In Search of Lost Thermodynamics. Erik Curiel

Size: px
Start display at page:

Download "In Search of Lost Thermodynamics. Erik Curiel"

Transcription

1 In Search of Lost Thermodynamics Erik Curiel Munich Center For Mathematical Philosophy Ludwig-Maximilians-Universität and Black Hole Initiative Harvard University Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 1 / 35

2 How Thermodynamical Are Black Holes? Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 2 / 35

3 A LOT Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 3 / 35

4 Outline 1 The Problem 2 Wald s Way 3 In the Shadow of Young QFT-CST in Flower 4 Planck s Way 5 Sodom and Gomorrah 6 Thermodynamics Regained Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 4 / 35

5 The Problem 1 The Problem 2 Wald s Way 3 In the Shadow of Young QFT-CST in Flower 4 Planck s Way 5 Sodom and Gomorrah 6 Thermodynamics Regained Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 5 / 35

6 The Problem PROBLEMS: 1 zeroth law 2 Hawking radiation not from internal degrees of freedom, but external scattering field 3 only reason for entropy is to save Second Law, but we don t think that s fundamental anyway I ll consider only first problem Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 6 / 35

7 Wald s Way 1 The Problem 2 Wald s Way 3 In the Shadow of Young QFT-CST in Flower 4 Planck s Way 5 Sodom and Gomorrah 6 Thermodynamics Regained Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 7 / 35

8 Wald s Way Kerr Black Holes region of no escape (event horizon) asymptotically flat: isolated system stationary (asymptotic time-translation symmetry): in equilibrium rotational symmetry: has angular momentum zero electric charge no hair : characterized by mass, angular momentum, electric charge like a thermodynamical system (and a fundamental particle!) (Hayward s dynamical trapping horizons are fascinating, but beyond scope of this talk) Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 8 / 35

9 Wald s Way Thermodynamical Objects? late 1960s Wheeler poses fundamental puzzles about black holes and the Second Law of Thermodynamics 1970 Penrose shows how to extract energy; Hawking proves Area Theorem; Christodoulou characterizes irreducible mass, defines reversible and irreversible processes; Geroch s infamous Gedankenexperiment Bekenstein proposes entropy proportional to surface area, formulates Generalized Second Law 1973 Bardeen, Carter and Hawking prove four Laws of Black-Hole Mechanics; most think analogy with thermodynamics purely formal using quantum effects, Hawking shows black holes radiate like perfect black bodies: after brief resistance, most now think black holes are true thermodynamical objects Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 9 / 35

10 Wald s Way The Status of the Analogy? A purely formal analogy? Or are black holes truly thermodynamical objects? Are the black-hole laws the laws of thermodynamics extended to cover black holes? Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 10 / 35

11 Wald s Way Orthodoxy: Yes! Hawking radiation justifies the claim that κ is a physical temperature the postulated validity of the Generalized Second Law justifies the claim that A is a physical entropy (N.b.: black-hole entropy is NOT entropy of Hawking radiation, and is not based on it!) Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 11 / 35

12 In the Shadow of Young QFT-CST in Flower 1 The Problem 2 Wald s Way 3 In the Shadow of Young QFT-CST in Flower 4 Planck s Way 5 Sodom and Gomorrah 6 Thermodynamics Regained Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 12 / 35

13 In the Shadow of Young QFT-CST in Flower Philosophical Memory and the Conceptual Identity of Thermodynamics concepts, principles, and relations among them get modified in philosophically rich ways in extension to new framework new avenues to attack old problems Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 13 / 35

14 In the Shadow of Young QFT-CST in Flower Scientific Memory and the Physical Identity of Thermodynamics delineate what of standard thermodynamics black holes do and do not satisfy constraints on form of underlying statistical theory (quantum gravity?) Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 14 / 35

15 Planck s Way 1 The Problem 2 Wald s Way 3 In the Shadow of Young QFT-CST in Flower 4 Planck s Way 5 Sodom and Gomorrah 6 Thermodynamics Regained Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 15 / 35

16 Planck s Way Fundamental Principles and Features of Standard Thermodynamics not just four laws, but also: state space of equilibrium states temperature as mediator/measure of physical couplings classification of processes as adiabatic, reversible, and quasi-static important conjugacy relations between intensive and extensive variables additivity of entropy equilibrium states maximize entropy and minimize free energy the Clausius and Kelvin Postulates... Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 16 / 35

17 Planck s Way Extending Thermodynamics into New Fields How to Decide Whether Blackbody Radiation Is Thermodynamical? need Gibbsian heat term to save First Law? analogue of temperature physically couples in right way to ordinary thermodynamical systems? violations of Second Law without entropy of blackbody radiation (e.g., perpetuum mobile of 2nd kind: Clausius and Kelvin Postulates)? analogues of as much of the rest as possible... Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 17 / 35

18 Planck s Way THEN... blackbody radiation is real thermodynamical system BUT... differences point to need to modify statistical grounding, and place constraints on how to do it Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 18 / 35

19 Planck s Way can we do same for black holes? Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 19 / 35

20 Sodom and Gomorrah 1 The Problem 2 Wald s Way 3 In the Shadow of Young QFT-CST in Flower 4 Planck s Way 5 Sodom and Gomorrah 6 Thermodynamics Regained Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 20 / 35

21 Sodom and Gomorrah Zeroth Law Thermodynamics The temperature T is constant throughout a body in thermal equilibrium. Black Holes The surface gravity κ is constant over the event horizon of a stationary black hole. Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 21 / 35

