1. What is the minimum energy required to excite a mercury atom initially in the ground state? ev ev ev

Size: px
Start display at page:

Download "1. What is the minimum energy required to excite a mercury atom initially in the ground state? ev ev ev"

Transcription

1 Page 1 of 10 modern bank Name 25-MAY What is the minimum energy required to excite a mercury atom initially in the ground state? ev ev ev ev 2. The diagram represents the hyperbolic path of an alpha particle as it passes very near the nucleus of a gold atom. The shape of the path is caused by the force between the 1. positively charged alpha particle and the neutral nucleus 2. positively charged alpha particle and the positively charged nucleus 3. negatively charged alpha particle and the neutral nucleus 4. negatively charged alpha particle and the positively charged nucleus 3. Alpha particles were directed at a thin metal foil. Some particles were deflected into hyperbolic paths due to 1. gravitational attraction 3. electrostatic attraction 2. electrostatic repulsion 4. magnetic repulsion 4. The electron in a hydrogen atom drops from energy level n = 2 to energy level n = 1 by emitting a photon having an energy of approximately X J X J X J X J 5. Alpha particles fired at thin metal foil are scattered in hyperbolic paths due to the 1. attraction between the electrons and alpha particles 2. magnetic repulsion between the electrons and alpha particles 3. gravitational attraction between the nuclei and alpha particles 4. repulsive forces between the nuclei and alpha particles 6. After Rutherford bombarded gold foil with alpha particles, he concluded that the volume of an atom is mostly empty space. Which observation led Rutherford to this conclusion? 1. Some of the alpha particles were deflected 180 degrees 2. The paths of deflected alpha particles were hyperbolic 3. Many alpha particles were absorbed by gold nuclei 4. Most of the alpha particles were not reflected

2 Page 2 of What is the minimun amount of energy needed to ionize a mercury electron in the c energy level? ev ev ev ev 8. Which observationn was made by Rutherford when he bombarded gold foil with alpha particles? 1. Alpa particles were deflected toward a positive electrode 2. Some alpha particles were deflected by the gold foil 3. Most alpha particles were scattered 180 degrees by the gold foil 4. Gold foil had no effect on the path of alpha particles. 9. Which electron transition in the hydrogen atom results in the emmision of a photon of greatest energy? 1. n=2 to n=1 3. n=4 to n=2 2. n=3 to n=2 4. n=5 to n=3 10. What is the minimum energy required to ionize a hydrogen atom in the n = 3 state? ev ev ev ev 11. In Rutherford's model of the atom, the positive charge 1. is distributed throughout the atom's volume 2. revolves about the nucleus in specific orbits 3. is concentrated at the center of the atom 4. occupies most of the space in the atom 12. Which diagram shows a possible path of an alpha particle as it passes very near the nucleus of a gold atom?

3 Page 3 of A hydrogen atom could have an electron energy level transition from n = 2 to n = 3 by absorbing a photon having an energy of ev ev ev ev 14. In an experiment, Ernest Rutherford observed that some of the alpha particles directed at a thin gold foil were scattered at large angles. This scattering occurred because the 1. negatively charged alpha particles were attracted to the gold's positive atomic nuclei 2. negatively charged alpha particles were repelled by the gold's negative atomic nuclei 3. positively charged alpha particles were attracted to the gold's negative atomic nuclei 4. positively charged alpha particles were repelled by the gold's positive atomic nuclei 15. Rutherford performed "scattering" experiments by bombarding thin gold foil with alpha particles. Which conclusion is supported by the results of his experiments? 1. Most of an atom's mass occupies a very small portion of its volume. 2. The emission of light by electrons must be quantized. 3. Alpha particles are deflected into parabolic paths. 4. Electrons circling the nucleus of an atom cannot emit energy. 16. What is the energy of a quantum of light having a frequency of hertz? X J X 10 8 J X J X 10-7 J

4 Page 4 of In which part of the electromagnetic spectrum does a photon have the greatest energy? 1. red 3. violet 2. infrared 4. ultraviolet 18. The momentum of a photon is inversely proportional to the photon's 1. frequency 3. weight 2. mass 4. wavelength 19. An x-ray photon collides with an electron in an atom, ejecting the electron and emitting another photon. During the collision, there is conservation of 1. momentum, only 3. both momentum and energy 2. energy, only 4. neither momentum nor energy 20. What is the energy of a photon with a frequency of 5.0 X hertz? ev X J X 10-6 ev X J 21. Which graph best represents the relationship between the frequency of a light source causing photoemission and the maximum kinetic energy of the photoelectrons produced? When a source of dim orange light shines on a photosensitive metal, no photoelectrons are ejected from its surface. What could be done to increase the likelihood of producing

