Abstract. Nomenclature. A^ = dimensionless half amplitude ' = half amplitude of heat flux variation * - thermal conductivity

Size: px
Start display at page:

Download "Abstract. Nomenclature. A^ = dimensionless half amplitude ' = half amplitude of heat flux variation * - thermal conductivity"

Transcription

1 Unsteady natural connective flow in an enclosure with a periodically varying side wall heat flux PH. Oosthuizen, J.T. Paul Heat Transfer Laboratory, Department ofmechanical Engineering, Queen's University, Kingston, Ontario, Canada Abstract Unsteady natural convective flow in a square enclosure with one vertical wall heated, with the opposite wall cooled to a umfom lower temperature and with the remaining walls adiabahc has bin numerically studied. The heat flux of the heated wal is spatially uniform but varying sinusoidally with time. The flow has been " expressed dt in terms of stream, function and vorticity and * written in TZZoTh ' ^ '"" *>"* ^ the finite-element hod The solution has as parameters the heat flux Rayleigh number based on the enclosure width, the Prandtl number and the frequency and magnitude of the dimensionless heat flux variation. Results have been ^1 """"7' *" ***** numbers between and 1,000,000. These results have been used to study the effects ^' ^ wall lemperature Nomenclature A^ = dimensionless half amplitude ' = half amplitude of heat flux variation * - thermal conductivity ' " " ""' " " Oux at any instant of time - time_averaged heat flux ''

2 54 Advanced Computational Methods in Heat Transfer Rcf = heat flux Rayleigh number basfed on W T = dimensionless temperature T' = temperature 7"c = temperature of cold wall T = mean dimensionless temperature of hot wall t = dimensionless time t' = time u = dimensionless velocity component in x direction u' = velocity component in x' direction v = dimensionless velocity component in y direction v' = velocity component in y' direction W = width of enclosure x = dimensionless x' coordinate x' = horizontal coordinate position y = dimensionless y' coordinate y' = vertical coordinate position a = thermal diffusivity 0 = bulk coefficient v = kinematic viscosity $ = dimensionless stream function ^' = stream function w = dimensionless vorticity w' = vorticity 1 Introduction Most available studies of free convective flow in an enclosure are concerned with steady flow situations and most studies have considered the case where the wall temperatures are specified. In many real situations, however, the flow in the enclosure is not steady and the heat flux rather than the temperature on at least one of the walls is known and is varying periodically with time. In order to provide some results that indicate the effect of this variation on the flow in the enclosure, a numerical study of laminar free convective flow in a square enclosure with a heat flux on one wall that is varying sinusoidally with time and with the opposite wall cooled to a uniform lower temperature T'c, has been undertaken. The remaining walls are adiabatic. The flow situation is, thus, as shown in Fig. 1. The situation considered is an approximate model of that occurring in the cooling of electronic and electrical equipment. The flow and heat transfer in enclosures that results when the temperature of one vertical wall is suddenly increased has been quite widely studied, e.g. see references [1] to [8]. The case where the hot wall temperature is varying with time has received relatively little

3 Advanced Computational Methods in Heat Transfer 55 w Constant Temperature v Adiabatic Figure 1: Situation considered in present study. attention typical of the available studies m this area being those described m references [9] and [10]. These past studies of unsteady ththt" Z " * ""*"* been concerned with the case wherl the ho wall temperature is varying with time. The present study differs form the past work in that it deals with the practically importam case where the wall heat flux is varying with time portant 2 Governing Equations It has been assumed that the flow is laminar and two- dimensional and hat the fluid properties are constant except for the density change with temperature which gives rise to the buoyancy forces,this having been treated by using the Boussinesq approach. The solution has been obtained in terms of the stream function and vorticity defined, as usual, by: u = dx' dx' dy' (1) The prime (' ) denotes a dimensional quantity. The following dimensionless variables have then been defined:

4 56 Advanced Computational Methods in Heat Transfer T = (7" - T'c)/(q*W'lk), t = t'a I W* (2) where T'c is the temperature of the cold wall and q is the mean heat flux rate from the heated wall section. In terms of these dimensionless variables, the governing equations are: = w (3) du dw ^ f ( W vy du _ # vy dw \ ^ _ p /' d*u> ** + ~JT V^y" "^7 "at ~dy - «f (4) dt, / ^ 97 9^ 97 dt \ dy dx dx dy = 0 (5) Here Rcf is the heat flux Rayleigh number based on the cavity width, W, i.e.: JW = 0 g~q* W* / ki/a (6) The boundary conditions on the solution are as follows: on all walls: $ = 0, d^ldn =0, at x = 0: dt/dx = q, at x = 1: T = 0, on the top and bottom walls, i.e. at y = 0 and at y = 1: dtldy =_0. Here q = q' I q' is the time varying dimensionless heat flux on the heated wall section. It has been here assumed that it varies sinusoidal with time, i.e., it has been assumed, since the time-averaged value of q is 1, that the dimensionless hot wall heat flux is given by: q = I + A sin(27r tl P) (7) As indicated in Fig. 1, A is the dimensionless half amplitude and P is the dimensionless period of the variation. It has been assumed that the fluid is initially at rest and at the cold wall temperature, i.e. it has been assumed that the initial conditions are: t = 0: 4> = 0, T = 0 The above dimensionless equations, subject to the initial and

5 Advanced Computational Methods in Heat Transfer T I 0.40 A= A=0.5 A= Dimensionless Time 0.48 Figure 2: Variation of mean dimensionless heated wall section temperature with dimensionless time for P= 002 S = 1 Rtf = 10* for A = 0.25, 0.5 and 1. boundary conditions, have been solved using a finite element procedure This solution gives, at any instant of dimensionless time the local dimensionless temperature distribution on the heated wall' This variation has then be used to find the instantaneous spatially averaged mean temperature on the heated wall section i e,.1 = / Tdy */ n (8) The adequacy of the present numerical results has been assessed by comparing the results obtained at long times with a step change in wall temperature with standard results for steady state natural convection in a square enclosure and by studying the effects of wide changes dimensionless time step and of the number of nodes and their distribution on the results. These checks indicate that the present results have an uncertainty of significantly less than 2%. 3 Results The solution, in general, has the following parameters: The Rayleigh number, Rtf The Prandtl number, Pr The dimensionless half amplitude of the hot wall heat flux variation, A The dimensionless period of the hot wall heat flux variation, P

6 58 Advanced Computational Methods in Heat Transfer Minimum o.o o.o Figure 3: Effect of A on the maximum and minimum values of mean dimensionless heated wall section temperature for P = 0.02, S = 1 and Rcf = 10*. Because of the possible applications that motivated the study, results have only been obtained for a Prandtl number of 0,7. Results have been obtained for Rayleigh numbers between 100 and 1,000,000 for dimensionless periods between and 0.15 for dimensionless half amplitudes of between 0 and 1. A value of A equal to zero means that there is a constant heat flux at the heated wall section. Because the fluid in the enclosure is initially at rest, there is an initial transient phase at small times but at larger dimensionless times the flow becomes periodic. The dimensionless time taken for the periodic state to be reached was found to be mainly dependent on the Rayleigh number. Except for the very smallest Rayleigh numbers considered, the periodic state was found to have been reached by a dimensionless time of less than 0.4. The initial transient phase will not be considered here, attention only being given to the results in the periodic region i.e. for dimensionless times of greater than 0.4. In all cases it was also found that the ratio of the maximum to the minimum value of the dimensionless wall heat flux was far greater than the ratio of the maximum to the minimum mean wall temperature indicating that a pseudo-steady state flow does not exist in the enclosure under the conditions considered. Figure 2 presents results illustrating the effect of the dimensionless amplitude, A, on the mean hot wall dimensionless temperature in the periodic state. It will be seen that the amplitude of the variation in mean dimensionless wall temperature increases with increasing A This is further illustrated by the results given in Fig. 6 which shows the variations of the maximum and minimum values of

