Noisy Interactive Quantum Communication

Size: px
Start display at page:

Download "Noisy Interactive Quantum Communication"

Transcription

1 Noisy Interactive Quantum ommunication arxiv: Gilles rassard, shwin Nayak, lain Tapp, Dave Touchette and Falk Unger arcelona, QIP 2014 Noisy Interactive Quantum ommunication arcelona, QIP / 20

2 Problem Simulate highly interactive quantum protocols over noisy channels Positive communication rate Positive adversarial error rate U1 U3 lice Ψ ob U2 Noisy Interactive Quantum ommunication arcelona, QIP / 20

3 Problem Simulate highly interactive quantum protocols over noisy channels Positive communication rate Positive adversarial error rate U1 U3 Ψ lice Eve N N N ob U2 touchetd@iro.umontreal.ca Noisy Interactive Quantum ommunication arcelona, QIP / 20

4 Noiseless Interactive Quantum Protocols Well-studied: Quantum communication compleity 2 Models for computing classical f : X Y Z lice ob U1 Yao U2 y No Entanglement Quantum ommunication U3 Ψ leve-uhrman lice ob M1 Entanglement Eponential separations in communication compleity lassical vs. quantum N-rounds vs. N+1-rounds 0 M2 M3 y lassical ommunication touchetd@iro.umontreal.ca Noisy Interactive Quantum ommunication arcelona, QIP / 20

5 Noisy Quantum ommunication Well-studied for unidirectional data transmission lice Eve ob N Ψ E N N D Ψ? N k qudits n qudits n qudits k qudits n channels t errors Quantum information theory: Random noise, à la Shannon ommunication rate R = k/n Quantum coding theory: dversarial noise, à la Hamming Error rate δ = t/n touchetd@iro.umontreal.ca Noisy Interactive Quantum ommunication arcelona, QIP / 20

6 Noisy Interactive Quantum ommunication ommunication rate R = k/n Error rate δ = t/n U1 U3 E1 E3 Ψ lice ob U2 k qudits Ψ lice Eve ob E2 N N N n qudits t errors n channels Noiseless protocol Simulation protocol touchetd@iro.umontreal.ca Noisy Interactive Quantum ommunication arcelona, QIP / 20

7 Naive Strategy Encode each transmission into a QE U1 U3 lice E E E Ψ Eve N N N ob D D D U2 Worst case interaction: 1 qubit communication Random noise: communication rate 0 dversarial noise: tolerable error rate 0 lassical protocols: same problems but [Schulman 96] Simulation protocols with positive communication and error rates touchetd@iro.umontreal.ca Noisy Interactive Quantum ommunication arcelona, QIP / 20

8 Problems for Quantum Simulation lassical information can be copied and resent if destroyed by noise Yao model problem: no-cloning theorem leve-uhrman model: communication is classical Problem: quantum measurements are irreversible an we do better than naive (block coding) strategy? lice ob U1 Yao U2 y No Entanglement Quantum ommunication U3 Ψ leve-uhrman 0 lice ob M1 Entanglement M2 M3 y lassical ommunication touchetd@iro.umontreal.ca Noisy Interactive Quantum ommunication arcelona, QIP / 20

9 Noisy ommunication Models onsider 3 distinct noisy communication models Noisy quantum communication, no shared entanglement Noisy analogue to the Yao model Noisy classical communication, perfect shared entanglement Noisy analogue to the leve-uhrman model Noisy classical communication, noisy shared entanglement Noisy EPR pairs (Werner states) touchetd@iro.umontreal.ca Noisy Interactive Quantum ommunication arcelona, QIP / 20

10 Results Simulations in all 3 models Positive communication rates Yao model: O( 1 Q ) overhead over depolarizing channel leve-uhrman: O( 1 ) overhead over binary symmetric channel Tolerate positive adversarial error rates Yao model: 1 6 ɛ leve-uhrman model: 1 2 ɛ, optimal First interactive analogue of good quantum code touchetd@iro.umontreal.ca Noisy Interactive Quantum ommunication arcelona, QIP / 20

11 Results Noisy entanglement: Simulation for any non-separable Werner state leve-uhrman model: O( 1 ) overhead is optimal Yao model: O( 1 Q ) overhead is not Simulation for some Q = 0 depolarizing channel! touchetd@iro.umontreal.ca Noisy Interactive Quantum ommunication arcelona, QIP / 20

12 Main Ingredient : Teleportation Protocol Input: Ψ ell Measurement z EPR pair: Ψ lice ob Z X Output: Ψ State after ell measurement: X Z z ψ ob decodes with Z z X Obtains ±X + Z z+z ψ Noisy classical communication Pauli error on ψ touchetd@iro.umontreal.ca Noisy Interactive Quantum ommunication arcelona, QIP / 20

