Electric Dipole Moments: Phenomenology & Implications

Size: px
Start display at page:

Download "Electric Dipole Moments: Phenomenology & Implications"

Transcription

1 Electric Dipole Moments: Phenomenology & Implications M.J. Ramsey-Musolf U Mass Amherst ACFI Workshop, Amherst January 015! 1

2 Goals for this talk Set the context for the workshop: What are key scientific questions & how do they fit in the broader context? Illustrate the broader implications of present & prospective EDM searches Introduce terminology & notation Pose questions for hadronic structure theory

3 Outline I. The BSM & NP context II. Electric dipole moments III. Questions for hadronic structure theory IV. Outlook 3

4 I. The BSM & NP Context 4

5 Scientific Questions 007 NSAC LRP: What are the masses of neutrinos and how have they shaped the evolution of the universe? Why is there more matter than antimatter in the present universe? What are the unseen forces that disappeared from view as the universe cooled? 5

6 The Origin of Matter Baryons Cosmic Energy Budget Dark Matter 7 % 5 % 68 % Dark Energy Explaining the origin, identity, and relative fractions of the cosmic energy budget is one of the most compelling motivations for physics beyond the Standard Model

7 The Origin of Matter Baryons Cosmic Energy Budget Dark Matter 7 % 5 % EDMs & DBD 68 % Dark Energy Explaining the origin, identity, and relative fractions of the cosmic energy budget is one of the most compelling motivations for physics beyond the Standard Model

8 Ingredients for Baryogenesis B violation (sphalerons) C & CP violation Out-of-equilibrium or CPT violation

9 Ingredients for Baryogenesis Standard Model BSM B violation (sphalerons) C & CP violation Out-of-equilibrium or CPT violation

10 Ingredients for Baryogenesis Scenarios: leptogenesis, EW baryogenesis, Afflek- Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis Standard Model BSM B violation (sphalerons) C & CP violation Out-of-equilibrium or CPT violation

11 Ingredients for Baryogenesis Scenarios: leptogenesis, EW baryogenesis, Afflek- Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis Testable Standard Model BSM B violation (sphalerons) C & CP violation Out-of-equilibrium or CPT violation

12 Symmetries & Cosmic History New Forces? EW Symmetry Breaking: Higgs Standard Model Universe QCD: q+g! n,p QCD: n+p! nuclei Astro: stars, galaxies,..

13 Symmetries & Cosmic History EW Symmetry Breaking: Higgs Baryogenesis: When? Standard CPV? SUSY? Model Neutrinos? Universe QCD: q+g! n,p QCD: n+p! nuclei Astro: stars, galaxies,..

14 Symmetries & Cosmic History? EW Symmetry Breaking: Higgs Baryogenesis: When? Standard CPV? SUSY? Model Neutrinos? Universe QCD: q+g! n,p QCD: n+p! nuclei Astro: stars, galaxies,..

15 Symmetries & Cosmic History? EW Symmetry Breaking: Higgs Baryogenesis: When? Standard CPV? SUSY? Model Neutrinos? Universe Leptogenesis: look for ingred s w/ νs: DBD, ν osc EW Baryogenesis: testable w/ EDMs + colliders QCD: q+g! n,p QCD: n+p! nuclei Astro: stars, galaxies,..

16 Recent Results Discovery of BEH-like scalar at the LHC Non-observation (so far) of sub-tev particles at LHC New stringent limits on EDMs

17 Recent Results Discovery of BEH-like scalar at the LHC Idea of φ-driven spontaneous EW symmetry breaking is likely correct Non-observation (so far) of sub-tev particles at LHC Sub-TeV BSM spectrum is compressed Sub-TeV BSM is purely EW or Higgs portal BSM physics lies at very different mass scale New stringent limits on EDMs BSM CPV lies at high mass scale BSM CPV doesn t talk directly to SM fermions BSM CPV is flavor non-diagonal

18 II. Electric Dipole Moments Discovery potential & interpretation: need for searches in multiple systems Benchmark sensitivities: three examples Challenges & opportunities for hadronic & manybody theory 18

19 EDMs: New CPV? System Limit (e cm) * SM CKM CPV BSM SM CPV 199 Hg ThO n 3.1 x x 10-9 ** 3.3 x background well 10 below new CPV expectations 10 New expts: 10 to 10 3 more sensitive 10-6 CPV needed for BAU? * 95% CL ** e - equivalent 19

20 EDMs: New CPV? System 199 Hg ThO n Limit (e cm) * 3.1 x x 10-9 ** 3.3 x 10-6 SM CKM CPV BSM SM CPV background well 10 below new CPV expectations 10 New expts: 10 to 10 3 more sensitive 10-6 CPV needed for BAU? * 95% CL ** e - equivalent Mass Scale Sensitivity ψ e ϕ ϕ γ sinφ CP ~ 1! M > 5000 GeV M < 500 GeV! sinφ CP < 10-0

21 EDMs: New CPV? System Limit (e cm) * SM CKM CPV BSM SM CPV 199 Hg ThO n 3.1 x x 10-9 ** 3.3 x background well 10 below new CPV expectations 10 New expts: 10 to 10 3 more sensitive 10-6 CPV needed for BAU? * 95% CL ** e - equivalent neutron proton & nuclei atoms Not shown: muon ~ 100 x better sensitivity 1

22 Why Multiple Systems?

23 Why Multiple Systems? Multiple sources & multiple scales 3

24 EDM Interpretation & Multiple Scales Baryon Asymmetry Early universe CPV BSM CPV SUSY, GUTs, Extra Dim Collider Searches Particle spectrum; also scalars for baryon asym? Energy Scale QCD Matrix Elements d n, g πnn, Expt Nuclear & atomic MEs Schiff moment, other P- & T-odd moments, e-nucleus CPV 4