5 Page 5 of 10 photoelectrons? 1. Replace the orange light source with red light source. 2. Replace the orange light source with a higher frequency light source. 3. Increase the brightness of the orange light source. 4. Increase the angle at which the photons of orange light strike the metal. 23. During a collision between a photon and an electron, there is conservation of 1. energy, only 3. both energy and momentum 2. momentum, only 4. neither energy nor momentum 24. When yellow light shines on a photosensitive metal, photoelectrons are emitted. As the intensity of the light is decreased, the number of photoelectrons emitted per second 1. decreases 3. remains the same 2. increases 25. Experiments performed with light indicate that light exhibits 1. particle properties, only 3. both particle and wave properties 2. wave properties, only 4. neither particle nor wave properties 26. A metal surface emits photoelectrons when illuminated by green light. This surface must also emit photoelectrons when illuminated by 1. blue light 3. orange light 2. yellow light 4. red light 27. Which phenomenon is most easily explained by the particle theory of light? 1. photoelectric effect 3. polarization 2. constructive interference 4. diffraction 28. An electron in a hydrogen atom drops from the n = 3 energy level to the n = 2 energy level. The energy of the emitted photon is ev ev ev ev 29. What is the energy of a photon with a frequency of 5.00 X hertz?

6 Page 6 of What is the smallest electric charge that can be put on an object? X C X 10 9 C X C X C 31. Which characteristic of electromagnetic radiation is directly proportional to the energy of a photon? 1. wavelength 3. frequency 2. period 4. path 32. What is the minimum energy needed to ionize a hydrogen atom in the n = 2 energy state? ev ev ev ev 33. White light is passed through a cloud of cool hydrogen gas and then examined with a spectroscope. The dark lines observed on a bright background are caused by 1. the hydrogen emitting all frequencies in white light 2. the hydrogen absorbing certain frequencies of the white light 3. diffraction of the white light 4. constructive interference 34. Compared to a photon of red light, a photon of blue light has a 1. greater energy 3. smaller momentum 2. longer wavelength 4. lower frequency 35. Protons and neutrons are examples of 1. positrons 3. mesons 2. baryons 4. quarks 36. The strong force is the force of 1. repulsion between protons 3. repulsion between nucleons 2. attraction between protons and electrons 4. attraction between nucleons 37. If a deuterium nucleus has a mass of 1.53 X 10-3 universal mass units less than its components, this mass represents an energy of MeV MeV MeV MeV

7 Page 7 of The energy of a photon is inversely proportional to its 1. wavelength 3. frequency 2. speed 4. phase 39. The energy equivalent of the rest mass of an electron is approximately x 10 5 J x J x J x J 40. Base your answer on the data table below. The data table lists the energy and corresponding frequency of five photons. In which part of the electromagnetic spectrum would photon D be found? 1. infrared 3. ultraviolet 2. visible 4. x ray 41. Base your answer on the data table below. The data table lists the energy and corresponding frequency of five photons. The graph (see image) represents the relationship between the energy and the frequency of photons. The slope of the graph would be

8 Page 8 of Which combination of quarks could produce a neutral baryon? 1. cdt 3. cdb 2. cts 4. cdu 43. After electrons in hydrogen atoms are excited to the n = 3 energy state, how many different frequencies of radiation can be emitted as the electrons return to the ground state? What type of nuclear force holds the protons and neutrons in an atom together? 1. a strong force that acts over a short range 3. a weak force that acts over a short range 2. a strong force that acts over a long range 4. a weak force that acts over a long range 45. Which combination of quarks would produce a neutral baryon? 46. In the cartoon, Einstein is contemplating the equation for the principle that

9 Page 9 of the fundamental source of all energy is the conversion of mass into energy 2. energy is emitted or absorbed in discrete packets called photons 3. mass always travels at the speed of light in a vacuum 4. the energy of a photon is proportional to its frequency 47. Two electrically neutral metal spheres, A and B, on insulating stands are placed in contact with each other. A negatively charged rod is brought near, but does not touch the spheres, as shown in the accompanying diagram. How are the spheres now charged? 1. A is positive and B is positive. 3. A is negative and B is positive. 2. A is positive and B is negative. 4. A is negative and B is negative. 48. A baryon may have a charge of

10 Page 10 of What is the energy equivalent of a mass of kilogram? 50. Base your answer on the accompanying diagrams, which show a photon and an electron before and after their collision. Compared to the total momentum of the photon-electron system before the collision, the total momentum of the photon-electron system after the collision is 1. less 3. the same 2. greater

Modern Physics, Waves, Electricity

Modern Physics, Waves, Electricity Name: Date: 1. Metal sphere has a charge of +12 elementary charges and identical sphere has a charge of +16 elementary charges. fter the two spheres are brought into contact, the charge on sphere is 4.

More information

MODERN PHYSICS. A. s c B. dss C. u

MODERN PHYSICS. A. s c B. dss C. u MODERN PHYSIS Name: Date: 1. Which color of light has the greatest energy per photon? 4. The composition of a meson with a charge of 1 elementary charge could be. red. green. blue D. violet. s c. dss.

More information

C) D) Base your answers to questions 22 through 24 on the information below.

