopping Wideband System Aravind Kailas UMTS Systems Performance Team QUALCOMM Inc San Diego, CA 911 Email: akailas@qualcommcom John A Gubner Department

More information

Efficient Semi-Blind Channel Estimation and Equalization Based on a Parametric Channel Representation

Efficient Semi-Blind Channel Estimation and Equalization Based on a Parametric Channel Representation Efficient Semi-Blind Channel Estimation and Equalization Based on a Parametric Channel Representation Presenter: Kostas Berberidis University of Patras Computer Engineering & Informatics Department Signal

More information

CS434/534: Topics in Networked (Networking) Systems

CS434/534: Topics in Networked (Networking) Systems CS434/534: Topics in Networked (Networking) Systems Network OS Abstraction: From Data to Function Store; Wireless Foundation: Frequency-Domain Analysis Yang (Richard) Yang Computer Science Department Yale

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

BASICS OF DETECTION AND ESTIMATION THEORY

BASICS OF DETECTION AND ESTIMATION THEORY BASICS OF DETECTION AND ESTIMATION THEORY 83050E/158 In this chapter we discuss how the transmitted symbols are detected optimally from a noisy received signal (observation). Based on these results, optimal

More information

Signals and Spectra - Review

Signals and Spectra - Review Signals and Spectra - Review SIGNALS DETERMINISTIC No uncertainty w.r.t. the value of a signal at any time Modeled by mathematical epressions RANDOM some degree of uncertainty before the signal occurs

More information

Flat Rayleigh fading. Assume a single tap model with G 0,m = G m. Assume G m is circ. symmetric Gaussian with E[ G m 2 ]=1.

Flat Rayleigh fading. Assume a single tap model with G 0,m = G m. Assume G m is circ. symmetric Gaussian with E[ G m 2 ]=1. Flat Rayleigh fading Assume a single tap model with G 0,m = G m. Assume G m is circ. symmetric Gaussian with E[ G m 2 ]=1. The magnitude is Rayleigh with f Gm ( g ) =2 g exp{ g 2 } ; g 0 f( g ) g R(G m

More information

Analysis of Communication Systems Using Iterative Methods Based on Banach s Contraction Principle

Analysis of Communication Systems Using Iterative Methods Based on Banach s Contraction Principle Analysis of Communication Systems Using Iterative Methods Based on Banach s Contraction Principle H. Azari Soufiani, M. J. Saberian, M. A. Akhaee, R. Nasiri Mahallati, F. Marvasti Multimedia Signal, Sound

More information

Some Aspects of Weyl-Heisenberg Signal Design in Wireless Commmunication

Some Aspects of Weyl-Heisenberg Signal Design in Wireless Commmunication Peter Jung, HIM16, finite WH workshop 1/1 Some Aspects of Weyl-Heisenberg Signal Design in Wireless Commmunication Peter Jung peter.jung@tu-berlin.de Electrical Engineering and Computer Science, TU-Berlin

More information

ECS455: Chapter 5 OFDM. ECS455: Chapter 5 OFDM. OFDM: Overview. OFDM Applications. Dr.Prapun Suksompong prapun.com/ecs455

ECS455: Chapter 5 OFDM. ECS455: Chapter 5 OFDM. OFDM: Overview. OFDM Applications. Dr.Prapun Suksompong prapun.com/ecs455 ECS455: Chapter 5 OFDM OFDM: Overview Let S = (S 1, S 2,, S ) contains the information symbols. S IFFT FFT Inverse fast Fourier transform Fast Fourier transform 1 Dr.Prapun Suksompong prapun.com/ecs455

More information

3.2 Complex Sinusoids and Frequency Response of LTI Systems

3.2 Complex Sinusoids and Frequency Response of LTI Systems 3. Introduction. A signal can be represented as a weighted superposition of complex sinusoids. x(t) or x[n]. LTI system: LTI System Output = A weighted superposition of the system response to each complex

More information

II - Baseband pulse transmission

II - Baseband pulse transmission II - Baseband pulse transmission 1 Introduction We discuss how to transmit digital data symbols, which have to be converted into material form before they are sent or stored. In the sequel, we associate

More information

TOPICS IN HARMONIC ANALYSIS WITH APPLICATIONS TO RADAR AND SONAR. Willard Miller

TOPICS IN HARMONIC ANALYSIS WITH APPLICATIONS TO RADAR AND SONAR. Willard Miller TOPICS IN HARMONIC ANALYSIS WITH APPLICATIONS TO RADAR AND SONAR Willard Miller October 23 2002 These notes are an introduction to basic concepts and tools in group representation theory both commutative

More information

Line Codes and Pulse Shaping Review. Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI

Line Codes and Pulse Shaping Review. Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI Line Codes and Pulse Shaping Review Line codes Pulse width and polarity Power spectral density Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI Line Code Examples (review) on-off

More information

Wideband Spectrum Sensing for Cognitive Radios

Wideband Spectrum Sensing for Cognitive Radios Wideband Spectrum Sensing for Cognitive Radios Zhi (Gerry) Tian ECE Department Michigan Tech University ztian@mtu.edu February 18, 2011 Spectrum Scarcity Problem Scarcity vs. Underutilization Dilemma US