7 Advanced Computational Methods in Heat Transfer P=0.02 P= Dimensionless Time Figure 4: Variation of mean dimensionless heated wall section temperature with dimensionless time for A = = 1 and R* = 10* for f =0.02 and Maximum Mean Minimum p Figure 5: Effect of P on the maximum and minimum values of mean dimensionless heated wall section temperature for A = 0 5 S = 1 and Rcf = 10*. the dimensionless hot wall temperature in the periodic state with dimensionless amplitude A. It will be seen that for the conditions considered, the maximum and minimum values of the dimensionless wall temperature are approximately proportional to A. Figure 3 also shows the variation of the time-averaged mean dimensionless hot wall temperature with A. It will be seen that this average value is essentially constant for the conditions considered and it is equal, essentially, to the value that would exist with steady state heat transfer under the same conditions.

8 60 Advanced Computational Methods in Heat Transfer \^ Minimum \\KXaximum 0.2 o.o E4 1E5 1E6 1E7 Ra + Figure 6: Effect of Re? on the maximum and minimum values of mean dimensionless heated wall section temperature for A = 0.5, 5=1 and P = Heat transfer from a hot moving surface passing through boundary conditions has been obtained using the finite element approach. Figures 4 present results illustrating the effect of the of the dimensionless period P on the mean dimensionless hot wall temperature variations. It will be seen that the variation in the mean dimensionless temperature decreases as the dimensionless period decreases i.e. as the frequency of the wall heat flux variation increases. This is further illustrated by the results given in fig. 5 which shows the variations of the maximum and minimum values of the dimensionless hot wall temperature in the periodic state with dimensionless period P. It will be seen that for dimensionless periods above about 0.02 these maximum values are approximately constant but that at smaller values of P the difference between the maximum and minimum values decreases with decreasing P. Figure 5 also shows the variation of the time-averaged mean dimensionless hot wall temperature with P. It will be seen that this average value is essentially constant for the conditions considered and it is equal, essentially, to the value that would exist with steady state heat transfer under the same conditions. Figures 6 presents results illustrating the effect of the of Re? on the mean dimensionless hot wall temperature variations. It shows the variations of the maximum and minimum values of the dimensionless hot wall temperature in the periodic state with modified Rayleigh number Re?. At small Rayleigh numbers, when the convective motion has a negligible effect on the heat transfer, Re? has, of course, no effect. However, for modified Rayleigh numbers above about 1000, the maximum and minimum values both decrease with increasing

9 Advanced Computational Methods in Heat Transfer 61 R(f. Figure 6 also shows the variation of the time-averaged mean dimensionless hot wall temperature with R<?. It, too, is constant for R# values below about 1000 and then decreases with increasing Rdf at higher values of Rtf. Calculations have also been carried out with A = 0 to determine the final steady state values of the mean dimensionless hot wall temperature for various values of the modified Rayleigh number These final steady state values were found to be essentially equal to the time averaged mean dimensionless hot wall temperatures existing at the same modified Rayleigh number with a fluctuating wall heat flux. 4 Conclusions The results obtained in the present study indicate that, for the range of parameters covered in the present study: 1. Unless the Rayleigh number is small (< approximately 1000), the the flow being periodic for dimensionless times greater than At the smaller values of the dimensionless period, P here considered the range over which this dimensionless mean wall temperature varies decreasing with decreasing P. However at the larger values of P considered the range over which this dimensionless mean wall temperature varies is relatively independent of P. 3. The range over which this dimensionless mean wall temperature vanes is approximately proportional to the dimensionless amplitude, A. 4. The time-averaged mean dimensionless temperature of the heated wall section is essentially equal to the mean wall temperature that would exist at the same Rayleigh number with steady flow in the enclosure. 5 Acknowledgements This work was supported by the Natural Sciences and Engineering Research Council of Canada. References 1. Ivey, G.N. Experiments on Transient Natural Convection in a Cavity, Journal of Fluid Mechanics, 1984, 144,

10 62 Advanced Computational Methods in Heat Transfer 2. Kuhn, D.C.S. & Oosthuizen, P.H. Unsteady Natural Convection in a Partially Heated Rectangular Cavity, Journal of Heat Transfer, 1987, 109, No. 3, Hall, J.D., Bejan, A. & Chaddock, J.B. Transient Natural Convection in a Rectangular Enclosure with One Heated Side Wall, Int. J. Heat and Fluid Flow, 1988, 9, Kuhn, D.C.S. & Oosthuizen, P.H. Transient Three-Dimensional Flow in an Enclosure with a Hot Spot on a Vertical Wall, Int. J. Numerical Methods in Fluids, 1988, 8, Schladow, S.G., Patterson, J.C. & Street, R.L. Transient Flow in a Side-Heated Cavity At High Rayleigh Number: a Numerical Study, Journal of Fluid Mechanics, 1989, 200, Hyun, J.M. & Lee, J.W. Numerical Solutions for Transient Natural Convection in a Square Cavity with Different Sidewall Temperatures, Int. J. Heat and Fluid Flow, 1989, 10, Patterson, J.C. & Armfield, S.W. Transient Features of Natural Convection in a Cavity J. Fluid Mechanics, 1990, 219, Jeevaraj, C.G. & Patterson, J.C. Experimental Study of Transient Natural Convection of Glycerol-Water Mixtures in a Side Heated Cavity Int. J. Heat and Mass Transfer, 1992, 35, Kazmierczak, M. & Chinoda, Z. Buoyancy Driven Flow in an Enclosure with Time Periodic Boundary Conditions, Int. J. Heat and Mass Transfer, 1992, 35, Oosthuizen, P.H. & Paul, J.T. Unsteady Natural Convective Flow in an Enclosure with a Partially Heated Wall with a Varying Temperature in Numerical Methods in Thermal Problems, Vol. VIII, Part 1 (ed R.W. Lewis), pp , Proc. 8th Int. Conf., Swansea, Wales, 1993, Pineridge Press, Swansea, U.K., 1993.