C) D) Base your answers to questions 22 through 24 on the information below. 1. The threshold frequency in a photoelectric experiment is most closely related to the A) brightness of the incident light B) thickness of the photoemissive metal C) area of the photoemissive metal D)

More information

Atomic emission & absorption spectra

Atomic emission & absorption spectra Name: Date: Modern Physics Models of the Atom The word atom comes from the Greek word atomos meaning indivisible We now know that this model of the atom is not accurate JJ Thompson Experiment and atomic

More information

SECTION A Quantum Physics and Atom Models

SECTION A Quantum Physics and Atom Models AP Physics Multiple Choice Practice Modern Physics SECTION A Quantum Physics and Atom Models 1. Light of a single frequency falls on a photoelectric material but no electrons are emitted. Electrons may

More information

Quantum and Atomic Physics - Multiple Choice

Quantum and Atomic Physics - Multiple Choice PSI AP Physics 2 Name 1. The Cathode Ray Tube experiment is associated with: (A) J. J. Thomson (B) J. S. Townsend (C) M. Plank (D) A. H. Compton 2. The electron charge was measured the first time in: (A)

More information

Modern Physics CHAPTER THE DUAL NATURE OF LIGHT. Two Models of Light

Modern Physics CHAPTER THE DUAL NATURE OF LIGHT. Two Models of Light CHAPTER 5 Modern Physics THE DUAL NATURE OF LIGHT Two Models of Light In the mid 1800s, scientists were convinced that the age-old question, What is light? had been answered conclusively. Light, they said,

More information

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton 1 The Cathode Rays experiment is associated with: A B C D E Millikan Thomson Townsend Plank Compton 1 2 The electron charge was measured the first time in: A B C D E Cathode ray experiment Photoelectric

More information

ATOMIC WORLD P.1. ejected photoelectrons. current amplifier. photomultiplier tube (PMT)

ATOMIC WORLD P.1. ejected photoelectrons. current amplifier. photomultiplier tube (PMT) ATOMIC WORLD P. HKAL PAPER I 0 8 The metal Caesium has a work function of.08 ev. Given: Planck constant h = 6.63 0 34 J s, charge of an electron e =.60 0 9 C (a) (i) Calculate the longest wavelength of

More information

WAVES AND PARTICLES. (c)

WAVES AND PARTICLES. (c) WAVES AND PARTICLES 1. An electron and a proton are accelerated through the same potential difference. The ration of their De Broglie wave length will be -- (a) (b) (c) (d) 1 2. What potential must be

More information

PSI AP Physics How was it determined that cathode rays possessed a negative charge?

PSI AP Physics How was it determined that cathode rays possessed a negative charge? PSI AP Physics 2 Name Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently named

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

Modern Physics What is the approximate length of a baseball bat? A m B m. C m D m

Modern Physics What is the approximate length of a baseball bat? A m B m. C m D m Modern Physics 2017 Name: Date: 1. What is the approximate length of a baseball bat?. 10 1 m. 10 0 m 6. The diagram below represents the bright-line spectra of four elements,,,, and D, and the spectrum

More information

PHYSICS FORM 5 PHYSICS OF THE ATOM

PHYSICS FORM 5 PHYSICS OF THE ATOM The Shell Model and The Periodic Table PHYSICS The Rutherford-Bohr model of the atom shed light on the arrangement of the periodic table of the elements. The orbits which electrons were allowed to occupy

More information

Einstein. Quantum Physics at a glance. Planck s Hypothesis (blackbody radiation) (ultraviolet catastrophe) Quantized Energy

Einstein. Quantum Physics at a glance. Planck s Hypothesis (blackbody radiation) (ultraviolet catastrophe) Quantized Energy Quantum Physics at a glance Quantum Physics deals with the study of light and particles at atomic and smaller levels. Planck s Hypothesis (blackbody radiation) (ultraviolet catastrophe) Quantized Energy

More information

Planck s Quantum Hypothesis Blackbody Radiation

Planck s Quantum Hypothesis Blackbody Radiation Planck s Quantum Hypothesis Blackbody Radiation The spectrum of blackbody radiation has been measured(next slide); it is found that the frequency of peak intensity increases linearly with temperature.

More information

Bi β + Po Bismuth-214 is radioactive. It has a half-life of 20 minutes. (a) The nuclide notation for bismuth-214 is Bi.

Bi β + Po Bismuth-214 is radioactive. It has a half-life of 20 minutes. (a) The nuclide notation for bismuth-214 is Bi. 1 Bismuth-214 is radioactive. It has a half-life of 20 minutes. (a) The nuclide notation for bismuth-214 is Bi. State the composition of the nucleus of bismuth-214. [2] (b) Bismuth-214 decays by β-decay

More information

Atom and Quantum. Atomic Nucleus 11/3/2008. Atomic Spectra

Atom and Quantum. Atomic Nucleus 11/3/2008. Atomic Spectra Atom and Quantum Atomic Nucleus Ernest Rutherford 1871-1937 Rutherford s Gold Foil Experiment Deflection of alpha particles showed the atom to be mostly empty space with a concentration of mass at its

More information

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1)

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1) PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1) NAME: August 2009--------------------------------------------------------------------------------------------------------------------------------- 11 41.