13 Solutions to Quantum Simulation Problems leve-uhrman model: Make everything coherent Measurements pseudo-measurements Yao model: Use teleportation to avoid losing quantum information Evolve sequence of noiseless unitaries Everything on joint register is a sequence of reversible operations lice ob U1 Yao U2 y No Entanglement Quantum ommunication U3 Ψ leve-uhrman 0 lice ob M1 Entanglement M2 M3 y lassical ommunication touchetd@iro.umontreal.ca Noisy Interactive Quantum ommunication arcelona, QIP / 20

14 Quantum Simulation Protocol Yao: To distribute EPR pairs, use tools from quantum coding theory For interaction, use tools from classical interactive coding an we use classical simulation protocols: No! lassical goal: lice and ob agree on transcript Here: ontains mostly random teleportation outcomes lice's output ob's output Noisy Interactive Quantum ommunication arcelona, QIP / 20

15 Tools for lassical Simulation Protocols Tree representation for communication protocols Partial Transcript: 100 Tree codes Online codes Self-healing property lueberry codes Randomized error detection codes lassical strategy: Simulate evolution in protocol tree Error go back to last agreement point Noisy Interactive Quantum ommunication arcelona, QIP / 20

16 Further Problems for Quantum Simulation For quantum protocols, no protocol tree to synchronize on an still synchronize on sequential structure of quantum protocol annot restart with a copy of previous state (no-cloning) Need to rewind unitaries, leading to more errors U1 U3 lice Ψ ob U2 touchetd@iro.umontreal.ca Noisy Interactive Quantum ommunication arcelona, QIP / 20

17 lassical Information Sent over Noisy hannel Teleportation measurement outcome : M, z M {0, 1} Teleportation decoding operation : D, z D {0, 1} Direction for evolution of noiseless protocol : M { 1, 0, +1} Inde of noiseless protocol unitary : j [n + 1] Implicit: jl = i<l 2M i + M l (+1 for ob) M=+1, j=15 D z D =11 U 15 U 15-1 lice ZX X ob XZ Z M z M =11 U 16 I touchetd@iro.umontreal.ca Noisy Interactive Quantum ommunication arcelona, QIP / 20

18 Eample Run of Simulation Protocol U 15 I I lice ZX X XZ X ob XZ Z X Z U 16 U 16-1 U 16 touchetd@iro.umontreal.ca Noisy Interactive Quantum ommunication arcelona, QIP / 20

19 onclusion : Summary ommunication compleity robust under noisy communication Tolerate maimal error in perfect shared entanglement model Requires new bound on tree codes Positive communication rates for some Q = 0 depolarizing channel Separation between standard and interactive quantum capacity touchetd@iro.umontreal.ca Noisy Interactive Quantum ommunication arcelona, QIP / 20

20 Further Research Directions daptation of classical results to quantum realm omputationally efficient protocols against adversarial noise High communication rates for low random noise Upper bound on interactive quantum capacity Improve tolerable error rate in quantum model Possibly by developing a fully quantum approach onstruction of quantum tree codes? Integration into larger fault-tolerant framework touchetd@iro.umontreal.ca Noisy Interactive Quantum ommunication arcelona, QIP / 20

Lecture 11 September 30, 2015

Lecture 11 September 30, 2015 PHYS 7895: Quantum Information Theory Fall 015 Lecture 11 September 30, 015 Prof. Mark M. Wilde Scribe: Mark M. Wilde This document is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike

More information

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139 Quantum Error Correcting Codes and Quantum Cryptography Peter Shor M.I.T. Cambridge, MA 02139 1 We start out with two processes which are fundamentally quantum: superdense coding and teleportation. Superdense

More information

5. Communication resources

5. Communication resources 5. Communication resources Classical channel Quantum channel Entanglement How does the state evolve under LOCC? Properties of maximally entangled states Bell basis Quantum dense coding Quantum teleportation

More information

Lecture 6: Quantum error correction and quantum capacity

Lecture 6: Quantum error correction and quantum capacity Lecture 6: Quantum error correction and quantum capacity Mark M. Wilde The quantum capacity theorem is one of the most important theorems in quantum hannon theory. It is a fundamentally quantum theorem

More information

Instantaneous Nonlocal Measurements

Instantaneous Nonlocal Measurements Instantaneous Nonlocal Measurements Li Yu Department of Physics, Carnegie-Mellon University, Pittsburgh, PA July 22, 2010 References Entanglement consumption of instantaneous nonlocal quantum measurements.

More information

Entanglement and Quantum Teleportation

Entanglement and Quantum Teleportation Entanglement and Quantum Teleportation Stephen Bartlett Centre for Advanced Computing Algorithms and Cryptography Australian Centre of Excellence in Quantum Computer Technology Macquarie University, Sydney,

More information

Zero-Knowledge Against Quantum Attacks

Zero-Knowledge Against Quantum Attacks Zero-Knowledge Against Quantum Attacks John Watrous Department of Computer Science University of Calgary January 16, 2006 John Watrous (University of Calgary) Zero-Knowledge Against Quantum Attacks QIP

More information

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto Quantum error correction on a hybrid spin system Christoph Fischer, Andrea Rocchetto Christoph Fischer, Andrea Rocchetto 17/05/14 1 Outline Error correction: why we need it, how it works Experimental realization