NATURAL CONVECTIVE HEAT TRANSFER FROM A RECESSED NARROW VERTICAL FLAT PLATE WITH A UNIFORM HEAT FLUX AT THE SURFACE

NATURAL CONVECTIVE HEAT TRANSFER FROM A RECESSED NARROW VERTICAL FLAT PLATE WITH A UNIFORM HEAT FLUX AT THE SURFACE HEFAT2007 5 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics Sun City, South Africa Paper number: OP2 NATURAL CONVECTIVE HEAT TRANSFER FROM A RECESSED NARROW VERTICAL FLAT

More information

Visualization of Natural Convection in Enclosure. Filled with Porous Medium by Sinusoidally. Temperature on the One Side

Visualization of Natural Convection in Enclosure. Filled with Porous Medium by Sinusoidally. Temperature on the One Side Applied Mathematical Sciences, Vol., 2012, no. 97, 801-812 Visualization of Natural Convection in Enclosure Filled with Porous Medium by Sinusoidally Temperature on the One Side Paweena Khansila Department

More information

Effect of an adiabatic fin on natural convection heat transfer in a triangular enclosure

Effect of an adiabatic fin on natural convection heat transfer in a triangular enclosure American Journal of Applied Mathematics 2013; 1(4): 78-83 Published online November 10, 2013 (http://www.sciencepublishinggroup.com/j/ajam) doi: 10.11648/j.ajam.20130104.16 Effect of an adiabatic fin on

More information

NATURAL CONVECTION WITHIN TRAPEZOIDAL ENCLOSURE WITH TWO BAFFLES: EFFECT OF VARIOUS ANGLES OF INCLINATION

NATURAL CONVECTION WITHIN TRAPEZOIDAL ENCLOSURE WITH TWO BAFFLES: EFFECT OF VARIOUS ANGLES OF INCLINATION NATURAL CONVECTION WITHIN TRAPEZOIDAL ENCLOSURE WITH TWO BAFFLES: EFFECT OF VARIOUS ANGLES OF INCLINATION Éliton Fontana, eliton_fontana@hotmail.com Universidade Federal de Santa Catarina - UFSC Adriano

More information

Sigma J Eng & Nat Sci 36 (1), 2018, Sigma Journal of Engineering and Natural Sciences Sigma Mühendislik ve Fen Bilimleri Dergisi

Sigma J Eng & Nat Sci 36 (1), 2018, Sigma Journal of Engineering and Natural Sciences Sigma Mühendislik ve Fen Bilimleri Dergisi Sigma J Eng & Nat Sci 36 (1), 2018, 49-62 Sigma Journal of Engineering and Natural Sciences Sigma Mühendislik ve Fen Bilimleri Dergisi Research Article THE ENERGY EFFICIENT CONFIGURATIONS OF NATURAL CONVECTION

More information

Natural convection adjacent to a sidewall with three fins in a differentially heated cavity

Natural convection adjacent to a sidewall with three fins in a differentially heated cavity ANZIAM J. 48 (CTAC2006) pp.c806 C819, 2007 C806 Natural convection adjacent to a sidewall with three fins in a differentially heated cavity F. Xu 1 J. C. Patterson 2 C. Lei 3 (Received 31 August 2006;

More information

A Numerical Study of the Effect of a Venetian Blind on the Convective Heat Transfer Rate from a Recessed Window with Transitional and Turbulent Flow

A Numerical Study of the Effect of a Venetian Blind on the Convective Heat Transfer Rate from a Recessed Window with Transitional and Turbulent Flow A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 29, 2012 Guest Editors: Petar Sabev Varbanov, Hon Loong Lam, Jiří Jaromír Klemeš Copyright 2012, AIDIC Servizi S.r.l., ISBN 978-88-95608-20-4; ISSN

More information

Patrick H. Oosthuizen and J.T. Paul Queen s University Kingston, ON, Canada

Patrick H. Oosthuizen and J.T. Paul Queen s University Kingston, ON, Canada Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition IMECE2012 November 9-15, 2012, Houston, Texas, USA IMECE2012-87735 A NUMERICAL STUDY OF THE EFFECT OF AN IRRADIATED

More information

EFFECT OF VARYING THE HEATED LOWER REGION ON FLOW WITHIN A HORIZONTAL CYLINDER

EFFECT OF VARYING THE HEATED LOWER REGION ON FLOW WITHIN A HORIZONTAL CYLINDER ISTP-1, 5, PRAGUE 1 TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA EFFECT OF VARYING THE HEATED LOWER REGION ON FLOW WITHIN A HORIZONTAL CYLINDER S. S. Leong School of Mechanical and Manufacturing Engineering

More information

Flow patterns and heat transfer in square cavities with perfectly conducting horizontal walls: the case of high Rayleigh numbers ( )

Flow patterns and heat transfer in square cavities with perfectly conducting horizontal walls: the case of high Rayleigh numbers ( ) Advances in Fluid Mechanics VII 391 Flow patterns and heat transfer in square cavities with perfectly conducting horizontal walls: the case of high Rayleigh numbers (10 6 10 9 ) R. L. Frederick & S. Courtin

More information

NUMERICAL STUDIES OF TRANSITION FROM STEADY TO UNSTEADY COUPLED THERMAL BOUNDARY LAYERS

NUMERICAL STUDIES OF TRANSITION FROM STEADY TO UNSTEADY COUPLED THERMAL BOUNDARY LAYERS International Journal of Computational Methods Vol. 11, Suppl. 1 (214) 13442 (15 pages) c World Scientific Publishing Company DOI: 1.1142/S2198762134427 NUMERICAL STUDIES OF TRANSITION FROM STEADY TO UNSTEADY

More information

Numerical Analysis of Laminar Natural Convection in a Quadrantal Cavity with a Solid Adiabatic Fin Attached to the Hot Vertical Wall

Numerical Analysis of Laminar Natural Convection in a Quadrantal Cavity with a Solid Adiabatic Fin Attached to the Hot Vertical Wall Journal of Applied Fluid Mechanics, Vol., No., pp. 01-10, 2013. Available online at www.jafmonline.net, ISSN 13-32, EISSN 13-3. Numerical Analysis of Laminar Natural Convection in a Quadrantal Cavity with

More information

NATURAL CONVECTION OF AIR IN TILTED SQUARE CAVITIES WITH DIFFERENTIALLY HEATED OPPOSITE WALLS

NATURAL CONVECTION OF AIR IN TILTED SQUARE CAVITIES WITH DIFFERENTIALLY HEATED OPPOSITE WALLS Proceedings of the International onference on Mechanical Engineering 0 (IME0 8-0 December 0, Dhaka, Bangladesh IME- NATURAL ONVETION OF AIR IN TILTED SQUARE AVITIES WIT DIFFERENTIALLY EATED OPPOSITE WALLS

More information

NATURAL CONVECTION FLOW IN A SQUARE CAVITY WITH INTERNAL HEAT GENERATION AND A FLUSH MOUNTED HEATER ON A SIDE WALL

NATURAL CONVECTION FLOW IN A SQUARE CAVITY WITH INTERNAL HEAT GENERATION AND A FLUSH MOUNTED HEATER ON A SIDE WALL Journal of Naval Architecture and Marine Engineering December, 2010 DOI: 10.3329/jname.v7i2.3292 http://www.banglajol.info NATURAL CONVECTION FLOW IN A SQUARE CAVITY WITH INTERNAL HEAT GENERATION AND A

More information

HEFAT th International Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics September 2005, Cairo, Egypt AA10

HEFAT th International Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics September 2005, Cairo, Egypt AA10 HEFAT5 4 th International Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics 9- September 5, Cairo, Egypt AA Numerical Study of Natural Convection Heat Transfer in Enclosures with Conducting

More information

Chapter 7: Natural Convection

Chapter 7: Natural Convection 7-1 Introduction 7- The Grashof Number 7-3 Natural Convection over Surfaces 7-4 Natural Convection Inside Enclosures 7-5 Similarity Solution 7-6 Integral Method 7-7 Combined Natural and Forced Convection

More information

Heat transfer increase with thin fins in three dimensional enclosures

Heat transfer increase with thin fins in three dimensional enclosures 157 Heat transfer increase with thin fins in three dimensional enclosures R. L. Frederick & S. Samper Universidad de Chile, Departamento de Ingeniería Mecánica, Santiago, Chile Abstract Heat transfer enhancement

