Neutrino Physics. Carlo Giunti

Size: px
Start display at page:

Download "Neutrino Physics. Carlo Giunti"

Transcription

1 Neutrino Physics Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino Neutrino Unbound: CERN, May 2009 C. Giunti and C.W. Kim Fundamentals of Neutrino Physics and Astrophysics Oxford University Press 15 March pages C. Giunti Neutrino Physics CERN, May

2 Part I: Theory of Neutrino Masses and Mixing Dirac Neutrino Masses and Mixing Majorana Neutrino Masses and Mixing Dirac-Majorana Mass Term C. Giunti Neutrino Physics CERN, May

3 Part II: Neutrino Oscillations in Vacuum and in Matter Neutrino Oscillations in Vacuum CPT, CP and T Symmetries Two-Neutrino Mixing and Oscillations Neutrino Oscillations in Matter C. Giunti Neutrino Physics CERN, May

4 Part III: Phenomenology of Three-Neutrino Mixing Solar Neutrinos and KamLAND Atmospheric Neutrinos and LBL Three-Neutrino Mixing Absolute Scale of Neutrino Masses Experimental Neutrino Anomalies Conclusions C. Giunti Neutrino Physics CERN, May

5 Part I Theory of Neutrino Masses and Mixing C. Giunti Neutrino Physics CERN, May

6 Fermion Mass Spectrum t m [ev] d u e c s µ ν µ b τ ν τ ν e C. Giunti Neutrino Physics CERN, May

7 Dirac Neutrino Masses and Mixing Majorana Neutrino C. Giunti Masses Neutrino andphysics Mixing CERN, May Dirac Neutrino Masses and Mixing Dirac Mass Higgs Mechanism in SM Dirac Lepton Masses Three-Generations Dirac Neutrino Masses Massive Chiral Lepton Fields Massive Dirac Lepton Fields Mixing Flavor Lepton Numbers Mixing Matrix Standard Parameterization of Mixing Matrix CP Violation Jarlskog Rephasing Invariant Maximal CP Violation Lepton Numbers Violating Processes

8 Dirac Mass Dirac Equation: (i / m) (x) = 0 (/ ) Dirac Lagrangian: L (x) = (x)(i / m) (x) Chiral decomposition: L P L R P R = L + R P L P R P 2 L = P 2 R = 1 P L P R = P R P L = 0 L = L i / L + R i / R m ( L R + R L ) In SM only L =µ no Dirac mass Oscillation experiments have shown that neutrinos are massive Simplest extension of the SM: add R C. Giunti Neutrino Physics CERN, May

9 Higgs Doublet: Φ(x) = + (x) 0 (x) Higgs Mechanism in SM Φ 2 = Φ Ý Φ = + Ý + + Ý 0 0 Higgs Lagrangian: L Higgs = (D Φ) Ý (D Φ) V (Φ 2 ) Higgs Potential: V (Φ 2 ) = 2 Φ 2 + Φ and 0 =µ V (Φ 2 ) = Vacuum: V min for Φ 2 = v2 2 Φ 2 2, Õ v2 2 with v 1 =µ Φ = Ô 0 2 v 2 Spontaneous Symmetry Breaking: SU(2) L U(1) Y U(1) Q Unitary Gauge: Φ(x) = Ô v + H(x) C. Giunti Neutrino Physics CERN, May

10 H φ + φ 0 C. Giunti Neutrino Physics CERN, May

11 Dirac Lepton Masses L L L R L Lepton-Higgs Yukawa Lagrangian R L HL = y L L Φ R y L L Φ R + H.c. Φ(x) = 1 Ô 2 0 v + H(x) Unitary Gauge Φ = i 2 Φ = 1 Ô v + H(x) 2 0 L HL = y Ô 0 L L 2 v + H(x) R y Ô L 2 L v + H(x) 0 R + H.c. C. Giunti Neutrino Physics CERN, May

12 L HL = y v Ô2 L R y v Ô 2 L R y Ô 2 L R H y Ô 2 L R H + H.c. m = y v Ô2 m = y v Ô 2 g H = y Ô 2 = m v g H = y Ô 2 = m v C. Giunti Neutrino Physics CERN, May

13 Three-Generations Dirac Neutrino Masses L el el el e L ½ L L L L L ½ L L L L L er e R R R R R er R R ½ L HL = Lepton-Higgs Yukawa Lagrangian «=e Y «L «L Φ R + Y «L «L Φ R + H.c. Φ(x) = Ô v + H(x) Unitary Gauge ½ Φ = i2 Φ = 1 Ô 2 C. Giunti Neutrino Physics CERN, May v + H(x) 0 ½

14 L HL = l L v + H Ô 2 L HL = e L L L ½ Y Y ee Y e Ye «=e Y ««L R + Y ««L R + H.c. v + H Ô l L Y l R + νl Y νr + H.c. 2 l R Y e Y Y e R R R Y e Y Y ½ ½ ν L el L L ½ Y Y ee Y e Ye ν R Y e Y Y er R R Y e Y Y ½ ½ M = v Ô 2 Y M = v Ô 2 Y C. Giunti Neutrino Physics CERN, May

15 L HL = v + H Ô l L Y l R + ν L Y νr + H.c. 2 Diagonalization of Y and Y with unitary V L, V R, V L, V R l L = V L l L l R = V R l R ν L = V L n L ν R = V R n R Kinetic terms are invariant under unitary transformations of the fields L HL = v + H Ô l L V Ý L Y VR l R + ν L V Ý L Y VR ν R + H.c. 2 V Ý L Y V R = Y Y «= y «Æ «(«= e ) V Ý L Y V R = Y Y kj = y k Æ kj (kj = 123) Real and Positive y «, y k C. Giunti Neutrino Physics CERN, May

16 Massive Chiral Lepton Fields l L = V Ý L l L n L = V Ý L ν L e L L L 1L 2L 3L ½ ½ l R = V Ý R l R n R = V Ý R ν R e R R R 1R 2R 3R ½ ½ L HL = = v + H Ô 2 v + H Ô 2 l L Y l R + n L Y n R + H.c. «=e y ««L «R + 3 k=1 y k kl kr + H.c. C. Giunti Neutrino Physics CERN, May

17 Massive Dirac Lepton Fields ««L + «R («= e ) L HL = «=e «=e k = kl + kr y «v Ô 2 ««3 k=1 y«ô 3 ««H 2 k=1 (k = 123) y k v Ô 2 k k Mass Terms y k Ô 2 k k H Lepton-Higgs Couplings Charged Lepton and Neutrino Masses m «= y «v Ô 2 («= e ) m k = y k v Ô 2 (k = 123) Lepton-Higgs coupling» Lepton Mass C. Giunti Neutrino Physics CERN, May

18 Mixing j W L = Charged-Current Weak Interaction Lagrangian L (CC) I Weak Charged Current: «=e = g 2 Ô 2 j W W + H.c. j W = j W L + j W Q Leptonic Weak Charged Current «1 5 «= 2 «=e «L «L = 2ν L l L l L = V L l L ν L = V L n L j W L = 2n L V Ý L V L l L = 2n L V Ý L V L l L = 2n L U Ý l L Mixing Matrix U Ý = V Ý L V L U = V Ý L V L C. Giunti Neutrino Physics CERN, May

19 Definition: Left-Handed Flavor Neutrino Fields ν L = U n L = V Ý L ν L = el L They allow us to write the Leptonic Weak Charged Current as in the SM: j W L = 2ν L l L = 2 «L «L «=e Each left-handed flavor neutrino field is associated with the corresponding charged lepton field which describes a massive charged lepton: L ½ j W L = 2( el e L + L L + L L ) C. Giunti Neutrino Physics CERN, May

20 Flavor Lepton Numbers Flavor Neutrino Fields are useful for defining Flavor Lepton Numbers as in the SM L e L L ( e e ) ( ) ( ) L e L L ( c e e+ ) c ( c + ) L = L e + L + L Standard Model: Lepton numbers are conserved C. Giunti Neutrino Physics CERN, May

21 ½ m Lmass D ee D m D e m D e = el L L me D m D m D me D m D m D er R + H.c. R ½ L e, L, L are not conserved L is conserved: L( «R ) = L( L ) µ L = 0 C. Giunti Neutrino Physics CERN, May

22 Mixing Matrix Leptonic Weak Charged Current: j W L = 2n L U Ý l L ½ U = V Ý L V L = U 11 U 12 U 13 U 21 U 22 U 23 U e1 U e2 U e3 U 1 U 2 U 3 U 31 U 32 U 33 U 1 U 2 U 3 Unitary N N matrix depends on N 2 independent real parameters N = 3 =µ Not all phases are physical observables ½ N (N 1) = 3 2 Mixing Angles N (N + 1) = 6 2 Phases Only physical effect of mixing matrix occurs through its presence in the Leptonic Weak Charged Current C. Giunti Neutrino Physics CERN, May

23 Weak Charged Current: j W L = 2 3 k=1 «=e kl U «k «L Apart from the Weak Charged Current, the Lagrangian is invariant under the global phase transformations (6 arbitrary phases) k e i ³ k k (k = 123) «e i ³««(«= e ) Performing this transformation, the Charged Current becomes j W L j W L = 2 3 = 2 e i(³1 ³e) ßÞ Ð 1 k=1 «=e 3 k=1 «=e kl e i ³ k U «k e i ³««L kl e i(³ k ³ 1) ßÞ Ð U «k 2 ³e) ei(³«ßþ Ð «L 2 There are 5 arbitrary phases of the fields that can be chosen to eliminate 5 of the 6 phases of the mixing matrix 5 and not 6 phases of the mixing matrix can be eliminated because a common rephasing of all the fields leaves the Charged Current invariant. C. Giunti Neutrino Physics CERN, May

24 The mixing matrix contains 1 Physical Phase. It is convenient to express the 3 3 unitary mixing matrix only in terms of the four physical parameters: 3 Mixing Angles and 1 Phase C. Giunti Neutrino Physics CERN, May

25 Standard Parameterization of Mixing Matrix el L = U e1 U e2 U e3 U 1 U 2 U 3 U 1 U 2 U 3 L ½ U = c 23 s 23 0 s 23 c 23 = ½ ½ c 13 0 s 13 e i Æ s 13 e i Æ13 0 c 13 1L 2L 3L ½ ½ c 12 s 12 0 s 12 c c 12c 13 s 12c 13 s 13e i Æ 13 s 12c 23 c 12s 23s 13e i Æ 13 c 12c 23 s 12s 23s 13e i Æ 13 s 23c 13 s 12s 23 c 12c 23s 13e i Æ 13 c 12s 23 s 12c 23s 13e i Æ 13 c 23c 13 ½ ½ c ab cos ab s ab sin ab 0 ab 2 0 Æ Mixing Angles 12, 23, 13 and 1 Phase Æ 13 C. Giunti Neutrino Physics CERN, May

26 U = c 23 s 23 0 s 23 c 23 Standard Parameterization ½ c 13 0 s 13 e i Æ s 13 e i Æ13 0 c 13 ½ Example of Different Phase Convention U = c 23 s 23 e i Æ23 0 s 23 e i Æ13 c 23 ½ c 13 0 s s 13 0 c 13 c 12 s 12 0 s 12 c ½ Example of Different Parameterization 12 0 U = c 12 s12 e i Æ s12 ei Æ 12 c ½ c23 s23 0 s23 c23 c 12 s 12 0 s 12 c ½ c 13 0 s s13 0 c13 ½ ½ ½ C. Giunti Neutrino Physics CERN, May

