Function Diagrams and Empty Parentheses

Size: px
Start display at page:

Download "Function Diagrams and Empty Parentheses"

Transcription

1 Function Diagrams and Empty Parentheses Kinetic Model of Functions Michael Dougherty Southwestern Oklahoma State University April 2, 204

2 Outline Usual function computation mistakes Empty parentheses as a partial solution Function diagrams in current tets (especially College Algebra) My early attempts at function diagrams Final attempt at board-useful diagrams Simple transformations of known functions Chasing through transformations, eample Other eamples Conclusions

3 Usual function computation mistakes Eample: Let f() = Find f(+2). Usual Mistakes:. f(+2) = f()+2 = = f(+2) = = f(+2) = 2(+2) 2 3(+2)+5 = 2( 2 +4) 3 6+5= = It seems that the ideas of () being a dummy variable, and (2) that we can replace with something else particularly if that something else contains an can be very confusing to average students. Note: Computing functions here is kinetic, meaning there is are actions we perform on, rather than making an assignment for each, or identifying a set of ordered pairs.

4 Empty parentheses as a partial solution (not original!) Basic Idea: Instead of the variable to probe the action of f, use empty parentheses into which we can put our arguments. Eample: Let f( ) = 2( ) 2 3( )+5. f() = 2() 2 3()+5 = = 4, f( ) = 2( ) 2 3( )+5 = = 0, f( ) = 2( ) 2 3( )+5 = , f(+2) = 2(+2) 2 3(+2)+5 = 2( ) = = , Especially for more mature students who lack confidence but not wisdom or work ethic, this method seems to strike a chord.

5 Function diagrams in current tets (especially College Algebra) Kinetic in the sense something is happening, but not realistic. Rule of correspondence harkens to the more abstract (correct?) definitions of function. (Gustafson & Frisk)

6 Somewhat more kinetic, but not ideal for visually tracing the actions on the input. Does relate the formula to the process. (Coburn)

7 More kinetic, and shows something of function composition and inverses. Hints at diagrams between domain and range. Illustrates how some invertible functions f can be inverted in stages, if f is itself a series of invertible steps (unlike, say, linear fractional transformations which are more convoluted). (Dugopolski)

8 My early attempts at function diagrams at the board 2 These are fine for tetbook illustrations. Function f( ) f( ) f( 2 ) Not so good for drawing many of them on the board. Particularly for a chain of functions. Out of necessity, settled on a combination of empty parentheses and ovals, rectangles simple figures:

9 Flow chart-like diagrams: kinetic model of functions Eample: f( ) = ( ) 2 +. f f 3 f +h f ( ) 2 ( ) 2 ( ) 2 ( ) (+h) 2 ( )+ ( )+ ( )+ ( ) (+h) 2 + f() = () 2 + = 2 + f( ) = ( ) 2 + = + = 2. f( 3 ) = ( 3) 2 + = 6 +. f(+h) = (+h) 2 + = (+h)(+h)+ = 2 +2h+h 2 +.

10 Useful for domain computations ( ) Eample: Suppose f() = 4. Then f = ( ) ( ) 4. /( ) /( ) / 4( ) 4 / f ( ) / ( ) 4 ( ) ( ) 4 ( ) /( ) 4 f ( ) (/) (/) 4 4 Domain: R { 0, 4}. (Where nothing goes wrong!) 0 is clear from the first two models; glossed over in third. 4 is clear from the second or third models. For most, the second and third models are the same, but only the second shows how is truly processed.

11 Diagram of simple function inversion With dummy variables: Using a function diagram: f() = 6 9 f () = 6 (+9) f 6 9 f With empty parentheses: 6( ) ( ) f( ) = 6( ) 9 ( ) 9 6 ( ) f ( ) = 6 (( )+9) 6 9

12 Linear fractional transform and inverse eample f() = Here it is not so obvious how to invert the function, and we have to resort to algebra: solve y = f() for, or switch the variables and solve for y. Either way yields the form of f ( ). 2( ) 4( ) 5( ) 4( ) ( )+3 ( ) 5 ( )+3 ( ) Div(,) Div(,) f ()= f ()=

13 Transformations of known functions Eample: f( ) = ( ). Main function in gray. ( ) ( ) 2 ( ) 2 ( ) 2 ( ) f ()= h()= 2 g()=

14 Chasing through transformations, eample y = f() = Transformations that occur before the main function affect the input variable, and thus some horizontal aspect of the graph. ( )+3 shift left 3 +3 ( ) main function +3 Transformations that occur after the main function affect the output variable, and thus some vertical aspect of the graph. ( ) 4 shift down