More information

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE Proceedings of the International Conference on Mechanical Engineering 2011 (ICME2011) 18-20 December 2011, Dhaka, Bangladesh ICME11-TH-014 FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

Natural Convection in Parabolic Enclosure Heated from Below

Natural Convection in Parabolic Enclosure Heated from Below www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 3; June 011 Natural Convection in Parabolic Enclosure Heated from Below Dr. Ahmed W. Mustafa (Corresponding auther) University of Tikrit, College

More information

Abstract. Introduction

Abstract. Introduction Combined forced and natural convection in a square cavity - numerical solution and scale analysis A.T. Franco/ M.M. Ganzarolli'' "DAMEC, CEFET, PR 80230-901, Curitiba, PR Brasil >>DE, FEM, UNICAMP 13081-970,

More information

Available online at ScienceDirect. Procedia Engineering 90 (2014 )

Available online at   ScienceDirect. Procedia Engineering 90 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 9 (24 ) 55 556 th International Conference on Mechanical Engineering, ICME 23 Analysis of heat transfer and flow due to natural

More information

Natural Convection and Entropy Generation in a Porous Enclosure with Sinusoidal Temperature Variation on the Side Walls

Natural Convection and Entropy Generation in a Porous Enclosure with Sinusoidal Temperature Variation on the Side Walls Avestia Publishing Journal of Fluid Flow, Heat and Mass Transfer Volume 1, Year 14 Journal ISSN: 368-6111 DOI: 1.11159/jffhmt.14.4 Natural Convection and Entropy Generation in a Porous Enclosure with Sinusoidal

More information

Entropy 2011, 13, ; doi: /e OPEN ACCESS. Entropy Generation at Natural Convection in an Inclined Rectangular Cavity

Entropy 2011, 13, ; doi: /e OPEN ACCESS. Entropy Generation at Natural Convection in an Inclined Rectangular Cavity Entropy 011, 13, 100-1033; doi:10.3390/e1305100 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Entropy Generation at Natural Convection in an Inclined Rectangular Cavity Mounir

More information

NATURAL CONVECTION HEAT TRANSFER IN PARTIALLY OPEN ENCLOSURES CONTAINING AN INTERNAL LOCAL HEAT SOURCE

NATURAL CONVECTION HEAT TRANSFER IN PARTIALLY OPEN ENCLOSURES CONTAINING AN INTERNAL LOCAL HEAT SOURCE Brazilian Journal of Chemical Engineering ISSN 0104-6632 Printed in Brazil www.abeq.org.br/bjche Vol. 24, No. 03, pp. 375-388, July - September, 2007 NATURAL CONVECTION HEAT TRANSFER IN PARTIALLY OPEN

More information

ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD

ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD HEFAT 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 6 8 July Malta ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD Nawaf

More information

THERMAL PERFORMANCE EVALUATION OF AN INNOVATIVE DOUBLE GLAZING WINDOW

THERMAL PERFORMANCE EVALUATION OF AN INNOVATIVE DOUBLE GLAZING WINDOW THERMAL PERFORMANCE EVALUATION OF AN INNOVATIVE DOUBLE GLAZING WINDOW Luigi De Giorgi, Carlo Cima, Emilio Cafaro Dipartimento di Energetica, Politecnico di Torino, Torino, Italy Volfango Bertola School

More information

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM ABDUL WAHID http://www.fkm.utm.my/~mazlan TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 5 th Edition, John Wiley and Sons Chapter 9 Natural

More information

Numerical Study of the Moving Boundary Problem During Melting Process in a Rectangular Cavity Heated from Below

Numerical Study of the Moving Boundary Problem During Melting Process in a Rectangular Cavity Heated from Below American Journal of Applied Sciences 4 (4): 25-256, 2007 ISSN 546-9239 2007 Science Publications Corresponding Author: Numerical Study of the Moving Boundary Problem During Melting Process in a Rectangular

More information

FREE CONVECTIVE HEAT TRANSFER FROM AN OBJECT AT LOW RAYLEIGH NUMBER

FREE CONVECTIVE HEAT TRANSFER FROM AN OBJECT AT LOW RAYLEIGH NUMBER Free Convective Heat Transfer From an Object at Low Rayleigh Number FREE CONVECTIVE HEAT TRANSFER FROM AN OBJECT AT LOW RAYLEIGH NUMBER Md. Golam Kader and Khandkar Aftab Hossain * Department of Mechanical

More information

Numerical Study of Free Convection Heat Transfer in a Square Cavity with a Fin Attached to Its Cold Wall

Numerical Study of Free Convection Heat Transfer in a Square Cavity with a Fin Attached to Its Cold Wall Heat Transfer Research, 2011, Vol. 42, No. 3 Numerical Study of Free Convection Heat Transfer in a Square Cavity with a Fin Attached to Its Cold Wall SAEID JANI, 1* MEYSAM AMINI, 2 and MOSTAFA MAHMOODI

More information

MYcsvtu Notes HEAT TRANSFER BY CONVECTION

MYcsvtu Notes HEAT TRANSFER BY CONVECTION www.mycsvtunotes.in HEAT TRANSFER BY CONVECTION CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in

More information

10. Buoyancy-driven flow

10. Buoyancy-driven flow 10. Buoyancy-driven flow For such flows to occur, need: Gravity field Variation of density (note: not the same as variable density!) Simplest case: Viscous flow, incompressible fluid, density-variation

More information

Abstract: This paper numerically investigates the physical mechanism of flow instability

Abstract: This paper numerically investigates the physical mechanism of flow instability Hua-Shu Dou*, Gang Jiang, Numerical simulation of flow instability and heat transfer of natural convection in a differentially heated cavity, International Journal of Heat and Mass Transfer, 103 (2016)

More information

SELF-SUSTAINED OSCILLATIONS AND BIFURCATIONS OF MIXED CONVECTION IN A MULTIPLE VENTILATED ENCLOSURE

SELF-SUSTAINED OSCILLATIONS AND BIFURCATIONS OF MIXED CONVECTION IN A MULTIPLE VENTILATED ENCLOSURE Computational Thermal Sciences, 3 (1): 63 72 (2011) SELF-SUSTAINED OSCILLATIONS AND BIFURCATIONS OF MIXED CONVECTION IN A MULTIPLE VENTILATED ENCLOSURE M. Zhao, 1, M. Yang, 1 M. Lu, 1 & Y. W. Zhang 2 1

More information

SIMULATION OF MIXED CONVECTIVE HEAT TRANSFER USING LATTICE BOLTZMANN METHOD

SIMULATION OF MIXED CONVECTIVE HEAT TRANSFER USING LATTICE BOLTZMANN METHOD International Journal of Automotive and Mechanical Engineering (IJAME) ISSN: 2229-8649 (Print); ISSN: 2180-1606 (Online); Volume 2, pp. 130-143, July-December 2010 Universiti Malaysia Pahang DOI: http://dx.doi.org/10.15282/ijame.2.2010.3.0011

More information

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds. Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

More information

Natural Convection in Vertical Channels with Porous Media and Adiabatic Extensions

Natural Convection in Vertical Channels with Porous Media and Adiabatic Extensions Natural Convection in Vertical Channels with Porous Media and Adiabatic Extensions Assunta Andreozzi 1,a, Bernardo Buonomo 2,b, Oronzio Manca 2,c and Sergio Nardini 2,d 1 DETEC, Università degli Studi

