A DECOUPLED VIBRO-ACOUSTIC EXTENSION OF NASTRAN

Size: px
Start display at page:

Download "A DECOUPLED VIBRO-ACOUSTIC EXTENSION OF NASTRAN"

Transcription

1 Twelfth International Congress on Sound and Vibration A DECOUPLED VIBRO-ACOUSTIC EXTENSION OF NASTRAN Philippe JEAN and Hugo SIWIAK Centre Scientifique et Technique du Bâtiment 24 rue Joseph Fourier F St Martin d Hères, France jean@cstb.fr Abstract A decoupled model for sound transmission problems has been derived. The structure is modelled by NASTRAN, thus allowing the consideration of complex partitions. The acoustical part of the problem is based on the GRIM approach, where the Green functions for a blocked structure can be computed by different means such as modal approaches, BEM or geometrical models. Numerical and experimental validations are presented. INTRODUCTION The computation of sound transmission between two rooms can be called a large problem since one is usually interested in a wide frequency range extending from 50 to 5000 Hz. Partitions range from very simple (plain concrete wall) to complex structures (bricks, hollow core slabs, steel frame lightweight partitions). Frequency, material and size parameters lead to large ka numbers. Fortunately, numeric tools such has finite elements, which rely heavily on the power of computers, can now handle vibration problems for such structures up to relatively high frequencies (1000 to 2000 Hz and higher is quite feasible). The acoustical part of the problem concerns large volumes having a high modal density and for which several approaches can be employed: Finite elements, BEM, modal approaches, geometrical models etc. Solving the fully coupled problem is quite possible [1] but is computationally expensive. Comparisons made at CSTB between modal approaches based on coupled 1

2 and decoupled models have lead to identical results in the case of sound transmission between two rooms. Coupling is however necessary for small volumes such air gaps between double glazings [2]. Other simpler approaches based on energy concepts have not been considered to be suitable due to the lower frequency components important in sound transmission problems in buildings but could be considered for the highest frequency range as a faster alternative to the method here presented. An other reason to use a decoupled approach lies in our wish to benefit from the advantage of the fine structural description which one can expect from FEM. Adapting a separate acoustical prolongation to commercial codes such as NASTRAN is simple, as will be showed, if a decoupled approach is employed. The whole numerical project which aims at the development of a numeric tool to complete the testing facilities at CSTB near Paris has been named LAVANDE (LAboratoire de Vibro-Acoustique Numérique DEcouplée) THE GRIM APPROACH The GRIM acronym stands for Green Ray Integral Method [2,3-5]. This approach is based on a Rayleigh-like integral expression of the acoustic pressure P P ( M ) = jωρ V ( Q) G ( M, Q) ds( Q) (1) S V V where S V is the radiating surface V its velocity. G V is the Green function in the receiving space, computed for a rigid structure but keeping all other boundaries unmodified. This integral is exact and it is a coupled expression between velocity and acoustical pressure. However, in most cases the velocity is little affected by the pressure in the receiver domain and (1) can be used as a direct expression assuming that V is known independently of P. When the receiving domain is a volume, (1) is employed at a discrete number of points reproducing the standard measuring procedure for sound insulation or impact noise in laboratories. Assuming a diffuse field will allow for the computation of radiated acoustic power. If the structure is baffled, (1) is incorporated in the classical radiation integral to give * Wr Re( j V ( Q) V ( M ) G( M, Q) ds ds) SR S V = ρω (2) The computation of the velocity is made by NASTRAN. Two types of computations are considered: i) impact noise, in which case NASTRAN only requires exiting forces to reproduce the standard tapping machine, ii) sound insulation where a precomputation of the sound field must be done prior to the use of NASTRAN; again the incident pressure field is computed in a decoupled manner and the incident acoustic power is computed by averaging the sound pressure at selected positions in 2