15 Eample: f() = = + Of course, with linear transformations of the input or output variable, the basic shape stays the same and it may be easier to identify features such as asymptotes, and plot some important points to make a quick sketch ( )+2 3 ( ) +2 shift left 2 main function ( ) reflect vertically ( )+4 shift up

16 Reflections around other vertical/horizontal lines Eample: f() = log 2 ( ( 3)) = log 2 (3 ). Can take y = log 2, move three to right, reflect horizontally through the line = 3. Can take y = log 2, reflect horizontally through line y = 3/2. ( ) 3 shift right 3 3 ( ) reflect through = 3 ( 3) log 2 ( ) main function log 2 [ ( 3)] y= log 2 (light gray) y= log 2 ( 3) (gray) y= log 2 [ ( 3)] (black)

17 3 2 3 ( ) reflect through = 3/ log 2 ( ) Main Function log 2 (3 ) y= log 2 (gray) y= log 2 (3 ) (black)

18 General remarks about function diagrams and transformations To use diagrams for linear transformations of the input or output varibles of a function, it is best to have forms such as: y = Af(B( h))+k y = K Af(B( h)) y = Af(B(H ))+k (reflected if A or B is negative) (reflected through y = K/2) (reflected through = H/2) These are preferable to y = Af(B+C)+D, which should be rewritten into one of the forms above. Diagrams constructed naturally as one would parse y for an arbitrary. I m happy to send pages that develop this in more detail.

19 Calculus: Addition Rule Eample: f() = 2 +sin 2 ( ) sin( ) 2π 2 Add(, ) sin π 2π 3π 4π 5π 2 +sin 2π Are we adding 2 to the sin function, or vice-versa?

20 Calculus: Product Rule Eample: f() =.2 sin π 2π π 0 π 2π 3π 4π 5π 6π Are we multiplying.2 by sin, or vice-versa? (Easier to think of.2 as the amplitude in some sense.)

21 Conclusions (opinions). Some students want to see the action of the function: what does it do to the input to yield the output? 2. Perhaps it is better (for some students) to begin with kinetic ideas of functions (as actions on the variables), and slowly introduce function graphs, functions as assignments or mappings (good EFI term!). Eventually eplain why f() = (+) 2 is really the same function as f() = (Functions as black boes?) 3. Leave out relations? Implicit functions are a stand-alone.

22 4. Eventually the mechanisms can be read from the formula. 5. Following variables through diagrams may be easier than through a formula, at first. 6. Most tets use some diagrams, but do not develop them. There may be some low-lying fruit here. 7. On the other hand, there are technicalities to work through. 8. Net Up: Assigning diagram construction to students, to see if it helps. ( Nothing But Liebniz in computing derivatives helped most of my students in Calculus. More visual aids may be useful with functions too.)

18.01 Single Variable Calculus Fall 2006

18.01 Single Variable Calculus Fall 2006 MIT OpenCourseWare http://ocw.mit.edu 8.0 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Lecture 0 8.0 Fall 2006 Lecture

More information

Algebra/Trigonometry Review Notes

Algebra/Trigonometry Review Notes Algebra/Trigonometry Review Notes MAC 41 Calculus for Life Sciences Instructor: Brooke Quinlan Hillsborough Community College ALGEBRA REVIEW FOR CALCULUS 1 TOPIC 1: POLYNOMIAL BASICS, POLYNOMIAL END BEHAVIOR,

More information

INFINITE SUMS. In this chapter, let s take that power to infinity! And it will be equally natural and straightforward.

INFINITE SUMS. In this chapter, let s take that power to infinity! And it will be equally natural and straightforward. EXPLODING DOTS CHAPTER 7 INFINITE SUMS In the previous chapter we played with the machine and saw the power of that machine to make advanced school algebra so natural and straightforward. In this chapter,

More information

What can I tell from a survey?

What can I tell from a survey? CCA Ch 10: Solving Comple Equations Name Team # 10.1.1 What can I tell from a survey? Association in Two-Way Tables 10-1. a. c. d. d. 10-. a. Complete the following two-way table: Laptop No Laptop TOTAL

More information

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. Maima and minima In this unit we show how differentiation can be used to find the maimum and minimum values of a function. Because the derivative provides information about the gradient or slope of the

More information

Introduction to Rational Functions

Introduction to Rational Functions Introduction to Rational Functions The net class of functions that we will investigate is the rational functions. We will eplore the following ideas: Definition of rational function. The basic (untransformed)

More information

UNIT 3. Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions

UNIT 3. Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions UNIT 3 Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions Recall From Unit Rational Functions f() is a rational function