27 CP Violation U = U =µ CP Violation Jarlskog Rephasing Invariant J = m U e2 U e3 U 2 U 3 [C. Jarlskog, Phys. Rev. Lett. 55 (1985) 1039, Z. Phys. C 29 (1985) 491] [O. W. Greenberg, Phys. Rev. D 32 (1985) 1841] [I. Dunietz, O. W. Greenberg, Dan-di Wu, Phys. Rev. Lett. 55 (1985) 2935] C. Giunti Neutrino Physics CERN, May

28 Jarlskog Rephasing Invariant Simplest rephasing invariants: U «k = U «k U «k U «k U «ju ku j m U «k U «ju ku j = J J = m U e2 U e3 U 2 U 3 In standard parameterization: = m Æ ½ Æ J = c 12 s 12 c 23 s 23 c 2 13 s 13 sin Æ 13 = 1 8 sin2 12 sin2 23 cos 13 sin2 13 sin Æ 13 Jarlskog invariant is useful for quantifying CP violation in a parameterization-independent way All measurable CP-violation effects depend on J. C. Giunti Neutrino Physics CERN, May

29 Maximal CP Violation Maximal CP violation is defined as the case in which J has its maximum possible value J max = 1 6 Ô 3 In the standard parameterization it is obtained for 12 = 23 = 4 s 13 = 1 Ô 3 sin Æ 13 = 1 This case is called Trimaximal Mixing. All the Ô absolute values of the elements of the mixing matrix are equal to 1 3: U = Ô1 Ô3 1 3 Ô i 3 1 i 2 2 Ô 1 i Ô 1Ô i 2 2 Ô 1 i Ô 1Ô 3 3 ½ = 1 Ô i e i 6 e i 6 1 e i 6 e i 6 1 ½ C. Giunti Neutrino Physics CERN, May

30 Lepton Numbers Violating Processes Dirac mass term allows L e, L, L violating processes Example: e + e + e + + e e + U k U ek = 0 =µ only part of k propagator» m k contributes k Γ = G Fm 5 3« U k U m 2 2 k ek m 2 k W ßÞ Ð BR Suppression factor: U µk W γ W µ ν k e U ek m k m W for m k 1eV (BR) the (BR) exp C. Giunti Neutrino Physics CERN, May

31 Majorana Neutrino Masses and Mixing Dirac Neutrino Masses and Mixing Majorana Neutrino Masses and Mixing Two-Component Theory of a Massless Neutrino Majorana Equation Majorana Lagrangian Lepton Number No Majorana Neutrino Mass in the SM Effective Majorana Mass Mixing of Three Majorana Neutrinos Mixing Matrix Dirac-Majorana Mass Term C. Giunti Neutrino Physics CERN, May

32 Two-Component Theory of a Massless Neutrino [L. Landau, Nucl. Phys. 3 (1957) 127], [T.D. Lee, C.N. Yang, Phys. Rev. 105 (1957) 1671], [A. Salam, Nuovo Cim. 5 (1957) 299] Dirac Equation: (i m) = 0 Chiral decomposition of a Fermion Field: = L + R Equations for the Chiral components are coupled by mass: i L = m R i R = m L They are decoupled for a massless fermion: Weyl Equations (1929) i L = 0 i R = 0 A massless fermion can be described by a single chiral field L or R (Weyl Spinor). C. Giunti Neutrino Physics CERN, May

33 L and R have only two independent components: in the chiral representation ½ ½ 0 0 R1 L = 0 L L1 L2 R R = 0 R2 The possibility to describe a physical particle with a Weyl spinor was rejected by Pauli in 1933 because it leads to parity violation ( L P µ R ) The discovery of parity violation in invalidated Pauli s reasoning, opening the possibility to describe massless particles with Weyl spinor fields =µ Two-component Theory of a Massless Neutrino (1957) 0 0 V A Charged-Current Weak Interactions =µ L In the 1960s, the Two-component Theory of a Massless Neutrino was incorporated in the SM through the assumption of the absence of R C. Giunti Neutrino Physics CERN, May

34 Majorana Equation Can a two-component spinor describe a massive fermion? Yes! (E. Majorana, 1937) Trick: R and L are not independent: R = L T L T is right-handed: Majorana Equation: PR L T = L T i L = m L T ( T 1 = ) Majorana Field: = L + R = L + L T Majorana Condition: = T = C i Only two independent components: = 2 L = L C. Giunti Neutrino Physics CERN, May L2 L1 L1 L2 ½

35 = C implies the equality of particle and antiparticle Only neutral fermions can be Majorana particles For a Majorana field, the electromagnetic current vanishes identically: = C C = T Ý T = T Ý = = 0 C. Giunti Neutrino Physics CERN, May

36 Majorana Lagrangian Dirac Lagrangian L D = (i / m) = L i / L + R i / R m ( R L + L R ) R C L = L T 1 2 L D L i / L m 2 L M = L i / L m 2 Majorana Lagrangian = L i / L m 2 T L Ý L + L L T L T Ý L + L T L C L L + L C L C. Giunti Neutrino Physics CERN, May

37 Lepton Number L = +1 = C L = 1 L =µ L = +1 L C =µ L = 1 L M = L i / L m 2 C L L + L C L Total Lepton Number is not conserved: L = 2 Best process to find violation of Total Lepton Number: Neutrinoless Double- Decay Æ(AZ) Æ(AZ + 2) + 2e + 2 e ( 0 ) Æ(AZ) Æ(AZ 2) + 2e e ( + ) 0 C. Giunti Neutrino Physics CERN, May

38 No Majorana Neutrino Mass in the SM Majorana Mass Term» T L Ý L L L T involves only the neutrino left-handed chiral field L, which is present in the SM (one for each lepton generation) Eigenvalues of the weak isospin I, of its third component I 3, of the hypercharge Y and of the charge Q of the lepton and Higgs multiplets: lepton doublet L L = L L ½ I I 3 Y Q = I 3 + Y lepton singlet R Higgs doublet Φ(x) = +(x) (x) 12 T L Ý L has I 3 = 1 and Y = 2 =µ needed Higgs triplet with Y = 2 ½ C. Giunti Neutrino Physics CERN, May

39 Effective Majorana Mass Dimensional analysis: Fermion Field [E] 32 Boson Field [E] Dimensionless action: I = d 4 x L (x) =µ L (x) [E] 4 Kinetic terms: i / [E] 4, ( ) Ý [E] 4 Mass terms: m [E] 4, m 2 Ý [E] 4 CC weak interaction: g ν L l L W [E] 4 Yukawa couplings: y L L Φ R [E] 4 Product of fields O d with energy dimension d dim-d operator L (Od ) = C (Od )O d =µ C (Od ) [E] 4 d O d4 are not renormalizable C. Giunti Neutrino Physics CERN, May

40 SM Lagrangian includes all O d4 invariant under SU(2) L U(1) Y SM cannot be considered as the final theory of everything SM is an effective low-energy theory It is likely that SM is the low-energy product of the symmetry breaking of a high-energy unified theory It is plausible that at low-energy there are effective non-renormalizable O d4 [S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566] All O d must respect SU(2) L U(1) Y, because they are generated by the high-energy theory which must include the gauge symmetries of the SM in order to be effectively reduced to the SM at low energies C. Giunti Neutrino Physics CERN, May

41 O d4 is suppressed by a coefficient Å 4 d, where Å is a heavy mass characteristic of the symmetry breaking scale of the high-energy unified theory: Analogy with L = L SM + g 5 Å O 5 + g 6 Å 2 O 6 + L (CC) eff O 6 ( el e L )(e L el ) +» G F ( el e L ) (e L el ) + g 6 Å 2 G F Ô 2 = g2 8m 2 W Å 4 d is a strong suppression factor which limits the observability of the low-energy effects of the new physics beyond the SM The difficulty to observe the effects of the effective low-energy non-renormalizable operators increase rapidly with their dimensionality O 5 =µ Majorana neutrino masses (Lepton number violation) O 6 =µ Baryon number violation (proton decay) C. Giunti Neutrino Physics CERN, May

42 Only one dim-5 operator: O 5 = (L T L 2 Φ) Ý (Φ T 2 L L ) + H.c. = 1 2 (LT L Ý 2 L L ) (Φ T 2 Φ) + H.c. L 5 = g 5 2Å (LT L Ý 2 L L ) (Φ T 2 Φ) + H.c. Electroweak Symmetry Breaking: Φ = + 0 Symmetry Breaking 0 Ô v 2 L 5 Symmetry Breaking L M mass = 1 2 g 5 v 2 Å T L Ý L + H.c. =µ m = g 5 v 2 Å C. Giunti Neutrino Physics CERN, May

43 The study of Majorana neutrino masses provides the most accessible low-energy window on new physics beyond the SM m» v2 Å» m2 D Å natural explanation of smallness of neutrino masses (special case: See-Saw Mechanism) Example: m D v 10 2 GeV and Å GeV =µ m 10 2 ev C. Giunti Neutrino Physics CERN, May

44 Mixing of Three Majorana Neutrinos ν L el L L ½ L M mass = 1 2 νt L Ý M L ν L + H.c. = 1 2 «=e T «L Ý M L «L + H.c. In general, the matrix M L is a complex symmetric matrix ««L T Ý M L «L = L T M L «( Ý ) T «L «= «L T Ý M L ««L = «L T Ý M L «L «M L «= M L «µ M L = M LT C. Giunti Neutrino Physics CERN, May

45 L M mass = 1 2 νt L Ý M L ν L + H.c. ν L = V L n L =µ L M mass = 1 2 νt L (V L )T Ý M L V L ν L + H.c. (VL ) T M L VL = M M kj = m k Æ kj (kj = 123) Left-handed chiral fields with definite mass: n L = VL Ý νl = 1L 2L L M mass = 1 2 = 1 2 n T L Ý M n L n L M n T L 3 m k kl T Ý kl kl kl T k=1 Majorana fields of massive neutrinos: k = kl + C kl n = ½ =µ L M = k=1 3L ½ C k = k k (i / m k ) k = 1 n(i / M)n 2 C. Giunti Neutrino Physics CERN, May

46 Mixing Matrix Leptonic Weak Charged Current: j W L = 2n L U Ý l L with U = V Ý L V L Definition of the left-handed flavor neutrino fields: ν L = U n L = V Ý L ν L = el L L Leptonic Weak Charged Current has the SM form j W L = 2ν L l L = 2 «L «L «=e Important difference with respect to Dirac case: Two additional CP-violating phases: Majorana phases ½ C. Giunti Neutrino Physics CERN, May

47 3 Majorana Mass Term Lmass M = 1 m k kl T Ý kl + H.c. is not invariant 2 k=1 under the global U(1) gauge transformations kl e i ³ k kl (k = 123) Left-handed massive neutrino fields cannot be rephased in order to eliminate two Majorana phases factorized on the right of ½mixing matrix: U = U D D M D M = e i e i 3 U D is analogous to a Dirac mixing matrix, with one Dirac phase Standard parameterization: U = c 12c 13 s 12c 13 s 13e i Æ 13 s 12c 23 c 12s 23s 13e i Æ 13 c 12c 23 s 12s 23s 13e i Æ 13 s 23c 13 s 12s 23 c 12c 23s 13e i Æ 13 c 12s 23 s 12c 23s 13e i Æ 13 c 23c 13 ½ e i e i 3 ½ Jarlskog rephasing invariant: J = c 12 s 12 c 23 s 23 c 2 13 s 13 sin Æ 13 C. Giunti Neutrino Physics CERN, May

