A modified Thomson parabola spectrometer for high resolution multi-mev ion measurements - application to laser-driven ion acceleration

Size: px
Start display at page:

Download "A modified Thomson parabola spectrometer for high resolution multi-mev ion measurements - application to laser-driven ion acceleration"

Transcription

1 A modified Thomson parabola spectrometer for high resolution multi-mev ion measurements - application to laser-driven ion acceleration D.C. Carroll a, P. McKenna a, P. Brummitt b, D. Neely b, F. Lindau c, O. Lundh c, C.-G. Wahlström c a SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK b STFC, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK c Department of Physics, Lund University, P.O. Box 118, Lund, Sweden Abstract A novel Thomson parabola ion spectrometer design is presented, in which a gradient electric field configuration is employed to enable a compact design capable of high resolution measurements of ion energy and charge-to-mass ratio. Practical issues relating to the use of the spectrometer for measurement of ion acceleration in high-power laser-plasma experiments are discussed. Example experimental results for ion acceleration from petawatt-class laser interactions with thin gold target foils are presented. Key words: 1. Introduction In recent years, laser systems have reached intensities that make it possible to generate beams of multi-mev ions [1 5] from laser-foil interactions. An important diagnostic for analyzing these ion beams is the Thomson parabola spectrometer [6 10]. This is used to measure the energy spectra of different ion species in a given solid angle. Magnetic and electric fields are used to deflect ions according to their velocity (v) and chargeto-mass ratio (q/m). It is a particularly useful diagnostic of laser-plasma interactions in which a range of ion species are accelerated. The most basic design for a Thomson parabola ion spectrometer involves the use of an electric field generated, by a potential difference across a pair of electrodes, and a magnetic field, generated by a pair of permanent magnets. These fields are parallel to each other but perpendicular to the ions initial direction of travel. The resulting ion dispersion, assuming uniform magnetic (B) and electric (E) fields, can be calculated using equations 1 and 2 for non-relativistic ions: D B = qbl ( ) B 1 mν z 2 L B + d B (1) D E = qel E mν 2 z ( ) 1 2 L E + d E (2) where D B and D E are the displacements due to the B and E fields, respectively, of an ion with charge q, mass m and velocity component, ν z, along the z-axis, being the initial ion direction. L E and L B are the lengths of the electric and magnetic fields along the z-axis. The distances between the end of the electric and magnetic fields and the detector plane are d E and d B, respectively. Equations 1 and 2 are the parametric equations of a parabola in terms of ν z, and hence ions with distinct q/m form parabolic traces in the dispersion plane of the spectrometer. The velocity spectrum is obtained from the density of ions along a given parabola. Ions with energies up to hundreds of MeV are produced in high power laser-plasma interactions [3, 11, 12]. To enable accurate identification of ion species with different q/m and accurate measurement of the maximum energy of these ions a spectrometer with a high charge-to-mass and energy resolution, in the MeV range, is required. One of the conditions to achieve this, is that a large and similar dispersion is induced by both the B and Preprint submitted to Nuclear Instruments and Methods in Physics Research Section A November 5, 2009

2 E-fields. The dispersion due to the B-field is in the direction orthogonal to the field. If permanent magnets are used then the field strength is defined by the magnet material and the pole separation. In principle, there is no limit to the dispersion that can be induced by this field as the particles will never intercept the magnets (though they could become trapped in circular orbits within the field). By contrast, as the E-field disperses ions in the direction of the field, the separation of the electrodes at the exit plane defines the energy range of the ions detected. In this paper we describe a modified Thomson parabola spectrometer, designed to produce high resolution measurements of the energy and charge states of multi-mev ions. The electromagnetic fields of this compact design are optimized to give greater dispersion for a given voltage compared to traditional designs and practical issues related to the use of the spectrometer are discussed. Example experimental results for multi-mev (up to 6 MeV per nucleon) highly charged (up to Au 42+ ) ion acceleration from high power laser interactions with thin foils, obtained using this spectrometer are presented. 2. Modified design To achieve the desired high charge-to-mass and energy resolution for ion acceleration driven by ultrahigh intensity lasers, while keeping the size of the spectrometer compact, a modified design of the Thomson ion spectrometer was developed as shown schematically in Fig. 1 and summarised in Table 1. The modified Thomson parabola spectrometer utilizes 50 mm 50 mm 10 mm permanent magnets with a pole separation of 20 mm to generate the B-field. NdFeB magnets give a peak field strength of 0.6 T at the central point between the magnets, while the same size ceramic magnets with the same pole separation generate a peak field of 0.2 T. The spectrometer is designed such that either field strength can be chosen by swapping magnets. The novel feature of the design is that it utilizes a wedge configuration for the E-field, in which the separation between the electrodes increases along the ion path. This 2 is designed to produce a large E-field dispersion and detectable energy range. To produce a similar dispersion to the magnetic field the electric field has to extend over a longer distance as the maximum potential which can be applied across the E-field electrodes is limited to 10 kv for practical consideration of compact power supplies. Figure 1: Schematic of the modified Thomson ion spectrometer. Ions are incident from the left, along the z-axis. Electrode length L E 200 mm Smallest electrode gap s min 2 mm Largest electrode gap s max 22.5 mm Magnet length L B 50 mm Magnet separation s B 20 mm Electrode to detector d E 45 mm Magnet to detector d B 195 mm Pinhole to detector d p 280 mm Table 1: Main parameters of the modified Thomson parabola spectrometer design. Fig. 2 shows the measured magnetic field variation along each of the three axes of the spectrometer. The peak magnetic field at the center of the gap between the two permanent magnets is measured to be 0.62 T (with NdFeB magnets). It should be noted that the Thomson spectrometers line of zero deflection, the path taken by neutral particles, is not along the center of the gap between the two magnets but is offset to the side by 3.5 mm so as to accommodate the tilted electrode configuration. The magnets are encased in a mild steel yoke to provide a return path for the field and so reduce fringe fields at the edges of the magnets. There is a slight asymmetry in the magnetic field due to variations in the thickness of the steel mounting; this can be seen in Fig. 2(b) and (c).