More information

UNIT 3. Recall From Unit 2 Rational Functions

UNIT 3. Recall From Unit 2 Rational Functions UNIT 3 Recall From Unit Rational Functions f() is a rational function if where p() and q() are and. Rational functions often approach for values of. Rational Functions are not graphs There various types

More information

Math Analysis/Honors Math Analysis Summer Assignment

Math Analysis/Honors Math Analysis Summer Assignment Math Analysis/Honors Math Analysis Summer Assignment To be successful in Math Analysis or Honors Math Analysis, a full understanding of the topics listed below is required prior to the school year. To

More information

Algebra 2/Pre-Calculus

Algebra 2/Pre-Calculus Algebra /Pre-Calculus Name Introduction to Eponential Functions (Day 1, Eponential Functions) In this handout, we will introduce eponential functions. Definition We say f () is an eponential function if

More information

Horizontal asymptotes

Horizontal asymptotes Roberto s Notes on Differential Calculus Chapter : Limits and continuity Section 5 Limits at infinity and Horizontal asymptotes What you need to know already: The concept, notation and terminology of its.

More information

Instructor Quick Check: Question Block 12

Instructor Quick Check: Question Block 12 Instructor Quick Check: Question Block 2 How to Administer the Quick Check: The Quick Check consists of two parts: an Instructor portion which includes solutions and a Student portion with problems for

More information

Solving Equations. Lesson Fifteen. Aims. Context. The aim of this lesson is to enable you to: solve linear equations

Solving Equations. Lesson Fifteen. Aims. Context. The aim of this lesson is to enable you to: solve linear equations Mathematics GCSE Module Four: Basic Algebra Lesson Fifteen Aims The aim of this lesson is to enable you to: solve linear equations solve linear equations from their graph solve simultaneous equations from

More information

C. Finding roots of trinomials: 1st Example: x 2 5x = 14 x 2 5x 14 = 0 (x 7)(x + 2) = 0 Answer: x = 7 or x = -2

C. Finding roots of trinomials: 1st Example: x 2 5x = 14 x 2 5x 14 = 0 (x 7)(x + 2) = 0 Answer: x = 7 or x = -2 AP Calculus Students: Welcome to AP Calculus. Class begins in approimately - months. In this packet, you will find numerous topics that were covered in your Algebra and Pre-Calculus courses. These are

More information

211 Real Analysis. f (x) = x2 1. x 1. x 2 1

211 Real Analysis. f (x) = x2 1. x 1. x 2 1 Part. Limits of functions. Introduction 2 Real Analysis Eample. What happens to f : R \ {} R, given by f () = 2,, as gets close to? If we substitute = we get f () = 0 which is undefined. Instead we 0 might

More information

Dr. Relja Vulanovic Professor of Mathematics Kent State University at Stark c 2008

Dr. Relja Vulanovic Professor of Mathematics Kent State University at Stark c 2008 MATH-LITERACY MANUAL Dr. Relja Vulanovic Professor of Mathematics Kent State University at Stark c 2008 2 Algebraic Epressions 2.1 Terms and Factors 29 2.2 Types of Algebraic Epressions 32 2.3 Transforming

More information

Section 3.3 Limits Involving Infinity - Asymptotes

Section 3.3 Limits Involving Infinity - Asymptotes 76 Section. Limits Involving Infinity - Asymptotes We begin our discussion with analyzing its as increases or decreases without bound. We will then eplore functions that have its at infinity. Let s consider

More information

STARTING WITH CONFIDENCE

STARTING WITH CONFIDENCE STARTING WITH CONFIDENCE A- Level Maths at Budmouth Name: This booklet has been designed to help you to bridge the gap between GCSE Maths and AS Maths. Good mathematics is not about how many answers you

More information

4.4 Graphs of Logarithmic Functions

4.4 Graphs of Logarithmic Functions 590 Chapter 4 Exponential and Logarithmic Functions 4.4 Graphs of Logarithmic Functions In this section, you will: Learning Objectives 4.4.1 Identify the domain of a logarithmic function. 4.4.2 Graph logarithmic

More information

In this unit we will study exponents, mathematical operations on polynomials, and factoring.