48 Dirac-Majorana Mass Term Dirac Neutrino Masses and Mixing Majorana Neutrino Masses and Mixing Dirac-Majorana Mass Term One Generation See-Saw Mechanism Majorana Neutrino Mass? Number of Massive Neutrinos? C. Giunti Neutrino Physics CERN, May

49 One Generation If R exists, the most general mass term is the Dirac-Majorana Mass Term L D+M mass = L D mass + L L mass + L R mass L D mass = m D R L + H.c. Dirac Mass Term L L mass = 1 2 m L T L Ý L + H.c. Majorana Mass Term L R mass = 1 2 m R T R Ý R + H.c. New Majorana Mass Term! C. Giunti Neutrino Physics CERN, May

50 Column matrix of left-handed chiral fields: N L = L L D+M mass = 1 2 NT L Ý M N L + H.c. M = R C ml m D L = T R m D m R The Dirac-Majorana Mass Term has the structure of a Majorana Mass Term for two chiral neutrino fields coupled by the Dirac mass Diagonalization: n L = U Ý 1L N L = 2L L D+M mass = 1 2 U T M U = k=12 m1 0 0 m 2 m k T kl Ý kl + H.c. = 1 2 k = kl + C kl Real m k 0 k=12 m k k k Massive neutrinos are Majorana! k = C k C. Giunti Neutrino Physics CERN, May

51 See-Saw Mechanism [Minkowski, PLB 67 (1977) 42; Yanagida (1979); Gell-Mann, Ramond, Slansky (1979); Mohapatra, Senjanovic, PRL 44 (1980) 912] m L = 0 m D m R L L mass is forbidden by SM symmetries =µ m L = 0 m D v 100GeV is generated by SM Higgs Mechanism (protected by SM symmetries) m R is not protected by SM symmetries =µ m R Å GUT v m 1 ³ m2 D m R m 2 ³ m R ν 2 ν 1 Natural explanation of smallness of neutrino masses Mixing angle is very small: tan2 = 2 m D m R 1 1 is composed mainly of active L : 1L ³ L 2 is composed mainly of sterile R : 2L ³ C R C. Giunti Neutrino Physics CERN, May

52 Majorana Neutrino Mass? ¾ Ù Ø ½ ½ ½ ½ ¾ ½ ½ ½ ½ ½ ½ ¾ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½½ ½ ½¾ Ñ Î known natural explanation of smallness of masses New High Energy Scale Å µ both imply See-Saw Mechanism (if R s exist) 5-D Non-Renormaliz. Eff. Operator Majorana masses µ L = 2 µ 0 decay see-saw type relation m Å2 EW Å Majorana neutrino masses provide the most accessible window on New Physics Beyond the Standard Model C. Giunti Neutrino Physics CERN, May

53 Number of Massive Neutrinos? Z µ e active flavor neutrinos N mixing µ «L = k=1 U «k kl «= e Mass Basis: Flavor Basis: e s1 s2 ACTIVE STERILE N 3 no upper limit! STERILE NEUTRINOS singlets of SM =µ no interactions! active sterile transitions are possible if 4, are light (no see-saw) disappearance of active neutrinos C. Giunti Neutrino Physics CERN, May

54 Part II Neutrino Oscillations in Vacuum and in Matter C. Giunti Neutrino Physics CERN, May

55 Neutrino Oscillations in Vacuum Neutrino Oscillations in Vacuum Neutrino Oscillations Neutrinos and Antineutrinos CPT, CP and T Symmetries Two-Neutrino Mixing and Oscillations Neutrino Oscillations in Matter C. Giunti Neutrino Physics CERN, May

56 Neutrino Oscillations [Eliezer, Swift, NPB 105 (1976) 45] [Fritzsch, Minkowski, PLB 62 (1976) 72] [Bilenky, Pontecorvo, SJNP 24 (1976) 316] Ä CC W ( el e L + L L + L L ) Fields «= k U «k k =µ «= k U «k k States initial flavor: «= e or or k (t x) = e iekt+ipkx k µ «(t x) = k k = U k µ «(t x) = =e =e U «k e iekt+ipkx k U «k e iekt+ipkx U k k ßÞ Ð «(tx) «(0 0) = k U «ku k = Æ ««(t 0 x 0) = Æ «C. Giunti Neutrino Physics CERN, May

57 P «(tx) = «(tx) 2 = 2 U «k e ie kt+ip k x U k ultra-relativistic neutrinos =µ t ³ x = L source-detector distance E k t p k x ³ (E k p k ) L = E2 k p 2 k E k + p k L = P «(LE) = = kj 2 U «k e im2 k L2E U k k U «ku k U «j U j exp k m2 k E k + p k L ³ m2 k 2E L i m2 kj L 2E m 2 kj m 2 k m 2 j C. Giunti Neutrino Physics CERN, May

58 Neutrinos and Antineutrinos Right-handed antineutrinos are described by CP-conjugated fields: CP = 0 T = C =µ Particle Antiparticle P =µ Left-Handed Right-Handed Fields: «L = k U «k kl CP CP «L = k U «k CP kl States: «= k U «k k CP «= k U «k k NEUTRINOS U U ANTINEUTRINOS P «(LE) = U «k U ku «j U j exp i m2 kj L 2E kj P «(LE) = U «k U ku «ju j exp i m2 kj L 2E kj C. Giunti Neutrino Physics CERN, May

59 CPT, CP and T Symmetries Neutrino Oscillations in Vacuum CPT, CP and T Symmetries CPT Symmetry CP Symmetry T Symmetry Two-Neutrino Mixing and Oscillations Neutrino Oscillations in Matter C. Giunti Neutrino Physics CERN, May

60 CPT Symmetry P «CPT P «CPT Asymmetries: A CPT «= P «P «Local Quantum Field Theory =µ A CPT «= 0 CPT Symmetry P «(LE) = U «k U ku «j U j exp i m2 kj L 2E kj is invariant under CPT: U U «P «= P «P ««= P ««(solar e, reactor e, accelerator ) C. Giunti Neutrino Physics CERN, May

61 CP Symmetry P «CP P «CP Asymmetries: A CP = P ««P «CPT µ A CP = «ACP «A«(LE) CP = 4 Im U «ku k U «j U j sin kj m 2 kj L 2E Jarlskog rephasing invariant: Im U «ku k U «j U j = J J = c 12 s 12 c 23 s 23 c 2 13 s 13 sin Æ 13 violation of CP in neutrino oscillations is proportional to U e3 = sin 13 and sin Æ 13 C. Giunti Neutrino Physics CERN, May

62 T Symmetry P «T P «T Asymmetries: A T «= P «P «CPT =µ 0 = A CPT = P ««P «= P «P «+ P «P «= A T + «ACP = «AT «A CP «=µ A T = «ACP «A T «(LE) = 4 kj Im U «ku k U «j U j sin m 2 kj L 2E Jarlskog rephasing invariant: Im U «ku k U «j U j = J C. Giunti Neutrino Physics CERN, May

63 Two-Neutrino Mixing and Oscillations «= 2 k=1 cos U = sin U «k k («= e ) sin cos ν µ ν 2 ϑ ν e ν 1 e = cos 1 + sin 2 = sin 1 + cos 2 m 2 m 2 21 m 2 2 m 2 1 Transition Probability: P e = P e = sin 2 2sin 2 m 2 L 4E Survival Probabilities: P e e = P = 1 P e C. Giunti Neutrino Physics CERN, May

64 Two-Neutrino Mixing Types of Experiments P «(L E) = sin 2 2 sin 2 m 2 L 4E observable if m 2 L 4E 1 SBL LE 10eV 2 µ m 2 01eV 2 Reactor: L 10m E 1MeV Accelerator: L 1km E 01GeV ATM & LBL LE 10 4 ev 2 m ev 2 Reactor: L 1km E 1MeV CHOOZ, PALO VERDE Accelerator: L 10 3 km E 1GeV K2K, MINOS, CNGS Atmospheric: L km E GeV Kamiokande, IMB, Super-Kamiokande, Soudan, MACRO, MINOS SUN L 10 8 km E 01 10MeV L E 1011 ev 2 µ m ev 2 Homestake, Kamiokande, GALLEX, SAGE, Super-Kamiokande, GNO, SNO, Borexino Matter Effect (MSW) µ10 4 sin ev 2 m ev 2 VLBL LE 10 5 ev 2 µ m ev 2 C. Giunti Neutrino Physics CERN, May Reactor: L 10 2 km E 1MeV KamLAND

65 Neutrino Oscillations in Matter Neutrino Oscillations in Vacuum CPT, CP and T Symmetries Two-Neutrino Mixing and Oscillations Neutrino Oscillations in Matter Effective Potentials in Matter Evolution of Flavor Transition Amplitudes Two-Neutrino Mixing Constant Matter Density MSW Effect (Resonant Transitions in Matter) Phenomenology of Solar Neutrinos In Neutrino Oscillations Dirac = Majorana C. Giunti Neutrino Physics CERN, May

66 Effective Potentials in Matter Ï Ô Ò Ô Ò V CC = Ô 2G F N e V (e ) NC = V (p) NC µ V NC = V (n) NC = Ô 2 2 G FN n V e = V CC + V NC only V CC = V e V = V e V V = V = V NC is important for flavor transitions antineutrinos: V CC = V CC V NC = V NC C. Giunti Neutrino Physics CERN, May

67 Evolution of Flavor Transition Amplitudes Ψ «= e i d dx Ψ «= 1 U M 2 U Ý + A Ψ «2E M 2 = m m m3 2 A = ACC A CC = 2EV CC = 2 Ô 2EG F N e effective mass-squared matrix in vacuum M 2 VAC = U M 2 U Ý matter U M 2 U Ý + 2E V = M 2 MAT potential due to coherent forward elastic scattering effective mass-squared matrix in matter C. Giunti Neutrino Physics CERN, May

68 Two-Neutrino Mixing i d e = 1 dx 4E m 2 cos2 + 2A CC m 2 sin2 initial e =µ e (0) = (0) m 2 sin2 m 2 cos2 1 0 e P e (x) = (x) 2 P e e (x) = e (x) 2 = 1 P e (x) C. Giunti Neutrino Physics CERN, May

69 Constant Matter Density i d e = 1 dx 4E m 2 cos2 + 2A CC m 2 sin2 m 2 sin2 m 2 cos2 e da CC dx = 0 Diagonalization of Effective Hamiltonian e d i dx 1 2 cosm sin = M 1 sin M cos M 2 = 1 m 2 M 0 1 4E 0 mm 2 2 C. Giunti Neutrino Physics CERN, May

70 Effective Mixing Angle in Matter tan2 M = 1 tan2 A CC m 2 cos 2 Effective Squared-Mass Difference m 2 M = Õ( m 2 cos 2 A CC ) 2 + ( m 2 sin2) 2 Resonance ( M = 4) A R CC = m2 cos 2 =µ N R e = m2 cos 2 2 Ô 2EG F C. Giunti Neutrino Physics CERN, May