More information

D.5 Quantum error correction

D.5 Quantum error correction D. QUANTUM ALGORITHMS 157 Figure III.34: E ects of decoherence on a qubit. On the left is a qubit yi that is mostly isoloated from its environment i. Ontheright,aweakinteraction between the qubit and the

More information

arxiv:quant-ph/ v2 17 Sep 2002

arxiv:quant-ph/ v2 17 Sep 2002 Proof of security of quantum key distribution with two-way classical communications arxiv:quant-ph/0105121 v2 17 Sep 2002 Daniel Gottesman EECS: Computer Science Division University of California Berkeley,

More information

Quantum Information Theory and Cryptography

Quantum Information Theory and Cryptography Quantum Information Theory and Cryptography John Smolin, IBM Research IPAM Information Theory A Mathematical Theory of Communication, C.E. Shannon, 1948 Lies at the intersection of Electrical Engineering,

More information

Belief propagation decoding of quantum channels by passing quantum messages

Belief propagation decoding of quantum channels by passing quantum messages Belief propagation decoding of quantum channels by passing quantum messages arxiv:67.4833 QIP 27 Joseph M. Renes lempelziv@flickr To do research in quantum information theory, pick a favorite text on classical

More information

Bounds on Quantum codes

Bounds on Quantum codes Bounds on Quantum codes No go we cannot encode too many logical qubits in too few physical qubits and hope to correct for many errors. Some simple consequences are given by the quantum Hamming bound and

More information

Tutorial on Quantum Computing. Vwani P. Roychowdhury. Lecture 1: Introduction

Tutorial on Quantum Computing. Vwani P. Roychowdhury. Lecture 1: Introduction Tutorial on Quantum Computing Vwani P. Roychowdhury Lecture 1: Introduction 1 & ) &! # Fundamentals Qubits A single qubit is a two state system, such as a two level atom we denote two orthogonal states

More information

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance.

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance. 9. Distance measures 9.1 Classical information measures How similar/close are two probability distributions? Trace distance Fidelity Example: Flipping two coins, one fair one biased Head Tail Trace distance

More information

Example: sending one bit of information across noisy channel. Effects of the noise: flip the bit with probability p.

Example: sending one bit of information across noisy channel. Effects of the noise: flip the bit with probability p. Lecture 20 Page 1 Lecture 20 Quantum error correction Classical error correction Modern computers: failure rate is below one error in 10 17 operations Data transmission and storage (file transfers, cell

More information

Quantum Teleportation Pt. 1

Quantum Teleportation Pt. 1 Quantum Teleportation Pt. 1 PHYS 500 - Southern Illinois University April 17, 2018 PHYS 500 - Southern Illinois University Quantum Teleportation Pt. 1 April 17, 2018 1 / 13 Types of Communication In the

More information

Transmitting and Hiding Quantum Information

Transmitting and Hiding Quantum Information 2018/12/20 @ 4th KIAS WORKSHOP on Quantum Information and Thermodynamics Transmitting and Hiding Quantum Information Seung-Woo Lee Quantum Universe Center Korea Institute for Advanced Study (KIAS) Contents

More information

Exponential Separation of Quantum Communication and Classical Information

Exponential Separation of Quantum Communication and Classical Information Exponential Separation of Quantum Communication and Classical Information Dave Touchette IQC and C&O, University of Waterloo, and Perimeter Institute for Theoretical Physics jt. work with Anurag Anshu

More information

Other Topics in Quantum Information

Other Topics in Quantum Information p. 1/23 Other Topics in Quantum Information In a course like this there is only a limited time, and only a limited number of topics can be covered. Some additional topics will be covered in the class projects.

More information

Efficient Probabilistically Checkable Debates

Efficient Probabilistically Checkable Debates Efficient Probabilistically Checkable Debates Andrew Drucker MIT Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 1/53 Polynomial-time Debates Given: language L, string x; Player 1 argues

More information

Quantum cryptography. Quantum cryptography has a potential to be cryptography of 21 st century. Part XIII

Quantum cryptography. Quantum cryptography has a potential to be cryptography of 21 st century. Part XIII Quantum cryptography Part XIII Quantum cryptography Quantum cryptography has a potential to be cryptography of st century. An important new feature of quantum cryptography is that security of quantum cryptographic

More information

Single qubit + CNOT gates

Single qubit + CNOT gates Lecture 6 Universal quantum gates Single qubit + CNOT gates Single qubit and CNOT gates together can be used to implement an arbitrary twolevel unitary operation on the state space of n qubits. Suppose

More information

Unconditionally secure deviceindependent

Unconditionally secure deviceindependent Unconditionally secure deviceindependent quantum key distribution with only two devices Roger Colbeck (ETH Zurich) Based on joint work with Jon Barrett and Adrian Kent Physical Review A 86, 062326 (2012)