In this unit we will study exponents, mathematical operations on polynomials, and factoring. GRADE 0 MATH CLASS NOTES UNIT E ALGEBRA In this unit we will study eponents, mathematical operations on polynomials, and factoring. Much of this will be an etension of your studies from Math 0F. This unit

More information

Edexcel AS and A Level Mathematics Year 1/AS - Pure Mathematics

Edexcel AS and A Level Mathematics Year 1/AS - Pure Mathematics Year Maths A Level Year - Tet Book Purchase In order to study A Level Maths students are epected to purchase from the school, at a reduced cost, the following tetbooks that will be used throughout their

More information

Horizontal asymptotes

Horizontal asymptotes Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 5 Limits at infinity and Horizontal asymptotes What you need to know already: The concept, notation and terminology of

More information

STEP Support Programme. Hints and Partial Solutions for Assignment 1

STEP Support Programme. Hints and Partial Solutions for Assignment 1 STEP Support Programme Hints and Partial Solutions for Assignment 1 Warm-up 1 You can check many of your answers to this question by using Wolfram Alpha. Only use this as a check though and if your answer

More information

Solving and Graphing a Linear Inequality of a Single Variable

Solving and Graphing a Linear Inequality of a Single Variable Chapter 3 Graphing Fundamentals Section 3.1 Solving and Graphing a Linear Inequality of a Single Variable TERMINOLOGY 3.1 Previously Used: Isolate a Variable Simplifying Expressions Prerequisite Terms:

More information

4.5 Rational functions.

4.5 Rational functions. 4.5 Rational functions. We have studied graphs of polynomials and we understand the graphical significance of the zeros of the polynomial and their multiplicities. Now we are ready to etend these eplorations

More information

Section 2.7 Solving Linear Inequalities

Section 2.7 Solving Linear Inequalities Section.7 Solving Linear Inequalities Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Add and multiply an inequality. Solving equations (.1,.,

More information

Law of Trichotomy and Boundary Equations

Law of Trichotomy and Boundary Equations Law of Trichotomy and Boundary Equations Law of Trichotomy: For any two real numbers a and b, exactly one of the following is true. i. a < b ii. a = b iii. a > b The Law of Trichotomy is a formal statement

More information

MATH 250 TOPIC 11 LIMITS. A. Basic Idea of a Limit and Limit Laws. Answers to Exercises and Problems

MATH 250 TOPIC 11 LIMITS. A. Basic Idea of a Limit and Limit Laws. Answers to Exercises and Problems Math 5 T-Limits Page MATH 5 TOPIC LIMITS A. Basic Idea of a Limit and Limit Laws B. Limits of the form,, C. Limits as or as D. Summary for Evaluating Limits Answers to Eercises and Problems Math 5 T-Limits

More information

Figure 1: Doing work on a block by pushing it across the floor.

Figure 1: Doing work on a block by pushing it across the floor. Work Let s imagine I have a block which I m pushing across the floor, shown in Figure 1. If I m moving the block at constant velocity, then I know that I have to apply a force to compensate the effects

More information

Dimensional Analysis and Similarity

Dimensional Analysis and Similarity Dimensional Analysis and Similarity Introduction - The Purposes and Usefulness of Dimensional Analysis Dimensional analysis is a very powerful tool, not just in fluid mechanics, but in many disciplines.

More information

Chapter 1 Review of Equations and Inequalities

Chapter 1 Review of Equations and Inequalities Chapter 1 Review of Equations and Inequalities Part I Review of Basic Equations Recall that an equation is an expression with an equal sign in the middle. Also recall that, if a question asks you to solve

More information

6.4 graphs OF logarithmic FUnCTIOnS

6.4 graphs OF logarithmic FUnCTIOnS SECTION 6. graphs of logarithmic functions 9 9 learning ObjeCTIveS In this section, ou will: Identif the domain of a logarithmic function. Graph logarithmic functions. 6. graphs OF logarithmic FUnCTIOnS

More information

A-Level Notes CORE 1

A-Level Notes CORE 1 A-Level Notes CORE 1 Basic algebra Glossary Coefficient For example, in the expression x³ 3x² x + 4, the coefficient of x³ is, the coefficient of x² is 3, and the coefficient of x is 1. (The final 4 is

More information

Maths A Level Summer Assignment & Transition Work

Maths A Level Summer Assignment & Transition Work Maths A Level Summer Assignment & Transition Work The summer assignment element should take no longer than hours to complete. Your summer assignment for each course must be submitted in the relevant first

More information

23. Implicit differentiation

23. Implicit differentiation 23. 23.1. The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x and y. If a value of x is given, then a corresponding value of y is determined. For instance, if x = 1, then y

More information

The Not-Formula Book for C1

The Not-Formula Book for C1 Not The Not-Formula Book for C1 Everything you need to know for Core 1 that won t be in the formula book Examination Board: AQA Brief This document is intended as an aid for revision. Although it includes

More information

11.4 Polar Coordinates

11.4 Polar Coordinates 11. Polar Coordinates 917 11. Polar Coordinates In Section 1.1, we introduced the Cartesian coordinates of a point in the plane as a means of assigning ordered pairs of numbers to points in the plane.