3 accordance with measuring standards. As already mentioned, several means of computing incident and radiated pressure fields can be employed. Results here presented have been obtained by using the computer program GAIA [5] based on a decoupled modal approach for both structures and volumes. ADAPTING NASTRAN Although NASTRAN includes acoustic elements, these are employed only for small volumes within the partition. Computations for double glazings have been compared with success with computations made either with FEM/BEM and coupled analytical modal approaches. In the examples here presented for sound transmission problems the adopted procedure is the following: 1) the sound pressure is computed with GAIA resulting in the acoustic power incident on the structure and in a pressure field spectrum file (PRESS) defined on a regular grid on the partition. 2) a first PATRAN/NASTRAN meshing/computation is made for a point-like mechanical excitation, the result being an ASCII file (one.bdf) which is the input file to NASTRAN 3) an interface program (modif_bdf) has been written to include the PRESS file into the file (one.bdf ) as a distributed pressure excitation spectrum; this results in a new (two.bdf) file. In order to facilitate the parametric study of a given situation the modif_bdf program can do several modifications to the input data to NASTRAN, such as modifying the boundary conditions which can become time consuming through PATRAN (the pre processor to NASTRAN). 4) NASTRAN is run; the output is an ASCII file (file.f06) of very large dimensions which contains the velocity field spectra at chosen nodes, usually only the radiating nodes. 5) a pos-treatment program (vit_nastran) has been written to extract the velocities from radiating nodes and store them into a compact binary file (file.vit) of reduced size compared to the (file.f06) file 6) GAIA is run a second time with the velocities input from the (file.vit) file, thus bypassing the structural modal computation included in GAIA. Pressures and radiated power are computed according to the previous description. The sound reduction index is then obtained from the ratio between incident and radiated acoustic powers. VALIDATION Analytical validation of the decoupled approach has been obtained by comparing fully coupled and decoupled modal computations. GAIA giving only analytical solutions for thin plates without shear effects but with several basic boundary conditions, the first validations of the proposed numerical scheme has been made 3

4 using plate finite elements without shear effects. Figure 1 shows such a comparison of radiated power for a clamped 16 cm concrete plate. Computing the plate response with GAIA and with NASTRAN gives very similar results. Also showed on these graphs, the results with NASTRAN using plate elements with shear and CHEXA volume elements show that the results are significantly different. The shear effects in the wall can not be ignored. In the following results the CHEXA elements are used. Figure 1. Sound reduction index of a 16 cm concrete wall placed between two rooms. 4 computations for the structure: modal, FEM with no and with shear, CHEXA elements Impact noise Measurements have been carried out at the LABE, in the testing facilities at CSTB near Paris. Impact noise and sound insulation measurements have been carried out. The objective of these measurements was to validate the GAIA/NASTRAN calculations. It rapidly appeared that the computations of Ln were strongly dependent on the material input data and on the chosen boundary conditions. In addition to the Ln measurements input mobilities have been measured and used in a calibration step. Figure 2 reports the comparison between two measurements and computations with two modelling of the boundary conditions: either simply supported or by trying to model the particular technique used at the LABE to fix the plate through plaster peripheral bedding. Agreement with measurements are rather good although a detailed analysis of the input mobility has showed that agreement due to the imperfect modelling of the boundary conditions can still be improved. 4

5 Figure 2. Simply supported or peripheral bedding. 2 measurements, computations with 3 boundary conditions (SS,CP,CP1). Sound transmission The measuring of sound reduction indices is made with a different facility. The source room is moveable and is pressed against the fixed receiving room + moveable wall as showed in figures 3a and 3b. The sealing of the wall is made by means of injected plaster. Tested wall Fixed receiving volume Plaster sealing of wall Moving source volume 5