22 Sodom and Gomorrah REAL Zeroth Law Two bodies in equilibrium with a third are in equilibrium with each other. Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 22 / 35

23 Sodom and Gomorrah Fundamental Role of Transitivity construction of state space of equilibrium states state-function of intensive quantity physically identified as temperature equilibrium implies constancy of temperature temperature as mediator and measure of thermal coupling definition of entropy, its additivity characterization of processes as adiabatic, reversible, and quasi-static conjugacy of intensive and extensive quantities entropy maximization, free-energy minimization Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 23 / 35

24 Sodom and Gomorrah CONSTANCY OF TEMPERATURE ALONE DOES NOT SUFFICE! Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 24 / 35

25 Thermodynamics Regained 1 The Problem 2 Wald s Way 3 In the Shadow of Young QFT-CST in Flower 4 Planck s Way 5 Sodom and Gomorrah 6 Thermodynamics Regained Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 25 / 35

26 Thermodynamics Regained A Strengthened Zeroth Law for Black Holes? Yes! Claim: Constancy + Kelvin Postulate Transitivity Recall: The Kelvin Postulate A transformation whose only final result is to transform into work heat extracted from a source that is at the same temperature throughout is impossible. Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 26 / 35

27 Thermodynamics Regained What Is Mutual Equilibrium? claim: all we need is a sufficient condition Condition there will be no spontaneous transfer of heat from one system to another other, and neither will spontaneously perform work on the other, when two bodies in mutual equilibrium are brought into contact Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 27 / 35

28 Thermodynamics Regained Deriving the Zeroth Law (Crude Sketch) three ordinary thermodynamical systems A, B and C 1 assume A and C in mutual equilibrium, and B and C, but not A and B 2 bring A and C into contact: no heat spontaneously transferred, so they are same temperature (similarly for B and C) A and B same temperature 3 bring A and B in contact 4 ex hypothesi, one must spontaneously perform work on the other 5 violation of the Kelvin Postulate 6 they are in mutual equilibrium Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 28 / 35

29 Thermodynamics Regained Mutual Equilibrium for Black Holes so: what are work and heat for black holes? Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 29 / 35

30 Thermodynamics Regained Irreducible Mass M irr a convex, positive-definite function of total mass and angular momentum; total mass cannot be reduced below initial value of M irr by any physical process M 2 irr := 1 2 [M 2 + (M 4 J 2 ) 1 2 ] so M 2 = M 2 irr + J 2 4M 2 irr M 2 irr Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 30 / 35

31 Thermodynamics Regained Irreducibility of Irreducible Mass A = 16πM 2 irr thus Second Law implies Mirr 2 through any physical process cannot decrease Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 31 / 35

32 Thermodynamics Regained Free Energy, Heat, and Work for Black Holes since M cannot be reduced below M irr : free energy := M M irr so quantity of heat transferred in any process: change in total energy minus change in free energy: Q BH := M irr (> 0) so work : change in total energy not due to change in free energy (rotational and radiative processes) Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 32 / 35

33 Thermodynamics Regained The Kelvin Postulate for Black Holes A transformation whose only final result is that a quantity of heat is extracted from a stationary black hole and transformed entirely into work is impossible. Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 33 / 35

34 Thermodynamics Regained Proof (Crude Sketch): 1 assume such a transformation possible 2 if heat extracted is purely gravitational, then change in irreducible mass must be strictly greater than change in total mass (i.e., irreducible mass must increase) 3 so area (entropy) must also increase, violating the Postulate (rigorous proof à la Wald s physical process version of the GSL; straightforward emendation to accommodate heat transfer by Hawking radiation) Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 34 / 35

35 Thermodynamics Regained Promissory Note construction of equilibrium state-space, etc. Erik Curiel (MCMP; BHI) In Search of Lost Thermodynamics 35 / 35

Classical Black Holes Are Hot. Erik Curiel

Classical Black Holes Are Hot. Erik Curiel Classical Black Holes Are Hot Erik Curiel Munich Center For Mathematical Philosophy Ludwig-Maximilians-Universität and Black Hole Initiative Harvard University erik@strangebeautiful.com Erik Curiel (MCMP;

More information

Classical Black Holes Are Hot

Classical Black Holes Are Hot Erik Curiel October 2, 2015 Contents 1 Introduction 2 2 The Laws of Black Hole Mechanics and Thermodynamics 3 3 The Standard Argument Does Not Work 5 4 Temperature and Entropy in Classical Thermodynamics

More information

Irreversibility and the Second Law in Thermodynamics and Statistical Mechanics

Irreversibility and the Second Law in Thermodynamics and Statistical Mechanics Irreversibility and the Second Law in Thermodynamics and Statistical Mechanics Erik Curiel Munich Center For Mathematical Philosophy Ludwig-Maximilians-Universität and Black Hole Initiative Harvard University

More information

15. Black Hole Thermodynamics

15. Black Hole Thermodynamics 15. Black Hole Thermodynamics General Properties of Relativistic Black Holes No Hair Conjecture: A black hole is completely characterized by its mass M, charge Q, and angular momentum J. Four types of

More information

A Panoramic Tour in Black Holes Physics

A Panoramic Tour in Black Holes Physics Figure 1: The ergosphere of Kerr s black hole A Panoramic Tour in Black Holes Physics - A brief history of black holes The milestones of black holes physics Astronomical observations - Exact solutions