More information

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation.

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Objectives Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Solve problems involving maximum kinetic energy, work function,

More information

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics Atomic Physics Section 1 Preview Section 1 Quantization of Energy Section 2 Models of the Atom Section 3 Quantum Mechanics Atomic Physics Section 1 TEKS The student is expected to: 8A describe the photoelectric

More information

Cumulative Review 1 Use the following information to answer the next two questions.

Cumulative Review 1 Use the following information to answer the next two questions. Cumulative Review 1 Use the following information to answer the next two questions. 1. At what distance from the mirror is the image located? a. 0.10 m b. 0.20 m c. 0.30 m d. 0.40 m 2. At what distance

More information

Professor K. Atomic structure

Professor K. Atomic structure Professor K Atomic structure Review Reaction- the formation and breaking of chemical bonds Bond- a transfer or sharing of electrons Electrons Abbreviated e - What are they? How were they discovered? Early

More information

Quantum Physics and Atomic Models Chapter Questions. 1. How was it determined that cathode rays possessed a negative charge?

Quantum Physics and Atomic Models Chapter Questions. 1. How was it determined that cathode rays possessed a negative charge? Quantum Physics and Atomic Models Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently

More information

Lecture 6: The Physics of Light, Part 1. Astronomy 111 Wednesday September 13, 2017

Lecture 6: The Physics of Light, Part 1. Astronomy 111 Wednesday September 13, 2017 Lecture 6: The Physics of Light, Part 1 Astronomy 111 Wednesday September 13, 2017 Reminders Star party tonight! Homework #3 due Monday Exam #1 Monday, September 25 The nature of light Look, but don t

More information

Exam 2 Development of Quantum Mechanics

Exam 2 Development of Quantum Mechanics PHYS40 (Spring 00) Riq Parra Exam # (Friday, April 1 th, 00) Exam Development of Quantum Mechanics Do NOT write your name on this exam. Write your class ID number on the top right hand corner of each problem

More information

Chapter-11 DUAL NATURE OF MATTER AND RADIATION

Chapter-11 DUAL NATURE OF MATTER AND RADIATION Chapter-11 DUAL NATURE OF MATTER AND RADIATION Work function (j o ): The minimum energy required for an electron to escape from the surface of a metal i.e. The energy required for free electrons to escape

More information

Stellar Astrophysics: The Interaction of Light and Matter

Stellar Astrophysics: The Interaction of Light and Matter Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!)

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!) NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!) Light WAVE or PARTICLE? Electromagnetic Radiation Electromagnetic radiation includes: -radio waves -microwaves -infrared waves -visible light

More information

Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons.

Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons. Atomic Structure Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons. Proton Number (Atomic Number): Amount of protons

More information

AP Physics Study Guide Modern Physics I. Atomic Physics and Quantum Effects 1. Who is generally credited with the discovery of the electron?

AP Physics Study Guide Modern Physics I. Atomic Physics and Quantum Effects 1. Who is generally credited with the discovery of the electron? AP Physics Study Guide Modern Physics I. Atomic Physics and Quantum Effects 1. Who is generally credited with the discovery of the electron? 2. What was it that J. J. Thomson actually measured? 3. Regarding

More information

1. (a) An ion of plutonium Pu has an overall charge of C. (iii) electrons... (3) (2) (Total 5 marks)

1. (a) An ion of plutonium Pu has an overall charge of C. (iii) electrons... (3) (2) (Total 5 marks) AQA Questions from 2004 to 2006 Particle Physics 239 94 1. (a) An ion of plutonium Pu has an overall charge of +1.6 10 19 C. For this ion state the number of (i) protons... neutrons... (iii) electrons...

More information

U n 3 n Ba Kr (D) Br (C) Kr (B) Rb (E) 94 37

U n 3 n Ba Kr (D) Br (C) Kr (B) Rb (E) 94 37 1984 36. The critical angle for a transparent material in air is 30. The index of refraction of the material is most nearly (A) 0.33 (B) 0.50 (C) 1.0 (D) 1.5 (E) 2.0 37. An object is placed as shown in

More information

Chapters 31 Atomic Physics

Chapters 31 Atomic Physics Chapters 31 Atomic Physics 1 Overview of Chapter 31 Early Models of the Atom The Spectrum of Atomic Hydrogen Bohr s Model of the Hydrogen Atom de Broglie Waves and the Bohr Model The Quantum Mechanical

More information

Chapter 4 Lesson 2 Notes

Chapter 4 Lesson 2 Notes Chapter 4 Lesson 2 Notes How were electrons discovered? Scientists have put together a detailed model of atoms and their parts. Here is the journey of atom parts. How were electrons discovered? (cont.)