25 Effective Operators: The Bridge + 5

26 EDM Interpretation & Multiple Scales Baryon Asymmetry Early universe CPV BSM CPV SUSY, GUTs, Extra Dim Collider Searches Particle spectrum; also scalars for baryon asym d= 6 Effective Operators: CPV Sources fermion EDM, quark chromo EDM, 3 gluon, 4 fermion Energy Scale QCD Matrix Elements d n, g πnn, Expt Nuclear & atomic MEs Schiff moment, other P- & T-odd moments, e-nucleus CPV 6

27 Wilson Coefficients: Summary δ f fermion EDM (3) ~ δ q quark CEDM () C G ~ 3 gluon (1) C quqd non-leptonic () C lequ, ledq semi-leptonic (3) C ϕud induced 4f (1) 1 total + θ light flavors only (e,u,d) 7 65s

28 Wilson Coefficients: Summary δ f fermion EDM (3) ~ δ q quark CEDM () C G ~ 3 gluon (1) C quqd non-leptonic () C lequ, ledq semi-leptonic (3) C ϕud induced 4f (1) 1 total + θ light flavors only (e,u,d) Complementary searches needed 8 66

29 BSM Origins EDM: γff CEDM: gff Weinberg ggg: MSSM LRSM RS Four fermion udhh ϕ d L W + u R u L ϕ d R 9

30 Complementarity: Three Illustrations CPV in an extended scalar sector (HDM): Higgs portal CPV Weak scale baryogenesis (MSSM) Model-independent 30

31 this symmetry general haveunder a di erent expression another basistoobtained by the transformatio ethough CPV complex phases will thatinare invariant a rephasing of theinscalar fields. 0 totaking a basis where the vacuum expectation value (vev) of the j = UY jk transformation L U(1) k. For example, complex: while that associated with the neutral component of is in general For future purposes,+we emphasize U = p that the value, of is not invariant. ( 1 1 H1+ H Inoue, R-M, Zhang: tan = v / v1,0 the,minimization conditions in the(5) Hk0 and A0k directions give us the, Denoting = p1 (v1 + H 0 + ia0 ) p1 (v + H 0+ ia ) 1 1 thetransformation (1) corresponds to i i Higgs Portal CPV m11 = 1v cos +( )v sin Re(m1 e ) tan + Re( 5e )v sin GeV, v1 = v1 and v = v ei. It is apparent that in0 general the relative $ +0( 3. +denotes m = v sin Re(m1 ei ) cot + Re( 5 ei )v cos (3 4 )v cos 1 CPV & HDM: Type I & II λ6,7 = 0 for simplicity lobal rephasing transformation i i Im(m e ) = v sin cos Im( 5 e ). We then take the Higgs i potential to have the1form 0 j (6) j = e j, h given the complex i parameters From the last equation, it is clear that the phase can be solved1 for 1 = the ( useful, ( to )express + 3 ( this )( ) +in terms however, 1) + 4 ( 1 of )(the 5 ( 1 ) + h.c. 1 1condition 1k): + e redefined tovabsorb 1global phases n h i o 0 m sin( sin( 0 i( 1 ) 1 i( 1 ) 1). 1 (4 (m1 ) = e m1m, 11 ( 15 = e m1 ( 1 5,) + h.c. + m ( ) 1.) = 5 v1 v(7) 1) + In the limit that the to small but non-vanishing that rephasing will be appropriate for our later phenomeno k are l is unchanged. It is then straightforward observe that there exist two eventually to EDMs. A repr work, only the scalar loop could contribute to C1 and The complex coefficientseq. in (1) the potential are m1 and 5. In general, the presence of the then implies 1 term, in conjunctio the right panel of Fig. 1. It is proportional to with the Z -conserving quartic interactions, will induce other Z -breaking quartic operators at one-loop order. Simp v sin ).. Give 5 v1 vim( 5 m1 v1 v ) = 5m1 v1/(16 EWSB power counting implies that the responding coefficients are finite with magnitude proportional to m 1 k = Arg (m ), 1 1 m1 5 1, isterm. our attention tousing 1 the 1/16 suppression, we thethe tree-level Z -breaking bilinear relationin Eq. (13), the above quantity indeed related to the unique CPV will restrict 5 v1 v = Arg (m )v v. (8) 1 1 The fermionic loops do not contribute because the Higgs and quar 5 1 m1a rephasing physical It is instructive to identify the CPV complex phases proportional that are toinvariant under of thecharge scalar fields. T the corresponding CKM element. As a result, the coefficients Cij are that end, we perform an SU()L U(1)Y transformationimaginary. to a basis vacuum expectation value (vev) of th They where contributethe to magnetic dipole moments instead of EDMs. so that there exists only one independent CPV phase in the theory after EWSB. neutral component of 1 is real while that associated with the neutral component of is in general complex: A special case arises when 1 = 0. In this case, Eq. (1) implies that + M at the electroweak scale without the Z symmetry flavor violation, flavor H1+ is to assume minimal H sin( ) = 0 5 v1 v0 sin(, = m1p1 studies., ), (5 not discuss this possibility, but refer [13 15] for recent phenomenological = to p (v + H + ia ) (v + H + ia ) Viable EWB & CPV: or H 0 /H + p H+ i where v = vedms + v = 46 GeV, v = v and v = v e. It is apparent that in general denotes the relativ 1 are -loop m 1 H phase of v and v1. Under the global rephasing transformation cos W ±=. CPV is flavor non-diag the couplings m1 j =e i j 0 j, f 5 v1 v f f W+ H0 (6 When the right-hand side is less than 1, has solutions two solutions of equal magnitude and op to the presence of spontaneous CPV (SCPV) [17, 18]: and sponding 5 can be redefined to absorb the global phases FIG. 1: Left: quark or lepton EDM from W ± H exchange and CPV Higgs interactions. then contributes as the upper loop of t to W a B µ e ective operator, which to EDM 0 i( 1 ) 1 µ 01 i( m 1 m 1 ) 1 1 (m1 ) = e m arccos, (7 5 =e = 5±,. = ±1 cos sin v v v The gauge invariant to EDM 5 1 contributions 5 from this class of diagrams have been c a