More information

RAYLEIGH-BÉNARD CONVECTION IN A CYLINDER WITH AN ASPECT RATIO OF 8

RAYLEIGH-BÉNARD CONVECTION IN A CYLINDER WITH AN ASPECT RATIO OF 8 HEFAT01 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 01 Malta RAYLEIGH-BÉNARD CONVECTION IN A CYLINDER WITH AN ASPECT RATIO OF 8 Leong S.S. School of Mechanical

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Natural Convection Heat Transfer from a Rectangular Block Embedded in a Vertical Enclosure

Natural Convection Heat Transfer from a Rectangular Block Embedded in a Vertical Enclosure Chapter 5 Natural Convection Heat Transfer from a Rectangular Block Embedded in a Vertical Enclosure Xiaohui Zhang Additional information is available at the end of the chapter http://dx.doi.org/10.5772/52666

More information

Numerical Investigation of Combined Buoyancy and Surface Tension Driven Convection in an Axi-Symmetric Cylindrical Annulus

Numerical Investigation of Combined Buoyancy and Surface Tension Driven Convection in an Axi-Symmetric Cylindrical Annulus Nonlinear Analysis: Modelling and Control, 2007, Vol. 12, No. 4, 541 552 Numerical Investigation of Combined Buoyancy and Surface Tension Driven Convection in an Axi-Symmetric Cylindrical Annulus M. Sankar

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION A modelling of indoor air flow and heat transfer through door and window by free convection Guang-Fa Yao, J.A. Khan Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina

More information

Numerical simulation heat transfer by natural convection in liquid metal with a sinusoidal temperature

Numerical simulation heat transfer by natural convection in liquid metal with a sinusoidal temperature EPJ Web of Conferences 114, 02077 (2016) DOI: 10.1051/ epjconf/ 2016114 02077 C Owned by the authors, published by EDP Sciences, 2016 Numerical simulation heat transfer by natural convection in liquid

More information

Laminar natural convection in inclined open shallow cavities

Laminar natural convection in inclined open shallow cavities Int. J. Therm. Sci. 41 (2002) 360 368 www.elsevier.com/locate/ijts Laminar natural convection in inclined open shallow cavities O. Polat, E. Bilgen 1, École Polytechnique Box 6079, City Center, Montréal,

More information

NATURAL CONVECTION AND RADIATION IN CIRCULAR AND ARC CAVITY

NATURAL CONVECTION AND RADIATION IN CIRCULAR AND ARC CAVITY Proceedings of the International Conference on Mechanical Engineering 9 (ICME9) - 8 December 9, Dhaka, Bangladesh ICME9-TH- NATURAL CONVECTION AND RADIATION IN CIRCULAR AND ARC CAVITY Naheed Ferdous, Md.

More information

Analysis of the flow and heat transfer characteristics for MHD free convection in an enclosure with a heated obstacle

Analysis of the flow and heat transfer characteristics for MHD free convection in an enclosure with a heated obstacle Nonlinear Analysis: Modelling and Control, 2011, Vol. 16, No. 1, 89 99 89 Analysis of the flow and heat transfer characteristics for MHD free convection in an enclosure with a heated obstacle S. Parvin,

More information

Turbulent Natural Convection in an Enclosure with Colliding Boundary Layers

Turbulent Natural Convection in an Enclosure with Colliding Boundary Layers Turbulent Natural Convection in an Enclosure with Colliding Boundary Layers Abstract Mutuguta John Wanau 1* 1. School of Pure and Applied Sciences, Murang a University of Technology, P.O box 75-10200,

More information

A STUDY ON NATURAL CONVECTION HEAT TRANSFER IN COMPLEX BOUNDARIES

A STUDY ON NATURAL CONVECTION HEAT TRANSFER IN COMPLEX BOUNDARIES http://doi.org/10.4867/jpe-017-01-11 JPE (017) Vol.0 (1) Mohapatra, C. R. Preliminary Note A STUDY ON NATURAL CONVECTION HEAT TRANSFER IN COMPLEX BOUNDARIES Received: 3 February 017 / Accepted: 01 April

More information

Maximum Heat Transfer Density From Finned Tubes Cooled By Natural Convection

Maximum Heat Transfer Density From Finned Tubes Cooled By Natural Convection Maximum Heat Transfer Density From Finned Tubes Cooled By Natural Convection Ahmed Waheed Mustafa 1 Mays Munir Ismael 2 AL-Nahrain University College of Engineering Mechanical Engineering Department ahmedwah@eng.nahrainuniv.edu.iq

More information

A Numerical Study of Mixed Convection in Square Lid-Driven with Internal Elliptic Body and Constant Flux Heat Source on the Bottom Wall

A Numerical Study of Mixed Convection in Square Lid-Driven with Internal Elliptic Body and Constant Flux Heat Source on the Bottom Wall International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 394-3661, Volume-3, Issue-6, June 016 A Numerical Study of Mixed Convection in Square Lid-Driven with Internal Elliptic Body and

More information

Research Article Study of the Transient Natural Convection of a Newtonian Fluid inside an Enclosure Delimited by Portions of Cylinders

Research Article Study of the Transient Natural Convection of a Newtonian Fluid inside an Enclosure Delimited by Portions of Cylinders Research Journal of Applied Sciences, Engineering and Technology 7(5): 3069-3074, 04 DOI:0.906/rjaset.7.644 ISSN: 040-7459; e-issn: 040-7467 04 Maxwell Scientific Publication Corp. Submitted: August 7,

More information

Y. L. He and W. Q. Tao Xi an Jiaotong University, Xi an, China. T. S. Zhao Hong Kong University of Science and Technology, Kowloon, Hong Kong, China

Y. L. He and W. Q. Tao Xi an Jiaotong University, Xi an, China. T. S. Zhao Hong Kong University of Science and Technology, Kowloon, Hong Kong, China Numerical Heat Transfer, Part A, 44: 399 431, 2003 Copyright # Taylor & Francis Inc. ISSN: 1040-7782 print=1521-0634 online DOI: 10.1080/10407780390206625 STEADY NATURAL CONVECTION IN A TILTED LONG CYLINDRICAL

More information

Effect of Buoyancy Force on the Flow Field in a Square Cavity with Heated from Below

Effect of Buoyancy Force on the Flow Field in a Square Cavity with Heated from Below International Journal of Discrete Mathematics 017; (): 43-47 http://www.sciencepublishinggroup.com/j/dmath doi: 10.11648/j.dmath.01700.13 Effect of Buoyancy Force on the Flow Field in a Square Cavity with

More information

COMPUTACIONAL SIMULATION OF TWO-DIMENSIONAL TRANSIENT NATURAL CONVECTION IN VOLUMETRICALLY HEATED SQUARE ENCLOSURE

COMPUTACIONAL SIMULATION OF TWO-DIMENSIONAL TRANSIENT NATURAL CONVECTION IN VOLUMETRICALLY HEATED SQUARE ENCLOSURE COMPUTACIONAL SIMULATION OF TWO-DIMENSIONAL TRANSIENT NATURAL CONVECTION IN VOLUMETRICALLY HEATED SQUARE ENCLOSURE Camila Braga Vieira, camila@lasme.coppe.ufrj.br Jian Su, sujian@lasme.coppe.ufrj.br Universidade