More information

ACCUPLACER MATH 0310

ACCUPLACER MATH 0310 The University of Teas at El Paso Tutoring and Learning Center ACCUPLACER MATH 00 http://www.academics.utep.edu/tlc MATH 00 Page Linear Equations Linear Equations Eercises 5 Linear Equations Answer to

More information

We have examined power functions like f (x) = x 2. Interchanging x

We have examined power functions like f (x) = x 2. Interchanging x CHAPTER 5 Eponential and Logarithmic Functions We have eamined power functions like f =. Interchanging and ields a different function f =. This new function is radicall different from a power function

More information

Function Gallery: Some Basic Functions and Their Properties

Function Gallery: Some Basic Functions and Their Properties Function Gallery: Some Basic Functions and Their Properties Linear Equation y = m+b Linear Equation y = -m + b This Eample: y = 3 + 3 This Eample: y = - + 0 Domain (-, ) Domain (-, ) Range (-, ) Range

More information

22: Applications of Differential Calculus

22: Applications of Differential Calculus 22: Applications of Differential Calculus A: Time Rate of Change The most common use of calculus (the one that motivated our discussions of the previous chapter) are those that involve change in some quantity

More information

AP Calculus AB UNIT 1: PRECALCULUS REVIEW UNIT 2: BRIDGE TO CALCULUS LESSON 1: INTRO TO CALCULUS LESSON 2: FUNCTIONS

AP Calculus AB UNIT 1: PRECALCULUS REVIEW UNIT 2: BRIDGE TO CALCULUS LESSON 1: INTRO TO CALCULUS LESSON 2: FUNCTIONS Advanced Placement AP Calculus AB In AP* Calculus AB, students learn to understand change geometrically and visually (by studying graphs of curves), analytically (by studying and working with mathematical

More information

1 Rational Exponents and Radicals

1 Rational Exponents and Radicals Introductory Algebra Page 1 of 11 1 Rational Eponents and Radicals 1.1 Rules of Eponents The rules for eponents are the same as what you saw earlier. Memorize these rules if you haven t already done so.

More information

MATH 116, LECTURES 10 & 11: Limits

MATH 116, LECTURES 10 & 11: Limits MATH 6, LECTURES 0 & : Limits Limits In application, we often deal with quantities which are close to other quantities but which cannot be defined eactly. Consider the problem of how a car s speedometer

More information

CHAPTER 1: Functions

CHAPTER 1: Functions CHAPTER 1: Functions 1.1: Functions 1.2: Graphs of Functions 1.3: Basic Graphs and Symmetry 1.4: Transformations 1.5: Piecewise-Defined Functions; Limits and Continuity in Calculus 1.6: Combining Functions

More information

ACTIVITY 3 Introducing Energy Diagrams for Atoms

ACTIVITY 3 Introducing Energy Diagrams for Atoms Name: Class: SOLIDS & Visual Quantum Mechanics LIGHT ACTIVITY 3 Introducing Energy Diagrams for Atoms Goal Now that we have explored spectral properties of LEDs, incandescent lamps, and gas lamps, we will

More information

Equations and Inequalities

Equations and Inequalities Equations and Inequalities Figure 1 CHAPTER OUTLINE 1 The Rectangular Coordinate Systems and Graphs Linear Equations in One Variable Models and Applications Comple Numbers Quadratic Equations 6 Other Types

More information

Multiple-Choice Answer Key

Multiple-Choice Answer Key Multiple-Choice Answer Key The following contains the answers to the multiple-choice questions in this exam. Answer Key for AP Physics 1 Practice Exam, Section I Question 1: C Question : A Question 3:

More information

31. TRANSFORMING TOOL #2 (the Multiplication Property of Equality)

31. TRANSFORMING TOOL #2 (the Multiplication Property of Equality) 3 TRANSFORMING TOOL # (the Multiplication Property of Equality) a second transforming tool THEOREM Multiplication Property of Equality In the previous section, we learned that adding/subtracting the same

More information

Solutions to Math 41 First Exam October 12, 2010

Solutions to Math 41 First Exam October 12, 2010 Solutions to Math 41 First Eam October 12, 2010 1. 13 points) Find each of the following its, with justification. If the it does not eist, eplain why. If there is an infinite it, then eplain whether it

More information

Chapter 2: The Derivative

Chapter 2: The Derivative Chapter : The Derivative Summary: Chapter builds upon the ideas of limits and continuity discussed in the previous chapter. By using limits, the instantaneous rate at which a function changes with respect

More information

Sequences and Series

Sequences and Series Sequences and Series What do you think of when you read the title of our next unit? In case your answers are leading us off track, let's review the following IB problems. 1 November 2013 HL 2 3 November