6 Plaster Sealing Rubber seams External box: mobile External box: b Source room Wall to be measured External box: fixed Springs Internal box: fixed Rubber seam Receiving room Figure 3. testing facility for the measuring of sound reduction index. The technique employed for assembling the wall between two volumes (one fixed and one mobile) with the use of injected plaster bedding is numerically complex. Therefore, an important effort has been put into the modelling of the boundary conditions. Figure 4 shows several boundary conditions with zero displacement imposed (red nodes) at different locations depending on whether the seams are assumed to be free to move or blocked.. Figure 4. Modelling of boundary conditions in NASTRAN. Red nodes are blocked. Figure 5 shows the resultant input mobilities. The best agreement is obtained for the case CP3. Figure 5. Input mobilities for three different NASTRAN boundary conditions. Measurement NASTRAN Figure 6 shows a comparison of the input mobility measured and computed with different modelling hypothesis for the Young s modulus and the internal loss factor. 6

7 Input mobility Figure 6. Comparison of measured ( ) and computed input mobility. Left graph: effect of Young s modulus (28 and 23 GPa). Right graph, E=23 GPa: effect of internal loss factor (5 % and function of frequency). The recovery of the first three resonances is achieved if a Young s modulus of 23 GPa and a measured loss factor spectrum -obtained from the measured structural reverberation time- are used as inputs. Next, Figure 7a(left graph) shows the level difference between the structure s velocity and the incident power. The agreement is very satisfactory. Figure 7b(right graph) represents the sound reduction index. The coloured results correspond to 3 different computations where the volume employed for acoustic pressure averaging and the walls absorption are varied. The computed values tend to be lower than the measured ones (3 sets of measurements). The good agreement observed in the previous results (mobilities and LV-LWinc) tends to show that the computation of radiated pressure is overestimated whereas for impact noise (Ln in Figure 3) the radiated pressure was rather underestimated in the higher frequency range. Theses aspects should be further investigated in a close future. Figure 7a. Difference of plate s velocity level and radiated power level. Figure 7b. Sound reduction index measured ( ) or computed ( ). 7

8 CONCLUSIONS The use of numerical schemes to complete traditional laboratory measurements of impact noise and sound reduction indices can be achieved with reasonable cost by means of a commercial finite code completed with a decoupled modal approach for both source and receiver rooms. Such approaches have been undertaken by other authors [6] and need a preliminary calibration process in order, first to qualify the measuring conditions, principally in terms of boundary conditions and rooms description, and second to tune the material properties from mobility measurements. Such precautions are essential for low frequency recovery which are essential for the estimation of db(a) values. At present more complex bodies are being investigated, principally hollow core slabs where the proposed method will be compared against measurements prior to parametric studies and product optimisation. It must be finally stresses that numerical simulation is not developed with the hope of replacing all experimental testing but it is strongly believed by the authors that it can form a useful tool whenever relative effects are sought such as needed for product optimisation. REFERENCES [1] L. Gagliardini, J. Roland, J.L. Guyader. Journal of Sound and Vibration 145, The use of a functional basis to calculate acoustic transmission between rooms (1991). [2] P. Jean and J.-F. Rondeau A model for the calculation of noise transmission inside dwellings. Application to aircraft noise. Applied Acoustics 65, (2004). [3] P. Jean Coupling integral and geometrical representations for vibro-acoustical problems. Journal of Sound and Vibration, 224, (1999) [4] P. Jean, J. Roland. Application of the Green Ray Integral Method (GRIM) to sound transmission problems Building Acoustics, 8, (2001) [5] P. Jean and J.-F. Rondeau. A simple decoupled modal calculation of sound transmission between volumes. Acta Acustica, 88, , (2002) [6] J. Brunskop and P. Davidson. Sound transmission of structures; a finite element approach with simplified room description. Submitted to Acta Acustica. 8

A SIMPLE DECOUPLED MODAL CALCULATION OF SOUND TRANSMISSION BETWEEN VOLUMES

A SIMPLE DECOUPLED MODAL CALCULATION OF SOUND TRANSMISSION BETWEEN VOLUMES A SIMPLE DECOUPLED MODAL CALCULATION OF SOUND TRANSMISSION BETWEEN VOLUMES 43.40r Philippe JEAN; Jean-François RONDEAU Centre Scientifique et Technique du Bâtiment, 24 rue Joseph Fourier, 38400 Saint Martin