More information

Performance Analysis of Spread Spectrum CDMA systems

Performance Analysis of Spread Spectrum CDMA systems 1 Performance Analysis of Spread Spectrum CDMA systems 16:33:546 Wireless Communication Technologies Spring 5 Instructor: Dr. Narayan Mandayam Summary by Liang Xiao lxiao@winlab.rutgers.edu WINLAB, Department

More information

Revision of Lecture 4

Revision of Lecture 4 Revision of Lecture 4 We have discussed all basic components of MODEM Pulse shaping Tx/Rx filter pair Modulator/demodulator Bits map symbols Discussions assume ideal channel, and for dispersive channel

More information

On the Concentration of the Crest Factor for OFDM Signals

On the Concentration of the Crest Factor for OFDM Signals On the Concentration of the Crest Factor for OFDM Signals Igal Sason Department of Electrical Engineering Technion - Israel Institute of Technology Haifa 32000, Israel The 2011 IEEE International Symposium

More information

Review of Doppler Spread The response to exp[2πift] is ĥ(f, t) exp[2πift]. ĥ(f, t) = β j exp[ 2πifτ j (t)] = exp[2πid j t 2πifτ o j ]

Review of Doppler Spread The response to exp[2πift] is ĥ(f, t) exp[2πift]. ĥ(f, t) = β j exp[ 2πifτ j (t)] = exp[2πid j t 2πifτ o j ] Review of Doppler Spread The response to exp[2πift] is ĥ(f, t) exp[2πift]. ĥ(f, t) = β exp[ 2πifτ (t)] = exp[2πid t 2πifτ o ] Define D = max D min D ; The fading at f is ĥ(f, t) = 1 T coh = 2D exp[2πi(d

More information

RADIO SYSTEMS ETIN15. Lecture no: Equalization. Ove Edfors, Department of Electrical and Information Technology

RADIO SYSTEMS ETIN15. Lecture no: Equalization. Ove Edfors, Department of Electrical and Information Technology RADIO SYSTEMS ETIN15 Lecture no: 8 Equalization Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se Contents Inter-symbol interference Linear equalizers Decision-feedback

More information

EE6604 Personal & Mobile Communications. Week 13. Multi-antenna Techniques

EE6604 Personal & Mobile Communications. Week 13. Multi-antenna Techniques EE6604 Personal & Mobile Communications Week 13 Multi-antenna Techniques 1 Diversity Methods Diversity combats fading by providing the receiver with multiple uncorrelated replicas of the same information

More information

NP-hardness of the stable matrix in unit interval family problem in discrete time

NP-hardness of the stable matrix in unit interval family problem in discrete time Systems & Control Letters 42 21 261 265 www.elsevier.com/locate/sysconle NP-hardness of the stable matrix in unit interval family problem in discrete time Alejandra Mercado, K.J. Ray Liu Electrical and

More information

QUANTUM MECHANICS LIVES AND WORKS IN PHASE SPACE

QUANTUM MECHANICS LIVES AND WORKS IN PHASE SPACE Two slit experiment The Wigner phase-space quasi-probability distribution function QUANTUM MECHANICS LIVES AND WORKS IN PHASE SPACE A complete, autonomous formulation of QM based on the standard c- number

More information

A NOVEL OPTIMAL PROBABILITY DENSITY FUNCTION TRACKING FILTER DESIGN 1

A NOVEL OPTIMAL PROBABILITY DENSITY FUNCTION TRACKING FILTER DESIGN 1 A NOVEL OPTIMAL PROBABILITY DENSITY FUNCTION TRACKING FILTER DESIGN 1 Jinglin Zhou Hong Wang, Donghua Zhou Department of Automation, Tsinghua University, Beijing 100084, P. R. China Control Systems Centre,

More information

Gabor Deconvolution. Gary Margrave and Michael Lamoureux

Gabor Deconvolution. Gary Margrave and Michael Lamoureux Gabor Deconvolution Gary Margrave and Michael Lamoureux = Outline The Gabor idea The continuous Gabor transform The discrete Gabor transform A nonstationary trace model Gabor deconvolution Examples = Gabor

More information

Functional Analysis Review

Functional Analysis Review Outline 9.520: Statistical Learning Theory and Applications February 8, 2010 Outline 1 2 3 4 Vector Space Outline A vector space is a set V with binary operations +: V V V and : R V V such that for all

More information

Fast Near-Optimal Energy Allocation for Multimedia Loading on Multicarrier Systems

Fast Near-Optimal Energy Allocation for Multimedia Loading on Multicarrier Systems Fast Near-Optimal Energy Allocation for Multimedia Loading on Multicarrier Systems Michael A. Enright and C.-C. Jay Kuo Department of Electrical Engineering and Signal and Image Processing Institute University

More information

Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

The Hilbert Transform

The Hilbert Transform The Hilbert Transform David Hilbert 1 ABSTRACT: In this presentation, the basic theoretical background of the Hilbert Transform is introduced. Using this transform, normal real-valued time domain functions