71 e = d i dx cos M sinm e =µ 1 2 sinm = 1 m 2 M 0 1 4E 0 mm 2 1 cosm e (0) (0) 2 = µ (x) = cos M exp 2 (x) = sin M exp 1 2 =µ 2 cos M sinm = sinm cosm 1 (0) cosm 2 (0) sin M i m2 M x 4E i m2 M x 4E P e (x) = (x) 2 = sin M 1 (x) + cos M 2 (x) 2 P e (x) = sin 2 2 M sin 2 m 2 M x 4E e C. Giunti Neutrino Physics CERN, May

72 MSW Effect (Resonant Transitions in Matter) ϑm m 2 M1, m2 M2 (10 6 ev 2 ) Ne R/NA ν e ν 2 ν µ ν ϑ = ν e ν 1 ν µ ν N e/n A (cm 3 ) Ne R/NA ν 2 ν µ ν µ ν 1 ν e ν e ν N e/n A (cm 3 ) ν 1 m 2 = ev 2, ϑ = 10 3 e = cos M 1 + sin M 2 = sin M 1 + cos M 2 tan2 M = m 2 M = tan2 1 A CC m 2 cos 2 m 2 cos2 A CC 2 + m 2 sin C. Giunti Neutrino Physics CERN, May

73 Phenomenology of Solar Neutrinos LMA (Large Mixing Angle): m ev 2 tan 2 08 LOW (LOW m 2 ): m ev 2 tan 2 06 SMA (Small Mixing Angle): m ev 2 tan QVO (Quasi-Vacuum Oscillations): m ev 2 tan 2 1 VAC (VACuum oscillations): m ev 2 tan SMA LMA 2 2 m (ev ) LOW VAC tan 2 θ [de Gouvea, Friedland, Murayama, PLB 490 (2000) 125] [Bahcall, Krastev, Smirnov, JHEP 05 (2001) 015] C. Giunti Neutrino Physics CERN, May

74 In Neutrino Oscillations Dirac = Majorana Evolution of Amplitudes: M 2 = difference: D() = m m m 2 N d «dt = 1 2E Dirac: U (D) Majorana: e i e i N1 UM 2 U Ý + 2EV U (M) = U (D) D() ½ µ D Ý = D 1 «½ =µ DM2 = M 2 D =µ DM 2 D Ý = M 2 U (M) M 2 (U (M) ) Ý = U (D) DM 2 D Ý (U (D) ) Ý = U (D) M 2 (U (D) ) Ý C. Giunti Neutrino Physics CERN, May

75 Part III Phenomenology of Three-Neutrino Mixing C. Giunti Neutrino Physics CERN, May

76 Solar Neutrinos and KamLAND Nobs/Nexp ILL Savannah River Bugey Rovno Goesgen Krasnoyarsk Palo Verde Chooz KamLAND Distance to Reactor (m) C. Giunti Neutrino Physics CERN, May

77 KamLAND Reactor e e confirmation of LMA (December 2002) 53 nuclear power reactors in Japan and Korea Kamioka Mine L ³ 180km E ³ 4MeV Survival Probability Data - BG - Geo ν e Expectation based on osci. parameters determined by KamLAND L 0 /E νe (km/mev) [KamLAND, PRL 100 (2008) ] C. Giunti Neutrino Physics CERN, May

78 6σ 5σ 4 σ 3 1 2σ σ σ 2 χ σ 3σ 2σ 1σ KamLAND 95% C.L. 99% C.L % C.L. best fit m 2 21 ) 2 (ev Solar 95% C.L. 99% C.L % C.L. best fit tan 2 θ 12 [KamLAND, PRL 100 (2008) ] χ C. Giunti Neutrino Physics CERN, May

79 Atmospheric Neutrinos and LBL p π + π µ + µ e e + νµ νµ νe νµ νµ νe C. Giunti Neutrino Physics CERN, May

80 Super-Kamiokande Up-Down Asymmetry A θ AB z E 1GeV µ isotropic flux of cosmic rays ν α B (A) «( AB z ) = (B) «(A) «( z AB ) (A) «( AB z ( z ) = (A) «( z ) ) = (B) «(z AB ) π θ AB z up N A up-down (SK) = (December 1998) N down N up + N down = [Super-Kamiokande, Phys. Rev. Lett. 81 (1998) 1562, hep-ex/ ] 6 MODEL INDEPENDENT EVIDENCE OF DISAPPEARANCE! C. Giunti Neutrino Physics CERN, May

81 Fit of Super-Kamiokande Atmospheric Data 10-2 Measure of CC Int. is Difficult: E th = 35 GeV =µ 20eventsyr -Decay =µ Many Final States m 2 (ev 2 ) 10-3 Best Fit: 99% C.L. 90% C.L. 68% C.L sin 2 2θ m 2 = ev 2 sin 2 2 = live-days (Apr 1996 Jul 2001) [Super-Kamiokande, PRD 71 (2005) , hep-ex/ ] -Enriched Sample N the = 78 m 2 = ev 2 N exp = N 24 [Super-Kamiokande, PRL 97(2006) , hep-ex/ ] Check: OPERA ( ) CERN to Gran Sasso (CNGS) L ³ 732 km E ³ 18 GeV [NJP 8 (2006) 303, hep-ex/ ] C. Giunti Neutrino Physics CERN, May

82 Solar e Reactor e disappearance Atmospheric Accelerator disappearance Homestake Kamiokande GALLEX/GNO & SAGE Super-Kamiokande SNO BOREXino (KamLAND) Kamiokande IMB Super-Kamiokande MACRO Soudan-2 (K2K & MINOS) ½ ½ m 2 SOL ³ (76 02) 10 5 ev 2 tan 2 SOL ³ m 2 ATM ³ (24 01) 10 3 ev 2 sin 2 ATM ³ Two scales of m 2 : m 2 ATM ³ 30 m 2 SOL Large mixings: ATM ³ 45 Æ SOL ³ 34 Æ C. Giunti Neutrino Physics CERN, May

83 Three-Neutrino Mixing «L = 3 k=1 U «k kl («= e ) three flavor fields: e,, three massive fields: 1, 2, 3 m m m 2 13 = m 2 2 m m 2 3 m m 2 1 m 2 3 = 0 m 2 SOL = m2 21 ³ (76 02) 10 5 ev 2 m 2 ATM ³ m 2 31 ³ m 2 32 ³ (24 01) 10 3 ev 2 C. Giunti Neutrino Physics CERN, May

84 Allowed Three-Neutrino Schemes m 2 m 2 ν 3 ν 2 m 2 SOL ν 1 m 2 ATM m 2 ATM ν 2 m 2 SOL ν 1 ν 3 normal inverted different signs of m 2 31 ³ m 2 32 absolute scale is not determined by neutrino oscillation data C. Giunti Neutrino Physics CERN, May

85 Mixing Matrix SOL U e1 U e2 U e3 δm 2 (ev 2 ) 1 Analysis A ν e ν x 90% CL Kamiokande (multi-gev) m 2 21 m2 31 U = U µ1 U µ2 U τ1 U τ2 U µ3 U τ % CL Kamiokande (sub+multi-gev) ATM 10-2 CHOOZ: m 2 CHOOZ = m 2 31 = m2 ATM sin 2 2 CHOOZ = 4U e3 2 (1 U e3 2 ) U e % CL 95% CL SOLAR AND ATMOSPHERIC OSCILLATIONS ARE PRACTICALLY DECOUPLED! sin 2 (2θ) [CHOOZ, PLB 466 (1999) 415] [Palo Verde, PRD 64 (2001) ] U e1 2 ³ cos 2 SOL U 3 2 ³ sin 2 ATM U e2 2 ³ sin 2 SOL U 3 2 ³ cos 2 ATM C. Giunti Neutrino Physics CERN, May

86 U = c 23 s 23 0 s 23 c 23 = 23 ³ ATM ½ Bilarge Mixing c 13 0 s 13 e i Æ s 13 e i Æ13 0 c ³ CHOOZ ½ c 12 s 12 0 s 12 c ³ SOL c 12c 13 s 12c 13 s 13e i Æ 13 s 12c 23 c 12s 23s 13e i Æ 13 c 12c 23 s 12s 23s 13e i Æ 13 s 23c 13 s 12s 23 c 12c 23s 13e i Æ 13 c 12s 23 s 12c 23s 13e i Æ 13 c 23c 13 ½ ½ e i e i e i e i 3 sin 2 12 = sin 2 23 = sin (90% C.L.) [Schwetz, Tortola, Valle, New J. Phys. 10 (2008) ] Hint of [Fogli, Lisi, Marrone, Palazzo, Rotunno, NO-VE, April 2008] [Balantekin, Yilmaz, JPG 35 (2008) ] ½ ½ sin 2 13 = [Fogli, Lisi, Marrone, Palazzo, Rotunno, PRL 101 (2008) ] C. Giunti Neutrino Physics CERN, May

87 The Hunt for 13 sin 2 2Θ 13 discovery reach3σ MINOS CNGS DCHOOZ T2K NOA ReactorII NOAFPD Conventional beams Reactor experiments Superbeams CHOOZSolar excluded sin 2 2Θ 13 discovery reach3σ MINOS CNGS DCHOOZ T2K NOA ReactorII NOAFPD 2 nd GenPDExp NuFact SuperbeamsReactor exps Conv. beams Superbeam upgrades Νfactories Branching point CHOOZSolar excluded Year 3 sensitivities. Bands reflect dependence of sensitivity on the CP violating phase Æ Year Branching point refers to the decision between an upgraded superbeam and/or detector and a neutrino factory program. Neutrino factory is assumed to switch polarity after 2.5 years. [Physics at a Fermilab Proton Driver, Albrow et al, hep-ex/ ] C. Giunti Neutrino Physics CERN, May

88 Absolute Scale of Neutrino Masses Solar Neutrinos and KamLAND Atmospheric Neutrinos and LBL Three-Neutrino Mixing Absolute Scale of Neutrino Masses Mass Hierarchy or Degeneracy? Tritium Beta-Decay Neutrinoless Double-Beta Decay Cosmological Bound on Neutrino Masses Experimental Neutrino Anomalies Conclusions C. Giunti Neutrino Physics CERN, May

89 Mass Hierarchy or Degeneracy? normal scheme inverted scheme 10 0 QUASI DEGENERATE 10 0 QUASI DEGENERATE 10 1 m m2 m1 m [ev ] 10 2 m2 m [ev ] m1 NORMAL SCHEME 10 3 m3 INVERTED SCHEME NORMAL HIERARCHY Lightest Mass: m1 [ev ] INVERTED HIERARCHY Lightest Mass: m3 [ev ] 10 0 m 2 2 = m m 2 21 = m m 2 SOL m 2 3 = m m 2 31 = m m 2 ATM m 2 1 = m 2 3 m 2 31 = m m 2 ATM m 2 2 = m m 2 21 ³ m m 2 ATM Quasi-Degenerate for m 1 ³ m 2 ³ m 3 ³ m Ô m 2 ATM ³ ev C. Giunti Neutrino Physics CERN, May