3 Figure 3: a) The coordinate system used for the mathematical description of the electric field. b) The calculated x-axis electric field component along the z-axis using the following typical values: V = 6000 V, θ0 = 0.1 rad (5.7 ), smin = m, x = m. Figure 2: a) The variation of the magnetic field across the gap between the two magnets. Measurements made inside the Thomson spectrometer 28 mm from the pinhole. b) Magnetic field 30 mm inside the spectrometer in the vertical plane parallel to the z-axis. c) Longitudinal scan of the magnetic field along the z-axis. The axes are defined in Fig. 1. The electric field (E) can be described at a given point between the electric plates in vector form [13], using the co-ordinate system defined in Fig. 3(a), as: zv Ex (x2 +z 2 )θ0 (3) 0 E (x, y, z > z0 ) = Ey = xv Ez (x2 +z 2 )θ0 where V is the voltage applied across the electrodes, θ0 is the angle between the plates and smin is the minimum separation of the plates. The electric field along the length of the Thomson parabola spectrometer, calculated using equation 3, with typical values for the spectrometer parameters, is shown in Fig. 3(b). It is assumed that outside the electrodes the electric field is zero. It should be noted that as the angle between the plates is small, the Ez component of the electric field is significantly smaller than the Ex component. A code has been developed to calculate the dispersion for ion species of interest, for the above measured magnetic and calculated electric fields. The total ion deflection due to the Lorentz force is calculated in incremental steps through the magnetic and electric fields along the z-axis. Fig. 4 shows the dispersion of proton and carbon ions as a function of energy in the range of interest, up to 60 MeV for protons and up to 5 MeV per nucleon for carbon ions, in the plane of the detector. Figure 4: The simulated dispersion of protons and carbon ions by the (a) magnetic and (b) electric fields at the plane of the detector. Only ions that avoid colliding with the electrodes and reach the detector plane are plotted. 3

4 Ion species with different q/m can be identified by comparing the measured shape of the parabolas at the detector plane to the calculated dispersion. After an ion species is identified by q/m dispersion, only one field is required to calculate the ion energy spectra. We typically us the B-field dispersion to extract the ion energy spectrum. Typical energy resolution with the B-field is E n /E n = 0.1 for E n = 60 MeV C 1+ ions over 100 µm, for the E-field this is E n /E n = 0.3. The limiting factor to the resolution (ignoring space charge effects) is the size of the pinhole used at the entrance of the spectrometer, as its projection at the detector plane defines the minimum separation required to resolve ions with different q/m and velocity. 3. Practical considerations The solid angle subtended by the entrance to the Thomson parabola spectrometer is selected depending on the flux of the ion beam and what information is to be extracted from the data. If an ion energy spectrum is required, for example to calculate the energy conversion efficiency from laser to ions, then a solid angle of sr (equivalent to a 50 µm diameter pinhole at a distance of 0.6 m) is used to avoid saturation at low energies (few MeV) with a CR39 detector positioned as stated in Table 1. However, with this relatively small solid angle the maximum cut-off energy that can be resolved above background is reduced. If the maximum cut-off energy is required, then a solid angle of sr (equivalent to a 100 µm diameter pinhole at 0.6 m) is found to be more suitable with a CR39 detector. The larger solid angle gives increased sensitivity at high energies which needs to be balanced with the resolution limiting effect of larger solid angle. Experience shows that a low pass R-C filter needs to be incorporated into the Thomson parabola spectrometer design due to the HV power cables connected to the spectrometer picking up high frequency noise in a petawatt laser-plasma environ- 4 ment. This noise is generated during the laser shots and causes instability in the E-field, which can result in unstable ion trajectories and steplike features at constant time in the ion trace at the detector plane. The modified Thomson parabola spectrometer described above has been used in a number of laser-foil ion acceleration experiments, involving laser intensities between [14] and Wcm 2 [15, 16]. The magnetic and electric field parameters of the Thomson parabola spectrometer can be modified to take account of the range of ion energies that are accelerated. The spectrometer as described above is for experiments using high energy, petawatt systems, e.g Vulcan (500 J in 500 fs) and the dispersion shown in Fig. 4 is optimized for this. On a multi-terawatt (1 J in 50 fs) laser system proton energies below 6 MeV [14] are typically measured. It is necessary for the strength of the fields in the Thomson parabola spectrometer to be reduced to optimize the dispersion for this lower energy range. Replacing the NdFeB magnets with same size but weaker ceramic magnets (to enable the same steel housing to be used) results in a magnetic field of 0.2 T. This together with the E-field dispersion generated by reducing the potential difference applied to 1.5 kv produces suitable dispersion. 4. Detectors Although CR39 (California Resin 39) is often used as the detector at the rear of the Thomson parabola spectrometer, other detectors can be used including scintillator with an EMCCD imaging system [14], micro-channel plate (MCP) [9, 10] and Fuji film image plate [17]. A 1 mm thick piece of CR-39 is sufficient to detect all heavy ions currently produced in laserfoil interactions and can detect protons with energy up to 11 MeV. Above this energy the protons pass straight through the CR-39. In comparison for deuterium and carbon ions to pass through 1 mm thick CR-39 requires energies > 15 MeV and > 250 MeV respectively. Ions are detected by etching the CR39 in a bath of heated sodium hydroxide solution (NaOH, e.g molar solution at 86 C) where damage caused to the plastic, due to ion energy deposition, develop into observable pits. A dynamic range for CR39 of about

5 two orders of magnitude in ion density is measurable. The limiting factor for the dynamic range is the pit density. If too high, the ion pits start to overlap and become difficult to identify individually, Fig. 5(a) shows an example of this. If too low, then distinguishing the signal from background can be an issue and statistical fluctuations are observable. The advantages of CR39 as an ion detector are that it is insensitive to electrons and photons, is 100% efficient and is not affected by electromagnetic pulses. The draw-backs of CR39 are that it is time consuming to process (multiple etching and analysis is required for ions stopped deep in the CR39) and is therefore ill-suited for a laser system with a high shot rate. Figure 5: a) Example ion parabola on CR39, insert A shows saturation of the CR39 where the scanner was unable to identify individual pits and insert B shows an expanded section of the parabola showing the high spatial resolution possible with the new Thomson spectrometer. b) Example spectra extracted from the raw CR39 data where the ion energy has been scaled with the ions atomic mass. Plastic scintillator detectors are sensitive to electrons and photons as well as ions. However, the response to electrons and photons is significantly reduced when using a thin (100 µm) scintillator while still being sensitive to ions. A dynamic range of about three orders is measurable with this detector when a 16-bit camera properly shielded is used. The advantage of using a scintillator imaging system is that it is an online diagnostic which can cope with a high rate of shots. The drawbacks are that it is not sensitive to individual ions like CR39 and therefore requires a higher ion flux to produce a measurable signal (a consequence of this is that a larger pinhole is required). Also, the thickness of the scintillator needs to be increased for increasing ion 5 energies, which in turn increases the background noise of electrons and photons. A similar system can be implemented where the scintillator is replaced with a MCP and phosphor screen. Fuji film image plate (Fuji Photo Film Co. Ltd) is a reusable film where ionizing radiation (ions, electrons and photons) excite electron levels in the plate. The plate is then scanned in a purpose built scanner which de-excites these levels with a specific wavelength of light and causes light to be emitted that is read by the scanner. Once the plate is fully de-excited it can be reused. For image plate at the back of the Thomson parabola spectrometer the point of zero deflection is marked by x-rays passing along the unobstructed line-ofsight (for CR39 it is neutral atoms). The advantages of image plate are that it is quicker to process than CR39, it is reusable and can have a very large dynamic range [18, 19]. Its drawbacks are that it is not single-ion sensitive and it cannot be used as an online diagnostic. We have used all three types of detector. The image plate, scintillator and MCP can be absolutely calibrated either by using an ion beam whose parameters (energies and flux etc) are known or by cross referencing with CR High resolution measurements of highly charged gold ions Fig. 5(a) shows an example digitized ion pit distribution on etched CR39. This is obtained with a 10 µm gold foil target is irradiated with the Vulcan Petawatt laser (Rutherford Appleton Laboratory) focused, with an f/3 off-axis parabola, to an intensity of Wcm 2 at an incident angle of 45. The target is heated to 1000 C to remove water vapor and so preferentially accelerate heavier ions from the target foil [4, 20]. The modified Thomson spectrometer with a peak magnetic field of 0.62 T, a potential difference of 6 kv and a 1 mm thick piece of CR39 as detector is used to measure the accelerated ions. The solid angle of the spectrometer pinhole is sr. The parabolas corresponding to different ion species are clearly seen. A zoomed in section of