More information

Thermodynamics of a Black Hole with Moon

Thermodynamics of a Black Hole with Moon Thermodynamics of a Black Hole with Moon Laboratoire Univers et Théories Observatoire de Paris / CNRS In collaboration with Sam Gralla Phys. Rev. D 88 (2013) 044021 Outline ➀ Mechanics and thermodynamics

More information

Hawking Emission and Black Hole Thermodynamics

Hawking Emission and Black Hole Thermodynamics Hawking Emission and Black Hole Thermodynamics arxiv:hep-th/0612193v1 18 Dec 2006 1 Introduction Don N. Page Theoretical Physics Institute Department of Physics, University of Alberta Room 238 CEB, 11322

More information

Black hole thermodynamics under the microscope

Black hole thermodynamics under the microscope DELTA 2013 January 11, 2013 Outline Introduction Main Ideas 1 : Understanding black hole (BH) thermodynamics as arising from an averaging of degrees of freedom via the renormalisation group. Go beyond

More information

The Role of Black Holes in the AdS/CFT Correspondence

The Role of Black Holes in the AdS/CFT Correspondence The Role of Black Holes in the AdS/CFT Correspondence Mario Flory 23.07.2013 Mario Flory BHs in AdS/CFT 1 / 30 GR and BHs Part I: General Relativity and Black Holes Einstein Field Equations Lightcones

More information

BLACK HOLE ENTROPY ENTANGLEMENT AND HOLOGRAPHIC SPACETIME. Ted Jacobson University of Maryland

BLACK HOLE ENTROPY ENTANGLEMENT AND HOLOGRAPHIC SPACETIME. Ted Jacobson University of Maryland BLACK HOLE ENTROPY ENTANGLEMENT AND HOLOGRAPHIC SPACETIME Ted Jacobson University of Maryland Goddard Scientific Colloquium, Feb. 7, 2018 Holographic principle Information paradox geometry from entanglement

More information

Considering information-theoretic and analogical reasoning in black-hole physics

Considering information-theoretic and analogical reasoning in black-hole physics Considering information-theoretic and analogical reasoning in black-hole physics Seven Pines Symposium XXI Black Holes in the Spotlight 20 May 2017 An unusual consensus radical divergence about goals,

More information

Inside the horizon 2GM. The Schw. Metric cannot be extended inside the horizon.

Inside the horizon 2GM. The Schw. Metric cannot be extended inside the horizon. G. Srinivasan Schwarzschild metric Schwarzschild s solution of Einstein s equations for the gravitational field describes the curvature of space and time near a spherically symmetric massive body. 2GM

More information

The Cardy-Verlinde equation and the gravitational collapse. Cosimo Stornaiolo INFN -- Napoli

The Cardy-Verlinde equation and the gravitational collapse. Cosimo Stornaiolo INFN -- Napoli The Cardy-Verlinde equation and the gravitational collapse Cosimo Stornaiolo INFN -- Napoli G. Maiella and C. Stornaiolo The Cardy-Verlinde equation and the gravitational collapse Int.J.Mod.Phys. A25 (2010)

More information

Does the third law of black hole thermodynamics really have a serious failure?

Does the third law of black hole thermodynamics really have a serious failure? Does the third law of black hole thermodynamics really have a serious failure? István Rácz KFKI Research Institute for Particle and Nuclear Physics H-1525 Budapest 114 P.O.B. 49, Hungary September 16,

More information

Questions for Black Hole evaporation from Quantum Statistical Mechanics

Questions for Black Hole evaporation from Quantum Statistical Mechanics Questions for Black Hole evaporation from Quantum Statistical Mechanics David Wallace Philosophy Department, University of Southern California Black Hole Initiative, May 9 th 2017 Thermally Typical Black

More information

Chapter 12. Quantum black holes

Chapter 12. Quantum black holes Chapter 12 Quantum black holes Classically, the fundamental structure of curved spacetime ensures that nothing can escape from within the Schwarzschild event horizon. That is an emphatically deterministic

More information

Physics 161 Homework 3 Wednesday September 21, 2011

Physics 161 Homework 3 Wednesday September 21, 2011 Physics 161 Homework 3 Wednesday September 21, 2011 Make sure your name is on every page, and please box your final answer. Because we will be giving partial credit, be sure to attempt all the problems,

More information

BLACK HOLE MECHANICS AND THERMODYNAMICS

BLACK HOLE MECHANICS AND THERMODYNAMICS PHYS 253:THERMAL PHYSICS BLACK HOLE MECHANICS AND THERMODYNAMICS (NASA) THE TAKE-AWAY In General Relativity, the laws of black hole mechanics describe black holes near equilibrium. There is a deep analogy

More information

Hawking s genius. L. Sriramkumar. Department of Physics, Indian Institute of Technology Madras, Chennai

Hawking s genius. L. Sriramkumar. Department of Physics, Indian Institute of Technology Madras, Chennai Hawking s genius L. Sriramkumar Department of Physics, Indian Institute of Technology Madras, Chennai Institute colloquium Indian Institute of Technology, Palakkad April 4, 2018 Plan of the talk Introduction

More information

arxiv:gr-qc/ v1 2 Mar 1999

arxiv:gr-qc/ v1 2 Mar 1999 Universal Upper Bound to the Entropy of a Charged System Shahar Hod The Racah Institute for Physics, The Hebrew University, Jerusalem 91904, Israel (June 6, 2018) arxiv:gr-qc/9903010v1 2 Mar 1999 Abstract

More information

WHY BLACK HOLES PHYSICS?