More information

Quantum Teleportation Pt. 3

Quantum Teleportation Pt. 3 Quantum Teleportation Pt. 3 PHYS 500 - Southern Illinois University March 7, 2017 PHYS 500 - Southern Illinois University Quantum Teleportation Pt. 3 March 7, 2017 1 / 9 A Bit of History on Teleportation

More information

IBM quantum experience: Experimental implementations, scope, and limitations

IBM quantum experience: Experimental implementations, scope, and limitations IBM quantum experience: Experimental implementations, scope, and limitations Plan of the talk IBM Quantum Experience Introduction IBM GUI Building blocks for IBM quantum computing Implementations of various

More information

Quantum Cryptography. Areas for Discussion. Quantum Cryptography. Photons. Photons. Photons. MSc Distributed Systems and Security

Quantum Cryptography. Areas for Discussion. Quantum Cryptography. Photons. Photons. Photons. MSc Distributed Systems and Security Areas for Discussion Joseph Spring Department of Computer Science MSc Distributed Systems and Security Introduction Photons Quantum Key Distribution Protocols BB84 A 4 state QKD Protocol B9 A state QKD

More information

Problem Set: TT Quantum Information

Problem Set: TT Quantum Information Problem Set: TT Quantum Information Basics of Information Theory 1. Alice can send four messages A, B, C, and D over a classical channel. She chooses A with probability 1/, B with probability 1/4 and C

More information

Gilles Brassard. Université de Montréal

Gilles Brassard. Université de Montréal Gilles Brassard Université de Montréal Gilles Brassard Université de Montréal VOLUME 76, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 29 JANUARY 1996 Purification of Noisy Entanglement and Faithful

More information

Quantum Computing with Very Noisy Gates

Quantum Computing with Very Noisy Gates Quantum Computing with Very Noisy Gates Produced with pdflatex and xfig Fault-tolerance thresholds in theory and practice. Available techniques for fault tolerance. A scheme based on the [[4, 2, 2]] code.

More information

Experimental demonstrations of teleportation of photons. Manuel Chinotti and Nikola Đorđević

Experimental demonstrations of teleportation of photons. Manuel Chinotti and Nikola Đorđević Experimental demonstrations of teleportation of photons Manuel Chinotti and Nikola Đorđević Outline Quantum teleportation (QT) protocol. Laboratory experimental demonstration: Bouwmeester at al. (1997).

More information

Entanglement Manipulation

Entanglement Manipulation Entanglement Manipulation Steven T. Flammia 1 1 Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5 Canada (Dated: 22 March 2010) These are notes for my RIT tutorial lecture at the

More information

A Tutorial on Quantum Error Correction

A Tutorial on Quantum Error Correction Proceedings of the International School of Physics Enrico Fermi, course CLXII, Quantum Computers, Algorithms and Chaos, G. Casati, D. L. Shepelyansky and P. Zoller, eds., pp. 1 32 (IOS Press, Amsterdam

More information

Squashed entanglement

Squashed entanglement Squashed Entanglement based on Squashed Entanglement - An Additive Entanglement Measure (M. Christandl, A. Winter, quant-ph/0308088), and A paradigm for entanglement theory based on quantum communication

More information

Quantum rate distortion, reverse Shannon theorems, and source-channel separation

Quantum rate distortion, reverse Shannon theorems, and source-channel separation Quantum rate distortion, reverse Shannon theorems, and source-channel separation ilanjana Datta, Min-Hsiu Hsieh, Mark Wilde (1) University of Cambridge,U.K. (2) McGill University, Montreal, Canada Classical

More information

Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters)

Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters) Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters) Rahul Jain U. Waterloo and Institute for Quantum Computing, rjain@cs.uwaterloo.ca entry editor: Andris Ambainis

More information

An Introduction to Quantum Information. By Aditya Jain. Under the Guidance of Dr. Guruprasad Kar PAMU, ISI Kolkata

An Introduction to Quantum Information. By Aditya Jain. Under the Guidance of Dr. Guruprasad Kar PAMU, ISI Kolkata An Introduction to Quantum Information By Aditya Jain Under the Guidance of Dr. Guruprasad Kar PAMU, ISI Kolkata 1. Introduction Quantum information is physical information that is held in the state of

More information

Cryptography CS 555. Topic 25: Quantum Crpytography. CS555 Topic 25 1

Cryptography CS 555. Topic 25: Quantum Crpytography. CS555 Topic 25 1 Cryptography CS 555 Topic 25: Quantum Crpytography CS555 Topic 25 1 Outline and Readings Outline: What is Identity Based Encryption Quantum cryptography Readings: CS555 Topic 25 2 Identity Based Encryption

More information

Local cloning of entangled states

Local cloning of entangled states Local cloning of entangled states Vlad Gheorghiu Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. March 16, 2010 Vlad Gheorghiu (CMU) Local cloning of entangled states March

More information

What is a quantum computer? Quantum Architecture. Quantum Mechanics. Quantum Superposition. Quantum Entanglement. What is a Quantum Computer (contd.