6 the parabolas, Fig. 5(a) insert B, shows the clearly separated Au charge states. The multiply charged C q+ and Au q+ up to q = 5 and q = 42, respectively, are clearly resolved. Example spectra of both carbon and gold ions are shown in Fig. 5(b). In this example the highest energy ions are found to be the highest charge states, 0.6 MeV/nucleon for Au 42+ (118 MeV)and 6 MeV/nucleon for C 5+ (72 MeV). [15] P. McKenna et al., Phys. Rev. Lett. 98, (2007). [16] P. McKenna et al., Plasma Phys. Controll. Fusion 49, B223 (2007). [17] [18] R.J. Clarke et al., Nucl. Instr. Meth. Phys. Res. A 585, 117 (2008). [19] T. Tanimoto et al., Rev. Sci. Instr. 79, 10E910 (2008). [20] P. McKenna et al., Phys. Rev. E 70, (2004). [21] A. S. Pirozhkov et al., App. Phys. Lett. 94, (2009). 6. summary We have presented a modified Thomson parabola spectrometer design to enable high resolution measurements of many-charge state multi-mev ion emission. In addition this spectrometer design is compact and versatile with interchangeable magnets. Example experimental measurements of individually resolved tracks of Au q+ ions up to q = 42 are presented. Thomson spectrometers of this design have been used in a variety of experiments [14 16, 21] on both high power single shot and high shot rate laser systems. 7. Acknowledgments We acknowledge expert support of the staff at the Central Laser Facility. This work was supported by the UK Engineering and Physical Sciences Research Council (grant numbers EP/E048668/1 and EP/E035728/1) and the LIBRA consortium. References [1] E. L. Clark et al., Phys. Rev. Lett. 84, 670 (2000). [2] E. L. Clark et al., Phys. Rev. Lett. 85, 1654 (2000). [3] R. A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000) [4] M. Hegelich et al., Phys. Rev. Lett. 89, (2002). [5] M. Borghesi et al., Fusion Sci. Techn. 49, 412 (2006). [6] 1. S. Sakabe et al., Rev. Sci. Instr. 51, 1314 (1980). [7] M. J. Rhee et al., Rev. Sci. Instr. 58, 240 (1987). [8] Ming-fang Lu et al., Rev. Sci. Instr. 68, 3738 (1997). [9] W. Mróz et al., Rev. Sci. Instr. 71, 1417 (2000). [10] K. Harres et al., Rev. Sci. Instr. 79, (2008). [11] L. Robson et al., Nat. Phys. 3, 58 (2007). [12] A. Henig et al., Phys. Rev. Lett. 103, (2009). [13] K.-I. Sakai et al., IEEE Trans. Diele. Elect. Insul. 10, 404 (2003). [14] A. P. L. Robinson et al., New J. Phys. 11, (2009). 6

Scintillator-based ion beam profiler for diagnosing laser-accelerated ion beams

Scintillator-based ion beam profiler for diagnosing laser-accelerated ion beams Scintillator-based ion beam profiler for diagnosing laser-accelerated ion beams J. S. Green* a, M. Borghesi b, C. M. Brenner a,c, D. C. Carroll c, N. P. Dover d, P. S. Foster a,b, P. Gallegos a,c, S. Green

More information

ION ACCELERATION FROM ULTRA THIN FOILS

ION ACCELERATION FROM ULTRA THIN FOILS ION ACCELERATION FROM ULTRA THIN FOILS ON THE ASTRA GEMINI FACILITY Clare Scullion Queen s University of Belfast cscullion57@qub.ac.uk Supervisor: Prof. Marco Borghesi THANKS TO ALL OUR COLLABORATORS D.

More information

Active manipulation of the spatial energy distribution of laseraccelerated

Active manipulation of the spatial energy distribution of laseraccelerated Active manipulation of the spatial energy distribution of laseraccelerated proton beams Carroll, D. C., McKenna, P., Lundh, O., Lindau, F., Wahlstrom, C. G., Bandyopadhyay, S.,... Li, Y. T. (27). Active

More information

(2016) ISSN X,

(2016) ISSN X, Rusby, D. R. and Brenner, C. M. and Armstrong, C. and Wilson, L. A. and Clarke, R. and Alejo, A. and Ahmed, H. and Butler, N. M. H. and Haddock, D. and Higginson, A. and McClymont, A. and Mirfayzi, S.

More information

Track measurements of fast particle streams. from the pulse-discharge explosion-induced plasma. Ukraine

Track measurements of fast particle streams. from the pulse-discharge explosion-induced plasma. Ukraine Track measurements of fast particle streams from the pulse-discharge explosion-induced plasma S.V.Adamenko 1, A.S.Adamenko 1, A.A.Gurin 2, Yu. M.Onishchuk 3 1 Electrodynamics Laboratory Proton-21, Dovzhenko

More information

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging G. Golovin 1, S. Banerjee 1, C. Liu 1, S. Chen 1, J. Zhang 1, B. Zhao 1, P. Zhang 1, M. Veale 2, M. Wilson

More information

188 L. Jakubowski and M.J. Sadowski temperature. Some examples of the registered X-ray images are shown in Fig.1. Figure 1. X-ray pinhole images from

188 L. Jakubowski and M.J. Sadowski temperature. Some examples of the registered X-ray images are shown in Fig.1. Figure 1. X-ray pinhole images from Brazilian Journal of Physics, vol. 32, no. 1, March, 2002 187 Hot-Spots in Plasma-Focus Discharges as Intense Sources of Different Radiation Pulses L. Jakubowski and M.J. Sadowski The Andrzej Soltan Institute