WHY BLACK HOLES PHYSICS? WHY BLACK HOLES PHYSICS? Nicolò Petri 13/10/2015 Nicolò Petri 13/10/2015 1 / 13 General motivations I Find a microscopic description of gravity, compatibile with the Standard Model (SM) and whose low-energy

More information

General Relativity in AdS

General Relativity in AdS General Relativity in AdS Akihiro Ishibashi 3 July 2013 KIAS-YITP joint workshop 1-5 July 2013, Kyoto Based on work 2012 w/ Kengo Maeda w/ Norihiro Iizuka, Kengo Maeda - work in progress Plan 1. Classical

More information

CONTENTS 1. In this course we will cover more foundational topics such as: These topics may be taught as an independent study sometime next year.

CONTENTS 1. In this course we will cover more foundational topics such as: These topics may be taught as an independent study sometime next year. CONTENTS 1 0.1 Introduction 0.1.1 Prerequisites Knowledge of di erential equations is required. Some knowledge of probabilities, linear algebra, classical and quantum mechanics is a plus. 0.1.2 Units We

More information

Black-Holes in AdS: Hawking-Page Phase Transition

Black-Holes in AdS: Hawking-Page Phase Transition Black-Holes in AdS: Hawking-Page Phase Transition Guilherme Franzmann December 4, 2014 1 / 14 References Thermodynamics of Black Holes in Anti-de Sitter space, S.W. Hawking and Don. N Page (1983); Black

More information

Physics 161 Homework 3 - Solutions Wednesday September 21, 2011

Physics 161 Homework 3 - Solutions Wednesday September 21, 2011 Physics 161 Homework 3 - Solutions Wednesday September 21, 2011 ake sure your name is on every page, and please box your final answer. Because we will be giving partial credit, be sure to attempt all the

More information

Entropy and the Second and Third Laws of Thermodynamics

Entropy and the Second and Third Laws of Thermodynamics CHAPTER 5 Entropy and the Second and Third Laws of Thermodynamics Key Points Entropy, S, is a state function that predicts the direction of natural, or spontaneous, change. Entropy increases for a spontaneous

More information

Effective temperature for black holes

Effective temperature for black holes Effective temperature for black holes Christian Corda May 31, 2011 Institute for Theoretical Physics and Mathematics Einstein-Galilei, Via Santa Gonda 14, 59100 Prato, Italy E-mail addresses: cordac.galilei@gmail.com

More information

Quantum gravity and entanglement

Quantum gravity and entanglement Quantum gravity and entanglement Ashoke Sen Harish-Chandra Research Institute, Allahabad, India HRI, February 2011 PLAN 1. Entanglement in quantum gravity 2. Entanglement from quantum gravity I shall use

More information

Black Holes and Thermodynamics I: Classical Black Holes

Black Holes and Thermodynamics I: Classical Black Holes Black Holes and Thermodynamics I: Classical Black Holes Robert M. Wald General references: R.M. Wald General Relativity University of Chicago Press (Chicago, 1984); R.M. Wald Living Rev. Rel. 4, 6 (2001).

More information

Black Holes and Thermodynamics

Black Holes and Thermodynamics Black Holes and Thermodynamics arxiv:gr-qc/9702022v1 11 Feb 1997 Robert M. Wald Enrico Fermi Institute and Department of Physics University of Chicago 5640 S. Ellis Avenue Chicago, Illinois 60637-1433

More information

Black hole thermodynamics and spacetime symmetry breaking

Black hole thermodynamics and spacetime symmetry breaking Black hole thermodynamics and spacetime symmetry breaking David Mattingly University of New Hampshire Experimental Search for Quantum Gravity, SISSA, September 2014 What do we search for? What does the

More information

21 July 2011, USTC-ICTS. Chiang-Mei Chen 陳江梅 Department of Physics, National Central University

21 July 2011, USTC-ICTS. Chiang-Mei Chen 陳江梅 Department of Physics, National Central University 21 July 2011, Seminar @ USTC-ICTS Chiang-Mei Chen 陳江梅 Department of Physics, National Central University Outline Black Hole Holographic Principle Kerr/CFT Correspondence Reissner-Nordstrom /CFT Correspondence

More information

Black Holes. Robert M. Wald

Black Holes. Robert M. Wald Black Holes Robert M. Wald Black Holes Black Holes: A black hole is a region of spacetime where gravity is so strong that nothing not even light that enters that region can ever escape from it. Michell

More information

Lecture 13. The Second Law

Lecture 13. The Second Law MIT 3.00 Fall 2002 c W.C Carter 88 Lecture 13 The Second Law Last Time Consequences of an Ideal Gas Internal Energy a Function of T Only A New State Function for Any System: Enthalpy H = U + PV A New State

More information

Black Holes: Energetics and Thermodynamics

Black Holes: Energetics and Thermodynamics Black Holes: Energetics and Thermodynamics Thibault Damour Institut des Hautes Études Scientifiques ICRANet, Nice, 4-9 June 2012 Thibault Damour (IHES) Black Holes: Energetics and Thermodynamics 7/06/2012

More information

String/Brane charge & the non-integral dimension

String/Brane charge & the non-integral dimension Jian-Xin Lu (With Wei and Xu) The Interdisciplinary Center for Theoretical Study (ICTS) University of Science & Technology of China September 28, 2012 Introduction Introduction Found four laws of black

More information

In the case of a nonrotating, uncharged black hole, the event horizon is a sphere; its radius R is related to its mass M according to