More information

Selected "Phacts" for the Physics Regents Exam You Should Know

Selected Phacts for the Physics Regents Exam You Should Know Selected "Phacts" for the Physics Regents Exam You Should Know I. Mechanics Study Hard! 1. Mass and inertia are the same thing. (Mass actually measures inertia in kilograms Much as monetary resources measures

More information

Which of the following classes of electromagnetic waves will not ionise neutral atoms?

Which of the following classes of electromagnetic waves will not ionise neutral atoms? 1 In an experiment to demonstrate the photoelectric effect, a charged metal plate is illuminated with light from different sources. The plate loses its charge when an ultraviolet light source is used but

More information

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms Chemistry Ms. Ye Name Date Block The Evolution of the Atomic Model Since atoms are too small to see even with a very powerful microscope, scientists rely upon indirect evidence and models to help them

More information

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 27 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Chapter 31 Atomic Physics

Chapter 31 Atomic Physics 100 92 86 100 92 84 100 92 84 98 92 83 97 92 82 96 91 80 96 91 76 95 91 74 95 90 68 95 89 67 95 89 66 94 87 93 86 No. of Students in Range Exam 3 Score Distribution 25 22 20 15 10 10 5 3 2 0 0 0 0 0 0

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

CONCEPT MAP ATOMS. Atoms. 1.Thomson model 2.Rutherford model 3.Bohr model. 6. Hydrogen spectrum

CONCEPT MAP ATOMS. Atoms. 1.Thomson model 2.Rutherford model 3.Bohr model. 6. Hydrogen spectrum CONCEPT MAP ATOMS Atoms 1.Thomson model 2.Rutherford model 3.Bohr model 4.Emission line spectra 2a. Alpha scattering experiment 3a. Bohr s postulates 6. Hydrogen spectrum 8. De Broglie s explanation 5.Absorption

More information

= : K A

= : K A Atoms and Nuclei. State two limitations of JJ Thomson s model of atom. 2. Write the SI unit for activity of a radioactive substance. 3. What observations led JJ Thomson to conclusion that all atoms have

More information

Physics 30 Modern Physics Unit: Atomic Basics

Physics 30 Modern Physics Unit: Atomic Basics Physics 30 Modern Physics Unit: Atomic Basics Models of the Atom The Greeks believed that if you kept dividing matter into smaller and smaller pieces, you would eventually come to a bit of matter that

More information

Atomic and nuclear physics

Atomic and nuclear physics Chapter 4 Atomic and nuclear physics INTRODUCTION: The technologies used in nuclear medicine for diagnostic imaging have evolved over the last century, starting with Röntgen s discovery of X rays and Becquerel

More information

91525: Demonstrate understanding of Modern Physics

91525: Demonstrate understanding of Modern Physics 91525: Demonstrate understanding of Modern Physics Modern Physics refers to discoveries since approximately 1890 that have caused paradigm shifts in physics theory. Note 3 has a list is for guidance only

More information

Quantum Mechanics. Exam 3. Photon(or electron) interference? Photoelectric effect summary. Using Quantum Mechanics. Wavelengths of massive objects

Quantum Mechanics. Exam 3. Photon(or electron) interference? Photoelectric effect summary. Using Quantum Mechanics. Wavelengths of massive objects Exam 3 Hour Exam 3: Wednesday, November 29th In-class, Quantum Physics and Nuclear Physics Twenty multiple-choice questions Will cover:chapters 13, 14, 15 and 16 Lecture material You should bring 1 page

More information

MR. HOLL S PHYSICS FACTS MECHANICS. 1) Velocity is a vector quantity that has both magnitude and direction.

MR. HOLL S PHYSICS FACTS MECHANICS. 1) Velocity is a vector quantity that has both magnitude and direction. MR. HOLL S PHYSICS FACTS MECHANICS 1) Velocity is a vector quantity that has both magnitude and direction. 2) Speed is a scalar quantity that has ONLY magnitude. 3) Distance is a scalar and represents

More information

THE EDUCARE (SIROHI CLASSES) TEST SERIES 2018

THE EDUCARE (SIROHI CLASSES) TEST SERIES 2018 THE EDUCARE (SIROHI CLASSES) TEST SERIES 2018 XII PHYSICS TEST MODERN PHYSICS NAME-... DATE-.. MM- 25 TIME-1 HR 1) Write one equation representing nuclear fusion reaction. (1) 2) Arrange radioactive radiations

More information

What is the current atomic model?