More information

Ion Acceleration from the Interaction of Ultra-Intense Laser Pulse with a Thin Foil

Ion Acceleration from the Interaction of Ultra-Intense Laser Pulse with a Thin Foil Ion Acceleration from the Interaction of Ultra-Intense Laser Pulse with a Thin Foil Matthew Allen Department of Nuclear Engineering UC Berkeley mallen@nuc.berkeley.edu March 15, 2004 8th Nuclear Energy

More information

Fast proton bunch generation in the interaction of ultraintense laser pulses with high-density plasmas

Fast proton bunch generation in the interaction of ultraintense laser pulses with high-density plasmas Fast proton bunch generation in the interaction of ultraintense laser pulses with high-density plasmas T.Okada, Y.Mikado and A.Abudurexiti Tokyo University of Agriculture and Technology, Tokyo -5, Japan

More information

SIMULATION OF LASER INDUCED NUCLEAR REACTIONS

SIMULATION OF LASER INDUCED NUCLEAR REACTIONS NUCLEAR PHYSICS SIMULATION OF LASER INDUCED NUCLEAR REACTIONS K. SPOHR 1, R. CHAPMAN 1, K. LEDINGHAM 2,3, P. MCKENNA 2,3 1 The Institute of Physical Research, University of Paisley, Paisley PA1 2BE, UK

More information

Electron Spectrometer for FLASHForward Plasma-Wakefield Accelerator

Electron Spectrometer for FLASHForward Plasma-Wakefield Accelerator Electron Spectrometer for FLASHForward Plasma-Wakefield Accelerator Artemis Kontogoula Supervisor: Vladyslav Libov September 7, 2017 National & Kapodistrian University of Athens, Greece Deutsches Elektronen-Synchrotron

More information

NUCLEAR EMISSIONS FROM TITANIUM HYDRIDE/DEUTERIDE INDUCED BY POWERFUL PICOSECOND LASER BEAM

NUCLEAR EMISSIONS FROM TITANIUM HYDRIDE/DEUTERIDE INDUCED BY POWERFUL PICOSECOND LASER BEAM NUCLEAR EMISSIONS FROM TITANIUM HYDRIDE/DEUTERIDE INDUCED BY POWERFUL PICOSECOND LASER BEAM A. S. ROUSSETSKI P.N. Lebedev Physical Institute Russian Academy of Sciences, 3 Leninsky prospect, 119991 Moscow,

More information

Atomic ionization of aluminum

Atomic ionization of aluminum Fractional population of Al ions Laser intensity (10 0 W/cm ) Atomic ionization of aluminum 10 0 11+ 10-1 9+ 10-10 -3 10+ 1+ 1 10-4 13+ 0-1.0-0.5 0.0 0.5 Time (ps) Supplementary Figure 1: Laser field ionization

More information

Radiological characterisation of photon radiation from ultra-high-intensity laser plasma and nuclear interactions

Radiological characterisation of photon radiation from ultra-high-intensity laser plasma and nuclear interactions INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF RADIOLOGICAL PROTECTION J. Radiol. Prot. 26 (26) 277 286 doi:1.188/952-4746/26/3/2 Radiological characterisation of photon radiation from ultra-high-intensity

More information

Lecture 1. Introduction

Lecture 1. Introduction Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project Ion acceleration in plasmas Lecture 1. Introduction Dr. Ashutosh Sharma Zoltán Tibai 1 Contents

More information

University of Huddersfield Repository

University of Huddersfield Repository University of Huddersfield Repository Edgecock, R. Commissioning of the EMMA Non-Scaling FFAG Original Citation Edgecock, R. (2010) Commissioning of the EMMA Non-Scaling FFAG. In: Proceedings of the 1st

More information

Thomson Scattering from Nonlinear Electron Plasma Waves

Thomson Scattering from Nonlinear Electron Plasma Waves Thomson Scattering from Nonlinear Electron Plasma Waves A. DAVIES, 1 J. KATZ, 1 S. BUCHT, 1 D. HABERBERGER, 1 J. BROMAGE, 1 J. D. ZUEGEL, 1 J. D. SADLER, 2 P. A. NORREYS, 3 R. BINGHAM, 4 R. TRINES, 5 L.O.

More information

Shielded Scintillator for Neutron Characterization

Shielded Scintillator for Neutron Characterization Shielded Scintillator for Neutron Characterization A Thesis Submitted in Partial Fulfillment of the Requirements for Graduation with Research Distinction in Engineering Physics By Patrick X. Belancourt

More information

Proton acceleration in thin foils with micro-structured surface

Proton acceleration in thin foils with micro-structured surface Proton acceleration in thin foils with micro-structured surface J. Pšikal*, O. Klimo*, J. Limpouch*, J. Proška, F. Novotný, J. Vyskočil Czech Technical University in Prague, Faculty of Nuclear Sciences

More information

Energetic neutral and negative ion beams accelerated from spray target irradiated with ultra-short, intense laser pulses

Energetic neutral and negative ion beams accelerated from spray target irradiated with ultra-short, intense laser pulses Energetic neutral and negative ion beams accelerated from spray target irradiated with ultra-short, intense laser pulses Sargis Ter-Avetisyan ELI - Extreme Light Infrastructure Science and Technology with

More information

Scaling Hot-Electron Generation to High-Power, Kilojoule-Class Lasers

Scaling Hot-Electron Generation to High-Power, Kilojoule-Class Lasers Scaling Hot-Electron Generation to High-Power, Kilojoule-Class Lasers 75 nm 75 75 5 nm 3 copper target Normalized K b /K a 1.2 1.0 0.8 0.6 0.4 Cold material 1 ps 10 ps 0.2 10 3 10 4 Heating 2.1 kj, 10

More information

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE* SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE* E. Panofski #, A. Jankowiak, T. Kamps, Helmholtz-Zentrum Berlin, Berlin, Germany P.N. Lu, J. Teichert, Helmholtz-Zentrum Dresden-Rossendorf,

More information

PARTICLE ACCELERATORS

PARTICLE ACCELERATORS VISUAL PHYSICS ONLINE PARTICLE ACCELERATORS Particle accelerators are used to accelerate elementary particles to very high energies for: Production of radioisotopes Probing the structure of matter There

More information

Minicourse on Experimental techniques at the NSCL Fragment Separators

Minicourse on Experimental techniques at the NSCL Fragment Separators Minicourse on Experimental techniques at the NSCL Fragment Separators Thomas Baumann National Superconducting Cyclotron Laboratory Michigan State University e-mail: baumann@nscl.msu.edu August 2, 2001

More information

Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI)

Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI) Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI), 2003, A dedicated proton accelerator for 1p-physics at the future GSI Demands facilities for