In the case of a nonrotating, uncharged black hole, the event horizon is a sphere; its radius R is related to its mass M according to Black hole General relativity predicts that when a massive body is compressed to sufficiently high density, it becomes a black hole, an object whose gravitational pull is so powerful that nothing can escape

More information

On the partner particles for black-hole evaporation

On the partner particles for black-hole evaporation On the partner particles for black-hole evaporation Ralf Schützhold Fakultät für Physik Universität Duisburg-Essen On the partner particles for black-hole evaporation p.1/12 Quantum Radiation Relativistic

More information

Entropic Force between Two Distant Black Holes in a Background Temperature

Entropic Force between Two Distant Black Holes in a Background Temperature Entropic Force between Two Distant Black Holes in a Background Temperature Davoud Kamani Faculty of Physics, Amirkabir University of Technology (Tehran Polytechnic) Tehran, Iran Abstract: We use the Newton

More information

Theoretical Aspects of Black Hole Physics

Theoretical Aspects of Black Hole Physics Les Chercheurs Luxembourgeois à l Etranger, Luxembourg-Ville, October 24, 2011 Hawking & Ellis Theoretical Aspects of Black Hole Physics Glenn Barnich Physique théorique et mathématique Université Libre

More information

Black Holes, Holography, and Quantum Information

Black Holes, Holography, and Quantum Information Black Holes, Holography, and Quantum Information Daniel Harlow Massachusetts Institute of Technology August 31, 2017 1 Black Holes Black holes are the most extreme objects we see in nature! Classically

More information

Duality and Holography

Duality and Holography Duality and Holography? Joseph Polchinski UC Davis, 5/16/11 Which of these interactions doesn t belong? a) Electromagnetism b) Weak nuclear c) Strong nuclear d) a) Electromagnetism b) Weak nuclear c) Strong

More information

On Black Hole Structures in Scalar-Tensor Theories of Gravity

On Black Hole Structures in Scalar-Tensor Theories of Gravity On Black Hole Structures in Scalar-Tensor Theories of Gravity III Amazonian Symposium on Physics, Belém, 2015 Black holes in General Relativity The types There are essentially four kind of black hole solutions

More information

Introductory Course on Black Hole Physics and AdS/CFT Duality Lecturer: M.M. Sheikh-Jabbari

Introductory Course on Black Hole Physics and AdS/CFT Duality Lecturer: M.M. Sheikh-Jabbari Introductory Course on Black Hole Physics and AdS/CFT Duality Lecturer: M.M. Sheikh-Jabbari This is a PhD level course, designed for second year PhD students in Theoretical High Energy Physics (HEP-TH)

More information

arxiv: v1 [gr-qc] 2 Sep 2015

arxiv: v1 [gr-qc] 2 Sep 2015 Entropy Product Formula for spinning BTZ Black Hole Parthapratim Pradhan 1 arxiv:1509.0066v1 [gr-qc] Sep 015 Department of Physics Vivekananda Satavarshiki Mahavidyalaya (Affiliated to Vidyasagar University)

More information

Black hole instabilities and violation of the weak cosmic censorship in higher dimensions

Black hole instabilities and violation of the weak cosmic censorship in higher dimensions Black hole instabilities and violation of the weak cosmic censorship in higher dimensions Pau Figueras School of Mathematical Sciences, Queen Mary University of London w/ Markus Kunesch, Luis Lehner and

More information

Luc Blanchet, JGRG 22(2012) The first law of binary black hole dynamics RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22

Luc Blanchet, JGRG 22(2012) The first law of binary black hole dynamics RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22 Luc Blanchet, JGRG 22(2012)111503 The first law of binary black hole dynamics RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22 November 12-16 2012 Koshiba Hall, The University of Tokyo, Hongo,

More information

Black Hole Physics. Basic Concepts and New Developments KLUWER ACADEMIC PUBLISHERS. Valeri P. Frolov. Igor D. Nbvikov. and

Black Hole Physics. Basic Concepts and New Developments KLUWER ACADEMIC PUBLISHERS. Valeri P. Frolov. Igor D. Nbvikov. and Black Hole Physics Basic Concepts and New Developments by Valeri P. Frolov Department of Physics, University of Alberta, Edmonton, Alberta, Canada and Igor D. Nbvikov Theoretical Astrophysics Center, University

More information

Statistical Mechanics

Statistical Mechanics 42 My God, He Plays Dice! Statistical Mechanics Statistical Mechanics 43 Statistical Mechanics Statistical mechanics and thermodynamics are nineteenthcentury classical physics, but they contain the seeds

More information

Solutions of Einstein s Equations & Black Holes 2

Solutions of Einstein s Equations & Black Holes 2 Solutions of Einstein s Equations & Black Holes 2 Kostas Kokkotas December 19, 2011 2 S.L.Shapiro & S. Teukolsky Black Holes, Neutron Stars and White Dwarfs Kostas Kokkotas Solutions of Einstein s Equations

More information

Quantum Black Holes and Global Symmetries

Quantum Black Holes and Global Symmetries Quantum Black Holes and Global Symmetries Daniel Klaewer Max-Planck-Institute for Physics, Munich Young Scientist Workshop 217, Schloss Ringberg Outline 1) Quantum fields in curved spacetime 2) The Unruh

More information

Astronomy 421. Lecture 24: Black Holes

Astronomy 421. Lecture 24: Black Holes Astronomy 421 Lecture 24: Black Holes 1 Outline General Relativity Equivalence Principle and its Consequences The Schwarzschild Metric The Kerr Metric for rotating black holes Black holes Black hole candidates