32 Future Reach: Higgs Portal CPV CPV & HDM: Type II illustration λ 6,7 = 0 for simplicity Hg ThO n Ra Present sin α b : CPV scalar mixing Future: d n x 0.1 d A (Hg) x 0.1 d ThO x 0.1 d A (Ra) Future: d n x 0.01 d A (Hg) x 0.1 d ThO x 0.1 d A (Ra) Inoue, R-M, Zhang:

33 EDMs & EW Baryogenesis: MSSM f ~ f ~ V f γ, g Heavy sfermions: LHC consistent & suppress 1-loop EDMs Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases Compatible with observed BAU d e = 10-8 e cm ACME: ThO sin(µm 1 b * ) d n = 10-7 e cm sin(µm 1 b * ) d e = 10-9 e cm d n = 10-8 e cm Next gen d e Next gen d n Li, Profumo, RM

34 EDMs & EW Baryogenesis: MSSM f ~ f ~ V f γ, g Heavy sfermions: LHC consistent & suppress 1-loop EDMs Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases Compatible with observed BAU d e = 10-8 e cm ACME: ThO sin(µm 1 b * ) d n = 10-7 e cm sin(µm 1 b * ) d e = 10-9 e cm d n = 10-8 e cm Next gen d e Next gen d n Li, Profumo, RM Compressed spectrum (stealthy SUSY) 34

35 Wilson Coefficients: Model Independent δ f fermion EDM (3) ~ δ q quark CEDM () C G ~ 3 gluon (1) C quqd non-leptonic () C lequ, ledq semi-leptonic (3) C ϕud induced 4f (1) 1 total + θ light flavors only (e,u,d) 35 71

36 Global Analysis: Input Chupp & R-M:

37 Paramagnetic Systems: Two Sources e Electron EDM γ e N e γ (Scalar q) x (PS e - ) N e Tl, YbF, ThO 37

38 Paramagnetic Systems: Two Sources e Electron EDM γ e N e γ (Scalar q) x (PS e - ) N e Tl, YbF, ThO 38

39 Paramagnetic Systems: Two Sources e Electron EDM γ Chupp & R-M: e N e γ (Scalar q) x (PS e - ) N e Tl, YbF, ThO 39

40 Paramagnetic Systems: Two Sources e Electron EDM γ Chupp & R-M: e N e γ p (Scalar q) x (PS e - ) N e > (1.5 TeV) p sin CPV Electron EDM (global) > (1300 TeV) p sin CPV C S (global) Tl, YbF, ThO 40

41 Global Analysis: Diamagnetic Systems Chupp & R-M:

42 Hadronic CPV: Nucleons, Nuclei, Atoms PVTV πn p interaction π γ π +! n π π chromo EDM 3 gluon 4 quark θ QCD Nucleon EDM + quark EDM Nuclear EDM & Schiff moment + quark EDM Neutron, proton & light nuclei (future), diamagnetic atoms 4

43 Diamagnetic Systems: P- & T-Odd Moments Schiff Screening Atomic effect from nuclear finite size: Schiff moment Schiff moment, MQM, EDMs of diamagnetic atoms ( 199 Hg )

44 Diamagnetic Systems Nuclear Moments P T P T P T P T C J T M J T E J E O O E O E EDM, Schiff MQM. Anapole 44

45 Diamagnetic Systems Nuclear Moments C J T M J P T P T P T P T E O O E EDM, Schiff MQM. Nuclear Enhancements T E J O E Anapole 45

46 Nuclear Schiff Moment Nuclear Enhancements Schiff moment, MQM, Nuclear polarization: mixing of opposite parity states by H TVPV ~ 1 / ΔE EDMs of diamagnetic atoms ( 199 Hg ) 46

47 Nuclear Enhancements: Octupole Deformation Nuclear Schiff Moment Opposite parity states mixed by H TVPV Nuclear amplifier EDMs of diamagnetic atoms ( 5 Ra ) Nuclear polarization: mixing of opposite parity states by H TVPV ~ 1 / ΔE Thanks: J. Engel 47 94

48 Diamagnetic Global Fit N e γ N π γ N e N Tensor eq TVPV πnn Short distance d n Chupp & R-M:

49 Diamagnetic Global Fit Isoscalar CEDM (+) q v < 0.01 > ( TeV) p sin CPV Caveat: Large hadronic uncertainty Chupp & R-M:

50 Hadronic Matrix Elements Engel, R-M, van Kolck 13 50

51 Hadronic Matrix Elements Engel, R-M, van Kolck 13 51

52 Hadronic Matrix Elements (CEDM) Engel, R-M, van Kolck 13 5

53 Nuclear Matrix Elements Engel, R-M, van Kolck 13 53

54 Had & Nuc Uncertainties CPV & HDM: Type II illustration λ 6,7 = 0 for simplicity Present sin α b : CPV scalar mixing Inoue, R-M, Zhang:

55 III. Questions What is the roadmap for reducing hadronic theory uncertainties for EDMs? What progress can be achieved through different approaches (lattice, DSE, EFT )? Are they complementary? If so, how? What are the key conceptual and/or technical challenges that must be addressed make progress? Are there emerging new directions that call for further theoretical progress (e.g., few-body nuclear EDMs)? 55

56 IV. Outlook Searches for permanent EDMs of atoms, molecules, hadrons and nuclei provide powerful probes of BSM physics at the TeV scale and above and constitute important tests of weak scale baryogenesis Studies on complementary systems is essential for first finding and then disentangling new CPV The interpretation of diamagnetic system EDMs (including the nucleon) is plagued by substantial hadronic and nuclear many-body uncertainties The advancing experimental sensitivity challenges hadronic structure theory to aim for an unprecedented level of reliability 56