More information

Amplitude Effects on Natural Convection in a Porous Enclosure having a Vertical Sidewall with Time-varying Temperature

Amplitude Effects on Natural Convection in a Porous Enclosure having a Vertical Sidewall with Time-varying Temperature IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-684,p-ISSN: 232-334, Volume 9, Issue (Sep. - Oct. 23), PP 79-95 Amplitude Effects on Natural Convection in a Porous Enclosure having

More information

MHD Mixed Convection in Double Lid- Driven Differentially Heated Trapezoidal Cavity

MHD Mixed Convection in Double Lid- Driven Differentially Heated Trapezoidal Cavity MHD Mixed Convection in Double Lid- Driven Differentially Heated Trapezoidal Cavity Ahmed F. Khudheyer Iraq, Baghdad, alnahrainuniversity ABSTRACT Mixed convection in a double lid driven trapezoidal cavity

More information

MIXED CONVECTION IN A SQUARE CAVITY WITH A HEAT-CONDUCTING HORIZONTAL SQUARE CYLINDER

MIXED CONVECTION IN A SQUARE CAVITY WITH A HEAT-CONDUCTING HORIZONTAL SQUARE CYLINDER Suranaree J. Sci. Technol. Vol. 17 No. 2; April - June 2010 139 MIXED CONVECTION IN A SQUARE CAVITY WITH A HEAT-CONDUCTING HORIZONTAL SQUARE CYLINDER Md. Mustafizur Rahman 1 *, M. A. Alim 1 and Sumon Saha

More information

NUMERICAL SIMULATION OF THERMAL CONVECTION IN A CLOSED CAVITY IN THE PRESENCE OF A THIN HORIZONTAL HEATED PLATE

NUMERICAL SIMULATION OF THERMAL CONVECTION IN A CLOSED CAVITY IN THE PRESENCE OF A THIN HORIZONTAL HEATED PLATE Proceedings of CHT-1 ICHMT International Symposium on Advances in Computational Heat Transfer July 1-6, 1, Bath, England CHT-1-NC17 NUMERICAL SIMULATION OF THERMAL CONVECTION IN A CLOSED CAVITY IN THE

More information

This file contains the author's copy of:

This file contains the author's copy of: This file contains the author's copy of: Tasnim, S.H., and Collins, M.R., "Suppressing Natural Convection in a Differentially Heated Square Cavity with an Arc Shaped Baffle", International Communications

More information

Numerical Study for Free Convection Heat Transfer inside an Inclined Cavity with Cylindrical Obstacles

Numerical Study for Free Convection Heat Transfer inside an Inclined Cavity with Cylindrical Obstacles International ournal of Engineering and Technology Volume 3 No. 5, May, 13 Numerical Study for Free Convection eat Transfer inside an Inclined Cavity with Cylindrical Obstacles Khudheyer S. Mushatat College

More information

NUMERICAL ANALYSIS OF NATURAL CONVECTION IN A PRISMATIC ENCLOSURE

NUMERICAL ANALYSIS OF NATURAL CONVECTION IN A PRISMATIC ENCLOSURE THERMAL SCIENCE, Year 2011, Vol. 15, No. 2, pp. 437-446 437 NUMERICAL ANALYSIS OF NATURAL CONVECTION IN A PRISMATIC ENCLOSURE by Walid AICH a*, Imen HAJRI b, and Ahmed OMRI a a Unité de Recherche Matériaux,

More information

NATURAL CONVECTION IN INCLINED RECTANGULAR POROUS CAVITY SUBJECT TO HEAT FLUXES ON THE LONG SIDE WALLS

NATURAL CONVECTION IN INCLINED RECTANGULAR POROUS CAVITY SUBJECT TO HEAT FLUXES ON THE LONG SIDE WALLS Proceedings of 4 th ICCHMT May 7 0, 005, Paris-Cachan, FRANCE ICCHMT 05-53 NATURAL CONVECTION IN INCLINED RECTANGULAR POROUS CAVITY SUBJECT TO HEAT FLUXES ON THE LONG SIDE WALLS L. Storesletten*, D.A.S.

More information

A Finite Element Analysis on MHD Free Convection Flow in Open Square Cavity Containing Heated Circular Cylinder

A Finite Element Analysis on MHD Free Convection Flow in Open Square Cavity Containing Heated Circular Cylinder American Journal of Computational Mathematics, 2015, 5, 41-54 Published Online March 2015 in SciRes. http://www.scirp.org/journal/ajcm http://dx.doi.org/10.4236/ajcm.2015.51003 A Finite Element Analysis

More information

NATURAL CONVECTION HEAT AND MOMENTUM TRANSFER IN SQUARE CAVITIES DISCRETELY HEATED FROM BELOW AND COOLED FROM ABOVE AND ONE SIDE

NATURAL CONVECTION HEAT AND MOMENTUM TRANSFER IN SQUARE CAVITIES DISCRETELY HEATED FROM BELOW AND COOLED FROM ABOVE AND ONE SIDE EFAT 9 th International onference on eat Transfer, Fluid Mechanics and Thermodynamics 6 8 July Malta NATURA ONVETION EAT AND MOMENTUM TRANSFER IN SQUARE AVITIES DISRETEY EATED FROM BEOW AND OOED FROM ABOVE

More information

NUMERICAL STUDY OF HEAT TRANSFER IN A FLAT PLAT THERMAL SOLAR COLLECTOR WITH PARTITIONS ATTACHED TO ITS GLAZING. Adel LAARABA.

NUMERICAL STUDY OF HEAT TRANSFER IN A FLAT PLAT THERMAL SOLAR COLLECTOR WITH PARTITIONS ATTACHED TO ITS GLAZING. Adel LAARABA. NUMERICAL STUDY OF HEAT TRANSFER IN A FLAT PLAT THERMAL SOLAR COLLECTOR WITH PARTITIONS ATTACHED TO ITS GLAZING Adel LAARABA. Department of physics. University of BATNA. (05000) Batna, Algeria Ccorresponding

More information

Chapter 2 Natural Convective Heat Transfer from Narrow Vertical Plates

Chapter 2 Natural Convective Heat Transfer from Narrow Vertical Plates Chapter 2 Natural Convective Heat Transfer from Narrow Vertical Plates Keywords Natural convection Narrow plates Vertical plates Isothermal plates Uniform surface heat flux merical Empirical equations

More information

International Journal of Multidisciplinary and Current Research

International Journal of Multidisciplinary and Current Research International Journal of Multidisciplinary and Current Research Research Article ISSN: 2321-3124 Available at: http://ijmcr.com in a Two-Phase Closed Cylindrical Thermosiphon in Conditions of Convective

More information

Effects of Inclination and Magnetic Field on Natural Convection Flow Induced by a Vertical Temperature

Effects of Inclination and Magnetic Field on Natural Convection Flow Induced by a Vertical Temperature Journal of Applied Fluid Mechanics, ol. 5, No., pp. 3-2, 22. Available online at www.jafmonline.net, ISSN 735-3572, EISSN 735-3645. Effects of Inclination and Magnetic Field on Natural Convection Flow

More information

Three-dimensional Numerical Study of Natural Convection in a Cubical Enclosure with Two Heated Square Sections Submitted to Periodic Temperatures