More information

AN ULTRA-HIGH RESOLUTION PULSED-WIRE MAGNET MEASUREMENT SYSTEM. Alex D Audney Thesis Defense Colorado State University

AN ULTRA-HIGH RESOLUTION PULSED-WIRE MAGNET MEASUREMENT SYSTEM. Alex D Audney Thesis Defense Colorado State University AN ULTRA-HIGH RESOLUTION PULSED-WIRE MAGNET MEASUREMENT SYSTEM Alex D Audney Thesis Defense Colorado State University 1 Overview Introduction and Background Pulsed-Wire Method Overview The CSU Undulator

More information

What detectors measure

What detectors measure What detectors measure As a particle goes through matter, it releases energy Detectors collect the released energy and convert it to electric signals recorded by DAQ Raw event record is a collection of

More information

Physics Tutorial MF1 Magnetic Forces

Physics Tutorial MF1 Magnetic Forces Physics Tutorial MF1 Magnetic Forces 1 Magnetic Forces The force F on a charge q moving with velocity v in a magnetic field is: F = qv The force F on a straight conductor of length L carrying a current

More information

Fast electron generation and transport in solid targets. Paul McKenna University of Strathclyde

Fast electron generation and transport in solid targets. Paul McKenna University of Strathclyde Fast electron generation and transport in solid targets Paul McKenna University of Strathclyde Talk summary 1. Fast electron generation and transport in ultraintense laser-solid interactions 2. Transverse

More information

object objective lens eyepiece lens

object objective lens eyepiece lens Advancing Physics G495 June 2015 SET #1 ANSWERS Field and Particle Pictures Seeing with electrons The compound optical microscope Q1. Before attempting this question it may be helpful to review ray diagram

More information

Beam Shape and Halo Monitor Study

Beam Shape and Halo Monitor Study EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH CERN A&B DEPARTMENT AB-Note-2006-047 ABP Beam Shape and Halo Monitor Study J-B. Lallement, E.Z. Sargsyan, M. Hori Abstract The Beam Shape and Halo Monitor, designed

More information

Calibration and applications of modern track detectors CR-39/PM-355 in nuclear physics and high temperature plasma experiments

Calibration and applications of modern track detectors CR-39/PM-355 in nuclear physics and high temperature plasma experiments NUKLEONIKA 2008;53(Supplement 2):S15 S19 ORIGINAL PAPER Calibration and applications of modern track detectors CR-39/PM-355 in nuclear physics and high temperature plasma experiments Aneta Malinowska,

More information

Low density plasma experiments investigating laser propagation and proton acceleration

Low density plasma experiments investigating laser propagation and proton acceleration Low density plasma experiments investigating laser propagation and proton acceleration L Willingale, K Krushelnick, A Maksimchuk Center for Ultrafast Optical Science, University of Michigan, USA W Nazarov

More information

The MIT Accelerator for development of ICF diagnostics at OMEGA / OMEGA-EP and the NIF

The MIT Accelerator for development of ICF diagnostics at OMEGA / OMEGA-EP and the NIF Introduction The MIT Accelerator for development of ICF diagnostics at OMEGA / OMEGA-EP and the NIF SBDs d + or 3 He +(2+) D or 3 He target Present MIT Graduate Students and the MIT Accelerator OLUG 21

More information

Development of Secondary Electron Time Detector for Ion Beams

Development of Secondary Electron Time Detector for Ion Beams Development of Secondary Electron Time Detector for Ion Beams, A. Ozawa, T. Moriguchi, Y. Ichikawa, M. Amano, D. Kamioka, Y. Tajiri, K. Hiraishi, T. Matsumoto Institute of Physics, University of Tsukuba,

More information

Particles and Waves Final Revision Exam Questions Part 1

Particles and Waves Final Revision Exam Questions Part 1 Particles and Waves Final Revision Exam Questions Part 1 Cover image: cutaway diagram of CERN, CERN Version 2013 P&W: Exam Questions Part 1 Version 2013 Contents Section 1: The Standard Model 1 Section

More information

Influence of gas conditions on electron temperature inside a pinch column of plasma-focus discharge

Influence of gas conditions on electron temperature inside a pinch column of plasma-focus discharge Journal of Physics: Conference Series PAPER OPEN ACCESS Influence of gas conditions on electron temperature inside a pinch column of plasma-focus discharge To cite this article: D R Zaloga et al 218 J.

More information

CfE Higher Physics. Particles and Waves

CfE Higher Physics. Particles and Waves Wallace Hall Academy CfE Higher Physics Particles and Waves Exam Questions Part 1 Cover image: cutaway diagram of CERN, CERN P&W: Exam Questions Part 1 Version 2013 Contents Section 1: The Standard Model

More information

PoS(EPS-HEP2017)533. First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN. Patric Muggli, Allen Caldwell

PoS(EPS-HEP2017)533. First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN. Patric Muggli, Allen Caldwell First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN Patric Muggli, Max Planck Institute for Physics E-mail: muggli@mpp.mpg.de AWAKE is a plasma wakefield acceleration experiment

More information

CHAPTER 12 TEST REVIEW

CHAPTER 12 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 76 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 12 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

More information

GA A22722 CENTRAL THOMSON SCATTERING UPGRADE ON DIII D

GA A22722 CENTRAL THOMSON SCATTERING UPGRADE ON DIII D GA A22722 CENTRAL THOMSON SCATTERING UPGRADE ON DIII D by D.G. NILSON, T.N. CARLSTROM, C.L. HSIEH, B.W. STALLARD, and R.E. STOCKDALE NOVEMBER 1997 DISCLAIMER This report was prepared as an account of work

More information

Free electron lasers

Free electron lasers Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project Free electron lasers Lecture 2.: Insertion devices Zoltán Tibai János Hebling 1 Outline Introduction

More information

Calibrating the FNAL Booster Ionization Profile Monitor

Calibrating the FNAL Booster Ionization Profile Monitor Calibrating the FNAL Booster Ionization Profile Monitor J. Amundson, J. Lackey, P. Spentzouris FNAL G. Jungman LANL Linda Spentzouris IIT May, 200 Abstract We have performed a calibration of the Booster

More information

PSI AP Physics How was it determined that cathode rays possessed a negative charge?

PSI AP Physics How was it determined that cathode rays possessed a negative charge? PSI AP Physics 2 Name Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently named

More information

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection R. Kreuger, C. W. E. van Eijk, Member, IEEE, F. A. F. Fraga, M. M. Fraga, S. T. G. Fetal, R. W. Hollander, Member, IEEE, L. M.