Electric Dipole Moments: Phenomenology & Implications

Electric Dipole Moments: Phenomenology & Implications Electric Dipole Moments: Phenomenology & Implications M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ ACFI Workshop, Amherst May 015! 1 Outline I. Experimental situation II. Effective

More information

Electric Dipole Moments: A Look Beyond the Standard Model

Electric Dipole Moments: A Look Beyond the Standard Model Electric Dipole Moments: A Look Beyond the Standard Model M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ PSI Symmetries Workshop October 016! 1 Outline I. The BSM context II. Electric

More information

Electric Dipole Moments I. M.J. Ramsey-Musolf

Electric Dipole Moments I. M.J. Ramsey-Musolf Electric Dipole Moments I M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/ TUM Excellence Cluster, May

More information

EDMs at Dimension Six

EDMs at Dimension Six EDMs at Dimension Six M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/ EDMs 13, FNAL, February 2013

More information

Lecture I: Electric Dipole Moments Overview & the Standard Model

Lecture I: Electric Dipole Moments Overview & the Standard Model Lecture I: Electric Dipole Moments Overview & the Standard Model M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ ACFI EDM School November 2016! 1 Goals for This Course Provide a comprehensive

More information

Probing Two Higgs Doublet Models with LHC and EDMs

Probing Two Higgs Doublet Models with LHC and EDMs Probing Two Higgs Doublet Models with LHC and EDMs Satoru Inoue, w/ M. Ramsey-Musolf and Y. Zhang (Caltech) ACFI LHC Lunch, March 13, 2014 Outline 1 Motivation for 2HDM w/ CPV 2 Introduction to 2HDM 3

More information

Effective Field Theory and EDMs

Effective Field Theory and EDMs ACFI EDM School November 2016 Effective Field Theory and EDMs Vincenzo Cirigliano Los Alamos National Laboratory 1 Lecture III outline EFT approach to physics beyond the Standard Model Standard Model EFT

More information

EDMs and flavor violation in SUSY models

EDMs and flavor violation in SUSY models EDMs and flavor violation in SUSY models Junji Hisano Institute for Cosmic Ray Research (ICRR), University of Tokyo The 3rd International Symposium on LEPTON MOMENTS Cape Cod, June 2006 Contents of my

More information

Neutron Lifetime & CKM Unitarity: The Standard Model & Beyond

Neutron Lifetime & CKM Unitarity: The Standard Model & Beyond Neutron Lifetime & CKM Unitarity: The Standard Model & Beyond M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ ACFI Neutron Lifetime Workshop, September 2014! 1 Outline I. CKM unitarity:

More information

Electric Dipole Moments and the search for new CP violation

Electric Dipole Moments and the search for new CP violation Electric Dipole Moments and the search for new CP violation σ σ Jordy de Vries, Nikhef, Amsterdam Topical Lectures on electric dipole moments, Dec. 14-16 Goals Goal 1: A crash course in Electric Dipole

More information

The electron EDM and EDMs in Two-Higgs-Doublet Models

The electron EDM and EDMs in Two-Higgs-Doublet Models The electron EDM and EDMs in Two-Higgs-Doublet Models Martin Jung Recontres de Moriond EW 2014 March 21st 2014 Based on: A robust limit for the EDM of the electron, MJ, JHEP 1305 (2013) 168, EDMs in Two-Higgs-Doublet

More information

Mitglied der Helmholtz-Gemeinschaft. Theory Outlook EDM Searches at Storage Rings

Mitglied der Helmholtz-Gemeinschaft. Theory Outlook EDM Searches at Storage Rings Mitglied der Helmholtz-Gemeinschaft Theory Outlook EDM Searches at Storage Rings ECT, Trento, October 5, 2012 Andreas Wirzba Outline: 1 Observations and the physics case 2 Theory input 3 What to measure?

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

TeV Scale LNV: 0νββ-Decay & Colliders I

TeV Scale LNV: 0νββ-Decay & Colliders I TeV Scale LNV: 0νββ-Decay & Colliders I M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ Collaborators: Tao Peng, Peter Winslow; V. Cirigliano, M. Graesser, M. Horoi, P. Vogel ACFI

More information

Electric dipole moment: theory for experimentalists on the physics of atomic and nuclear EDMs

Electric dipole moment: theory for experimentalists on the physics of atomic and nuclear EDMs Electric dipole moment: theory for experimentalists on the physics of atomic and nuclear EDMs Should every physicists be measuring the neutron EDM? Can the neutron EDM save the world? Why are so many experiments

More information

EDMs, CP-odd Nucleon Correlators & QCD Sum Rules

EDMs, CP-odd Nucleon Correlators & QCD Sum Rules Hadronic Matrix Elements for Probes of CP Violation - ACFI, UMass Amherst - Jan 2015 EDMs, CP-odd Nucleon Correlators & QCD Sum Rules Adam Ritz University of Victoria Based on (older) work with M. Pospelov,

More information

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik th Discovery Discovery of of the the 4 4th generation generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion 1 Introduction Introduction

More information

A New Look at the Electroweak Baryogenesis in the post-lhc Era. Jing Shu ITP-CAS

A New Look at the Electroweak Baryogenesis in the post-lhc Era. Jing Shu ITP-CAS A New Look at the Electroweak Baryogenesis in the post-lhc Era. W. Huang, J. S,Y. Zhang, JHEP 1303 (2013) 164 J. S,Y. Zhang, Phys. Rev. Lett. 111 (2013) 091801 W. Huang, ZF. Kang, J. S, PW. Wu, JM. Yang,

More information

Electroweak Baryogenesis after LHC8

Electroweak Baryogenesis after LHC8 Electroweak Baryogenesis after LHC8 Gláuber Carvalho Dorsch with S. Huber and J. M. No University of Sussex arxiv:135.661 JHEP 131, 29(213) What NExT? Southampton November 27, 213 G. C. Dorsch EWBG after