More information

Short-time Fourier transform for quaternionic signals

Short-time Fourier transform for quaternionic signals Short-time Fourier transform for quaternionic signals Joint work with Y. Fu and U. Kähler P. Cerejeiras Departamento de Matemática Universidade de Aveiro pceres@ua.pt New Trends and Directions in Harmonic

More information

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I Communication Signals (Haykin Sec..4 and iemer Sec...4-Sec..4) KECE3 Communication Systems I Lecture #3, March, 0 Prof. Young-Chai Ko 년 3 월 일일요일 Review Signal classification Phasor signal and spectra Representation

More information

Lecture 27 Frequency Response 2

Lecture 27 Frequency Response 2 Lecture 27 Frequency Response 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/6/12 1 Application of Ideal Filters Suppose we can generate a square wave with a fundamental period

More information

Physics 221A Fall 2017 Notes 27 The Variational Method

Physics 221A Fall 2017 Notes 27 The Variational Method Copyright c 2018 by Robert G. Littlejohn Physics 221A Fall 2017 Notes 27 The Variational Method 1. Introduction Very few realistic problems in quantum mechanics are exactly solvable, so approximation methods

More information

Approximate Best Linear Unbiased Channel Estimation for Frequency Selective Channels with Long Delay Spreads: Robustness to Timing and Carrier Offsets

Approximate Best Linear Unbiased Channel Estimation for Frequency Selective Channels with Long Delay Spreads: Robustness to Timing and Carrier Offsets Approximate Best Linear Unbiased Channel Estimation for Frequency Selective Channels with Long Delay Spreads: Robustness to Timing and Carrier Offsets Serdar Özen,SMNerayanuru, Christopher Pladdy, and

More information

Chapter 2. Error Correcting Codes. 2.1 Basic Notions

Chapter 2. Error Correcting Codes. 2.1 Basic Notions Chapter 2 Error Correcting Codes The identification number schemes we discussed in the previous chapter give us the ability to determine if an error has been made in recording or transmitting information.

More information

BLOCK DATA TRANSMISSION: A COMPARISON OF PERFORMANCE FOR THE MBER PRECODER DESIGNS. Qian Meng, Jian-Kang Zhang and Kon Max Wong

BLOCK DATA TRANSMISSION: A COMPARISON OF PERFORMANCE FOR THE MBER PRECODER DESIGNS. Qian Meng, Jian-Kang Zhang and Kon Max Wong BLOCK DATA TRANSISSION: A COPARISON OF PERFORANCE FOR THE BER PRECODER DESIGNS Qian eng, Jian-Kang Zhang and Kon ax Wong Department of Electrical and Computer Engineering, caster University, Hamilton,

More information

Gaussian-Shaped Circularly-Symmetric 2D Filter Banks

Gaussian-Shaped Circularly-Symmetric 2D Filter Banks Gaussian-Shaped Circularly-Symmetric D Filter Bans ADU MATEI Faculty of Electronics and Telecommunications Technical University of Iasi Bldv. Carol I no.11, Iasi 756 OMAIA Abstract: - In this paper we

More information

ADAPTIVE FILTER ALGORITHMS. Prepared by Deepa.T, Asst.Prof. /TCE

ADAPTIVE FILTER ALGORITHMS. Prepared by Deepa.T, Asst.Prof. /TCE ADAPTIVE FILTER ALGORITHMS Prepared by Deepa.T, Asst.Prof. /TCE Equalization Techniques Fig.3 Classification of equalizers Equalizer Techniques Linear transversal equalizer (LTE, made up of tapped delay

More information

Advanced 3 G and 4 G Wireless Communication Prof. Aditya K Jagannathan Department of Electrical Engineering Indian Institute of Technology, Kanpur

Advanced 3 G and 4 G Wireless Communication Prof. Aditya K Jagannathan Department of Electrical Engineering Indian Institute of Technology, Kanpur Advanced 3 G and 4 G Wireless Communication Prof. Aditya K Jagannathan Department of Electrical Engineering Indian Institute of Technology, Kanpur Lecture - 19 Multi-User CDMA Uplink and Asynchronous CDMA

More information

2.3 Composite Functions. We have seen that the union of sets A and B is defined by:

2.3 Composite Functions. We have seen that the union of sets A and B is defined by: 2.3 Composite Functions using old functions to define new functions There are many ways that functions can be combined to form new functions. For example, the sketch below illustrates how functions f and

More information

Trellis Coded Modulation

Trellis Coded Modulation Trellis Coded Modulation Trellis coded modulation (TCM) is a marriage between codes that live on trellises and signal designs We have already seen that trellises are the preferred way to view convolutional

More information

LOPE3202: Communication Systems 10/18/2017 2

LOPE3202: Communication Systems 10/18/2017 2 By Lecturer Ahmed Wael Academic Year 2017-2018 LOPE3202: Communication Systems 10/18/2017 We need tools to build any communication system. Mathematics is our premium tool to do work with signals and systems.

More information