More information

Math 115 Spring 11 Written Homework 10 Solutions

Math 115 Spring 11 Written Homework 10 Solutions Math 5 Spring Written Homework 0 Solutions. For following its, state what indeterminate form the its are in and evaluate the its. (a) 3x 4x 4 x x 8 Solution: This is in indeterminate form 0. Algebraically,

More information

Topic 25: Quadratic Functions (Part 1) A quadratic function is a function which can be written as 2. Properties of Quadratic Functions

Topic 25: Quadratic Functions (Part 1) A quadratic function is a function which can be written as 2. Properties of Quadratic Functions Hartfield College Algebra (Version 015b - Thomas Hartfield) Unit FOUR Page 1 of 3 Topic 5: Quadratic Functions (Part 1) Definition: A quadratic function is a function which can be written as f x ax bx

More information

6.6 Substitution with All Basic Forms

6.6 Substitution with All Basic Forms 670 CHAPTER 6. BASIC INTEGRATION 6.6 Substitution with All Basic Forms In this section we will add to our forms for substitution and recall some rather general guidelines for substitution. Ecept for our

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, it is my epectation that you will have this packet completed. You will be way behind at the beginning of the year if you haven t attempted

More information

Math Week 1 notes

Math Week 1 notes Math 2250-004 Week 1 notes We will not necessarily finish the material from a given day's notes on that day. Or on an amazing day we may get farther than I've predicted. We may also add or subtract some

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.1 Worksheet Day 1 All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. The only way to guarantee the eistence of a it is to algebraically prove

More information

Exponential Growth. b.) What will the population be in 3 years?

Exponential Growth. b.) What will the population be in 3 years? 0 Eponential Growth y = a b a b Suppose your school has 4512 students this year. The student population is growing 2.5% each year. a.) Write an equation to model the student population. b.) What will the

More information

Epsilon Delta proofs

Epsilon Delta proofs Epsilon Delta proofs Before reading this guide, please go over inequalities (if needed). Eample Prove lim(4 3) = 5 2 First we have to know what the definition of a limit is: i.e rigorous way of saying

More information

September 12, Math Analysis Ch 1 Review Solutions. #1. 8x + 10 = 4x 30 4x 4x 4x + 10 = x = x = 10.

September 12, Math Analysis Ch 1 Review Solutions. #1. 8x + 10 = 4x 30 4x 4x 4x + 10 = x = x = 10. #1. 8x + 10 = 4x 30 4x 4x 4x + 10 = 30 10 10 4x = 40 4 4 x = 10 Sep 5 7:00 AM 1 #. 4 3(x + ) = 5x 7(4 x) 4 3x 6 = 5x 8 + 7x CLT 3x = 1x 8 +3x +3x = 15x 8 +8 +8 6 = 15x 15 15 x = 6 15 Sep 5 7:00 AM #3.

More information

A Quick Algebra Review

A Quick Algebra Review 1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals

More information

Lesson 18: Recognizing Equations of Circles

Lesson 18: Recognizing Equations of Circles Student Outcomes Students complete the square in order to write the equation of a circle in center-radius form. Students recognize when a quadratic in xx and yy is the equation for a circle. Lesson Notes

More information

Solutions to Math 41 Final Exam December 9, 2013

Solutions to Math 41 Final Exam December 9, 2013 Solutions to Math 4 Final Eam December 9,. points In each part below, use the method of your choice, but show the steps in your computations. a Find f if: f = arctane csc 5 + log 5 points Using the Chain

More information

Summer MA Lesson 20 Section 2.7 (part 2), Section 4.1

Summer MA Lesson 20 Section 2.7 (part 2), Section 4.1 Summer MA 500 Lesson 0 Section.7 (part ), Section 4. Definition of the Inverse of a Function: Let f and g be two functions such that f ( g ( )) for every in the domain of g and g( f( )) for every in the

More information

Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 7. Discontinuities. is the tool to use,

Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 7. Discontinuities. is the tool to use, Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 7 Discontinuities What you need to know already: The concept and definition of continuity. What you can learn here: The

More information

Region 16 Board of Education AP Calculus Curriculum 2008

Region 16 Board of Education AP Calculus Curriculum 2008 Region 16 Board of Education AP Calculus Curriculum 2008 Course Description This course develops students understanding of the concepts of calculus and provides experience with its methods and applications.

More information

V. Graph Sketching and Max-Min Problems

V. Graph Sketching and Max-Min Problems V. Graph Sketching and Max-Min Problems The signs of the first and second derivatives of a function tell us something about the shape of its graph. In this chapter we learn how to find that information.