More information

Status Report on Electroweak Baryogenesis

Status Report on Electroweak Baryogenesis Outline Status Report on Electroweak Baryogenesis Thomas Konstandin KTH Stockholm hep-ph/0410135, hep-ph/0505103, hep-ph/0606298 Outline Outline 1 Introduction Electroweak Baryogenesis Approaches to Transport

More information

Electroweak baryogenesis from a dark sector

Electroweak baryogenesis from a dark sector Electroweak baryogenesis from a dark sector with K. Kainulainen and D. Tucker-Smith Jim Cline, McGill U. Moriond Electroweak, 24 Mar., 2017 J. Cline, McGill U. p. 1 Outline Has electroweak baryogenesis

More information

Electroweak Baryogenesis in the LHC era

Electroweak Baryogenesis in the LHC era Electroweak Baryogenesis in the LHC era Sean Tulin (Caltech) In collaboration with: Michael Ramsey-Musolf Dan Chung Christopher Lee Vincenzo Cirigliano Bjorn Gabrecht Shin ichiro ichiro Ando Stefano Profumo

More information

Electroweak phase transition with two Higgs doublets near the alignment limit

Electroweak phase transition with two Higgs doublets near the alignment limit Electroweak phase transition with two Higgs doublets near the alignment limit Jérémy Bernon The Hong Kong University of Science and Technology Based on 1712.08430 In collaboration with Ligong Bian (Chongqing

More information

Bounds on new physics from EDMs. Martin Jung

Bounds on new physics from EDMs. Martin Jung Bounds on new physics from EDMs Martin Jung Seminar at the Institute for Nuclear and Particle Physics 6th of July 2017 Motivation Quark-flavour and CP violation in the SM: CKM describes flavour and CP

More information

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv: F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King S FLASY 2015 arxiv:1503.03306 Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y SM:

More information

Higgs Portal & Cosmology: Theory Overview

Higgs Portal & Cosmology: Theory Overview Higgs Portal & Cosmology: Theory Overview M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ Higgs Portal WS May 2014! 1 The Origin of Matter Baryons Cosmic Energy Budget Dark Matter

More information

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments)

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) T Symmetry EDM s Octupole Deformation Other Nuclei Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) J. Engel University of North Carolina June 16, 2005 T

More information

Baryogenesis and Particle Antiparticle Oscillations

Baryogenesis and Particle Antiparticle Oscillations Baryogenesis and Particle Antiparticle Oscillations Seyda Ipek UC Irvine SI, John March-Russell, arxiv:1604.00009 Sneak peek There is more matter than antimatter - baryogenesis SM cannot explain this There

More information

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis David McKeen and AEN, arxiv:1512.05359 Akshay Ghalsasi, David McKeen, AEN., arxiv:1508.05392 (Thursday: Kyle Aitken, David

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

ELECTRIC DIPOLE MOMENT OF THE ELECTRON AND ITS COSMOLOGICAL IMPLICATIONS

ELECTRIC DIPOLE MOMENT OF THE ELECTRON AND ITS COSMOLOGICAL IMPLICATIONS ELECTRIC DIPOLE MOMENT OF THE ELECTRON AND ITS COSMOLOGICAL IMPLICATIONS H S NATARAJ Under the Supervision of Prof. B P DAS Non-Accelerator Particle Physics Group Indian Institute of Astrophysics Bangalore

More information

Fundamental Symmetries - 3

Fundamental Symmetries - 3 National Nuclear Physics Summer School MIT, Cambridge, MA July 18-29 2016 Fundamental Symmetries - 3 Vincenzo Cirigliano Los Alamos National Laboratory Flow of the lectures Review symmetry and symmetry

More information

Quantum transport and electroweak baryogenesis

Quantum transport and electroweak baryogenesis Quantum transport and electroweak baryogenesis Thomas Konstandin Mainz, August 7, 2014 review: arxiv:1302.6713 Outline Introduction MSSM Composite Higgs Baryogenesis [Sakharov '69] Baryogenesis aims at

More information

Electroweak baryogenesis in light of the Higgs discovery

Electroweak baryogenesis in light of the Higgs discovery Electroweak baryogenesis in light of the Higgs discovery Thomas Konstandin Grenoble, March 25, 2013 review: arxiv:1302.6713 Outline Introduction SUSY Composite Higgs Baryogenesis [Sakharov '69] Baryogenesis

More information

An Introduction to Cosmology Lecture 2. (University of Wisconsin Madison)

An Introduction to Cosmology Lecture 2. (University of Wisconsin Madison) An Introduction to Cosmology Lecture 2 Daniel Chung (University of Wisconsin Madison) Outline of lecture 2 Quantitative elements of EW bgenesis number Explain transport eqs. for electroweak baryogenesis

More information

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter Brussels 20/4/12 Relating the Baryon Asymmetry to WIMP Miracle Dark Matter PRD 84 (2011) 103514 (arxiv:1108.4653) + PRD 83 (2011) 083509 (arxiv:1009.3227) John McDonald, LMS Consortium for Fundamental

More information

Electric Dipole Moments and New Physics

Electric Dipole Moments and New Physics Electric Dipole Moments and New Physics Maxim Pospelov Perimeter Institute/University of Victoria for a recent review, see M. Pospelov and A. Ritz, Annals of Physics 2005 Plan 1. Introduction. Current

More information

Phase transitions in cosmology

Phase transitions in cosmology Phase transitions in cosmology Thomas Konstandin FujiYoshida, August 31, 2017 Electroweak phase transition gravitational waves baryogenesis Outline Introduction MSSM Composite Higgs Baryogenesis [Sakharov

More information

Big Bang Nucleosynthesis

Big Bang Nucleosynthesis Big Bang Nucleosynthesis George Gamow (1904-1968) 5 t dec ~10 yr T dec 0.26 ev Neutrons-protons inter-converting processes At the equilibrium: Equilibrium holds until 0 t ~14 Gyr Freeze-out temperature