What is the current atomic model? 4.1 Atoms Basic Units of Matter What is the current atomic model? Matter is anything that has mass and takes up space, such as gases, solids, and liquids. Matter is not sound, heat, or light these are

More information

Lecture 32 April

Lecture 32 April Lecture 32 April 08. 2016. Hydrogen Discharge Tube and Emission of Discrete Wavelengths Description of the discrete Hydrogen Emission Spectrum by the Balmer (1884) Rydberg Ritz formula (1908) Cathode Ray

More information

Exam 2 Development of Quantum Mechanics

Exam 2 Development of Quantum Mechanics PHYS420 (Spring 2002) Riq Parra Exam #2 (Friday, April 12 th, 2002) Exam 2 Development of Quantum Mechanics Do NOT write your name on this exam. Write your class ID number on the top right hand corner

More information

The birth of atomic physics and quantum mechanics. Honors Physics Don Rhine

The birth of atomic physics and quantum mechanics. Honors Physics Don Rhine The birth of atomic physics and quantum mechanics Honors Physics Don Rhine Constants & Atomic Data Look inside back cover of book! Speed of Light (vacuum): c = 3.00 x 10 8 m/s Elementary Charge: e - =

More information

Basic science. Atomic structure. Electrons. The Rutherford-Bohr model of an atom. Electron shells. Types of Electrons. Describing an Atom

Basic science. Atomic structure. Electrons. The Rutherford-Bohr model of an atom. Electron shells. Types of Electrons. Describing an Atom Basic science A knowledge of basic physics is essential to understanding how radiation originates and behaves. This chapter works through what an atom is; what keeps it stable vs. radioactive and unstable;

More information

Unit 1, Lesson 01: Summary of Atomic Structure so far

Unit 1, Lesson 01: Summary of Atomic Structure so far Unit 1, Lesson 01: Summary of Atomic Structure so far Atoms are made of sub-atomic particles: Protons: found in the nucleus, charge of 1+, mass of 1 amu (u) Neutrons: found in nucleus, no charge, mass

More information

CHAPTER 12 TEST REVIEW

CHAPTER 12 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 76 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 12 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

More information

Particle and Nuclear Physics. Outline. Structure of the Atom. History of Atomic Structure. 1 Structure of the Atom

Particle and Nuclear Physics. Outline. Structure of the Atom. History of Atomic Structure. 1 Structure of the Atom Outline of 1 of Atomic Spectra of Helium Classical Atom of Existence of spectral lines required new model of atom, so that only certain amounts of energy could be emitted or absorbed. By about 1890, most

More information

Constants & Atomic Data. The birth of atomic physics and quantum mechanics. debroglie s Wave Equations. Energy Calculations. λ = f = h E.

Constants & Atomic Data. The birth of atomic physics and quantum mechanics. debroglie s Wave Equations. Energy Calculations. λ = f = h E. Constants & Atomic Data The birth of atomic physics and quantum mechanics Honors Physics Don Rhine Look inside back cover of book! Speed of Light (): c = 3.00 x 10 8 m/s Elementary Charge: e - = p + =

More information

Bannerman High School Physics Department. Making Accurate Statements. Higher Physics. Quanta and Waves

Bannerman High School Physics Department. Making Accurate Statements. Higher Physics. Quanta and Waves Bannerman High School Physics Department Making Accurate Statements Higher Physics Quanta and Waves Mandatory Key Area: Particle Physics 1. Use your knowledge of physics to estimate the ratio of the smallest

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In the equation E = hf, the f stands for 1) A) the smaller wavelengths of visible light. B) wave

More information

Physics 3204 UNIT 3 Test Matter Energy Interface

Physics 3204 UNIT 3 Test Matter Energy Interface Physics 3204 UNIT 3 Test Matter Energy Interface 2005 2006 Time: 60 minutes Total Value: 33 Marks Formulae and Constants v = f λ E = hf h f = E k + W 0 E = m c 2 p = h λ 1 A= A T 0 2 t 1 2 E k = ½ mv 2

More information

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom 1.1 Interaction of Light and Matter Accounts for certain objects being colored Used in medicine (examples?) 1.2 Wavelike Properties of Light Wavelength, : peak to peak distance Amplitude: height of the

More information

Chapter NP-4. Nuclear Physics. Particle Behavior/ Gamma Interactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 IONIZATION

Chapter NP-4. Nuclear Physics. Particle Behavior/ Gamma Interactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 IONIZATION Chapter NP-4 Nuclear Physics Particle Behavior/ Gamma Interactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 IONIZATION 2.0 ALPHA PARTICLE INTERACTIONS 3.0 BETA INTERACTIONS 4.0 GAMMA INTERACTIONS

More information

Atomic Theory. Developing the Nuclear Model of the Atom. Saturday, January 20, 18

Atomic Theory. Developing the Nuclear Model of the Atom. Saturday, January 20, 18 Atomic Theory Developing the Nuclear Model of the Atom Democritus Theory: Atom, the indivisible particle c. 300 BC Democritus Problem: No scientific evidence c. 300 BC Dalton Theory: The solid sphere model

More information

Chapter 9: Quantization of Light

Chapter 9: Quantization of Light Chapter 9: Quantization of Light Max Planck started the revolution of quantum theory by challenging the classical physics and the classical wave theory of light. He proposed the concept of quantization

More information

CHAPTER 7 TEST REVIEW

CHAPTER 7 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 94 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 7 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