What is a quantum computer? Quantum Architecture. Quantum Mechanics. Quantum Superposition. Quantum Entanglement. What is a Quantum Computer (contd. What is a quantum computer? Quantum Architecture by Murat Birben A quantum computer is a device designed to take advantage of distincly quantum phenomena in carrying out a computational task. A quantum

More information

Limitations on transversal gates

Limitations on transversal gates Limitations on transversal gates Michael Newman 1 and Yaoyun Shi 1,2 University of Michigan 1, Alibaba Group 2 February 6, 2018 Quantum fault-tolerance Quantum fault-tolerance Quantum fault-tolerance Quantum

More information

Quantum Algorithms for Leader Election Problem in Distributed Systems

Quantum Algorithms for Leader Election Problem in Distributed Systems Quantum Algorithms for Leader Election Problem in Distributed Systems Pradeep Sarvepalli pradeep@cs.tamu.edu Department of Computer Science, Texas A&M University Quantum Algorithms for Leader Election

More information

One-Way Quantum Computing Andrew Lopez. A commonly used model in the field of quantum computing is the Quantum

One-Way Quantum Computing Andrew Lopez. A commonly used model in the field of quantum computing is the Quantum One-Way Quantum Computing Andrew Lopez A commonly used model in the field of quantum computing is the Quantum Circuit Model. The Circuit Model can be thought of as a quantum version of classical computing,

More information

Quantum Gates, Circuits & Teleportation

Quantum Gates, Circuits & Teleportation Chapter 3 Quantum Gates, Circuits & Teleportation Unitary Operators The third postulate of quantum physics states that the evolution of a quantum system is necessarily unitary. Geometrically, a unitary

More information

Shannon s noisy-channel theorem

Shannon s noisy-channel theorem Shannon s noisy-channel theorem Information theory Amon Elders Korteweg de Vries Institute for Mathematics University of Amsterdam. Tuesday, 26th of Januari Amon Elders (Korteweg de Vries Institute for

More information

A Genetic Algorithm to Analyze the Security of Quantum Cryptographic Protocols

A Genetic Algorithm to Analyze the Security of Quantum Cryptographic Protocols A Genetic Algorithm to Analyze the Security of Quantum Cryptographic Protocols Walter O. Krawec walter.krawec@gmail.com Iona College Computer Science Department New Rochelle, NY USA IEEE WCCI July, 2016

More information

Information Theory Meets Quantum Physics

Information Theory Meets Quantum Physics Information Theory Meets Quantum Physics The magic of wave dynamics Apoorva Patel Centre for High Energy Physics Indian Institute of Science, Bangalore 30 April 2016 (Commemorating the 100th birthday of

More information

Introduction to Quantum Error Correction

Introduction to Quantum Error Correction Introduction to Quantum Error Correction E. Knill, R. Laflamme, A. Ashikhmin, H. Barnum, L. Viola and W. H. Zurek arxiv:quant-ph/007170v1 30 Jul 00 Contents February 1, 008 1 Concepts and Examples 4 1.1

More information

arxiv: v2 [quant-ph] 19 Jul 2018

arxiv: v2 [quant-ph] 19 Jul 2018 Multiqubit and multilevel quantum reinforcement learning with quantum technologies F. A. Cárdenas-López,2,*, L. Lamata 3, J. C. Retamal,2, E. Solano 3,4,5 arxiv:709.07848v2 [quant-ph] 9 Jul 208 Departamento

More information

Noise-resilient quantum circuits

Noise-resilient quantum circuits Noise-resilient quantum circuits Isaac H. Kim IBM T. J. Watson Research Center Yorktown Heights, NY Oct 10th, 2017 arxiv:1703.02093, arxiv:1703.00032, arxiv:17??.?????(w. Brian Swingle) Why don t we have

More information

Exploring finite-dimensional Hilbert spaces by Quantum Optics. PhD Candidate: Andrea Chiuri PhD Supervisor: Prof. Paolo Mataloni

Exploring finite-dimensional Hilbert spaces by Quantum Optics. PhD Candidate: Andrea Chiuri PhD Supervisor: Prof. Paolo Mataloni Exploring finite-dimensional Hilbert spaces by Quantum Optics PhD Candidate: PhD Supervisor: Prof. Paolo Mataloni Outline t Introduction to Quantum Optics t Entanglement and Hyperentanglement t Some Experiments

More information

Fourier analysis of boolean functions in quantum computation

Fourier analysis of boolean functions in quantum computation Fourier analysis of boolean functions in quantum computation Ashley Montanaro Centre for Quantum Information and Foundations, Department of Applied Mathematics and Theoretical Physics, University of Cambridge

More information

Entanglement and information

Entanglement and information Ph95a lecture notes for 0/29/0 Entanglement and information Lately we ve spent a lot of time examining properties of entangled states such as ab è 2 0 a b è Ý a 0 b è. We have learned that they exhibit

More information

More advanced codes 0 1 ( , 1 1 (

More advanced codes 0 1 ( , 1 1 ( p. 1/24 More advanced codes The Shor code was the first general-purpose quantum error-correcting code, but since then many others have been discovered. An important example, discovered independently of