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

EDMs and CP Violation (in the LHC Era)

EDMs and CP Violation (in the LHC Era) Lepton Moments - Cape Cod - July 2014 EDMs and CP Violation (in the LHC Era) Adam Ritz University of Victoria w/~ D. McKeen, M. Pospelov [1208.4597, 1303.1172, 1311.5537] w/~ M. Le Dall, M. Pospelov [to

More information

The Higgs Boson and Electroweak Symmetry Breaking

The Higgs Boson and Electroweak Symmetry Breaking The Higgs Boson and Electroweak Symmetry Breaking 1. Minimal Standard Model M. E. Peskin Chiemsee School September 2014 The Higgs boson has an odd position in the Standard Model of particle physics. On

More information

A robust limit on the EDM of the electron

A robust limit on the EDM of the electron A robust limit on the EDM of the electron Martin Jung Talk at PCPV 2013, Mahabaleshwar, India 22nd of February 2013 R.I.P. Kolya Uraltsev Outline Introduction The EDM in paramagnetic systems An explicit

More information

Higgs Physics and Cosmology

Higgs Physics and Cosmology Higgs Physics and Cosmology Koichi Funakubo Department of Physics, Saga University 1 This year will be the year of Higgs particle. The discovery of Higgs-like boson will be reported with higher statistics

More information

Singlet Assisted Electroweak Phase Transitions and Precision Higgs Studies

Singlet Assisted Electroweak Phase Transitions and Precision Higgs Studies Singlet Assisted Electroweak Phase Transitions and Precision Higgs Studies Peter Winslow Based on: PRD 91, 035018 (2015) (arxiv:1407.5342) S. Profumo, M. Ramsey-Musolf, C. Wainwright, P. Winslow arxiv:1510.xxxx

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College London BLV 2017 Case Western Reserve U. 15-18 May 2017 Origin of neutrino masses beyond the Standard Model Two possibilities to define neutrino mass

More information

Electroweak baryogenesis after LHC8

Electroweak baryogenesis after LHC8 Electroweak baryogenesis after LHC8 Stephan Huber, University of Sussex Mainz, Germany August 2014 Moduli-induced baryogenesis [arxiv:1407.1827] WIMPy baryogenesis [arxiv:1406.6105] Baryogenesis by black

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

Electroweak baryogenesis in the MSSM. C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, /15

Electroweak baryogenesis in the MSSM. C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, /15 Electroweak baryogenesis in the MSSM C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, 2005 1/15 Electroweak baryogenesis in the MSSM The basics of EWBG in the MSSM Where do

More information

Probing the charged Higgs boson at the LHC in the CP-violating type-ii 2HDM

Probing the charged Higgs boson at the LHC in the CP-violating type-ii 2HDM Probing the charged Higgs boson at the LHC in the CP-violating type-ii 2HDM Giovanni Marco Pruna IKTP TU Dresden charged 2012, Uppsala University, 10th of October Outline Motivation Standard Model: a solid

More information

Probing Supersymmetric Baryogenesis: from Electric Dipole Moments to Neutrino Telescopes

Probing Supersymmetric Baryogenesis: from Electric Dipole Moments to Neutrino Telescopes Stefano Profumo California Institute of Technology TAPIR Theoretical AstroPhysics Including Relativity Kellogg Rad Lab Probing Supersymmetric Baryogenesis: from Electric Dipole Moments to Neutrino Telescopes

More information

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

PHYSICS BEYOND SM AND LHC. (Corfu 2010) PHYSICS BEYOND SM AND LHC (Corfu 2010) We all expect physics beyond SM Fantastic success of SM (LEP!) But it has its limits reflected by the following questions: What is the origin of electroweak symmetry

More information

arxiv: v1 [hep-ex] 5 Sep 2014

arxiv: v1 [hep-ex] 5 Sep 2014 Proceedings of the Second Annual LHCP CMS CR-2014/199 September 8, 2014 Future prospects of Higgs Physics at CMS arxiv:1409.1711v1 [hep-ex] 5 Sep 2014 Miguel Vidal On behalf of the CMS Experiment, Centre

More information

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

EDMs from the QCD θ term

EDMs from the QCD θ term ACFI EDM School November 2016 EDMs from the QCD θ term Vincenzo Cirigliano Los Alamos National Laboratory 1 Lecture II outline The QCD θ term Toolbox: chiral symmetries and their breaking Estimate of the

More information

The Standard Model of particle physics and beyond

The Standard Model of particle physics and beyond The Standard Model of particle physics and beyond - Lecture 3: Beyond the Standard Model Avelino Vicente IFIC CSIC / U. Valencia Physics and astrophysics of cosmic rays in space Milano September 2016 1

More information

Aspetti della fisica oltre il Modello Standard all LHC

Aspetti della fisica oltre il Modello Standard all LHC Aspetti della fisica oltre il Modello Standard all LHC (con enfasi sulla verificabilità sperimentale in gruppo I e II) Andrea Romanino SISSA e INFN TS Giornata di Seminari, INFN TS, 07.07.09 The Standard

More information

Probing the TeV scale and beyond with EDMs

Probing the TeV scale and beyond with EDMs Probing the TeV scale and beyond with EDMs Junji Hisano (Nagoya Univ./IPMU) 4th KIAS Workshop on parkcle physics and cosmology 5 th floor conference hall, KIAS From Oct 27 to 31, 2014 Contents IntroducKon

More information

Simplified models in collider searches for dark matter. Stefan Vogl

Simplified models in collider searches for dark matter. Stefan Vogl Simplified models in collider searches for dark matter Stefan Vogl Outline Introduction/Motivation Simplified Models for the LHC A word of caution Conclusion How to look for dark matter at the LHC? experimentally