Three-dimensional Numerical Study of Natural Convection in a Cubical Enclosure with Two Heated Square Sections Submitted to Periodic Temperatures IJSI International Journal of omputer Science Issues, Vol. 0, Issue 4, No, July 03 www.ijsi.org 8 Three-dimensional Numerical Study of Natural onvection in a ubical Enclosure with Two Heated Square Sections

More information

LAMINAR NATURAL CONVECTION IN VERTICAL 2D GLAZING CAVITIES

LAMINAR NATURAL CONVECTION IN VERTICAL 2D GLAZING CAVITIES Mechanical and Industrial Engineering University of Massachusetts, Amherst AMINAR NATURA CONVECTION IN VERTICA 2D GAZING CAVITIES Bhaskar Adusumalli ABSTRACT Finite element predictions of natural convection

More information

International Journal of Thermal Sciences

International Journal of Thermal Sciences International Journal of Thermal Sciences 105 (2016) 137e158 Contents lists available at ScienceDirect International Journal of Thermal Sciences journal homepage: www. elsevier. com/ locate/ ijts Natural

More information

Study of the Transient Natural Convection of a Newtonian Fluid inside an Enclosure Delimited by Portions of Cylinders

Study of the Transient Natural Convection of a Newtonian Fluid inside an Enclosure Delimited by Portions of Cylinders Research Journal of Applied Sciences, Engineering and Technology 7(5): 3069-3074, 04 ISSN: 040-7459; e-issn: 040-7467 Maxwell Scientific Organization, 04 Submitted: August 7, 03 Accepted: September 0,

More information

NUMERICAL ANALYSIS OF NATURAL CONVECTION IN A RIGHT- ANGLED TRIANGULAR ENCLOSURE

NUMERICAL ANALYSIS OF NATURAL CONVECTION IN A RIGHT- ANGLED TRIANGULAR ENCLOSURE Frontiers in Heat and Mass Transfer Available at www.thermalfluidscentral.org NUMERICAL ANALYSIS OF NATURAL CONVECTION IN A RIGHT- ANGLED TRIANGULAR ENCLOSURE Manoj Kr. Triveni *, Dipak Sen, RajSekhar

More information

A problem of entropy generation in a channel filled with a porous medium

A problem of entropy generation in a channel filled with a porous medium CREATIVE MATH. & INF. 7 (8), No. 3, 357-36 Online version at http://creative-mathematics.ubm.ro/ Print Edition: ISSN 584-86X Online Edition: ISSN 843-44X Dedicated to Professor Iulian Coroian on the occasion

More information

NUMERICAL SIMULATION OF UNSTEADY NATURAL CONVECTION FROM HEATED HORIZONTAL CIRCULAR CYLINDERS IN A SQUARE ENCLOSURE

NUMERICAL SIMULATION OF UNSTEADY NATURAL CONVECTION FROM HEATED HORIZONTAL CIRCULAR CYLINDERS IN A SQUARE ENCLOSURE Numerical Heat Transfer, Part A, 65: 715 731, 2014 Copyright # Taylor & Francis Group, LLC ISSN: 1040-7782 print=1521-0634 online DOI: 10.1080/10407782.2013.846607 NUMERICAL SIMULATION OF UNSTEADY NATURAL

More information

Vector and scalar variables laminar natural convection in 2D geometry arbitrary angle of inclination

Vector and scalar variables laminar natural convection in 2D geometry arbitrary angle of inclination Vector and scalar variables laminar natural convection in 2D geometry arbitrary angle of inclination Miomir Raos and Ljubiša Nešić Abstract The aim of this study 1 is to analyze vector and scalar depending

More information

Cooling of a Pr < 1 fluid in a rectangular container

Cooling of a Pr < 1 fluid in a rectangular container J. Fluid Mech. (27), vol. 574, pp. 85 18. c 27 Cambridge University ess doi:1.117/s221126373 inted in the United Kingdom 85 Cooling of a < 1 fluid in a rectangular container WENXIAN LIN 1,3,, S. W. ARMFIELD

More information

INTERACTION OF SURFACE RADIATION WITH NATURAL CONVECTION AIR COOLING OF DISCRETE HEATERS IN A VERTICAL RECTANGULAR ENCLOSURE

INTERACTION OF SURFACE RADIATION WITH NATURAL CONVECTION AIR COOLING OF DISCRETE HEATERS IN A VERTICAL RECTANGULAR ENCLOSURE مو تمر الا زهر الهندسي الدولي التاسع AL-AZHAR ENGINEERING NINTH INTERNATIONAL CONFERENCE April -, 7 Code : M INTERACTION OF SURFACE RADIATION WITH NATURAL CONVECTION AIR COOLING OF DISCRETE HEATERS IN

More information

NUMERICAL STUDY OF MELTING OF TIN WITHIN A RECTANGULAR CAVITY INCLUDING CONVECTIVE EFFECTS

NUMERICAL STUDY OF MELTING OF TIN WITHIN A RECTANGULAR CAVITY INCLUDING CONVECTIVE EFFECTS NUMERICAL STUDY OF MELTING OF TIN WITHIN A RECTANGULAR CAVITY INCLUDING CONVECTIVE EFFECTS Christiano Garcia da Silva Santim, chrisoff22@yahoo.com.br Luiz Fernando Milanez, milanez@fem.unicamp.br Universidade

More information

Numerical Investigation of Conjugate Natural Convection Heat Transfer from Discrete Heat Sources in Rectangular Enclosure

Numerical Investigation of Conjugate Natural Convection Heat Transfer from Discrete Heat Sources in Rectangular Enclosure Proceedings of the World Congress on Engineering 4 Vol II, WCE 4, July - 4, 4, London, U.K. Numerical Investigation of Conjugate Natural Convection Heat Transfer from Discrete Heat Sources in Rectangular

More information

Computation of turbulent natural convection with buoyancy corrected second moment closure models

Computation of turbulent natural convection with buoyancy corrected second moment closure models Computation of turbulent natural convection with buoyancy corrected second moment closure models S. Whang a, H. S. Park a,*, M. H. Kim a, K. Moriyama a a Division of Advanced Nuclear Engineering, POSTECH,

More information

STABILITY ANALYSIS FOR BUOYANCY-OPPOSED FLOWS IN POLOIDAL DUCTS OF THE DCLL BLANKET. N. Vetcha, S. Smolentsev and M. Abdou

STABILITY ANALYSIS FOR BUOYANCY-OPPOSED FLOWS IN POLOIDAL DUCTS OF THE DCLL BLANKET. N. Vetcha, S. Smolentsev and M. Abdou STABILITY ANALYSIS FOR BUOYANCY-OPPOSED FLOWS IN POLOIDAL DUCTS OF THE DCLL BLANKET N. Vetcha S. Smolentsev and M. Abdou Fusion Science and Technology Center at University of California Los Angeles CA

More information

MIXED CONVECTION HEAT TRANSFER OF NANOFLUIDS IN A LID DRIVEN SQUARE CAVITY: A PARAMETRIC STUDY

MIXED CONVECTION HEAT TRANSFER OF NANOFLUIDS IN A LID DRIVEN SQUARE CAVITY: A PARAMETRIC STUDY International Journal of Mechanical and Materials Engineering (IJMME), Vol. 8 (2013), No. 1, Pages: 48-57. MIXED CONVECTION HEAT TRANSFER OF NANOFLUIDS IN A LID DRIVEN SQUARE CAVITY: A PARAMETRIC STUDY

More information

BUOYANCY HEAT TRANSFER IN STAGGERED DIVIDING SQUARE ENCLOSURE

BUOYANCY HEAT TRANSFER IN STAGGERED DIVIDING SQUARE ENCLOSURE THERMAL SCIENCE, Year 2011, Vol. 15, No. 2, pp. 409-422 409 BUOYANCY HEAT TRANSFER IN STAGGERED DIVIDING SQUARE ENCLOSURE by Viktor I. TEREKHOV a*, Alexander V. CHICHINDAEV b, and Ali L. EKAID a,b a Kutateladze

More information

Benchmark solutions for the natural convective heat transfer problem in a square cavity

Benchmark solutions for the natural convective heat transfer problem in a square cavity Benchmark solutions for the natural convective heat transfer problem in a square cavity J. Vierendeels', B.Merci' &L E. Dick' 'Department of Flow, Heat and Combustion Mechanics, Ghent University, Belgium.