More information

CR-39 TRACK DETECTORS IN COLD FUSION EXPERIMENTS: REVIEW AND PERSPECTIVES. A. S. Roussetski

CR-39 TRACK DETECTORS IN COLD FUSION EXPERIMENTS: REVIEW AND PERSPECTIVES. A. S. Roussetski Introduction CR-39 TRACK DETECTORS IN COLD FUSION EXPERIMENTS: REVIEW AND PERSPECTIVES A. S. Roussetski P. N. Lebedev Physical Institute, Russian Academy of Sciences e-mail rusets@x4u.lebedev.ru Earlier

More information

D-D NUCLEAR FUSION PROCESSES INDUCED IN POLYEHTYLENE BY TW LASER-GENERATED PLASMA

D-D NUCLEAR FUSION PROCESSES INDUCED IN POLYEHTYLENE BY TW LASER-GENERATED PLASMA D-D NUCLEAR FUSION PROCESSES INDUCED IN POLYEHTYLENE BY TW LASER-GENERATED PLASMA L. Torrisi 1, M. Cutroneo, S. Cavallaro 1 and J. Ullschmied 3 1 Physics Department, Messina University, V.le S. D Alcontres

More information

Magnetic force and magnetic fields

Magnetic force and magnetic fields magnetar Magnetic force and magnetic fields Feb 28, 2012 Magnetic field Iron filings may be used to show the pattern of the magnetic field lines. A compass can be used to trace the field lines. The lines

More information

The ISIS Penning H - SPS and Diagnostic Developments at RAL

The ISIS Penning H - SPS and Diagnostic Developments at RAL The ISIS Penning H - SPS and Diagnostic Developments at RAL D.C. Faircloth 1, A.P. Letchford 1, J. Pozimski 1+2, M.O. Whitehead 1, T. Wood 1, S. Jolly 2, P. Savage 2, M. Haigh 3, J. Morrison 3, I. Yew

More information

(Total for Question = 5 marks) PhysicsAndMathsTutor.com

(Total for Question = 5 marks) PhysicsAndMathsTutor.com 1 Rutherford designed an experiment to see what happened when alpha particles were directed at a piece of gold foil. Summarise the observations and state the conclusions Rutherford reached about the structure

More information

MeV Argon ion beam generation with narrow energy spread

MeV Argon ion beam generation with narrow energy spread MeV Argon ion beam generation with narrow energy spread Jiancai Xu 1, Tongjun Xu 1, Baifei Shen 1,2,*, Hui Zhang 1, Shun Li 1, Yong Yu 1, Jinfeng Li 1, Xiaoming Lu 1, Cheng Wang 1, Xinliang Wang 1, Xiaoyan

More information

Microtron for Smog Particles Photo Ionization

Microtron for Smog Particles Photo Ionization Abstract Microtron for Smog Particles Photo Ionization S. N. Dolya Joint Institute for Nuclear Research, Joliot - Curie 6, Dubna, Russia, 141980 The article discusses a possibility of removing smog particles

More information

Effects of laser prepulse on proton generation. D.Batani Diartimento di Fisica G.Occhialini Università di Milano Bicocca

Effects of laser prepulse on proton generation. D.Batani Diartimento di Fisica G.Occhialini Università di Milano Bicocca Effects of laser prepulse on proton generation D.Batani Diartimento di Fisica G.Occhialini Università di Milano Bicocca Co-authors M. Veltcheva, R.Dezulian, R.Jafer, R.Redaelli Dipartimento di Fisica G.Occhialini,

More information

Validity of the Analysis of Radiochromic Film Using Matlab Code

Validity of the Analysis of Radiochromic Film Using Matlab Code Validity of the Analysis of Radiochromic Film Using Matlab Code Contact Samuel.millington@stfc.ac.uk S.J.Millington J.S.Green D.C.Carroll Introduction Radiochromic film is typically used in experiments

More information

A Meter-Scale Plasma Wakefield Accelerator

A Meter-Scale Plasma Wakefield Accelerator A Meter-Scale Plasma Wakefield Accelerator Rasmus Ischebeck, Melissa Berry, Ian Blumenfeld, Christopher E. Clayton, Franz-Josef Decker, Mark J. Hogan, Chengkun Huang, Richard Iverson, Chandrashekhar Joshi,

More information

Magnetic and electric deflector spectrometers for ion emission analysis from laser generated plasma

Magnetic and electric deflector spectrometers for ion emission analysis from laser generated plasma Magnetic and electric deflector spectrometers for ion emission analysis from laser generated plasma Lorenzo Torrisi 1,*, Giuseppe Costa 1, Giovanni Ceccio 1, Antonino Cannavò 1, Nancy Restuccia 1, Mariapompea

More information

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France.

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Appendix A. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Prepared by: Arash Akbari-Sharbaf Why Build Accelerators? Probe deeper From

More information

D-D FUSION NEUTRONS FROM A STRONG SPHERICAL SHOCK WAVE FOCUSED ON A DEUTERIUM BUBBLE IN WATER. Dr. Michel Laberge General Fusion Inc.

D-D FUSION NEUTRONS FROM A STRONG SPHERICAL SHOCK WAVE FOCUSED ON A DEUTERIUM BUBBLE IN WATER. Dr. Michel Laberge General Fusion Inc. D-D FUSION NEUTRONS FROM A STRONG SPHERICAL SHOCK WAVE FOCUSED ON A DEUTERIUM BUBBLE IN WATER Dr. Michel Laberge General Fusion Inc. SONOFUSION Sonofusion is making some noise A bit short in energy, ~mj

More information

A gas-filled calorimeter for high intensity beam environments

A gas-filled calorimeter for high intensity beam environments Available online at www.sciencedirect.com Physics Procedia 37 (212 ) 364 371 TIPP 211 - Technology and Instrumentation in Particle Physics 211 A gas-filled calorimeter for high intensity beam environments

More information

Radioactivity. (b) Fig shows two samples of the same radioactive substance. The substance emits β-particles. Fig. 12.1

Radioactivity. (b) Fig shows two samples of the same radioactive substance. The substance emits β-particles. Fig. 12.1 112 (a) What is meant by radioactive decay? Radioactivity [2] (b) Fig. 12.1 shows two samples of the same radioactive substance. The substance emits β-particles. Fig. 12.1 Put a tick alongside any of the

More information

Proton Radiography of a Laser-Driven Implosion

Proton Radiography of a Laser-Driven Implosion Proton Radiography of a Laser-Driven Implosion Mackinnon, A. J., Patel, P. K., Borghesi, M., Clarke, R. C., Freeman, R. R., Habara, H.,... Town, R. P. J. (26). Proton Radiography of a Laser-Driven Implosion.