More information

CHAPTER 27 Quantum Physics

CHAPTER 27 Quantum Physics CHAPTER 27 Quantum Physics Units Discovery and Properties of the Electron Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum

More information

The Development of Atomic Theory

The Development of Atomic Theory The Development of Atomic Theory Democritus (400 BC) John Dalton (1803) J.J. Thomson (1897) Ernest Rutherford (1911) James Chadwick (1932) - suggested that matter is composed of indivisible particles called

More information

Photoelectric Effect [20 marks]

Photoelectric Effect [20 marks] Photoelectric Effect [20 marks] 1. photoelectric cell is connected in series with a battery of emf 2 V. Photons of energy 6 ev are incident on the cathode of the photoelectric cell. The work function of

More information

Models of the Atom. Spencer Clelland & Katelyn Mason

Models of the Atom. Spencer Clelland & Katelyn Mason Models of the Atom Spencer Clelland & Katelyn Mason First Things First Electrons were accepted to be part of the atom structure by scientists in the1900 s. The first model of the atom was visualized as

More information

Hour Exam 3 Review. Quantum Mechanics. Photoelectric effect summary. Photoelectric effect question. Compton scattering. Compton scattering question

Hour Exam 3 Review. Quantum Mechanics. Photoelectric effect summary. Photoelectric effect question. Compton scattering. Compton scattering question Hour Exam 3 Review Hour Exam 3: Wednesday, Apr. 19 In-class (2241 Chamberlin Hall) Twenty multiple-choice questions Will cover: Basic Quantum Mechanics Uses of Quantum Mechanics Addl. Lecture Material

More information

Energy levels and atomic structures lectures chapter one

Energy levels and atomic structures lectures chapter one Structure of Atom An atom is the smallest constituent unit of ordinary matter that has the properties of a element. Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are

More information

Visit for more fantastic resources. AQA. A Level. A Level Physics. Particle physics (Answers) Name: Total Marks: /30

Visit   for more fantastic resources. AQA. A Level. A Level Physics. Particle physics (Answers) Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA A Level A Level Physics Particle physics (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. Rutherford

More information

The atom cont. +Investigating EM radiation

The atom cont. +Investigating EM radiation The atom cont. +Investigating EM radiation Announcements: First midterm is 7:30pm on Sept 26, 2013 Will post a past midterm exam from 2011 today. We are covering Chapter 3 today. (Started on Wednesday)

More information

GraspIT AQA Atomic Structure Questions

GraspIT AQA Atomic Structure Questions A. Atomic structure Atoms and isotopes 1. a) The diagram shows an atom of Beryllium. Name the parts labelled a, b and c. (3) electron (1) neutron (1) proton (1) b) What is the atomic mass of this atom?

More information

Particles. Constituents of the atom

Particles. Constituents of the atom Particles Constituents of the atom For Z X = mass number (protons + neutrons), Z = number of protons Isotopes are atoms with the same number of protons number but different number of neutrons. charge Specific

More information

Topic 7 &13 Review Atomic, Nuclear, and Quantum Physics

Topic 7 &13 Review Atomic, Nuclear, and Quantum Physics Name: Date:. Isotopes provide evidence for the existence of A. protons. B. electrons. C. nuclei. Topic 7 &3 Review Atomic, Nuclear, and Quantum Physics D. neutrons.. The atomic line spectra of elements

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Atomic and Nuclear Physics Review (& other related physics questions)

Atomic and Nuclear Physics Review (& other related physics questions) Atomic and Nuclear Physics Review (& other related physics questions) 1. The minimum electron speed necessary to ionize xenon atoms is A. 2.66 10 31 m/s B. 5.15 10 15 m/s C. 4.25 10 12 m/s D. 2.06 10 6

More information

Properties of Light and Atomic Structure. Chapter 7. So Where are the Electrons? Electronic Structure of Atoms. The Wave Nature of Light!

Properties of Light and Atomic Structure. Chapter 7. So Where are the Electrons? Electronic Structure of Atoms. The Wave Nature of Light! Properties of Light and Atomic Structure Chapter 7 So Where are the Electrons? We know where the protons and neutrons are Nuclear structure of atoms (Chapter 2) The interaction of light and matter helps

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Sir Joseph John Thomson J. J. Thomson 1856-1940 Discovered the electron Did extensive work with cathode ray deflections 1906 Nobel Prize for discovery of electron Early Models

More information

Downloaded from

Downloaded from 7. DUAL NATURE OF MATTER & RADIATION GIST ELECTRON EMISSION 1. There are three types of electron emission, namely, Thermionic Emission, Photoelectric Emission and Field Emission. 2. The minimum energy

More information

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light.