More information

Sending Quantum Information with Zero Capacity Channels

Sending Quantum Information with Zero Capacity Channels Sending Quantum Information with Zero Capacity Channels Graeme Smith IM Research KITP Quantum Information Science Program November 5, 2009 Joint work with Jon and John Noisy Channel Capacity X N Y p(y

More information

Key distillation from quantum channels using two-way communication protocols

Key distillation from quantum channels using two-way communication protocols Key distillation from quantum channels using two-way communication protocols Joonwoo Bae and Antonio Acín ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona,

More information

Entanglement-Assisted Capacity of a Quantum Channel and the Reverse Shannon Theorem

Entanglement-Assisted Capacity of a Quantum Channel and the Reverse Shannon Theorem IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 10, OCTOBER 2002 2637 Entanglement-Assisted Capacity of a Quantum Channel the Reverse Shannon Theorem Charles H. Bennett, Peter W. Shor, Member, IEEE,

More information

Entropy Accumulation in Device-independent Protocols

Entropy Accumulation in Device-independent Protocols Entropy Accumulation in Device-independent Protocols QIP17 Seattle January 19, 2017 arxiv: 1607.01796 & 1607.01797 Rotem Arnon-Friedman, Frédéric Dupuis, Omar Fawzi, Renato Renner, & Thomas Vidick Outline

More information

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36 QUANTUM INFORMATION - THE NO-HIDING THEOREM Arun K Pati akpati@iopb.res.in Instititute of Physics, Bhubaneswar-751005, Orissa, INDIA and Th. P. D, BARC, Mumbai-400085, India QUANTUM INFORMATION -THE NO-HIDING

More information

Converse bounds for private communication over quantum channels

Converse bounds for private communication over quantum channels Converse bounds for private communication over quantum channels Mark M. Wilde (LSU) joint work with Mario Berta (Caltech) and Marco Tomamichel ( Univ. Sydney + Univ. of Technology, Sydney ) arxiv:1602.08898

More information

Interactive Channel Capacity

Interactive Channel Capacity Electronic Colloquium on Computational Complexity, Report No. 1 (2013 Interactive Channel Capacity Gillat Kol Ran Raz Abstract We study the interactive channel capacity of an ɛ-noisy channel. The interactive

More information

Describing Quantum Circuits with Systolic Arrays

Describing Quantum Circuits with Systolic Arrays escribing Quantum Circuits with Systolic Arrays Aasavari have and Eurípides Montagne School of Electrical Engineering and Computer Science University of Central Florida, Orlando, FL E-mail:{aasavari, eurip}@cs.ucf.edu

More information

Quantum Communication Complexity

Quantum Communication Complexity Quantum Communication Complexity Ronald de Wolf Communication complexity has been studied extensively in the area of theoretical computer science and has deep connections with seemingly unrelated areas,

More information

Physics is becoming too difficult for physicists. David Hilbert (mathematician)

Physics is becoming too difficult for physicists. David Hilbert (mathematician) Physics is becoming too difficult for physicists. David Hilbert (mathematician) Simple Harmonic Oscillator Credit: R. Nave (HyperPhysics) Particle 2 X 2-Particle wave functions 2 Particles, each moving

More information

Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel

Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel Kiyoshi Tamaki *Perimeter Institute for Theoretical Physics Collaboration with Masato Koashi

More information

PHYS 508 (2015-1) Final Exam January 27, Wednesday.

PHYS 508 (2015-1) Final Exam January 27, Wednesday. PHYS 508 (2015-1) Final Exam January 27, Wednesday. Q1. Scattering with identical particles The quantum statistics have some interesting consequences for the scattering of identical particles. This is

More information

Quantum Error Correction Codes-From Qubit to Qudit. Xiaoyi Tang, Paul McGuirk

Quantum Error Correction Codes-From Qubit to Qudit. Xiaoyi Tang, Paul McGuirk Quantum Error Correction Codes-From Qubit to Qudit Xiaoyi Tang, Paul McGuirk Outline Introduction to quantum error correction codes (QECC) Qudits and Qudit Gates Generalizing QECC to Qudit computing Need

More information

Lecture 6: QUANTUM CIRCUITS

Lecture 6: QUANTUM CIRCUITS 1. Simple Quantum Circuits Lecture 6: QUANTUM CIRCUITS We ve already mentioned the term quantum circuit. Now it is the time to provide a detailed look at quantum circuits because the term quantum computer

More information

Lecture 4: Postulates of quantum mechanics

Lecture 4: Postulates of quantum mechanics Lecture 4: Postulates of quantum mechanics Rajat Mittal IIT Kanpur The postulates of quantum mechanics provide us the mathematical formalism over which the physical theory is developed. For people studying

More information

arxiv:quant-ph/ v1 13 Jan 2003

arxiv:quant-ph/ v1 13 Jan 2003 Deterministic Secure Direct Communication Using Ping-pong protocol without public channel Qing-yu Cai Laboratory of Magentic Resonance and Atom and Molecular Physics, Wuhan Institute of Mathematics, The