90 Tritium Beta-Decay 3 H 3 He + e + e K(T) = ÚÙ Ù Ø Õ dγ dt = (coscgf)2 Å 2 F(E)pE (Q T) (Q T) 2 m e Q = M3 H M3 He m e = 1858keV 2 3 Kurie plot dγdt = (coscg F) 2 Å 2 F(E)pE (Q T) Õ 12 (Q T) 2 m 2 e K(T) m νe = m νe = 100 ev T Q m νe Q m e 22eV (95% C.L.) Mainz & Troitsk [Weinheimer, hep-ex/ ] future: KATRIN (start 2012) [arxiv: ] sensitivity: m e ³ 02eV (3y) C. Giunti Neutrino Physics CERN, May

91 Neutrino Mixing =µ K(T) = (Q T) k U ek 2 Õ(Q T) 2 m 2 k 12 Ã Ì µ º¾ º½ º½ º ½º ½º ½º ½º ½º É Ñ ¾ Í ½ ¾ Í ¾ ¾ Ì Ñ½ ½ ΠѾ ½ Î É Ñ ½ analysis of data is different from the no-mixing case: 2N 1 parameters k U ek 2 = 1 if experiment is not sensitive to masses (m k Q T) effective mass: m 2 = k U ek 2 m 2 k K 2 = (Q T) 2 U ek 2 m 1 k 2 ³ (Q T) (Q 2 T)2 U ek mk 2 2 (Q T) 2 k k Õ = (Q T) m 2 ³ (Q T) (Q T) 2 m 2 2 (Q T) 2 C. Giunti Neutrino Physics CERN, May

92 m 2 = U e1 2 m U e2 2 m U e3 2 m NORMAL SCHEME 10 1 INVERTED SCHEME 10 0 Mainz & Troitsk 10 0 Mainz & Troitsk mβ [ev ] 10 1 m3 KATRIN mβ [ev ] 10 1 m1,m2 KATRIN 10 2 m m1 m Lightest Mass: m 1 [ev ] Lightest Mass: m 3 [ev ] Quasi-Degenerate: m 1 ³ m 2 ³ m 3 ³ m =µ m 2 ³ m 2 k U ek 2 = m 2 FUTURE: IF m ev =µ NORMAL HIERARCHY C. Giunti Neutrino Physics CERN, May

93 Neutrinoless Double-Beta Decay 2 + β As 0 + β 76 32Ge β β 0 + Effective Majorana Neutrino Mass: m = k 76 34Se U 2 ek m k C. Giunti Neutrino Physics CERN, May

94 Two-Neutrino Double- Decay: L = 0 Æ(A Z) Æ(A Z + 2) + e + e + e + e Ï Ù (T 2 12 ) 1 = G 2 Å 2 2 second order weak interaction process in the Standard Model Ï Ù Neutrinoless Double- Decay: L = 2 Æ(AZ) Æ(AZ + 2) + e + e (T 0 12 ) 1 = G 0 Å 0 2 m 2 Ï Í Ù effective Majorana mass m = k U 2 ek m k Ñ Í Ï Ù C. Giunti Neutrino Physics CERN, May

95 Effective Majorana Neutrino Mass m = k U 2 ek m k complex U ek µ possible cancellations m = U e1 2 m 1 + U e2 2 e i «2 m 2 + U e3 2 e i «3 m 3 «2 = 2 2 «3 = 2( 3 Æ 13 ) Im[m ββ ] Im[m ββ ] m ββ U e1 2 m 1 α 2 U e3 2 e iα3 m 3 α 3 U e2 2 e iα2 m 2 Re[m ββ ] m ββ U e3 2 e iα3 m 3 α 2 α 3 U e2 2 e iα2 m 2 U e1 2 m 1 Re[mββ ] C. Giunti Neutrino Physics CERN, May

96 Experimental Bounds T y T y T y CUORICINO ( 130 Te) [PRC 78 (2008) ] (90% C.L.) =µ m eV Heidelberg-Moscow ( 76 Ge) [EPJA 12 (2001) 147] T y (90% C.L.) =µ m eV IGEX ( 76 Ge) [PRD 65 (2002) ] (90% C.L.) =µ m eV NEMO 3 ( 100 Mo) [PRL 95 (2005) ] (90% C.L.) =µ m 07 28eV FUTURE EXPERIMENTS COBRA, XMASS, CAMEO, CANDLES m few10 1 ev EXO, MOON, Super-NEMO, CUORE, Majorana, GEM, GERDA m few10 2 ev C. Giunti Neutrino Physics CERN, May

97 Bounds from Neutrino Oscillations m = U e1 2 m 1 + U e2 2 e i «21 m 2 + U e3 2 e i «31 m NORMAL SCHEME 10 1 INVERTED SCHEME mββ [ev] EXP CP violation mββ [ev] EXP CP violation m1 [ev] m3 [ev] FUTURE: IF m 10 2 ev =µ NORMAL HIERARCHY C. Giunti Neutrino Physics CERN, May

98 Experimental Positive Indication [Klapdor et al., MPLA 16 (2001) 2409] T 0 12 = ( ) 1025 y 65 evidence [MPLA 21 (2006) 1547] Counts / kev SSE 2n2b Rosen Primakov Approximation Q=2039 kev Energy,keV [PLB 586 (2004) 198] [MPLA 21 (2006) 1547] the indication must be checked by other experiments m = eV [MPLA 21 (2006) 1547] if confirmed, very exciting (Majorana and large mass scale) C. Giunti Neutrino Physics CERN, May

99 Cosmological Bound on Neutrino Masses 44 High-Z SN Search Team 42 Supernova Cosmology Project m-m (mag) W M =0.3, W L =0.7 W M =0.3, W L =0.0 W M =1.0, W L =0.0 [WMAP, D(m-M) (mag) z [Springel, Frenk, White, Nature 440 (2006) 1137] [ C. Giunti Neutrino Physics CERN, May

100 Relic Neutrinos neutrinos are in equilibrium in primeval plasma through weak interaction reactions e + ( ) e e ( ) ( ) e N ( ) N e n pe e p ne + n pe e weak interactions freeze out Γ weak = Nv G 2 F T 5 T 2 M P Ô G N T 4 Ô G N H =µ T dec 1 MeV Relic Neutrinos: T = neutrino decoupling 3 T ³ 1945 K =µ k T ³ ev (T = K) number density: n f = 3 (3) 4 2 g f Tf 3 =µ n k k ³ T 3 ³ 112 cm 3 density contribution: Ω k = c= 3H2 8G N n k k m k c ³ 1 h 2 m k 9414 ev =µ Ω h 2 = È k m k 9414 ev [Gershtein, Zeldovich, JETP Lett. 4 (1966) 120] [Cowsik, McClelland, PRL 29 (1972) 669] h 07, Ω 03 =µ k m k 14 ev C. Giunti Neutrino Physics CERN, May

101 Power Spectrum of Density Fluctuations hot dark matter prevents early galaxy formation [Tegmark, hep-ph/ ] Solid Curve: flat ΛCDM model Dashed Curve: (Ω 0 M = 028 h = 072 Ω0 B Ω0 M = 016) 3 k=1 m k = 1 ev Æ(x 1 )Æ(x 2 ) = P(k) P(k) Æ(x) (x) d 3 k (2) 3 ei k x P( k) small scale suppression 8 Ω 08 Ω m for È k m k 1 ev 01 Ω m h 2 k k nr 0026Ö m Ô Ωm h Mpc 1 1 ev [Hu, Eisenstein, Tegmark, PRL 80 (1998) 5255] C. Giunti Neutrino Physics CERN, May

102 WMAP (First Year), AJ SS 148 (2003) 175, astro-ph/ CMB (WMAP,...) + LSS (2dFGRS) + HST + SN-Ia =µ Flat ΛCDM T 0 = Gyr h = Ω 0 = Ω b = Ω m = Ω h (95% conf.) =µ 3 k=1 m k 071eV WMAP (Five Years), AJS 180 (2009) 330, astro-ph/ CMB + HST + SN-Ia + BAO T 0 = Gyr Ω Ω b = k=1 h = (95% C.L.) Ω m = m k 067eV (95% C.L.) N eff = C. Giunti Neutrino Physics CERN, May

103 Fogli, Lisi, Marrone, Melchiorri, Palazzo, Rotunno, Serra, Silk, Slosar [PRD 78 (2008) , hep-ph/ ] Flat ΛCDM Case Cosmological data set Σ (at 2) 1 CMB 119 ev 2 CMB + LSS 071 ev 3 CMB + HST + SN-Ia 075 ev 4 CMB + HST + SN-Ia + BAO 060 ev 5 CMB + HST + SN-Ia + BAO + Ly«019 ev 2 (95% C.L.) constraints on the sum of masses Σ. C. Giunti Neutrino Physics CERN, May

104 3 3 k=1 k=1 m k 06eV ( 2) CMB + HST + SN-Ia + BAO m k 02eV ( 2) CMB + HST + SN-Ia + BAO + Ly«NORMAL SCHEME INVERTED SCHEME CMB+HST+SN-Ia+BAO CMB+HST+SN-Ia+BAO m [ev ] 10 1 k mk m 3 CMB+HST+SN-Ia+BAO+Lyα m [ev ] 10 1 k mk m 2 m 1 CMB+HST+SN-Ia+BAO+Lyα 10 2 m m FUTURE: IF Lightest Mass: m 1 [ev ] m Lightest Mass: m 3 [ev ] 3 m k ev =µ NORMAL HIERARCHY k=1 C. Giunti Neutrino Physics CERN, May

105 Indication of 0 Decay: 022eV m 16eV ( 3 range) CMB+LSS+SNIa+BAO CMB+LSS+SNIa+BAO+Lyα OSC. CMB+LSS+SNIa+BAO CMB+LSS+SNIa+BAO+Lyα OSC mββ [ev] ββ0ν mββ [ev] ββ0ν NORMAL SCHEME INVERTED SCHEME LightestMass: m 1 [ev] LightestMass: m 3 [ev] 10 1 tension among oscillation data, CMB+LSS+BAO(+Ly«) and 0 signal C. Giunti Neutrino Physics CERN, May

106 Experimental Neutrino Anomalies Solar Neutrinos and KamLAND Atmospheric Neutrinos and LBL Three-Neutrino Mixing Absolute Scale of Neutrino Masses Experimental Neutrino Anomalies LSND MiniBooNE Gallium Radioactive Source Experiments Conclusions C. Giunti Neutrino Physics CERN, May

107 LSND [PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) ] e L ³ 30m 20MeV E 200MeV Beam Excess Beam Excess p(ν _ µ ν_ e,e+ )n p(ν _ e,e+ )n other L/E ν (meters/mev) m 2 (ev 2 /c 4 ) Karmen Bugey 90% (L max -L < 2.3) 99% (L max -L < 4.6) CCFR NOMAD sin 2 2θ m 2 LSND 02eV2 ( m 2 ATM m 2 SOL ) C. Giunti Neutrino Physics CERN, May

108 MiniBooNE [PRL 98 (2007) ] e L ³ 541m 475MeV E 3GeV Events / MeV Data ν e from µ + ν e from K 0 ν e from K π 0 misid Nγ dirt other Total Background QE E ν (GeV) Excess Events / MeV 0.8 data - expected background best-fit ν µ ν e sin 2θ=0.004, m =1.0eV sin 2θ=0.2, m =0.1eV QE E ν (GeV) [arxiv: ] Low-Energy Anomaly! [arxiv: ] C. Giunti Neutrino Physics CERN, May