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. LIGHT Question Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. What kind of information can we get from light? 1 Light

More information

Honors Ch3 and Ch4. Atomic History and the Atom

Honors Ch3 and Ch4. Atomic History and the Atom Honors Ch3 and Ch4 Atomic History and the Atom Ch. 3.1 The Atom is Defined 400 B.C. the Greek philosopher Democritus said that the world was made of two things: Empty space and tiny particles called atoms

More information

Physics 107 Final Exam December 13, Your Name: Questions

Physics 107 Final Exam December 13, Your Name: Questions Physics 107 Final Exam December 13, 1993 Your Name: Questions 1. 11. 21. 31. 41. 2. 12. 22. 32. 42. 3. 13. 23. 33. 43. 4. 14. 24. 34. 44. 5. 15. 25. 35. 45. 6. 16. 26. 36. 46. 7. 17. 27. 37. 47. 8. 18.

More information

Physics 107: Ideas of Modern Physics

Physics 107: Ideas of Modern Physics Physics 107: Ideas of Modern Physics Exam 3 Nov. 30, 2005 Name ID # Section # On the Scantron sheet, 1) Fill in your name 2) Fill in your student ID # (not your social security #) 3) Fill in your section

More information

Hot Sync. Materials Needed Today

Hot Sync. Materials Needed Today Chapter 4 Lesson 2 Materials Needed Today Please take these materials out of your backpack. Pencil Blank sheet of paper for notes. Hot Sync Friday 1/10/14 Answer the following questions in complete sentences

More information

Nuclear Reactions Homework Unit 13 - Topic 4

Nuclear Reactions Homework Unit 13 - Topic 4 Nuclear Reactions Homework Unit 13 - Topic 4 Use the laws of conservation of mass number and charge to determine the identity of X in the equations below. Refer to a periodic table as needed. 222 a. Rn

More information

HONORS CHEMISTRY. Chapter 4 Atomic Structure

HONORS CHEMISTRY. Chapter 4 Atomic Structure HONORS CHEMISTRY Chapter 4 Atomic Structure History of the Atomic Theory DEMOCRITUS (400 BC) 1st atomic theory World is made of empty space & tiny particles called atoms. Atomos - Greek for indivisible

More information

Photoelectric Effect Worksheet

Photoelectric Effect Worksheet Photoelectric Effect Worksheet The photoelectric effect refers to the emission of electrons from metallic surfaces usually caused by incident light. The incident light is absorbed by electrons thus giving

More information

Chapter 9: Electrons and the Periodic Table

Chapter 9: Electrons and the Periodic Table C h e m i s t r y 1 2 C h 9 : E l e c t r o n s a n d P e r i o d i c T a b l e P a g e 1 Chapter 9: Electrons and the Periodic Table Work on MasteringChemistry assignments What we have learned: Dalton

More information

Where are we? Check-In

Where are we? Check-In Where are we? Check-In ü Building Blocks of Matter ü Moles, molecules, grams, gases, ü The Bohr Model solutions, and percent composition Coulomb s Law ü Empirical and Molecular formulas Photoelectron Spectroscopy

More information

Questions Q1. * Rutherford designed an experiment to see what happened when alpha particles were directed at a piece of gold foil. Summarise the observations and state the conclusions Rutherford reached

More information

T7-1 [255 marks] The graph shows the relationship between binding energy per nucleon and nucleon number. In which region are nuclei most stable?

T7-1 [255 marks] The graph shows the relationship between binding energy per nucleon and nucleon number. In which region are nuclei most stable? T7-1 [255 marks] 1. In the Geiger Marsden experiment alpha particles were directed at a thin gold foil. Which of the following shows how the majority of the alpha particles behaved after reaching the foil?

More information

CHAPTER 3 The Experimental Basis of Quantum Theory

CHAPTER 3 The Experimental Basis of Quantum Theory CHAPTER 3 The Experimental Basis of Quantum Theory 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Discovery of the X Ray and the Electron Determination of Electron Charge Line Spectra Quantization As far as I can

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Chapter test: Probing the Heart of Matter

Chapter test: Probing the Heart of Matter PRO dditional sheet 5 Chapter test: Probing the Heart of Matter 40 marks total nswer LL the questions. Write your answers in the spaces provided in this question paper. The marks for individual questions

More information

ATOMIC THEORY, PERIODICITY, and NUCLEAR CHEMISTRY

ATOMIC THEORY, PERIODICITY, and NUCLEAR CHEMISTRY ATOMIC THEORY, PERIODICITY, and NUCLEAR CHEMISTRY Note: For all questions referring to solutions, assume that the solvent is water unless otherwise stated. 1. The nuclide is radioactive and decays by the

More information

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983)

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983) Fundamental Forces Force Relative Strength Range Carrier Observed? Gravity 10-39 Infinite Graviton No Weak 10-6 Nuclear W+ W- Z Yes (1983) Electromagnetic 10-2 Infinite Photon Yes (1923) Strong 1 Nuclear

More information

Particle Nature of Matter. Chapter 4

Particle Nature of Matter. Chapter 4 Particle Nature of Matter Chapter 4 Modern physics When my grandfather was born, atoms were just an idea. That year, 1897, was marked by the discovery of the electron by J.J. Thomson. The nuclear model

More information