More information

Time Reversal and Exchange Symmetries of Unitary Gate Capacities

Time Reversal and Exchange Symmetries of Unitary Gate Capacities Time Reversal and Exchange Symmetries of Unitary Gate Capacities The MIT Faculty has made this article openly available Please share how this access benefits you Your story matters Citation As Published

More information

arxiv: v5 [quant-ph] 28 Jan 2015

arxiv: v5 [quant-ph] 28 Jan 2015 Long-distance quantum communication over noisy networks without long-time quantum memory Paweł Mazurek 1, Andrzej Grudka 2, Michał Horodecki 1, Paweł Horodecki 3, Justyna Łodyga 2, Łukasz Pankowski 1 and

More information

Quantum key distribution for the lazy and careless

Quantum key distribution for the lazy and careless Quantum key distribution for the lazy and careless Noisy preprocessing and twisted states Joseph M. Renes Theoretical Quantum Physics, Institut für Angewandte Physik Technische Universität Darmstadt Center

More information

Quantum Information Types

Quantum Information Types qitd181 Quantum Information Types Robert B. Griffiths Version of 6 February 2012 References: R. B. Griffiths, Types of Quantum Information, Phys. Rev. A 76 (2007) 062320; arxiv:0707.3752 Contents 1 Introduction

More information

*WILEY- Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co.

*WILEY- Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. Joachim Stolze and Dieter Suter Quantum Computing A Short Course from Theory to Experiment Second, Updated and Enlarged Edition *WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XIII 1 Introduction

More information

Quantum Computing. Quantum Computing. Sushain Cherivirala. Bits and Qubits

Quantum Computing. Quantum Computing. Sushain Cherivirala. Bits and Qubits Quantum Computing Bits and Qubits Quantum Computing Sushain Cherivirala Quantum Gates Measurement of Qubits More Quantum Gates Universal Computation Entangled States Superdense Coding Measurement Revisited

More information

Quantum Error Correction Codes - From Qubit to Qudit

Quantum Error Correction Codes - From Qubit to Qudit Quantum Error Correction Codes - From Qubit to Qudit Xiaoyi Tang Paul McGuirk December 7, 005 1 Introduction Quantum computation (QC), with inherent parallelism from the superposition principle of quantum

More information

5th March Unconditional Security of Quantum Key Distribution With Practical Devices. Hermen Jan Hupkes

5th March Unconditional Security of Quantum Key Distribution With Practical Devices. Hermen Jan Hupkes 5th March 2004 Unconditional Security of Quantum Key Distribution With Practical Devices Hermen Jan Hupkes The setting Alice wants to send a message to Bob. Channel is dangerous and vulnerable to attack.

More information

arxiv:quant-ph/ v1 18 Apr 2000

arxiv:quant-ph/ v1 18 Apr 2000 Proceedings of Symposia in Applied Mathematics arxiv:quant-ph/0004072 v1 18 Apr 2000 An Introduction to Quantum Error Correction Daniel Gottesman Abstract. Quantum states are very delicate, so it is likely

More information

A Survey on Quantum Channel Capacities

A Survey on Quantum Channel Capacities 1 A Survey on Quantum Channel Capacities Laszlo Gyongyosi, 1,2,3, Member, IEEE, Sandor Imre, 2 Senior Member, IEEE, and Hung Viet Nguyen, 1 Member, IEEE 1 School of Electronics and Computer Science, University

More information

APPLICATIONS. Quantum Communications

APPLICATIONS. Quantum Communications SOFT PROCESSING TECHNIQUES FOR QUANTUM KEY DISTRIBUTION APPLICATIONS Marina Mondin January 27, 2012 Quantum Communications In the past decades, the key to improving computer performance has been the reduction

More information

Classical Verification of Quantum Computations

Classical Verification of Quantum Computations Classical Verification of Quantum Computations Urmila Mahadev UC Berkeley September 12, 2018 Classical versus Quantum Computers Can a classical computer verify a quantum computation? Classical output (decision

More information

CS257 Discrete Quantum Computation

CS257 Discrete Quantum Computation CS57 Discrete Quantum Computation John E Savage April 30, 007 Lect 11 Quantum Computing c John E Savage Classical Computation State is a vector of reals; e.g. Booleans, positions, velocities, or momenta.

More information

An Introduction. Dr Nick Papanikolaou. Seminar on The Future of Cryptography The British Computer Society 17 September 2009

An Introduction. Dr Nick Papanikolaou. Seminar on The Future of Cryptography The British Computer Society 17 September 2009 An Dr Nick Papanikolaou Research Fellow, e-security Group International Digital Laboratory University of Warwick http://go.warwick.ac.uk/nikos Seminar on The Future of Cryptography The British Computer

More information

Cryptography in a quantum world

Cryptography in a quantum world T School of Informatics, University of Edinburgh 25th October 2016 E H U N I V E R S I T Y O H F R G E D I N B U Outline What is quantum computation Why should we care if quantum computers are constructed?