More information

Quantum corpuscular corrections to the Newtonian potential

Quantum corpuscular corrections to the Newtonian potential Quantum corpuscular corrections to the Newtonian potential Based on arxiv:1702.05918, to appear in PRD Andrea Giugno Arnold Sommerfeld Center, Ludwig Maximilians Universität, Theresienstraße 37, 80333,

More information

Myths, Facts and Dreams in General Relativity

Myths, Facts and Dreams in General Relativity Princeton university November, 2010 MYTHS (Common Misconceptions) MYTHS (Common Misconceptions) 1 Analysts prove superfluous existence results. MYTHS (Common Misconceptions) 1 Analysts prove superfluous

More information

The Temperature of a System as a Function of the Multiplicity and its Rate of Change

The Temperature of a System as a Function of the Multiplicity and its Rate of Change The Temperature of a System as a Function of the Multiplicity and its Rate of Change Rodolfo A. Frino Electronics Engineer Degree from the National University of Mar del Plata - Argentina rodolfo_frino@yahoo.com.ar

More information

Entropy for Mathematicians or... The final Blaubeuren chapters

Entropy for Mathematicians or... The final Blaubeuren chapters Entropy for Mathematicians or... The final Blaubeuren chapters Who? Stephan Fackler When? December 16, 2016 Life, the Universe and Everything The general struggle for existence of animate beings is not

More information

Thermodynamics. Thermo : heat dynamics : motion Thermodynamics is the study of motion of heat. Time and Causality Engines Properties of matter

Thermodynamics. Thermo : heat dynamics : motion Thermodynamics is the study of motion of heat. Time and Causality Engines Properties of matter Thermodynamics Thermo : heat dynamics : motion Thermodynamics is the study of motion of heat. Time and Causality Engines Properties of matter Graeme Ackland Lecture 1: Systems and state variables September

More information

Black hole thermodynamics

Black hole thermodynamics Black hole thermodynamics Daniel Grumiller Institute for Theoretical Physics Vienna University of Technology Spring workshop/kosmologietag, Bielefeld, May 2014 with R. McNees and J. Salzer: 1402.5127 Main

More information

Holography Duality (8.821/8.871) Fall 2014 Assignment 2

Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Sept. 27, 2014 Due Thursday, Oct. 9, 2014 Please remember to put your name at the top of your paper. Note: The four laws of black hole mechanics

More information

Introduction to Black Hole Thermodynamics. Satoshi Iso (KEK)

Introduction to Black Hole Thermodynamics. Satoshi Iso (KEK) Introduction to Black Hole Thermodynamics Satoshi Iso (KEK) Plan of the talk [1] Overview of BH thermodynamics causal structure of horizon Hawking radiation stringy picture of BH entropy [2] Hawking radiation

More information

Introduction to Aerospace Propulsion. Prof. Bhaskar Roy. Prof. A. M. Pradeep. Department of Aerospace Engineering

Introduction to Aerospace Propulsion. Prof. Bhaskar Roy. Prof. A. M. Pradeep. Department of Aerospace Engineering Introduction to Aerospace Propulsion Prof. Bhaskar Roy Prof. A. M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Module No. # 01 Lecture No. # 11 Reversible and irreversible

More information

Cosmic Censorship Conjecture and Topological Censorship

Cosmic Censorship Conjecture and Topological Censorship Cosmic Censorship Conjecture and Topological Censorship 21 settembre 2009 Cosmic Censorship Conjecture 40 years ago in the Rivista Nuovo Cimento Sir Roger Penrose posed one of most important unsolved problems

More information

Thermodynamics: Reversibility and Carnot

Thermodynamics: Reversibility and Carnot Thermodynamics: Reversibility and Carnot From Warmup It seems like this reading (for Friday) explained the homework assigned for Wednesday's lecture. Is homework based on the previous lecture, or the current

More information

IV. Classical Statistical Mechanics

IV. Classical Statistical Mechanics IV. Classical Statistical Mechanics IV.A General Definitions Statistical Mechanics is a probabilistic approach to equilibrium macroscopic properties of large numbers of degrees of freedom. As discussed

More information

Thermodynamics : A review

Thermodynamics : A review hermodynamics : A review he aim of thermodynamics is to establish a to deal with systems with many-particle (and hence many degress of freedom ). It is essential to recognise that new types of regularities

More information

The case for black hole thermodynamics Part I: phenomenological thermodynamics

The case for black hole thermodynamics Part I: phenomenological thermodynamics The case for black hole thermodynamics Part I: phenomenological thermodynamics David Wallace October 7, 2017 Abstract I give a fairly systematic and thorough presentation of the case for regarding black

More information

Reversible Processes. Furthermore, there must be no friction (i.e. mechanical energy loss) or turbulence i.e. it must be infinitely slow.