More information

A Simple Decoupled Modal Calculation of Sound Transmission Between Volumes

A Simple Decoupled Modal Calculation of Sound Transmission Between Volumes ACTA ACUSTICA UNITED WITH ACUSTICA Vol. 88 (22) 924 933 A Simple Decoupled Modal Calculation of Sound Transmission Between Volumes P. Jean, J. F. Rondeau Centre Scientifique et Technique du Bâtiment, 24

More information

In situ measurement methods for characterising sound diffusion

In situ measurement methods for characterising sound diffusion Proceedings of the International Symposium on Room Acoustics, ISRA 9 August, Melbourne, Australia In situ measurement methods for characterising sound diffusion I. Schmich (), N. Brousse () () Université

More information

Prediction of the Sound Reduction Index: Application to Monomurs Walls

Prediction of the Sound Reduction Index: Application to Monomurs Walls paper ID: 15 /p.1 Prediction of the Sound Reduction Index: Application to Monomurs Walls Thomas Buzzi, Cécile Courné, André Moulinier, Alain Tisseyre TISSEYRE & ASSOCIES, www.planete-acoustique.com 16

More information

Available online at ScienceDirect. Energy Procedia 78 (2015 ) th International Building Physics Conference, IBPC 2015

Available online at   ScienceDirect. Energy Procedia 78 (2015 ) th International Building Physics Conference, IBPC 2015 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 78 (2015 ) 128 133 6th International Building Physics Conference, IBPC 2015 Sound insulation of building elements at low frequency:

More information

Noise impact of innovative barriers dedicated to freight trains in urban areas

Noise impact of innovative barriers dedicated to freight trains in urban areas Edinburgh, Scotland EURONOISE 9 October -8 Noise impact of innovative barriers dedicated to freight trains in urban areas Marine Baulac a Jérôme Defrance Philippe Jean Paris Est, CSTB, rue Joseph Fourier,

More information

Laboratory synthesis of turbulent boundary layer wall-pressures and the induced vibro-acoustic response

Laboratory synthesis of turbulent boundary layer wall-pressures and the induced vibro-acoustic response Proceedings of the Acoustics 22 Nantes Conference 23-27 April 22, Nantes, France Laboratory synthesis of turbulent boundary layer wall-pressures and the induced vibro-acoustic response C. Maury a and T.

More information

MODal ENergy Analysis

MODal ENergy Analysis MODal ENergy Analysis Nicolas Totaro, Jean-Louis Guyader To cite this version: Nicolas Totaro, Jean-Louis Guyader. MODal ENergy Analysis. RASD, Jul 2013, Pise, Italy. 2013. HAL Id: hal-00841467

More information

Variability in structure-borne flanking transmission at low and mid frequencies

Variability in structure-borne flanking transmission at low and mid frequencies Variability in structure-borne flanking transmission at low and mid frequencies Arne DIJCKMANS 1 1 KU Leuven, Department of Civil Engineering, Kasteelpark Arenberg 40, B-3001 Leuven, Belgium ABSTRACT Structure-borne

More information

STUDY OF SIMULATED RAINFALL NOISE ON MULTI-LAYERED SYSTEM

STUDY OF SIMULATED RAINFALL NOISE ON MULTI-LAYERED SYSTEM STUDY OF SIMULATED RAINFALL NOISE ON MULTI-LAYERED SYSTEM C. Guigou-Carter M. Villot C.S.T.B. Center for Building Science and Technology 24 Rue Joseph Fourier 38 St Martin d Hères, France Introduction

More information

Analytical and experimental study of single frame double wall

Analytical and experimental study of single frame double wall Analytical and experimental study of single frame double wall C. Guigou-Carter and M. Villot Center for Building Science and Technology Acoustics and Lighting Department Paper ID 203 Analytical and experimental