More information

Quantum information and quantum computing

Quantum information and quantum computing Middle East Technical University, Department of Physics January 7, 009 Outline Measurement 1 Measurement 3 Single qubit gates Multiple qubit gates 4 Distinguishability 5 What s measurement? Quantum measurement

More information

Quantum Information Processing and Diagrams of States

Quantum Information Processing and Diagrams of States Quantum Information and Diagrams of States September 17th 2009, AFSecurity Sara Felloni sara@unik.no / sara.felloni@iet.ntnu.no Quantum Hacking Group: http://www.iet.ntnu.no/groups/optics/qcr/ UNIK University

More information

THE most fundamental situation in communication theory

THE most fundamental situation in communication theory Optimal quantum source coding with quantum side information at the encoder and decoder Jon Yard, Igor Deveta arxiv:0706.907v [quant-ph] 0 Jun 007 bstract onsider many instances of an arbitrary quadripartite

More information

10 - February, 2010 Jordan Myronuk

10 - February, 2010 Jordan Myronuk 10 - February, 2010 Jordan Myronuk Classical Cryptography EPR Paradox] The need for QKD Quantum Bits and Entanglement No Cloning Theorem Polarization of Photons BB84 Protocol Probability of Qubit States

More information

The controlled-not (CNOT) gate exors the first qubit into the second qubit ( a,b. a,a + b mod 2 ). Thus it permutes the four basis states as follows:

The controlled-not (CNOT) gate exors the first qubit into the second qubit ( a,b. a,a + b mod 2 ). Thus it permutes the four basis states as follows: C/CS/Phys C9 Qubit gates, EPR, ell s inequality 9/8/05 Fall 005 Lecture 4 Two-qubit gate: COT The controlled-not (COT) gate exors the first qubit into the second qubit ( a,b a,a b = a,a + b mod ). Thus

More information

Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable,

Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable, Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable, A qubit: a sphere of values, which is spanned in projective sense by two quantum

More information

Seminar 1. Introduction to Quantum Computing

Seminar 1. Introduction to Quantum Computing Seminar 1 Introduction to Quantum Computing Before going in I am also a beginner in this field If you are interested, you can search more using: Quantum Computing since Democritus (Scott Aaronson) Quantum

More information

Qudit versions of the π/8 gate: Applications in fault-tolerant QC and nonlocality

Qudit versions of the π/8 gate: Applications in fault-tolerant QC and nonlocality Preliminaries Mathematical Structure Geometry Applications Qudit versions of the π/8 gate: Applications in fault-tolerant QC and nonlocality Mark Howard1 & Jiri Vala1,2 1 National 2 Dublin October 2012

More information

6. Quantum error correcting codes

6. Quantum error correcting codes 6. Quantum error correcting codes Error correcting codes (A classical repetition code) Preserving the superposition Parity check Phase errors CSS 7-qubit code (Steane code) Too many error patterns? Syndrome

More information

Quantum sampling of mixed states

Quantum sampling of mixed states Quantum sampling of mixed states Philippe Lamontagne January 7th Philippe Lamontagne Quantum sampling of mixed states January 7th 1 / 9 The setup Philippe Lamontagne Quantum sampling of mixed states January

More information

QUANTUM HOMOMORPHIC ENCRYPTION FOR POLYNOMIAL-SIZED CIRCUITS

QUANTUM HOMOMORPHIC ENCRYPTION FOR POLYNOMIAL-SIZED CIRCUITS QUANTUM HOMOMORPHIC ENCRYPTION FOR POLYNOMIAL-SIZED CIRCUITS Florian Speelman (joint work with Yfke Dulek and Christian Schaffner) http://arxiv.org/abs/1603.09717 QIP 2017, Seattle, Washington, Monday

More information

Port-based teleportation and its applications

Port-based teleportation and its applications 2 QUATUO Port-based teleportation and its applications Satoshi Ishizaka Graduate School of Integrated Arts and Sciences Hiroshima University Collaborator: Tohya Hiroshima (ERATO-SORST) Outline Port-based

More information

A Piggybank Protocol for Quantum Cryptography

A Piggybank Protocol for Quantum Cryptography Piggybank Protocol for Quantum Cryptography Navya Chodisetti bstract This paper presents a quantum mechanical version of the piggy-bank cryptography protocol. The basic piggybank cryptography idea is to

More information

Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. KGaA

Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. KGaA Joachim Stolze and Dieter Suter Quantum Computing A Short Course from Theory to Experiment Second, Updated and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Preface XIII 1 Introduction and

More information

A Study of Topological Quantum Error Correcting Codes Part I: From Classical to Quantum ECCs

A Study of Topological Quantum Error Correcting Codes Part I: From Classical to Quantum ECCs A Study of Topological Quantum Error Correcting Codes Part I: From Classical to Quantum ECCs Preetum Nairan preetum@bereley.edu Mar 3, 05 Abstract This survey aims to highlight some interesting ideas in

More information