Reversible Processes. Furthermore, there must be no friction (i.e. mechanical energy loss) or turbulence i.e. it must be infinitely slow. Reversible Processes A reversible thermodynamic process is one in which the universe (i.e. the system and its surroundings) can be returned to their initial conditions. Because heat only flows spontaneously

More information

EMERGENT GRAVITY AND COSMOLOGY: THERMODYNAMIC PERSPECTIVE

EMERGENT GRAVITY AND COSMOLOGY: THERMODYNAMIC PERSPECTIVE EMERGENT GRAVITY AND COSMOLOGY: THERMODYNAMIC PERSPECTIVE Master Colloquium Pranjal Dhole University of Bonn Supervisors: Prof. Dr. Claus Kiefer Prof. Dr. Pavel Kroupa May 22, 2015 Work done at: Institute

More information

QFT Corrections to Black Holes

QFT Corrections to Black Holes Dedicated to the memory of Iaonnis Bakas QFT Corrections to Black Holes Hessamaddin Arfaei In collaboratin with J. Abedi, A. Bedroya, M. N. Kuhani, M. A. Rasulian and K. S. Vaziri Sharif University of

More information

Gravitation, Thermodynamics, and Quantum Theory

Gravitation, Thermodynamics, and Quantum Theory Gravitation, Thermodynamics, and Quantum Theory Robert M. Wald Enrico Fermi Institute and Department of Physics University of Chicago 5640 S. Ellis Avenue Chicago, Illinois 60637-1433 January 13, 1999

More information

October 18, 2011 Carnot cycle - 1

October 18, 2011 Carnot cycle - 1 Carnot Cycle In 1824, Sadi Carnot (1796-1832) published a short book, eflections on the Motive Power of Fire (The book is now free online You should try it out) To construct an engine, Carnot noted, at

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 26 July, 2013 Geometric inequalities Geometric inequalities have an ancient history in Mathematics.

More information

The cosmic censorship conjectures in classical general relativity

The cosmic censorship conjectures in classical general relativity The cosmic censorship conjectures in classical general relativity Mihalis Dafermos University of Cambridge and Princeton University Gravity and black holes Stephen Hawking 75th Birthday conference DAMTP,

More information

THERMODYNAMICAL CHARACTERISTICS OF CRYSTAL LATTICE OF MANY INTERACTING KERR BLACK HOLES IN TOUCHING LIMIT

THERMODYNAMICAL CHARACTERISTICS OF CRYSTAL LATTICE OF MANY INTERACTING KERR BLACK HOLES IN TOUCHING LIMIT THERMODYNAMICAL CHARACTERISTICS OF CRYSTAL LATTICE OF MANY INTERACTING KERR BLACK HOLES IN TOUCHING LIMIT arxiv:080.0928v [gr-qc] 6 Oct 2008 Vladan Panković,, Simo Ciganović, Jovan Ivanović Department

More information

Black Holes and Fundamental Physics

Black Holes and Fundamental Physics Black Holes and Fundamental Physics Frans Pretorius Princeton University Occam Lecture Oxford, Dec 2, 2013 Outline Spacetime geometry, gravity and black holes Black holes and thermodynamics The AdS/CFT

More information

Thermodynamics of a black hole

Thermodynamics of a black hole International Letters of Chemistry, Physics and Astronomy Online: 2015-03-25 ISSN: 2299-3843, Vol. 48, pp 123-137 doi:10.18052/www.scipress.com/ilcpa.48.123 2015 SciPress Ltd., Switzerland Thermodynamics

More information

BLACK HOLE EVAPORATION: VALIDITY OF QUASI-STATIC APPROXIMATION

BLACK HOLE EVAPORATION: VALIDITY OF QUASI-STATIC APPROXIMATION BLACK HOLE EVAPORATION: VALIDITY OF QUASI-STATIC APPROXIMATION By KARTHIK SHANKAR A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

The Time Arrow of Spacetime Geometry

The Time Arrow of Spacetime Geometry 5 The Time Arrow of Spacetime Geometry In the framework of general relativity, gravity is a consequence of spacetime curvature. Its dynamical laws (Einstein s field equations) are again symmetric under

More information

Irreversible Processes

Irreversible Processes Irreversible Processes Examples: Block sliding on table comes to rest due to friction: KE converted to heat. Heat flows from hot object to cold object. Air flows into an evacuated chamber. Reverse process

More information

Some open questions in physics

Some open questions in physics K.A. Meissner, Unsolved problems p. 1/25 Some open questions in physics Krzysztof A. Meissner Instytut Fizyki Teoretycznej UW Instytut Problemów Ja drowych Kraków, 23.10.2009 K.A. Meissner, Unsolved problems

More information

Statistical Physics. How to connect the microscopic properties -- lots of changes to the macroscopic properties -- not changing much.

Statistical Physics. How to connect the microscopic properties -- lots of changes to the macroscopic properties -- not changing much. Statistical Physics How to connect the microscopic properties -- lots of changes to the macroscopic properties -- not changing much. We will care about: N = # atoms T = temperature V = volume U = total

More information

Einstein for Everyone Lecture 4: Paradoxes; Minkowski Spacetime

Einstein for Everyone Lecture 4: Paradoxes; Minkowski Spacetime Einstein for Everyone Lecture 4: Paradoxes; Minkowski Spacetime Dr. Erik Curiel Munich Center For Mathematical Philosophy Ludwig-Maximilians-Universität 1 Velocity Addition 2 Paradoxes 3 Spacetime and

More information

INVESTIGATING THE KERR BLACK HOLE USING MAPLE IDAN REGEV. Department of Mathematics, University of Toronto. March 22, 2002.