109 Gallium Radioactive Source Experiments tests of solar neutrino detectors GALLEX [PLB 342 (1995) 440; PLB 420 (1998) 114] SAGE [PRL 77 (1996) 4708; PRC 59 (1999) 2246; PRC 73 (2006) ; arxiv: ] Sources: e + 51 Cr 51 V + e e + 37 Ar 37 Cl + e Detector: e + 71 Ga 71 Ge + e 1.1 GALLEX Cr1 SAGE Cr p(measured)/p(predicted) GALLEX Cr2 SAGE Ar R Ga = [SAGE, arxiv: ] [SAGE, PRC 73 (2006) ] C. Giunti Neutrino Physics CERN, May

110 Conclusions e with m 2 SOL ³ ev 2 (SOL, KamLAND) with m 2 ATM ³ ev 2 (ATM, K2K, MINOS) Bilarge 3-Mixing with U e3 2 1 (CHOOZ) & 0 Decay and Cosmology =µ m 1eV FUTURE Theory: Why lepton mixing = quark mixing? (Due to Majorana nature of s?) Why only U e3 2 1? Explain experimental neutrino anomalies (sterile s?). Exp.: Measure U e3 0 µ CP viol., matter effects, mass hierarchy. Check experimental neutrino anomalies. Check 0 signal at Quasi-Degenerate mass scale. Improve & 0 Decay and Cosmology measurements. C. Giunti Neutrino Physics CERN, May

111 Hint of 13 0 [Fogli, Lisi, Marrone, Palazzo, Rotunno, NO-VE, April 2008] [Balantekin, Yilmaz, JPG 35 (2008) ] P ( ) e ( ) e ³ sin 2 13 = [Fogli, Lisi, Marrone, Palazzo, Rotunno, PRL 101 (2008) ] 1 sin sin 2 12 SOL low-energy & KamLAND 1 sin sin 2 12 SOL high-energy (matter effect) C. Giunti Neutrino Physics CERN, May

112 0 Decay Majorana Neutrino Mass d d u e ββ 0ν =µ e u d d ββ 0ν u u e e W + W + ν e ν e(h = 1) ν e ν e(h = +1) [Schechter, Valle, PRD 25 (1982) 2951] [Takasugi, PLB 149 (1984) 372] Majorana Mass Term Ä Å el = 1 2 m ee el c el + el el c C. Giunti Neutrino Physics CERN, May

113 Lyman-alpha Forest [Springel, Frenk, White, astro-ph/ ] Rest-frame Lyman «,, wavelengths: 0 «= Å, 0 = Å, 0 = Å Lyman-«forest: The region in which only Ly«photons can be absorbed: [(1 + z q) 0 (1 + zq)0 «] C. Giunti Neutrino Physics CERN, May

Phenomenological Status of Neutrino Mixing

Phenomenological Status of Neutrino Mixing Phenomenological Status of Neutrino Mixing Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino mailto://giunti@to.infn.it Neutrino Unbound: http://www.nu.to.infn.it

More information

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter Very-Short-BaseLine Electron Neutrino Disappearance Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino mailto://giunti@to.infn.it Neutrino Unbound: http://www.nu.to.infn.it

More information

Sterile Neutrinos in July 2010

Sterile Neutrinos in July 2010 Sterile Neutrinos in July 0 Carlo Giunti INFN, Sezione di Torino Presidenza INFN, Roma, 19 July 0 Collaboration with Marco Laveder (Padova University) C. Giunti Sterile Neutrinos in July 0 Presidenza INFN,

More information

Neutrino Mass: Overview of ββ 0ν, Cosmology and Direct Measurements Carlo Giunti

Neutrino Mass: Overview of ββ 0ν, Cosmology and Direct Measurements Carlo Giunti Neutrino Mass: Overview of ββ 0ν, Cosmology and Direct Measurements Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino mailto://giunti@to.infn.it Neutrino Unbound:

More information

Neutrino Masses in Cosmology, Neutrinoless Double-Beta Decay and Direct Neutrino Masses Carlo Giunti

Neutrino Masses in Cosmology, Neutrinoless Double-Beta Decay and Direct Neutrino Masses Carlo Giunti Neutrino Masses in Cosmology, Neutrinoless Double-Beta Decay and Direct Neutrino Masses Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino mailto://giunti@to.infn.it

More information

Status of Light Sterile Neutrinos Carlo Giunti

Status of Light Sterile Neutrinos Carlo Giunti C. Giunti Status of Light Sterile Neutrinos EPS-HEP 05 3 July 05 /5 Status of Light Sterile Neutrinos Carlo Giunti INFN, Sezione di Torino and Dipartimento di Fisica, Università di Torino giunti@to.infn.it

More information

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València Neutrino Physics II Neutrino Phenomenology Arcadi Santamaria IFIC/Univ. València TAE 2014, Benasque, September 19, 2014 Neutrino Physics II Outline 1 Neutrino oscillations phenomenology Solar neutrinos

More information

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K Neutrino Basics CDHSW m 2 [ev 2 ] 10 0 10 3 10 6 10 9 KARMEN2 Cl 95% NOMAD MiniBooNE Ga 95% Bugey CHOOZ ν X ν µ ν τ ν τ NOMAD all solar 95% SNO 95% CHORUS NOMAD CHORUS LSND 90/99% SuperK 90/99% MINOS K2K

More information

March 30, 01 Lecture 5 of 6 @ ORICL Philosophical Society Yuri Kamyshkov/ University of Tennessee email: kamyshkov@utk.edu 1. Concept/misconception of mass in Special Relativity (March,9). and n Oscillations:

More information

Status and prospects of neutrino oscillations

Status and prospects of neutrino oscillations Status and prospects of neutrino oscillations S. Bilenky JINR(Dubna)TRIUMF June 10, 2017 The award of the 2015 Nobel Prize to T. Kajita and A. McDonald for the discovery of neutrino oscillations, which

More information

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB Neutrino Oscillation Measurements, Past and Present Art McDonald Queen s University And SNOLAB Early Neutrino Oscillation History -1940 s to 1960 s: - Neutrino oscillations were proposed by Pontecorvo

More information

Two hot issues in neutrino physics

Two hot issues in neutrino physics Bari Xmas Workshop /1/011 Two hot issues in neutrino physics Antonio Palazzo Excellence Cluster Universe - TUM 1 Outline! - Introduction - The evidence of! 13 >0 - Hints of new light sterile neutrinos

More information

Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance

Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance Journal of Physics: Conference Series 335 (011) 01054 doi:10.1088/174-6596/335/1/01054 Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance Carlo Giunti INFN, Sezione di Torino, and

More information

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Neutrinos and Cosmos Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Outline A Little Historical Perspective Interpretation of Data & Seven Questions Matter Anti-Matter Asymmetry

More information

Sterile Neutrinos. Carlo Giunti

Sterile Neutrinos. Carlo Giunti C. Giunti Sterile Neutrinos PPC07 6 May 07 /5 Sterile Neutrinos Carlo Giunti INFN, Torino, Italy XI International Conference on Interconnections between Particle Physics and Cosmology Corpus Christi, Texas,

More information

Neutrinos as a Unique Probe: cm

Neutrinos as a Unique Probe: cm Neutrinos as a Unique Probe: 10 33 10 +28 cm Particle Physics νn, µn, en scattering: existence/properties of quarks, QCD Weak decays (n pe ν e, µ e ν µ ν e ): Fermi theory, parity violation, quark mixing

More information

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006 Unbound Neutrino Roadmaps MARCO LAVEDER Università di Padova e INFN NOW 2006-11 September 2006 Experimental Data : 2006 Experiment Observable (# Data) Measured/SM Chlorine Average Rate (1) [CC]=0.30 ±

More information

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23, What We Know, and What We Would Like To Find Out Boris Kayser Minnesota October 23, 2008 1 In the last decade, observations of neutrino oscillation have established that Neutrinos have nonzero masses and

More information

Fundamentals of Neutrino Physics and Astrophysics

Fundamentals of Neutrino Physics and Astrophysics Fundamentals of Neutrino Physics and Astrophysics Carlo Giunti Istituto Nazionale di Fisica Nucleare, Sezione di Torino and Dipartimento di Fisica Teorica, Universita di Torino, Italy Chung W. Kim Korea

More information

Status of neutrino mass-mixing parameters and implications for single and double beta decay searches

Status of neutrino mass-mixing parameters and implications for single and double beta decay searches Padova, 24 febbraio 2007 Status of neutrino mass-mixing parameters and implications for single and double beta decay searches Gianluigi Fogli Dipartimento di Fisica dell Università di Bari & Sezione INFN

More information

Status of Light Sterile Neutrinos Carlo Giunti

Status of Light Sterile Neutrinos Carlo Giunti Status of Light Sterile Neutrinos Carlo Giunti INFN, Torino, Italy EPS-HEP 07 07 European Physical Society Conference on High Energy Physics Venezia, Italy, 5- July 07 C. Giunti Status of Light Sterile

More information

Neutrino Oscillations

Neutrino Oscillations Neutrino Oscillations Heidi Schellman June 6, 2000 Lots of help from Janet Conrad Charge mass,mev tandard Model of Elementary Particles 3 Generations of Fermions Force Carriers Q u a r k s u d 2/3 2/3

More information

Oscillations Beyond Three-Neutrino Mixing (Status of Light Sterile Neutrinos) Carlo Giunti

Oscillations Beyond Three-Neutrino Mixing (Status of Light Sterile Neutrinos) Carlo Giunti C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 /3 Oscillations Beyond Three-Neutrino Mixing (Status of Light Sterile Neutrinos) Carlo Giunti INFN, Torino, Italy Moriond Electroweak

More information

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University 1 Outline 2 Lecture 1: Experimental Neutrino Physics Neutrino Physics and Interactions Neutrino Mass Experiments Neutrino Sources/Beams and

More information

On Minimal Models with Light Sterile Neutrinos

On Minimal Models with Light Sterile Neutrinos On Minimal Models with Light Sterile Neutrinos Pilar Hernández University of Valencia/IFIC Donini, López-Pavón, PH, Maltoni arxiv:1106.0064 Donini, López-Pavón, PH, Maltoni, Schwetz arxiv:1205.5230 SM

More information

Impact of light sterile!s in LBL experiments "

Impact of light sterile!s in LBL experiments Xmas Theory Workshop Bari, 22/12/14 Impact of light sterile!s in LBL experiments " Work done in collaboration with L. Klop (Master Thesis at MPI) (now PhD student @ GRAPPA Institute, Amsterdam) Antonio

More information

Grand Unification Theories

Grand Unification Theories Grand Unification Theories After the success of the unified theroy of electroweak interactions it was natural to ask if strong interactions are united with the weak and em ones. The greater strength of

More information

Neutrino Oscillations

Neutrino Oscillations Neutrino Oscillations Elisa Bernardini Deutsches Elektronen-Synchrotron DESY (Zeuthen) Suggested reading: C. Giunti and C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press

More information

Sterile neutrinos. Stéphane Lavignac (IPhT Saclay)

Sterile neutrinos. Stéphane Lavignac (IPhT Saclay) Sterile neutrinos Stéphane Lavignac (IPhT Saclay) introduction active-sterile mixing and oscillations cosmological constraints experimental situation and fits implications for beta and double beta decays

More information

SM predicts massless neutrinos

SM predicts massless neutrinos MASSIVE NEUTRINOS SM predicts massless neutrinos What is the motivation for considering neutrino masses? Is the question of the existence of neutrino masses an isolated one, or is connected to other outstanding

More information

Introduction to Neutrino Physics

Introduction to Neutrino Physics Introduction to Neutrino Physics Tommy Ohlsson tommy@theophys.kth.se Royal Institute of Technology (KTH) Stockholm Center for Physics, Astronomy, and Biotechnology Stockholm, Sweden Abisko, Norrbotten,

More information

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future Karsten M. Heeger Lawrence Berkeley National Laboratory 8 7 6 5 4 3 2 1 SNO φ ES SNO φ CC SNO φ NC SSM φ NC 0 0 1 2 3 4 5 6

More information

Neutrinos: status, models, string theory expectations

Neutrinos: status, models, string theory expectations Neutrinos: status, models, string theory expectations Introduction Neutrino preliminaries and status Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook

More information

Updating the Status of Neutrino Physics

Updating the Status of Neutrino Physics Updating the Status of Neutrino Physics J. W. F. Valle IFIC-CSIC/U. Valencia Based on hep-ph/36 and hep-ph/3792 String Phenomenology 23, Durham p. Atmospheric zenith distribution Maltoni, Schwetz, Tortola

More information

1 Neutrinos. 1.1 Introduction

1 Neutrinos. 1.1 Introduction 1 Neutrinos 1.1 Introduction It was a desperate attempt to rescue energy and angular momentum conservation in beta decay when Wolfgang Pauli postulated the existence of a new elusive particle, the neutrino.