More information

The influence of Boundary Conditions on Sound Insulation

The influence of Boundary Conditions on Sound Insulation The influence of Boundary Conditions on Sound Insulation Master s Thesis in the Master s programme in Sound and Vibration CHRISTOFFER JANCO Department of Civil and Environmental Engineering Division of

More information

Using the irrotational part of the structural intensity to identify sources of vibrational energy

Using the irrotational part of the structural intensity to identify sources of vibrational energy Sound Intensity and Inverse Methods in Acoustics: Paper ICA-8 Using the irrotational part of the structural intensity to identify sources of vibrational energy N.B. Roozen (a), C. Glorieux (a), J.-L. Guyader

More information

FDTD analysis on the sound insulation performance of wall system with narrow gaps

FDTD analysis on the sound insulation performance of wall system with narrow gaps FDTD analysis on the sound insulation performance of wall system with narrow gaps Takumi Asakura a Shinichi Sakamoto b Institute of Industrial Science, The University of Tokyo. Komaba 4-6-, Meguro-ku,

More information

Design possibilities for impact noise insulation in lightweight floors A parameter study

Design possibilities for impact noise insulation in lightweight floors A parameter study Downloaded from orbit.dtu.dk on: Dec 23, 218 Design possibilities for impact noise insulation in lightweight floors A parameter study Brunskog, Jonas; Hammer, Per Published in: Euronoise Publication date:

More information

Measurement of Acoustic Properties of light weight concrete SL-Deck

Measurement of Acoustic Properties of light weight concrete SL-Deck DELTA Test Report TEST Reg. no. 100 Measurement of Acoustic Properties of light weight concrete SL-Deck Performed for Abeo A/S Project no.: I100486 Page 1 of 25 30 June 2014 DELTA Venlighedsvej 4 2970

More information

Numerical analysis of sound insulation performance of double-layer wall with vibration absorbers using FDTD method

Numerical analysis of sound insulation performance of double-layer wall with vibration absorbers using FDTD method Numerical analysis of sound insulation performance of double-layer wall with vibration absorbers using FDTD method Shuo-Yen LIN 1 ; Shinichi SAKAMOTO 2 1 Graduate School, the University of Tokyo 2 Institute

More information

Experimental and numerical study of the ground transmission of structure-borne sound generated by trams

Experimental and numerical study of the ground transmission of structure-borne sound generated by trams Experimental and numerical study of the ground transmission of structure-borne sound generated by trams G. Coquel a, P. A H Jean b and M. Villot b a RATP - CSTB, 13, Rue Jules Vallès, 75547 Paris Cedex

More information

Acoustic radiation by means of an acoustic dynamic stiffness matrix in spherical coordinates

Acoustic radiation by means of an acoustic dynamic stiffness matrix in spherical coordinates Acoustic radiation by means of an acoustic dynamic stiffness matrix in spherical coordinates Kauê Werner and Júlio A. Cordioli. Department of Mechanical Engineering Federal University of Santa Catarina

More information

CONSOLIDATED GRANULAR MEDIA FOR SOUND INSULATION: PERFORMANCE EVALUATION THROUGH DIFFERENT METHODS

CONSOLIDATED GRANULAR MEDIA FOR SOUND INSULATION: PERFORMANCE EVALUATION THROUGH DIFFERENT METHODS Twelfth International Congress on Sound and Vibration CONSOLIDATED GRANULAR MEDIA FOR SOUND INSULATION: PERFORMANCE EVALUATION THROUGH DIFFERENT METHODS G. Pispola a and K. V. Horoshenkov b a Department

More information

Amplified catalogue of vibration reduction index formulas for junctions based on numerical simulations

Amplified catalogue of vibration reduction index formulas for junctions based on numerical simulations INTER-NOISE 16 Amplified catalogue of vibration reduction index formulas for junctions based on numerical simulations Jordi POBLET-PUIG 1 ; Catherine GUIGOU-CARTER 2 1 Universitat Politècnica de Catalunya,