More information

Nuclear electric dipole moment in the Gaussian expansion method

Nuclear electric dipole moment in the Gaussian expansion method Nuclear electric dipole moment in the Gaussian expansion method Nodoka Yamanaka (ithes Group, RIKEN) In collaboration with E. Hiyama (RIKEN), T. Yamada (Kanto-Gakuin Univ.), Y. Funaki (RIKEN) 2015/10/12

More information

PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS

PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS Felix Yu Johannes Gutenberg University, Mainz U. of Massachusetts, Amherst, Amherst Center for Fundamental Interactions The CP Nature of the

More information

Supersymmetry in Cosmology

Supersymmetry in Cosmology Supersymmetry in Cosmology Raghavan Rangarajan Ahmedabad University raghavan@ahduni.edu.in OUTLINE THE GRAVITINO PROBLEM SUSY FLAT DIRECTIONS AND THEIR COSMOLOGIAL IMPLICATIONS SUSY DARK MATTER SUMMARY

More information

Two-Higgs-Doublet Model

Two-Higgs-Doublet Model Two-Higgs-Doublet Model Logan A. Morrison University of California, Santa Cruz loanmorr@ucsc.edu March 18, 016 Logan A. Morrison (UCSC) HDM March 18, 016 1 / 7 Overview 1 Review of SM HDM Formalism HDM

More information

Matter over antimatter: The Sakharov conditions after 50 years

Matter over antimatter: The Sakharov conditions after 50 years Matter over antimatter: The Sakharov conditions after 50 years Rob Timmermans On behalf of the organizers May 8, 2017 faculty of mathematics and natural sciences van swinderen institute for particle physics

More information

Beyond Standard Model Effects in Flavour Physics: p.1

Beyond Standard Model Effects in Flavour Physics: p.1 Beyond Standard Model Effects in Flavour Physics: Alakabha Datta University of Mississippi Feb 13, 2006 Beyond Standard Model Effects in Flavour Physics: p.1 OUTLINE Standard Model (SM) and its Problems.

More information

Leptogenesis with Composite Neutrinos

Leptogenesis with Composite Neutrinos Leptogenesis with Composite Neutrinos Based on arxiv:0811.0871 In collaboration with Yuval Grossman Cornell University Friday Lunch Talk Yuhsin Tsai, Cornell University/CIHEP Leptogenesis with Composite

More information

Two-Step Electroweak Baryogenesis

Two-Step Electroweak Baryogenesis ACFI-T5- Two-Step Electroweak Baryogenesis It is interesting to ask about the experimental signatures of the multi-step scenario. Requiring that the final transition to the SM Higgs phase occurs at sufficiently

More information

Theory of CP Violation

Theory of CP Violation Theory of CP Violation IPPP, Durham CP as Natural Symmetry of Gauge Theories P and C alone are not natural symmetries: consider chiral gauge theory: L = 1 4 F µνf µν + ψ L i σdψ L (+ψ R iσ ψ R) p.1 CP

More information

Electroweak Phase Transition, Scalar Dark Matter, & the LHC. M.J. Ramsey-Musolf

Electroweak Phase Transition, Scalar Dark Matter, & the LHC. M.J. Ramsey-Musolf Electroweak Phase Transition, Scalar Dark Matter, & the LHC M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/

More information

Testing leptogenesis at the LHC

Testing leptogenesis at the LHC Santa Fe Summer Neutrino Workshop Implications of Neutrino Flavor Oscillations Santa Fe, New Mexico, July 6-10, 2009 Testing leptogenesis at the LHC ArXiv:0904.2174 ; with Z. Chacko, S. Granor and R. Mohapatra

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Recent progress in leptogenesis

Recent progress in leptogenesis XLIII rd Rencontres de Moriond Electroweak Interactions and Unified Theories La Thuile, Italy, March 1-8, 2008 Recent progress in leptogenesis Steve Blanchet Max-Planck-Institut for Physics, Munich March

More information

EW phase transition in a hierarchical 2HDM

EW phase transition in a hierarchical 2HDM EW phase transition in a hierarchical 2HDM G. Dorsch, S. Huber, K. Mimasu, J. M. No ACFI workshop, UMass Amherst Phys. Rev. Lett. 113 (2014) 211802 [arxiv:1405.5537] September 18th, 2015 1 Introduction

More information

Theory overview on rare eta decays

Theory overview on rare eta decays Theory overview on rare eta decays WASA Jose L. Goity Hampton/JLab BES III KLOE Hadronic Probes of Fundamental Symmetries Joint ACFI-Jefferson Lab Workshop March 6-8, 2014!UMass Amherst Motivation Main

More information

EW Baryogenesis and Dimensional Reduction in SM extensions

EW Baryogenesis and Dimensional Reduction in SM extensions EW Baryogenesis and Dimensional Reduction in SM extensions Tuomas V.I. Tenkanen In collaboration with: T. Brauner, A. Tranberg, A. Vuorinen and D. J. Weir (SM+real singlet) J. O. Anderssen, T. Gorda, L.

More information

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY LOUIS YANG ( 楊智軒 ) UNIVERSITY OF CALIFORNIA, LOS ANGELES (UCLA) DEC 30, 2016 4TH INTERNATIONAL WORKSHOP ON DARK MATTER,

More information

Probing the Majorana nature in radiative seesaw models at collider experiments

Probing the Majorana nature in radiative seesaw models at collider experiments Probing the Majorana nature in radiative seesaw models at collider experiments Shinya KANEMURA (U. of Toyama) M. Aoki, SK and O. Seto, PRL 102, 051805 (2009). M. Aoki, SK and O. Seto, PRD80, 033007 (2009).