More information

Analysis of Neutrino Oscillation experiments

Analysis of Neutrino Oscillation experiments Analysis of Neutrino Oscillation experiments Mario Andrés Acero Ortega Università degli Studi di Torino, LAPTH - Université de Savoie Second Year - Seminar Torino, Italy January 15th, 2008 Tutor: Carlo

More information

Neutrino oscillation experiments: Recent results and implications

Neutrino oscillation experiments: Recent results and implications Title transparency Neutrino oscillation experiments: Recent results and implications W. Hampel MPI Kernphysik Heidelberg Motivation for talk On the way from the Standard Model to String Theory: appropriate

More information

NEUTRINOS II The Sequel

NEUTRINOS II The Sequel NEUTRINOS II The Sequel More About Neutrinos Ed Kearns Boston University NEPPSR V - 2006 August 18, 2006 Ed Kearns Boston University NEPPSR 2006 1 There is something unusual about this neutrino talk compared

More information

NEUTRINO COSMOLOGY. ν e ν µ. ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006

NEUTRINO COSMOLOGY. ν e ν µ. ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006 NEUTRINO COSMOLOGY ν e ν µ ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006 OUTLINE A BRIEF REVIEW OF PRESENT COSMOLOGICAL DATA BOUNDS ON THE NEUTRINO MASS STERILE NEUTRINOS WHAT IS TO COME

More information

Oscillations Beyond Three-Neutrino Mixing. Carlo Giunti

Oscillations Beyond Three-Neutrino Mixing. Carlo Giunti C. Giunti Oscillations Beyond Three-Neutrino Mixing CNNP07 9 October 07 /3 Oscillations Beyond Three-Neutrino Mixing Carlo Giunti INFN, Torino, Italy CNNP07 Conference on Neutrino and Nuclear Physics Catania,

More information

Neutrinos as Probes of new Physics

Neutrinos as Probes of new Physics Neutrinos as Probes of new Physics Manfred Lindner Max-Planck-Institut für Kernphysik, Heidelberg The Birth of the Neutrino energy-momentum conservation: postulate new particle invisible, since Q=0 spin

More information

Neutrino Anomalies & CEνNS

Neutrino Anomalies & CEνNS Neutrino Anomalies & CEνNS André de Gouvêa University PIRE Workshop, COFI February 6 7, 2017 Something Funny Happened on the Way to the 21st Century ν Flavor Oscillations Neutrino oscillation experiments

More information

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad. Neutrinos Riazuddin National Centre for Physics Quaid-i-Azam University Campus Islamabad. Neutrino was the first particle postulated by a theoretician: W. Pauli in 1930 to save conservation of energy and

More information

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation PLAN Lecture I: Neutrinos in the SM Neutrino masses and mixing: Majorana vs Dirac Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings Lecture III: The quest for leptonic

More information

MINOS Result. The ND analysis predicts: events in the Far Detector 54 observed, 0.7σ excess. 49.1±7.0(stat.)±2.7(syst.

MINOS Result. The ND analysis predicts: events in the Far Detector 54 observed, 0.7σ excess. 49.1±7.0(stat.)±2.7(syst. MINOS Result The ND analysis predicts: 49.1±7.0(stat.)±2.7(syst.) events in the Far Detector 54 observed, 0.7σ excess 26 MINOS Result The ND analysis predicts: 49.1±7.0(stat.)±2.7(syst.) events in the

More information

Phenomenology of neutrino mixing in vacuum and matter

Phenomenology of neutrino mixing in vacuum and matter Phenomenology of neutrino mixing in vacuum and matter A Upadhyay 1 and M Batra 1 School of Physics and Material Science Thapar University, Patiala-147004. E-mail:mbatra310@gmail.com Abstract: During last

More information

1. Neutrino Oscillations

1. Neutrino Oscillations Neutrino oscillations and masses 1. Neutrino oscillations 2. Atmospheric neutrinos 3. Solar neutrinos, MSW effect 4. Reactor neutrinos 5. Accelerator neutrinos 6. Neutrino masses, double beta decay 1.

More information

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter Neutrinos: Three-Flavor Effects in Sparse and Dense Matter Tommy Ohlsson tommy@theophys.kth.se Royal Institute of Technology (KTH) & Royal Swedish Academy of Sciences (KVA) Stockholm, Sweden Neutrinos

More information

Neutrino Mass Models

Neutrino Mass Models Neutrino Mass Models S Uma Sankar Department of Physics Indian Institute of Technology Bombay Mumbai, India S. Uma Sankar (IITB) IWAAP-17, BARC (Mumbai) 01 December 2017 1 / 15 Neutrino Masses LEP experiments

More information

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia Jarek Nowak University of Minnesota High Energy seminar, University of Virginia Properties of massive neutrinos in the Standard Model. Electromagnetic properties of neutrinos. Neutrino magnetic moment.

More information

Particle Physics: Neutrinos part II

Particle Physics: Neutrinos part II Particle Physics: Neutrinos part II José I. Crespo-Anadón Week 9: April 1, 2017 Columbia University Science Honors Program Course Policies Attendance Up to four absences Send email notifications of all

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

Overview of cosmological constraints on neutrino mass, number, and types

Overview of cosmological constraints on neutrino mass, number, and types Overview of cosmological constraints on neutrino mass, number, and types Preliminaries Big Bang Nucleosynthesis Large Scale Structure and CMB Brief Comments Supernovae Magnetic Moments Decays Ultra High

More information

Solar and atmospheric ν s

Solar and atmospheric ν s Solar and atmospheric ν s Masato SHIOZAWA Kamioka Observatory, Institute for Cosmic Ray Research, U of Tokyo, and Kamioka Satellite, Kavli Institute for the Physics and Mathematics of the Universe (WPI),

More information

Status of Neutrino Masses and Mixing

Status of Neutrino Masses and Mixing Status of Neutrino Masses and Mixing Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino giunti@to.infn.it POSTECH, Pohang, Korea, October 004 Introduction to

More information

Neutrino masses respecting string constraints

Neutrino masses respecting string constraints Neutrino masses respecting string constraints Introduction Neutrino preliminaries The GUT seesaw Neutrinos in string constructions The triplet model (Work in progress, in collaboration with J. Giedt, G.

More information

Short-Baseline Neutrino Oscillation Anomalies and Light Sterile Neutrinos. Carlo Giunti

Short-Baseline Neutrino Oscillation Anomalies and Light Sterile Neutrinos. Carlo Giunti C. Giunti SBL Neutrino Oscillation Anomalies and Light Sterile Neutrinos Roma Tre Nov 07 /53 Short-Baseline Neutrino Oscillation Anomalies and Light Sterile Neutrinos Carlo Giunti INFN, Torino, Italy Seminar

More information

SNOW Global fits to neutrino oscillation data. Thomas Schwetz SISSA, Trieste

SNOW Global fits to neutrino oscillation data. Thomas Schwetz SISSA, Trieste SNOW 26 Global fits to neutrino oscillation data Thomas Schwetz SISSA, Trieste based on work in collaboration with M. Maltoni, M.A. Tortola, and J.W.F. Valle [hep-ph/3913, hep-ph/45172] T.S. is supported

More information

The future of neutrino physics (at accelerators)

The future of neutrino physics (at accelerators) Mauro Mezzetto, Istituto Nazionale Fisica Nucleare, Padova The future of neutrino physics (at accelerators) Present Status Concepts, strategies, challenges The two players: Dune and Hyper-Kamiokande Conclusions

More information

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos Exotic Charges, Multicomponent and Light Sterile Neutrinos Julian Heeck Max-Planck-Institut für Kernphysik, Heidelberg 2.10.2012 based on J.H., He Zhang, arxiv:1210.xxxx. Sterile Neutrinos Hints for ev

More information

Neutrinos in Supernova Evolution and Nucleosynthesis

Neutrinos in Supernova Evolution and Nucleosynthesis Neutrinos in Supernova Evolution and Nucleosynthesis Gabriel Martínez Pinedo The origin of cosmic elements: Past and Present Achievements, Future Challenges, Barcelona, June 12 15, 2013 M.-R. Wu, T. Fischer,

More information

Finding an Upper Bound on Neutrinos Mass

Finding an Upper Bound on Neutrinos Mass Finding an Upper Bound on Neutrinos Mass Cindy Lin Department of Physics, Drexel University, Philadelphia, PA 19104 August 4, 2013 1 Introduction 1.1 Oscillation - Neutrinos have mass! The electron neutrino

More information

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang Flavor Models with Sterile Neutrinos NuFact 11 Geneva, Aug, 2011 Contents: Sterile neutrinos in ν-osc. and 0νββ decays Mechanisms for light sterile neutrino masses Flavor symmetry with sterile neutrinos

More information

Neutrino Oscillations And Sterile Neutrinos

Neutrino Oscillations And Sterile Neutrinos Neutrino Oscillations And Sterile Neutrinos Keshava Prasad Gubbi University of Bonn s6nagubb@uni-bonn.de May 27, 2016 Keshava Prasad Gubbi (Uni Bonn) Neutrino Oscillations,Sterile Neutrinos May 27, 2016

More information

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV SOLAR NEUTRINOS Solar spectrum Nuclear burning in the sun produce Heat, Luminosity and Neutrinos pp neutrinos < 0.4 MeV Beryllium neutrinos 0.86 MeV Monochromatic since 2 body decay 2 kev width due to

More information

Sterile neutrino oscillations

Sterile neutrino oscillations Sterile neutrino oscillations after first MiniBooNE results GDR Neutrino, APC Paris, 22 June 2007 Thomas Schwetz CERN T. Schwetz, GDR Neutrino, Paris, 22 June 2007 p.1 Outline Introduction to the LSND

More information

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3) Neutrino Masses Contents I. The renormalizable Standard Model 1 II. The non-renormalizable Standard Model III. The See-Saw Mechanism 4 IV. Vacuum Oscillations 5 V. The MSW effect 7 VI. Experimental results

More information

Updated three-neutrino oscillation parameters from global fits

Updated three-neutrino oscillation parameters from global fits Updated three-neutrino oscillation parameters from fits (Based on arxiv:14.74) Mariam Tórtola IFIC, Universitat de València/CSIC 37th International Conference on High Energy Physics 3th July 214, Valencia.