More information

Sound radiation and sound insulation

Sound radiation and sound insulation 11.1 Sound radiation and sound insulation We actually do not need this chapter You have learned everything you need to know: When waves propagating from one medium to the next it is the change of impedance

More information

EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS

EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS Kento Hashitsume and Daiji Takahashi Graduate School of Engineering, Kyoto University email: kento.hashitsume.ku@gmail.com

More information

Active Impact Sound Isolation with Floating Floors. Gonçalo Fernandes Lopes

Active Impact Sound Isolation with Floating Floors. Gonçalo Fernandes Lopes Active Impact Sound Isolation with Floating Floors Gonçalo Fernandes Lopes Outubro 009 Active impact sound isolation with floating floors Abstract The users of buildings are, nowadays, highly demanding

More information

Structural Acoustics Applications of the BEM and the FEM

Structural Acoustics Applications of the BEM and the FEM Structural Acoustics Applications of the BEM and the FEM A. F. Seybert, T. W. Wu and W. L. Li Department of Mechanical Engineering, University of Kentucky Lexington, KY 40506-0046 U.S.A. SUMMARY In this

More information

RECENT DEVELOPMENTS IN COUPLING TOPOGRAPHICAL AND METEOROLOGICAL EFFECTS WITH THE GREEN'S FUNCTION PARABOLIC EQUATION (GFPE): THEORY AND EXPERIMENTS

RECENT DEVELOPMENTS IN COUPLING TOPOGRAPHICAL AND METEOROLOGICAL EFFECTS WITH THE GREEN'S FUNCTION PARABOLIC EQUATION (GFPE): THEORY AND EXPERIMENTS Twelfth International Congress on Sound and Vibration RECENT DEVELOPMENTS IN COUPLING TOPOGRAPHICAL AND METEOROLOGICAL EFFECTS WITH THE GREEN'S FUNCTION PARABOLIC EQUATION (GFPE): THEORY AND EXPERIMENTS

More information

New Developments of Frequency Domain Acoustic Methods in LS-DYNA

New Developments of Frequency Domain Acoustic Methods in LS-DYNA 11 th International LS-DYNA Users Conference Simulation (2) New Developments of Frequency Domain Acoustic Methods in LS-DYNA Yun Huang 1, Mhamed Souli 2, Rongfeng Liu 3 1 Livermore Software Technology

More information

ACTRAN Modules. Products overview. Copyright Free Field Technologies

ACTRAN Modules. Products overview. Copyright Free Field Technologies ACTRAN Modules Products overview Copyright Free Field Technologies ACTRAN ACTRAN is the most complete CAE tool for Acoustic, Aero-acoustic and Vibro-acoustic modelling. ACTRAN is based on the finite and

More information

Radiated sound power estimates of building elements by means of laser Doppler vibrometry

Radiated sound power estimates of building elements by means of laser Doppler vibrometry Radiated sound power estimates of building elements by means of laser Doppler vibrometry N.B. Roozen, L. Labelle, M. Rychtáriková,2, C. Glorieux, D. Urbán 3, P. Za tko 3, H. Mullner 4 Laboratory of Acoustics,

More information

Field reconstruction by inverse methods in acoustics and vibration N. Totaro, Q. Leclère, J.L. Guyader

Field reconstruction by inverse methods in acoustics and vibration N. Totaro, Q. Leclère, J.L. Guyader Field reconstruction by inverse methods in acoustics and vibration N. Totaro, Q. Leclère, J.L. Guyader Lyon Paris French riviera Solar map in France We are here 2 3 Lyon Laboratoire Vibrations Acoustique

More information

Optimization for heat and sound insulation of honeycomb sandwich panel in thermal environments

Optimization for heat and sound insulation of honeycomb sandwich panel in thermal environments Optimization for heat and sound insulation of honeycomb sandwich panel in thermal environments Jinlong Yuan 1, Haibo Chen 2, Qiang Zhong 3, Kongjuan Li 4 Department of Modern mechanics, University of Science