INVESTIGATING THE KERR BLACK HOLE USING MAPLE IDAN REGEV. Department of Mathematics, University of Toronto. March 22, 2002. INVESTIGATING THE KERR BLACK HOLE USING MAPLE 1 Introduction IDAN REGEV Department of Mathematics, University of Toronto March 22, 2002. 1.1 Why Study the Kerr Black Hole 1.1.1 Overview of Black Holes

More information

Introductory Lectures on Black Hole Thermodynamics

Introductory Lectures on Black Hole Thermodynamics Introductory Lectures on Black Hole Thermodynamics Ted Jacobson Institute for Theoretical Physics University of Utrecht Abstract These notes are based on five lectures given at the University of Utrecht

More information

Holographic Second Laws of Black Hole Thermodynamics

Holographic Second Laws of Black Hole Thermodynamics Holographic Second Laws of Black Hole Thermodynamics Federico Galli Gauge/Gravity Duality 018, Würzburg, 31 July 018 Based on arxiv: 1803.03633 with A. Bernamonti, R. Myers and J. Oppenheim Second Law

More information

Title of communication, titles not fitting in one line will break automatically

Title of communication, titles not fitting in one line will break automatically Title of communication titles not fitting in one line will break automatically First Author Second Author 2 Department University City Country 2 Other Institute City Country Abstract If you want to add

More information

Basic Thermodynamics. Prof. S. K. Som. Department of Mechanical Engineering. Indian Institute of Technology, Kharagpur.

Basic Thermodynamics. Prof. S. K. Som. Department of Mechanical Engineering. Indian Institute of Technology, Kharagpur. Basic Thermodynamics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 06 Second Law and its Corollaries I Good afternoon, I welcome you all to this

More information

Why we need quantum gravity and why we don t have it

Why we need quantum gravity and why we don t have it Why we need quantum gravity and why we don t have it Steve Carlip UC Davis Quantum Gravity: Physics and Philosophy IHES, Bures-sur-Yvette October 2017 The first appearance of quantum gravity Einstein 1916:

More information

QUANTUM QUENCH ACROSS A HOLOGRAPHIC CRITICAL POINT

QUANTUM QUENCH ACROSS A HOLOGRAPHIC CRITICAL POINT QUANTUM QUENCH ACROSS A HOLOGRAPHIC CRITICAL POINT Sumit R Das (w/ Pallab Basu) (arxiv:1109.3909, to appear in JHEP) Quantum Quench Suppose we have a quantum field theory, whose parameters (like couplings

More information

Outline. Hawking radiation and the LHC. Black Hole Firewall. Singularities. Wormholes

Outline. Hawking radiation and the LHC. Black Hole Firewall. Singularities. Wormholes Outline Hawking radiation and the LHC Black Hole Firewall Singularities Wormholes What happens at the end of evaporation? Eventually, energy of photon emitted would be larger than mass-energy of black

More information

arxiv: v1 [gr-qc] 10 Nov 2018

arxiv: v1 [gr-qc] 10 Nov 2018 Thermal fluctuations to thermodynamics of non-rotating BTZ black hole Nadeem-ul-islam a, Prince A. Ganai a, and Sudhaker Upadhyay c,d a Department of Physics, National Institute of Technology, Srinagar,

More information

The Horizon Energy of a Black Hole

The Horizon Energy of a Black Hole arxiv:1712.08462v1 [gr-qc] 19 Dec 2017 The Horizon Energy of a Black Hole Yuan K. Ha Department of Physics, Temple University Philadelphia, Pennsylvania 19122 U.S.A. yuanha@temple.edu December 1, 2017

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.82 String Theory Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.82 F2008 Lecture 24 Blackhole Thermodynamics

More information

CARNOT CYCLE = T = S ( U,V )

CARNOT CYCLE = T = S ( U,V ) hermodynamics CANO CYCE Do not trouble students with history In 1824, Sadi Carnot (1796-1832) published a short book, eflections on the Motive Power of Fire (he book is now free online You should try it

More information

3 Rindler Space and Hawking Radiation

3 Rindler Space and Hawking Radiation 3 Rindler Space and Hawking Radiation The next couple of lectures are on Hawking radiation. There are many good references to learn this subject, for example: Carroll s GR book Chapter 9; Townsend gr-qc/970702;

More information

Holography and Unitarity in Gravitational Physics

Holography and Unitarity in Gravitational Physics Holography and Unitarity in Gravitational Physics Don Marolf 01/13/09 UCSB ILQG Seminar arxiv: 0808.2842 & 0808.2845 This talk is about: Diffeomorphism Invariance and observables in quantum gravity The

More information

Reversibility. Processes in nature are always irreversible: far from equilibrium

Reversibility. Processes in nature are always irreversible: far from equilibrium Reversibility Processes in nature are always irreversible: far from equilibrium Reversible process: idealized process infinitely close to thermodynamic equilibrium (quasi-equilibrium) Necessary conditions

More information

Hawking radiation and universal horizons

Hawking radiation and universal horizons LPT Orsay, France June 23, 2015 Florent Michel and Renaud Parentani. Black hole radiation in the presence of a universal horizon. In: Phys. Rev. D 91 (12 2015), p. 124049 Hawking radiation in Lorentz-invariant

More information

Entropy current and equilibrium partition function in fluid dynam

Entropy current and equilibrium partition function in fluid dynam Entropy current and equilibrium partition function in fluid dynamics December 18, 2014 Aim of the talk In this talk we would analyse the relation between two apparently disjoint physical conditions that

More information

Black holes as open quantum systems

Black holes as open quantum systems Black holes as open quantum systems Claus Kiefer Institut für Theoretische Physik Universität zu Köln Hawking radiation 1 1 singularity II γ H γ γ H collapsing 111 star 1 1 I - future event horizon + i

More information