More information

Is the Neutrino its Own Antiparticle?

Is the Neutrino its Own Antiparticle? Is the Neutrino its Own Antiparticle? CENPA REU Summer Seminar Series University of Washington, Seattle, WA July 22, 2013 Outline What s a neutrino? The case for Majorana neutrinos Probing the nature of

More information

Neutrino Physics After the Revolution. Boris Kayser PASI 2006 October 26, 2006

Neutrino Physics After the Revolution. Boris Kayser PASI 2006 October 26, 2006 Neutrino Physics After the Revolution Boris Kayser PASI 2006 October 26, 2006 1 What We Have Learned 2 The (Mass) 2 Spectrum ν 3 ν 2 ν 1 } Δm 2 sol (Mass) 2 Δm 2 atm or Δm 2 atm ν ν 2 } Δm 2 sol 1 ν 3

More information

Finding Neutrinos Mass Upper Bound

Finding Neutrinos Mass Upper Bound Finding Neutrinos Mass Upper Bound Cindy Lin Department of Physics, Drexel University, Philadelphia, PA 19104 June 7, 2013 1 Introduction 1.1 Oscillation - Neutrinos have mass! The electron neutrino is

More information

Probing Neutrino Properties with Astrophysics: Neutrino Masses

Probing Neutrino Properties with Astrophysics: Neutrino Masses Probing Neutrino Properties with Astrophysics: Neutrino Masses Yong-Yeon Keum IBS/Seoul National University, Seoul Korea International Workshop on UNICOS 2014 13-15 May, 2014 Panjab University, Chandigarh,

More information

Neutrino Phenomenology. Boris Kayser ISAPP July, 2011 Part 1

Neutrino Phenomenology. Boris Kayser ISAPP July, 2011 Part 1 Neutrino Phenomenology Boris Kayser ISAPP July, 2011 Part 1 1 What Are Neutrinos Good For? Energy generation in the sun starts with the reaction Spin: p + p "d + e + +# 1 2 1 2 1 1 2 1 2 Without the neutrino,

More information

The Effect of Cancellation in Neutrinoless Double Beta Decay

The Effect of Cancellation in Neutrinoless Double Beta Decay The Effect of Cancellation in Neutrinoless Double Beta Decay Manimala Mitra IPPP, Durham University July 24, 204 SUSY 204, Manchester arxiv:30.628, Manimala Mitra, Silvia Pascoli, Steven Wong Manimala

More information

Is the Neutrino its Own Antiparticle?

Is the Neutrino its Own Antiparticle? Is the Neutrino its Own Antiparticle? PHYS 294A Jan 24, 2013 Outline What s a neutrino? The case for Majorana neutrinos Probing the nature of the neutrino with neutrinoless double-beta decay 2 What s a

More information

Solar Neutrino Road Map. Carlos Pena Garay IAS

Solar Neutrino Road Map. Carlos Pena Garay IAS α Solar Neutrino Road Map Carlos Pena Garay IAS ~ February 11, 004 NOON004 Be + p-p p p (pep) measurements Why perform low-energy solar neutrino experiments? Amazing progress on how the Sun shines, the

More information

Sterile Neutrino Searches: Experiment and Theory Carlo Giunti INFN, Sezione di Torino

Sterile Neutrino Searches: Experiment and Theory Carlo Giunti INFN, Sezione di Torino C. Giunti Sterile Neutrino Searches Tau06 Sep 06 /3 Sterile Neutrino Searches: Experiment and Theory Carlo Giunti INFN, Sezione di Torino Tau06 4th International Workshop on Tau Lepton Physics 9-3 September

More information

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers DPG Frühjahrstagung 014 in Mainz Based on Phys. Rev. Lett. 110, 31801 (013), Phys. Rev. D 88, 051701(R) (013), arxiv:1309.3970

More information

Chapter 2 Neutrino Oscillation

Chapter 2 Neutrino Oscillation Chapter Neutrino Oscillation Physics works, and I m still alive. Walter Lewin. Neutrinos and the Standard Model of Particle Physics The Standard Model (SM) of particle physics is the theory describing

More information

Thermalisation of Sterile Neutrinos. Thomas Tram LPPC/ITP EPFL

Thermalisation of Sterile Neutrinos. Thomas Tram LPPC/ITP EPFL Thermalisation of Sterile Neutrinos Thomas Tram LPPC/ITP EPFL Outline Introduction to ev sterile neutrinos. Bounds from Cosmology. Standard sterile neutrino thermalisation. Thermalisation suppression by

More information

arxiv: v1 [hep-ph] 6 Mar 2014

arxiv: v1 [hep-ph] 6 Mar 2014 A predictive model of Dirac Neutrinos OSU-HEP-14-03 Shreyashi Chakdar, Kirtiman Ghosh and S. Nandi Department of Physics and Oklahoma Center for High Energy Physics, Oklahoma State University, Stillwater

More information

A Novel and Simple Discrete Symmetry for Non-zero θ 13

A Novel and Simple Discrete Symmetry for Non-zero θ 13 A Novel and Simple Discrete Symmetry for Non-zero θ 13 Yang-Hwan, Ahn (KIAS) Collaboration with Seungwon Baek and Paolo Gondolo NRF workshop Yonsei Univ., Jun 7-8, 2012 Contents Introduction We propose

More information

C. Giunti Sterile Neutrino Mixing NOW Sep /25

C. Giunti Sterile Neutrino Mixing NOW Sep /25 Sterile Neutrino Mixing NOW and in the Next Years Carlo Giunti INFN, Sezione di Torino NOW 06 Neutrino Oscillation Workshop 4- September 06 Otranto, Lecce, Italy C. Giunti Sterile Neutrino Mixing NOW 06

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

Status of the Sterile Neutrino(s) Carlo Giunti

Status of the Sterile Neutrino(s) Carlo Giunti C. Giunti Status of the Sterile Neutrino(s) LNGS 7 September 07 /40 Status of the Sterile Neutrino(s) Carlo Giunti INFN, Torino, Italy Recent Developments in Neutrino Physics and Astrophysics th Anniversary

More information

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Mu-Chun Chen Fermilab (Jan 1, 27: UC Irvine) M.-C. C & K.T. Mahanthappa, hep-ph/69288, to appear in Phys. Rev. D; Phys. Rev. D71, 351 (25)

More information

Sensitivity to sterile ν mixings at a ν Factory --Side business of a ν Factory --

Sensitivity to sterile ν mixings at a ν Factory --Side business of a ν Factory -- Sensitivity to sterile ν mixings at a ν Factory --Side business of a ν Factory -- Osamu Yasuda Tokyo Metropolitan University 009-1-18 @ Miami009 1 1. Introduction. Light sterile neutrinos 3. Summary 1.

More information

Neutrino oscillations: from an historical perspective to the present status

Neutrino oscillations: from an historical perspective to the present status Neutrino oscillations: from an historical perspective to the present status S Bilenky Joint Institute for Nuclear Research, Dubna, R-141980, Russia; TRIUMF 4004 Wesbrook Mall, Vancouver BC, V6T 2A3 Canada

More information

Neutrinos. Thanks to Ian Blockland and Randy Sobie for these slides. spin particle with no electric charge; weak isospin partners of charged leptons

Neutrinos. Thanks to Ian Blockland and Randy Sobie for these slides. spin particle with no electric charge; weak isospin partners of charged leptons Neutrinos Thanks to Ian Blockland and Randy Sobie for these slides spin particle with no electric charge; weak isospin partners of charged leptons observed in 193, in 1962 and in the 199s neutrino physics

More information

The Origin of Matter

The Origin of Matter The Origin of Matter ---- Leptogenesis ---- Tsutomu T. Yanagida (IPMU, Tokyo) Shoichi Sakata Centennial Symposium Energy Content of the Universe いいい From Wikipedia F FF Galaxy and Cluster of galaxies No

More information

Interactions/Weak Force/Leptons

Interactions/Weak Force/Leptons Interactions/Weak Force/Leptons Quantum Picture of Interactions Yukawa Theory Boson Propagator Feynman Diagrams Electromagnetic Interactions Renormalization and Gauge Invariance Weak and Electroweak Interactions

More information

Particle Physics: Neutrinos part I

Particle Physics: Neutrinos part I Particle Physics: Neutrinos part I José I. Crespo-Anadón Week 8: November 10, 2017 Columbia University Science Honors Program Course policies Attendance record counts Up to four absences Lateness or leaving

More information

NEUTRINOS. Concha Gonzalez-Garcia. San Feliu, June (Stony Brook-USA and IFIC-Valencia)

NEUTRINOS. Concha Gonzalez-Garcia. San Feliu, June (Stony Brook-USA and IFIC-Valencia) NEUTRINOS (Stony Brook-USA and IFIC-Valencia San Feliu, June 2004 Plan of Lectures I. Standard Neutrino Properties and Mass Terms (Beyond Standard II. Neutrino Oscillations III. The Data and Its Interpretation

More information

Neutrinos Lecture Introduction

Neutrinos Lecture Introduction Neutrinos Lecture 16 1 Introduction Neutrino physics is discussed in some detail for several reasons. In the first place, the physics is interesting and easily understood, yet it is representative of the

More information

Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector

Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector INFN - Sezione di Bologna, I-4017 Bologna, Italy E-mail: matteo.tenti@bo.infn.it The OPERA

More information

Recent Discoveries in Neutrino Physics

Recent Discoveries in Neutrino Physics Recent Discoveries in Neutrino Physics Experiments with Reactor Antineutrinos Karsten Heeger http://neutrino.physics.wisc.edu/ Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009 Standard Model and

More information

Interactions/Weak Force/Leptons

Interactions/Weak Force/Leptons Interactions/Weak Force/Leptons Quantum Picture of Interactions Yukawa Theory Boson Propagator Feynman Diagrams Electromagnetic Interactions Renormalization and Gauge Invariance Weak and Electroweak Interactions

More information

Non-zero Ue3, Leptogenesis in A4 Symmetry

Non-zero Ue3, Leptogenesis in A4 Symmetry Non-zero Ue3, Leptogenesis in A4 Symmetry 2 nd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry Y.H.Ahn (Academia Sinica) based on the paper with C.S.Kim and S. Oh 1 Outline

More information

arxiv:hep-ph/ v1 26 Jul 2006

arxiv:hep-ph/ v1 26 Jul 2006 Neutrino mass and baryogenesis arxiv:hep-ph/0607287v1 26 Jul 2006 D. Falcone Dipartimento di Scienze Fisiche, Università di Napoli, Via Cintia, Napoli, Italy A brief overview of the phenomenology related

More information

Cosmological constraints on the Sessaw Scale

Cosmological constraints on the Sessaw Scale Cosmological constraints on the Sessaw Scale Jacobo López-Pavón 50th Rencontres de Moriond EW La Thuile, Valle d'aosta (Italy) 14-21 March, 2015 Motivation Which is the simplest extension of the SM that

More information