More information

Noise in enclosed spaces. Phil Joseph

Noise in enclosed spaces. Phil Joseph Noise in enclosed spaces Phil Joseph MODES OF A CLOSED PIPE A 1 A x = 0 x = L Consider a pipe with a rigid termination at x = 0 and x = L. The particle velocity must be zero at both ends. Acoustic resonances

More information

Sound radiation and transmission. Professor Phil Joseph. Departamento de Engenharia Mecânica

Sound radiation and transmission. Professor Phil Joseph. Departamento de Engenharia Mecânica Sound radiation and transmission Professor Phil Joseph Departamento de Engenharia Mecânica SOUND RADIATION BY A PISTON The piston generates plane waves in the tube with particle velocity equal to its own.

More information

Sound radiation of a plate into a reverberant water tank

Sound radiation of a plate into a reverberant water tank Sound radiation of a plate into a reverberant water tank Jie Pan School of Mechanical and Chemical Engineering, University of Western Australia, Crawley WA 6009, Australia ABSTRACT This paper presents

More information

The frequency and angular dependence of the absorption coefficient of common types of living plants

The frequency and angular dependence of the absorption coefficient of common types of living plants The frequency and angular dependence of the absorption coefficient of common types of living plants Jevgenjia PRISUTOVA 1 ; Kirill V. HOROSHENKOV 1 ; Jean-Philippe GROBY 2 ; Bruno BROUARD 2 1 1 Department

More information

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS 1 Macchiavello, Sergio *, 2 Tonelli, Angelo 1 D Appolonia S.p.A., Italy, 2 Rina Services S.p.A., Italy KEYWORDS pleasure vessel, vibration analysis,

More information

Radiated Sound Power from a Curved Honeycomb Panel

Radiated Sound Power from a Curved Honeycomb Panel Radiated Sound Power from a Curved Honeycomb Panel Jay H. Robinson Ralph D. Buehrle Jacob Klos NASA Langley Research Center, Hampton, VA 23681-2199 Ferdinand W. Grosveld Lockheed Martin Engineering and

More information

Acoustic design of lightweight cabin walls for cruise ships

Acoustic design of lightweight cabin walls for cruise ships Acoustic design of lightweight cabin walls for cruise ships A. Treviso 1, M. G. Smith 1 1 ISVR Consulting, University of Southampton University Road, SO17 BJ1, Southampton, United Kingdom e-mail: mgs@isvr.soton.ac.uk

More information

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD INTERNATIONAL STANDARD ISO 140-6 Second edition 1998-08-15 Acoustics Measurement of sound insulation in buildings and of building elements Part 6: Laboratory measurements of impact sound insulation of

More information

A Model to Compute and Quantify Automotive Rattle Noises

A Model to Compute and Quantify Automotive Rattle Noises A Model to Compute and Quantify Automotive Rattle Noises Ludovic Desvard ab, Nacer Hamzaoui b, Jean-Marc Duffal a a Renault, Research Department, TCR AVA 1 63, 1 avenue du Golf, 7888 Guyancourt, France

More information

Answer - SAQ 1. The intensity, I, is given by: Back

Answer - SAQ 1. The intensity, I, is given by: Back Answer - SAQ 1 The intensity, I, is given by: Noise Control. Edited by Shahram Taherzadeh. 2014 The Open University. Published 2014 by John Wiley & Sons Ltd. 142 Answer - SAQ 2 It shows that the human

More information

Simulation of acoustic and vibroacoustic problems in LS-DYNA using boundary element method ABSTRACT:

Simulation of acoustic and vibroacoustic problems in LS-DYNA using boundary element method ABSTRACT: Simulation of acoustic and vibroacoustic problems in LS-DYNA using boundary element method Yun Hang, Mhamed Souli, Rogelio Perez Livermore Software Technology Corporation USA & University of Lille Laboratoire