More information

Solving Systems of Equations Row Reduction

Solving Systems of Equations Row Reduction Solving Systems of Equations Row Reduction November 19, 2008 Though it has not been a primary topic of interest for us, the task of solving a system of linear equations has come up several times. For example,

More information

Slope Fields: Graphing Solutions Without the Solutions

Slope Fields: Graphing Solutions Without the Solutions 8 Slope Fields: Graphing Solutions Without the Solutions Up to now, our efforts have been directed mainly towards finding formulas or equations describing solutions to given differential equations. Then,

More information

Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities

Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities 1 MATH 1 REVIEW SOLVING AN ABSOLUTE VALUE EQUATION Absolute value is a measure of distance; how far a number is from zero. In practice,

More information

Goal: Simplify and solve exponential expressions and equations

Goal: Simplify and solve exponential expressions and equations Pre- Calculus Mathematics 12 4.1 Exponents Part 1 Goal: Simplify and solve exponential expressions and equations Logarithms involve the study of exponents so is it vital to know all the exponent laws.

More information

A.P. Calculus Summer Work 2014

A.P. Calculus Summer Work 2014 Instructions for AP Calculus AB summer work. Before leaving school this year (due Friday, May 30, 014): A.P. Calculus Summer Work 014 1. Log onto your school email account and send me an email message

More information

Computer Problems for Taylor Series and Series Convergence

Computer Problems for Taylor Series and Series Convergence Computer Problems for Taylor Series and Series Convergence The two problems below are a set; the first should be done without a computer and the second is a computer-based follow up. 1. The drawing below

More information

Vectors. For physics and calculus students. Prepared by Larry Friesen and Anne Gillis

Vectors. For physics and calculus students. Prepared by Larry Friesen and Anne Gillis Vectors For physics and calculus students Prepared by Larry Friesen and Anne Gillis Butler Community College http://www.butlercc.edu Vectors This project is a direct result of math/physics instructional

More information

Solutions to Math 41 First Exam October 15, 2013

Solutions to Math 41 First Exam October 15, 2013 Solutions to Math 41 First Exam October 15, 2013 1. (16 points) Find each of the following its, with justification. If the it does not exist, explain why. If there is an infinite it, then explain whether

More information

Rev Name Date. Solve each of the following equations for y by isolating the square and using the square root property.

Rev Name Date. Solve each of the following equations for y by isolating the square and using the square root property. Rev 8-8-3 Name Date TI-8 GC 3 Using GC to Graph Parabolae that are Not Functions of Objectives: Recall the square root propert Practice solving a quadratic equation f Graph the two parts of a hizontal

More information

Calculus with business applications, Lehigh U, Lecture 05 notes Summer

Calculus with business applications, Lehigh U, Lecture 05 notes Summer Calculus with business applications, Lehigh U, Lecture 0 notes Summer 0 Trigonometric functions. Trigonometric functions often arise in physical applications with periodic motion. They do not arise often

More information

F = m a. t 2. stress = k(x) strain

F = m a. t 2. stress = k(x) strain The Wave Equation Consider a bar made of an elastic material. The bar hangs down vertically from an attachment point = and can vibrate vertically but not horizontally. Since chapter 5 is the chapter on

More information

1.7 Inverse Functions

1.7 Inverse Functions 71_0107.qd 1/7/0 10: AM Page 17 Section 1.7 Inverse Functions 17 1.7 Inverse Functions Inverse Functions Recall from Section 1. that a function can be represented b a set of ordered pairs. For instance,

More information

Unit 7 Graphs and Graphing Utilities - Classwork

Unit 7 Graphs and Graphing Utilities - Classwork A. Graphing Equations Unit 7 Graphs and Graphing Utilities - Classwork Our first job is being able to graph equations. We have done some graphing in trigonometry but now need a general method of seeing

More information

THS Step By Step Calculus Chapter 1

THS Step By Step Calculus Chapter 1 Name: Class Period: Throughout this packet there will be blanks you are epected to fill in prior to coming to class. This packet follows your Larson Tetbook. Do NOT throw away! Keep in 3 ring binder until

More information

Unit 4 Applications of Derivatives (Part I)

Unit 4 Applications of Derivatives (Part I) Unit 4 Applications of Derivatives (Part I) What is the same? 1. Same HW policy 2. Same expectations 3. Same level of difficulty but different format 4. Still understanding at a conceptual level but more

More information

Math 2250 Exam #3 Practice Problem Solutions 1. Determine the absolute maximum and minimum values of the function f(x) = lim.