More information

Chapter Six: X-Rays. 6.1 Discovery of X-rays

Chapter Six: X-Rays. 6.1 Discovery of X-rays Chapter Six: X-Rays 6.1 Discovery of X-rays In late 1895, a German physicist, W. C. Roentgen was working with a cathode ray tube in his laboratory. He was working with tubes similar to our fluorescent

More information

Measuring Cosmic Ray Muon Decay Constant and Flux

Measuring Cosmic Ray Muon Decay Constant and Flux WJP, PHY381 (2015) Wabash Journal of Physics v3.3, p.1 Measuring Cosmic Ray Muon Decay Constant and Flux R.C. Dennis, D.T. Tran, J. Qi, and J. Brown Department of Physics, Wabash College, Crawfordsville,

More information

Visit for more fantastic resources. AQA. A Level. A Level Physics. Particle physics (Answers) Name: Total Marks: /30

Visit   for more fantastic resources. AQA. A Level. A Level Physics. Particle physics (Answers) Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA A Level A Level Physics Particle physics (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. Rutherford

More information

Nuclear Activation Experiments Using Short-Pulse, High-Energy Laser Systems.

Nuclear Activation Experiments Using Short-Pulse, High-Energy Laser Systems. Nuclear Activation Experiments Using Short-Pulse, High-Energy Laser Systems. M. Gardner 1, A. Simons 1, C. Allwork 1,2, P. Thompson 1, R. Clarke 3, R. Edwards 1, J. Andrew 1. IoP Nuclear 2009, University

More information

THE COMPTON EFFECT Last Revised: January 5, 2007

THE COMPTON EFFECT Last Revised: January 5, 2007 B2-1 THE COMPTON EFFECT Last Revised: January 5, 2007 QUESTION TO BE INVESTIGATED: How does the energy of a scattered photon change after an interaction with an electron? INTRODUCTION: When a photon is

More information

PHB5. PHYSICS (SPECIFICATION B) Unit 5 Fields and their Applications. General Certificate of Education January 2004 Advanced Level Examination

PHB5. PHYSICS (SPECIFICATION B) Unit 5 Fields and their Applications. General Certificate of Education January 2004 Advanced Level Examination Surname Centre Number Other Names Candidate Number Leave blank Candidate Signature General Certificate of Education January 2004 Advanced Level Examination PHYSICS (SPECIFICATION B) Unit 5 Fields and their

More information

Development of a High-Speed VUV Camera System for 2-Dimensional Imaging of Edge Turbulent Structure in the LHD

Development of a High-Speed VUV Camera System for 2-Dimensional Imaging of Edge Turbulent Structure in the LHD Development of a High-Speed VUV Camera System for 2-Dimensional Imaging of Edge Turbulent Structure in the LHD Masaki TAKEUCHI, Satoshi OHDACHI and LHD experimental group National Institute for Fusion

More information

E-157: A Plasma Wakefield Acceleration Experiment

E-157: A Plasma Wakefield Acceleration Experiment SLAC-PUB-8656 October 2 E-157: A Plasma Wakefield Acceleration Experiment P. Muggli et al. Invited talk presented at the 2th International Linac Conference (Linac 2), 8/21/2 8/25/2, Monterey, CA, USA Stanford

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

SHIELDING CALCULATIONS FOR THE HARD X-RAY GENERATED BY LCLS MEC LASER SYSTEM R. QIU, J. C. LIU, S. H. ROKNI AND A. A. PRINZ

SHIELDING CALCULATIONS FOR THE HARD X-RAY GENERATED BY LCLS MEC LASER SYSTEM R. QIU, J. C. LIU, S. H. ROKNI AND A. A. PRINZ SLAC-PUB-14159 SHIELDING CALCULATIONS FOR THE HARD X-RAY GENERATED BY LCLS MEC LASER SYSTEM R. QIU, J. C. LIU, S. H. ROKNI AND A. A. PRINZ SLAC National Accelerator Laboratory: 2575 Sand Hill Road, Menlo

More information

Electric Field Measurements in Atmospheric Pressure Electric Discharges

Electric Field Measurements in Atmospheric Pressure Electric Discharges 70 th Gaseous Electronics Conference Pittsburgh, PA, November 6-10, 2017 Electric Field Measurements in Atmospheric Pressure Electric Discharges M. Simeni Simeni, B.M. Goldberg, E. Baratte, C. Zhang, K.

More information

Measurements of Radiation Doses Induced by High Intensity Laser between and W/cm 2 onto Solid Targets at LCLS MEC Instrument

Measurements of Radiation Doses Induced by High Intensity Laser between and W/cm 2 onto Solid Targets at LCLS MEC Instrument Measurements of Radiation Doses Induced by High Intensity Laser between 10 16 and 10 21 W/cm 2 onto Solid Targets at LCLS MEC Instrument T. Liang 1,2, J. Bauer 1, M. Cimeno 1, A. Ferrari 3, E. Galtier

More information

EXPERIMENTS CHARACTERIZING THE X-RAY EMISSION FROM A SOLID-STATE CATHODE USING A HIGH-CURRENT GLOW DISCHARGE

EXPERIMENTS CHARACTERIZING THE X-RAY EMISSION FROM A SOLID-STATE CATHODE USING A HIGH-CURRENT GLOW DISCHARGE EXPERIMENTS CHARACTERIZING THE X-RAY EMISSION FROM A SOLID-STATE CATHODE USING A HIGH-CURRENT GLOW DISCHARGE A.B. KARABUT AND S.A. KOLOMEYCHENKO FSUE SIA LUCH 24 Zheleznodorozhnaja Street, Podolsk, Moscow

More information

1. What is the minimum energy required to excite a mercury atom initially in the ground state? ev ev ev

1. What is the minimum energy required to excite a mercury atom initially in the ground state? ev ev ev Page 1 of 10 modern bank Name 25-MAY-05 1. What is the minimum energy required to excite a mercury atom initially in the ground state? 1. 4.64 ev 3. 10.20 ev 2. 5.74 ev 4. 10.38 ev 2. The diagram represents

More information

Experimental study of nonlinear laser-beam Thomson scattering

Experimental study of nonlinear laser-beam Thomson scattering Experimental study of nonlinear laser-beam Thomson scattering T. Kumita, Y. Kamiya, T. Hirose Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan I.