More information

A first trip to the world of particle physics

A first trip to the world of particle physics A first trip to the world of particle physics Itinerary Massimo Passera Padova - 13/03/2013 1 Massimo Passera Padova - 13/03/2013 2 The 4 fundamental interactions! Electromagnetic! Weak! Strong! Gravitational

More information

Implications of a Heavy Z Gauge Boson

Implications of a Heavy Z Gauge Boson Implications of a Heavy Z Gauge Boson Motivations A (string-motivated) model Non-standard Higgs sector, CDM, g µ 2 Electroweak baryogenesis FCNC and B s B s mixing References T. Han, B. McElrath, PL, hep-ph/0402064

More information

Lepton-flavor violation in tau-lepton decay and the related topics

Lepton-flavor violation in tau-lepton decay and the related topics Lepton-flavor violation in tau-lepton decay and the related topics Junji Hisano Institute for Cosmic Ray Research Univ. of Tokyo International Workshop On Discoveries In Flavour Physics At E+ E- Colliders

More information

Electric dipole moments of light nuclei

Electric dipole moments of light nuclei Electric dipole moments of light nuclei In collaboration with Nodoka Yamanaka (IPN Orsay) E. Hiyama (RIKEN), T. Yamada (Kanto Gakuin Univ.), Y. Funaki (Beihang Univ.) 2017/4/24 RPP Marseille CP violation

More information

The SCTM Phase Transition

The SCTM Phase Transition The SCTM Phase Transition ICTP / SAIFR 2015 Mateo García Pepin In collaboration with: Mariano Quirós Motivation The Model The phase transition Summary EW Baryogenesis A mechanism to explain the observed

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

The first one second of the early universe and physics beyond the Standard Model

The first one second of the early universe and physics beyond the Standard Model The first one second of the early universe and physics beyond the Standard Model Koichi Hamaguchi (University of Tokyo) @ Colloquium at Yonsei University, November 9th, 2016. Credit: X-ray: NASA/CXC/CfA/M.Markevitch

More information

3 Dimensional String Theory

3 Dimensional String Theory 3 Dimensional String Theory New ideas for interactions and particles Abstract...1 Asymmetry in the interference occurrences of oscillators...1 Spontaneously broken symmetry in the Planck distribution law...3

More information

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK 1 Higgs mechanism One of two principles of the Standard Model. Gauge invariance and Higgs mechanism Origin of the weak scale. Why is the weak

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Low Energy Precision Tests of Supersymmetry

Low Energy Precision Tests of Supersymmetry Low Energy Precision Tests of Supersymmetry M.J. Ramsey-Musolf Caltech Wisconsin-Madison M.R-M & S. Su, hep-ph/0612057 J. Erler & M.R-M, PPNP 54, 351 (2005) Outline I. Motivation: Why New Symmetries? Why

More information

Directions for BSM physics from Asymptotic Safety

Directions for BSM physics from Asymptotic Safety Bad Honnef- 21.6.2018 Directions for BSM physics from Asymptotic Safety phenomenology connecting theory to data Gudrun Hiller, TU Dortmund q f e DFG FOR 1873 et 1 Asymptotic Safety pheno for cosmology

More information

R. D. McKeown. Jefferson Lab College of William and Mary

R. D. McKeown. Jefferson Lab College of William and Mary R. D. McKeown Jefferson Lab College of William and Mary Jlab User Meeting, June 2010 1 The Standard Model Renormalizable Gauge Theory Spontaneous Symmetry Breaking n 1 n 2 n 3 Massless g,g Higgs Particle

More information

Neutrino Mass Seesaw, Baryogenesis and LHC

Neutrino Mass Seesaw, Baryogenesis and LHC Neutrino Mass Seesaw, Baryogenesis and LHC R. N. Mohapatra University of Maryland Interplay of Collider and Flavor Physics workshop, CERN Blanchet,Chacko, R. N. M., 2008 arxiv:0812:3837 Why? Seesaw Paradigm

More information

Introduction to Particle Physics. HST July 2016 Luis Alvarez Gaume 1

Introduction to Particle Physics. HST July 2016 Luis Alvarez Gaume 1 Introduction to Particle Physics HST July 2016 Luis Alvarez Gaume 1 Basics Particle Physics describes the basic constituents of matter and their interactions It has a deep interplay with cosmology Modern

More information

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Outline I. Higgs physics afer discovery Ø What is the current data telling us?

More information

CP violation in charged Higgs production and decays in the Complex 2HDM

CP violation in charged Higgs production and decays in the Complex 2HDM CP violation in charged Higgs production and decays in the Complex 2HDM Abdesslam Arhrib National Cheung Keung University (NCKU), Faculté des Sciences et Techniques Tangier, Morocco Based on: A.A, H. Eberl,

More information

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Mu-Chun Chen Fermilab (Jan 1, 27: UC Irvine) M.-C. C & K.T. Mahanthappa, hep-ph/69288, to appear in Phys. Rev. D; Phys. Rev. D71, 351 (25)

More information

Impact of a CP-violating Higgs Boson

Impact of a CP-violating Higgs Boson Impact of a CP-violating Higgs Boson Yue Zhang (Caltech) Talk at Pheno 2013, University of Pittsburgh In collaboration with, Jing Shu, arxiv:1304.0773, Higgs Couplings Higgs: always L (v + h) n Beyond

More information

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet Lecture 23 November 16, 2017 Developing the SM s electroweak theory Research News: Higgs boson properties and use as a dark matter probe Fermion mass generation using a Higgs weak doublet Summary of the

More information

Supersymmetric Origin of Matter (both the bright and the dark)

Supersymmetric Origin of Matter (both the bright and the dark) Supersymmetric Origin of Matter (both the bright and the dark) C.E.M. Wagner Argonne National Laboratory EFI, University of Chicago Based on following recent works: C. Balazs,, M. Carena and C.W.; Phys.

More information

The mass of the Higgs boson

The mass of the Higgs boson The mass of the Higgs boson LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12 a prediction Higgs boson found standard model Higgs boson T.Plehn, M.Rauch Spontaneous symmetry breaking confirmed

More information