Math 2250 Exam #3 Practice Problem Solutions 1. Determine the absolute maximum and minimum values of the function f(x) = lim. Math 50 Eam #3 Practice Problem Solutions. Determine the absolute maimum and minimum values of the function f() = +. f is defined for all. Also, so f doesn t go off to infinity. Now, to find the critical

More information

Section 2.6 Limits at infinity and infinite limits 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 2.6 Limits at infinity and infinite limits 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 2.6 Limits at infinity and infinite its 2 Lectures College of Science MATHS 0: Calculus I (University of Bahrain) Infinite Limits / 29 Finite its as ±. 2 Horizontal Asympotes. 3 Infinite its. 4

More information

Distributive property and its connection to areas

Distributive property and its connection to areas February 27, 2009 Distributive property and its connection to areas page 1 Distributive property and its connection to areas Recap: distributive property The distributive property says that when you multiply

More information

#29: Logarithm review May 16, 2009

#29: Logarithm review May 16, 2009 #29: Logarithm review May 16, 2009 This week we re going to spend some time reviewing. I say re- view since you ve probably seen them before in theory, but if my experience is any guide, it s quite likely

More information

Special Theory Of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay

Special Theory Of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay Special Theory Of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay Lecture - 6 Length Contraction and Time Dilation (Refer Slide Time: 00:29) In our last lecture,

More information

K. Function Analysis. ). This is commonly called the first derivative test. f ( x) is concave down for values of k such that f " ( k) < 0.

K. Function Analysis. ). This is commonly called the first derivative test. f ( x) is concave down for values of k such that f  ( k) < 0. K. Function Analysis What you are finding: You have a function f ( ). You want to find intervals where f ( ) is increasing and decreasing, concave up and concave down. You also want to find values of where

More information

Name: ANSWER KEY Math 155B Test 3, Thurs 3 Nov 2011, 4 pages, 50 points, 75 minutes.

Name: ANSWER KEY Math 155B Test 3, Thurs 3 Nov 2011, 4 pages, 50 points, 75 minutes. Name: ANSWER KEY Math 55B Test 3, Thurs 3 Nov 20, 4 pages, 50 points, 75 minutes. Class results Median score, 34/50 = 68% Mean score, 34.06/50 = 68.2% High score, 50/50 ( person) Note: In this answer key,

More information

Name: Date: Period: Calculus Honors: 4-2 The Product Rule

Name: Date: Period: Calculus Honors: 4-2 The Product Rule Name: Date: Period: Calculus Honors: 4- The Product Rule Warm Up: 1. Factor and simplify. 9 10 0 5 5 10 5 5. Find ' f if f How did you go about finding the derivative? Let s Eplore how to differentiate

More information

Syllabus for AP Calculus AB Spring 2015

Syllabus for AP Calculus AB Spring 2015 Syllabus for AP Calculus AB Spring 2015 Mr. Hadley michael.hadley@cobbk12.org Approach: I use a multirepresentational approach, The Rule of Five, to teach the concepts of calculus. I present topics graphically,

More information

One Solution Two Solutions Three Solutions Four Solutions. Since both equations equal y we can set them equal Combine like terms Factor Solve for x

One Solution Two Solutions Three Solutions Four Solutions. Since both equations equal y we can set them equal Combine like terms Factor Solve for x Algebra Notes Quadratic Systems Name: Block: Date: Last class we discussed linear systems. The only possibilities we had we 1 solution, no solution or infinite solutions. With quadratic systems we have

More information

The AP exams will ask you to find derivatives using the various techniques and rules including

The AP exams will ask you to find derivatives using the various techniques and rules including Student Notes Prep Session Topic: Computing Derivatives It goes without saying that derivatives are an important part of the calculus and you need to be able to compute them. You should know the derivatives

More information

Energy Diagrams --- Attraction

Energy Diagrams --- Attraction potential ENERGY diagrams Visual Quantum Mechanics Teaching Guide ACTIVITY 1 Energy Diagrams --- Attraction Goal Changes in energy are a good way to describe an object s motion. Here you will construct

More information

Solutions of Linear Equations

Solutions of Linear Equations Lesson 14 Part 1: Introduction Solutions of Linear Equations Develop Skills and Strategies CCSS 8.EE.C.7a You ve learned how to solve linear equations and how to check your solution. In this lesson, you

More information

A.P. Calculus Summer Packet

A.P. Calculus Summer Packet A.P. Calculus Summer Packet Going into AP calculus, there are certain skills that have been taught to you over the previous years that we assume you have. If you do not have these skills, you will find

More information

Multivariable Calculus

Multivariable Calculus Multivariable Calculus Multivariable calculus is a popular topic (chapter 2) in FP3. As is made clear in the introduction to that chapter, an important reason for stuing functions of more than one variable

More information

Checking your answers in FP3

Checking your answers in FP3 Checking your answers in FP3 and FP2 General guidelines for quick checks on answers Where you can, substitute your answer back into the question. If it s an indefinite integral, differentiate it and see

More information