More information

1 (a) Sketch the electric field surrounding the gold nucleus drawn below. (3)

1 (a) Sketch the electric field surrounding the gold nucleus drawn below. (3) 1 (a) Sketch the electric field surrounding the gold nucleus drawn below. (b) The spreadsheet shown approximately models the behaviour of an alpha particle as it approaches a gold nucleus. The proton number

More information

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002 Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002 More Quantum Physics We know now how to detect light (or photons) One possibility to detect

More information

Theory English (Official)

Theory English (Official) Q3-1 Large Hadron Collider (10 points) Please read the general instructions in the separate envelope before you start this problem. In this task, the physics of the particle accelerator LHC (Large Hadron

More information

Chapter 4 Scintillation Detectors

Chapter 4 Scintillation Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 4-1 4.1. Basic principle of the scintillator Chapter 4 Scintillation Detectors Scintillator Light sensor Ionizing radiation Light (visible,

More information

Neutronics Experiments for ITER at JAERI/FNS

Neutronics Experiments for ITER at JAERI/FNS Neutronics Experiments for ITER at JAERI/FNS C. Konno 1), F. Maekawa 1), Y. Kasugai 1), Y. Uno 1), J. Kaneko 1), T. Nishitani 1), M. Wada 2), Y. Ikeda 1), H. Takeuchi 1) 1) Japan Atomic Energy Research

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

Rb, which had been compressed to a density of 1013

Rb, which had been compressed to a density of 1013 Modern Physics Study Questions for the Spring 2018 Departmental Exam December 3, 2017 1. An electron is initially at rest in a uniform electric field E in the negative y direction and a uniform magnetic

More information

tip conducting surface

tip conducting surface PhysicsAndMathsTutor.com 1 1. The diagram shows the tip of a scanning tunnelling microscope (STM) above a conducting surface. The tip is at a potential of 1.0 V relative to the surface. If the tip is sufficiently

More information

Laser-driven proton acceleration from cryogenic hydrogen jets

Laser-driven proton acceleration from cryogenic hydrogen jets Laser-driven proton acceleration from cryogenic hydrogen jets new prospects in tumor therapy and laboratory astroparticle physics C. Roedel SLAC National Accelerator Laboratory & Friedrich-Schiller-University

More information

Higher Physics. Particles and Waves

Higher Physics. Particles and Waves Perth Academy Physics Department Higher Physics Particles and Waves Particles and Waves Homework Standard Model 1 Electric Fields and Potential Difference 2 Radioactivity 3 Fusion & Fission 4 The Photoelectric

More information

Integrated Laser-Target Interaction Experiments on the RAL Petawatt Laser

Integrated Laser-Target Interaction Experiments on the RAL Petawatt Laser Integrated Laser-Target Interaction Experiments on the RAL Petawatt Laser Patel, P. K., Key, M. H., Mackinnon, A. J., Berry, R., Borghesi, M., Chambers, D. M.,... Zhang, B. (2005). Integrated Laser-Target

More information

The PETAL+ project X-ray and particle diagnostics for plasma experiments at LMJ - PETAL

The PETAL+ project X-ray and particle diagnostics for plasma experiments at LMJ - PETAL PETAL+ plasma diagnostics The PETAL+ project X-ray and particle diagnostics for plasma experiments at LMJ - PETAL Jean-Éric Ducret CEA-Saclay/IRFU/Service d Astrophysique & CELIA UMR5107, U. Bordeaux CEA

More information

Magnetic fields applied to laser-generated plasma to enhance the ion yield acceleration

Magnetic fields applied to laser-generated plasma to enhance the ion yield acceleration Magnetic fields applied to laser-generated plasma to enhance the ion yield acceleration L. Torrisi, G. Costa, and G. Ceccio Dipartimento di Scienze Fisiche MIFT, Università di Messina, V.le F.S. D Alcontres

More information

Particles and Waves Homework One (Target mark 13 out of 15)

Particles and Waves Homework One (Target mark 13 out of 15) Particles and Waves Homework One (Target mark 13 out of 15) Display all answers to 2 significant figures. 1. A car covers a distance of 170m in a time of 18s. Calculate the average speed of the car. 2.

More information

Bolometry. H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy)

Bolometry. H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy) Bolometry H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy) Revised May 28, 2002 1. Radiated power Time and space resolved measurements of the total plasma radiation can be done by means

More information

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden CHAPTER 4 Structure of the Atom 4.1 The Atomic Models of Thomson and Rutherford 4. Rutherford Scattering 4.3 The Classic Atomic Model 4.4 The Bohr Model of the Hydrogen Atom 4.5 Successes & Failures of

More information

DESIGN OF A WIEN FILTER AND MEASUREMENT OF LONGITUDINAL POLARIZATION OF BETA PARTICLES BY S. S. ABHYANKAR AND M. R. BHIDAY

DESIGN OF A WIEN FILTER AND MEASUREMENT OF LONGITUDINAL POLARIZATION OF BETA PARTICLES BY S. S. ABHYANKAR AND M. R. BHIDAY DESIGN OF A WIEN FILTER AND MEASUREMENT OF LONGITUDINAL POLARIZATION OF BETA PARTICLES BY S. S. ABHYANKAR AND M. R. BHIDAY (Department of Physics, University of Poona, Poona-7, India) Received January

More information

1. Draw in the magnetic field inside each box that would be capable of deflecting the particle along the path shown in each diagram.

1. Draw in the magnetic field inside each box that would be capable of deflecting the particle along the path shown in each diagram. Charged Particles in Magnetic Fields 1. Draw in the magnetic field inside each box that would be capable of deflecting the particle along the path shown in each diagram. a b c d 2. a. Three particles with

More information

Extraction from cyclotrons. P. Heikkinen

Extraction from cyclotrons. P. Heikkinen Extraction from cyclotrons P. Heikkinen Classification of extraction schemes Linear accelerators Circular accelerators No extraction problem Constant orbit radius (sychrotrons, betatrons) Increasing orbit

More information

vacuum analysis plasma diagnostics surface science gas analysis

vacuum analysis plasma diagnostics surface science gas analysis Hiden EQP Systems High Sensitivity Mass and Energy Analysers for Monitoring, Control and Characterisation of Ions, Neutrals and Radicals in Plasma. vacuum analysis surface science gas analysis plasma diagnostics

More information

An Interferometric Force Probe for Thruster Plume Diagnostics

An Interferometric Force Probe for Thruster Plume Diagnostics An Interferometric Force Probe for Thruster Plume Diagnostics IEPC-2015-419/ISTS-2015-b-419 Presented at Joint Conference of 30th International Symposium on Space Technology and Science, 34th International

More information

Measurement of Beam Profile

Measurement of Beam Profile Measurement of Beam Profile The beam width can be changed by focusing via quadruples. Transverse matching between ascending accelerators is done by focusing. Profiles have to be controlled at many locations.

More information

electrons out of, or ionize, material in their paths as they pass. Such radiation is known as

electrons out of, or ionize, material in their paths as they pass. Such radiation is known as Detecting radiation It is always possible to detect charged particles moving through matter because they rip electrons out of, or ionize, material in their paths as they pass. Such radiation is known as

More information

X-Ray Measurements of the Levitated Dipole Experiment

X-Ray Measurements of the Levitated Dipole Experiment X-Ray Measurements of the Levitated Dipole Experiment J. L. Ellsworth, J. Kesner, MIT Plasma Science and Fusion Center, D.T. Garnier, A.K. Hansen, M.E. Mauel, Columbia University, S. Zweben, Princeton

More information