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

EFFECT OF THE INLET OPENING ON MIXED CONVECTION INSIDE A 3-D VENTILATED CAVITY

EFFECT OF THE INLET OPENING ON MIXED CONVECTION INSIDE A 3-D VENTILATED CAVITY THERMAL SCIENCE: Year 2018, Vol. 22, No. 6A, pp. 2413-2424 2413 EFFECT OF THE INLET OPENING ON MIXED CONVECTION INSIDE A 3-D VENTILATED CAVITY by Hicham DOGHMI *, Btissam ABOURIDA, Lahoucin BELARCHE, Mohamed

More information

THE EFFECT OF VARIATION OF BASE FLUID ON NATURAL CONVECTION IN CAVITY FILLED WITH NAOFLUID IN THE PRESENCE OF MAGNETIC FIELD

THE EFFECT OF VARIATION OF BASE FLUID ON NATURAL CONVECTION IN CAVITY FILLED WITH NAOFLUID IN THE PRESENCE OF MAGNETIC FIELD THE EFFECT OF VARIATION OF BASE FLUID ON NATURAL CONVECTION IN CAVITY FILLED WITH NAOFLUID IN THE PRESENCE OF MAGNETIC FIELD Salma H. RADWAN 1*, Mohamed TEAMAH 2, Mohamed M. ABO ELAZM 3, Wael El-MAGHLANY

More information

EFFECT OF HEATED WALL POSITION ON MIXED CONVECTION IN A CHANNEL WITH AN OPEN CAVITY

EFFECT OF HEATED WALL POSITION ON MIXED CONVECTION IN A CHANNEL WITH AN OPEN CAVITY Numerical Heat Transfer, Part A, 43: 259 282, 2003 Copyright # 2003 Taylor & Francis 1040-7782/03 $12.00 +.00 DOI: 10.1080/10407780390122664 EFFECT OF HEATED WALL POSITION ON MIXED CONVECTION IN A CHANNEL

More information

FREE CONVECTION OF A NANOFLUID IN A SQUARE CAVITY WITH A HEAT SOURCE ON THE BOTTOM WALL AND PARTIALLY COOLED FROM SIDES

FREE CONVECTION OF A NANOFLUID IN A SQUARE CAVITY WITH A HEAT SOURCE ON THE BOTTOM WALL AND PARTIALLY COOLED FROM SIDES Abbasian Arani A. A., et al.: Free Convection of a Nanofluid in a Square Cavity S283 FREE CONVECTION OF A NANOFLUID IN A SQUARE CAVITY WITH A HEAT SOURCE ON THE BOTTOM WALL AND PARTIALLY COOLED FROM SIDES

More information

Numerical investigation of natural convection inside a wavy enclosure

Numerical investigation of natural convection inside a wavy enclosure International Journal of Thermal ciences 42 (2003) 397 406 www.elsevier.com/locate/ijts Numerical investigation of natural convection inside a wavy enclosure Prodip Kumar Das 1, hohel Mahmud,2 Department

More information

CFD MODELLING OF CONVECTIVE HEAT TRANSFER FROM A WINDOW WITH ADJACENT VENETIAN BLINDS

CFD MODELLING OF CONVECTIVE HEAT TRANSFER FROM A WINDOW WITH ADJACENT VENETIAN BLINDS Ninth International IBPSA Conference Montréal, Canada August 15-18, 2005 CFD MODELLING OF CONVECTIVE HEAT TRANSFER FROM A WINDOW WITH ADJACENT VENETIAN BLINDS Ljiljana Marjanovic 1,2, Malcom Cook 2, Vic

More information

Heat Transfer Enhancement using Synthetic Jet Actuators in Forced Convection Water Filled Micro-Channels

Heat Transfer Enhancement using Synthetic Jet Actuators in Forced Convection Water Filled Micro-Channels Heat Transfer Enhancement using Synthetic Jet Actuators in Forced Convection Water Filled Micro-Channels V. Timchenko 1, J.A. Reizes 1, E. Leonardi 1, F. Stella 2 1 School of Mechanical and Manufacturing

More information

Transport processes. 7. Semester Chemical Engineering Civil Engineering

Transport processes. 7. Semester Chemical Engineering Civil Engineering Transport processes 7. Semester Chemical Engineering Civil Engineering 1 Course plan 1. Elementary Fluid Dynamics 2. Fluid Kinematics 3. Finite Control Volume nalysis 4. Differential nalysis of Fluid Flow

More information

TRANSITION TO CHAOS OF RAYLEIGH-BÉNARD CELLS IN A CONFINED RECTANGULAR CONTAINER HEATED LOCALLY FROM BELOW

TRANSITION TO CHAOS OF RAYLEIGH-BÉNARD CELLS IN A CONFINED RECTANGULAR CONTAINER HEATED LOCALLY FROM BELOW TRANSITION TO CAOS OF RAYEIG-BÉNAR CES IN A CONFINE RECTANGUAR CONTAINER EATE OCAY FROM BEO iroyoshi Koizumi epartment of Mechanical Engineering & Intelligent Systems, The University of Electro-Communications,

More information

Ali J. Chamkha* Ahmed Ali Shaker

Ali J. Chamkha* Ahmed Ali Shaker Progress in Computational Fluid Dynamics, Vol. 12, No. 5, 2012 309 Conduction-combined forced and natural convection in a lid-driven parallelogram-shaped enclosure divided by a solid partition Ali J. Chamkha*

More information

Buoyancy Induced Heat Transfer and Fluid Flow inside a Prismatic Cavity

Buoyancy Induced Heat Transfer and Fluid Flow inside a Prismatic Cavity Journal of Applied Fluid Mechanics, Vol. 3, No. 2, pp. 77-86, 2010. Available online at www.jafmonline.net, ISSN 1735-3645. Buoyancy Induced Heat Transfer and Fluid Flow inside a Prismatic Cavity A. Walid

More information

Convection Workshop. Academic Resource Center

Convection Workshop. Academic Resource Center Convection Workshop Academic Resource Center Presentation Outline Understanding the concepts Correlations External Convection (Chapter 7) Internal Convection (Chapter 8) Free Convection (Chapter 9) Solving

More information

Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a Rectangular Heated Body in Presence of External Oriented Magnetic Field

Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a Rectangular Heated Body in Presence of External Oriented Magnetic Field Publications Available Online J. Sci. Res. 10 (1), 11-23 (2018) JOURNAL OF SCIENTIFIC RESEARCH www.banglajol.info/index.php/jsr Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a

More information