More information

Modeling of cylindrical baffle mufflers for low frequency sound propagation

Modeling of cylindrical baffle mufflers for low frequency sound propagation Proceedings of the Acoustics 212 Nantes Conference 23-27 April 212, Nantes, France Modeling of cylindrical baffle mufflers for low frequency sound propagation R. Binois a, N. Dauchez b, J.-M. Ville c,

More information

The equivalent translational compliance of steel studs and resilient channel bars

The equivalent translational compliance of steel studs and resilient channel bars The equivalent translational compliance of steel studs and resilient channel bars Susumu HIRAKAWA 1 ; John Laurence DAVY 2 1, 2 RMIT University, Australia ABSTRACT A number of recent papers have determined

More information

Micro-perforates in vibro-acoustic systems Li CHENG

Micro-perforates in vibro-acoustic systems Li CHENG Micro-perforates in vibro-acoustic systems Li CHENG Chair Professor and Director Consortium for Sound and Vibration research Department of Mechanical Engineering The Hong Kong Polytechnic University CAV

More information

DETC98/PTG-5788 VIBRO-ACOUSTIC STUDIES OF TRANSMISSION CASING STRUCTURES

DETC98/PTG-5788 VIBRO-ACOUSTIC STUDIES OF TRANSMISSION CASING STRUCTURES Proceedings of DETC98: 1998 ASME Design Engineering Technical Conference September 13-16, 1998, Atlanta, GA DETC98/PTG-5788 VIBRO-ACOUSTIC STUDIES O TRANSMISSION CASING STRUCTURES D. Crimaldi Graduate

More information

Cantilever Beam Crack Detection using FEA and FFT Analyser

Cantilever Beam Crack Detection using FEA and FFT Analyser Cantilever Beam Detection using FEA and FFT Analyser Pooja Ghumai 1, Dr. L G Navale 2 1ME Student, DesignEngg, DYPIT, Pimpri, Pune 2Professor, DesignEngg, DYPIT, Pimpri, Pune ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

Evaluation of standards for transmission loss tests

Evaluation of standards for transmission loss tests Evaluation of standards for transmission loss tests M. Cassidy, R. K Cooper, R. Gault and J. Wang Queen s University Belfast, School of Mechanical and Aerospace Engineering, Ashby Building, Stranmillis

More information

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction ARCHIVES OF ACOUSTICS 31, 4 (Supplement), 53 58 (2006) VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES J. CIEŚLIK, W. BOCHNIAK AGH University of Science and Technology Department of Robotics and Mechatronics

More information

Experimental investigation of perforations interactions effects under high sound pressure levels

Experimental investigation of perforations interactions effects under high sound pressure levels Experimental investigation of perforations interactions effects under high sound pressure levels Rostand Tayong and Philippe Leclaire Laboratoire de Recherche en Mécanique et Acoustique Université de Bourgogne,

More information

1238. Relation between reduction of weighted impact sound pressure level and shape of small size specimen of floating floor construction

1238. Relation between reduction of weighted impact sound pressure level and shape of small size specimen of floating floor construction 1238. Relation between reduction of weighted impact sound pressure level and shape of small size specimen of floating floor construction Vidmantas Dikavičius 1, Kęstutis Miškinis 2, Karolis Banionis 3,

More information

Numerical Prediction of the Radiated Noise of Hermetic Compressors Under the Simultaneous Presence of Different Noise Sources

Numerical Prediction of the Radiated Noise of Hermetic Compressors Under the Simultaneous Presence of Different Noise Sources Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 1998 Numerical Prediction of the Radiated Noise of Hermetic Compressors Under the Simultaneous

More information

Users Manual. Marshall Day Acoustics. Double Panels Contact 33 Details Marshall Day 37.8 Acoustics PO Box

Users Manual. Marshall Day Acoustics. Double Panels Contact 33 Details Marshall Day 37.8 Acoustics PO Box New materials can be permanently entered into the materials.txt file. This is a simple ASCII text file. See the section New Materials for details of how to enter new materials. If desired you can send

More information

Acoustic environmental impact of stadiums

Acoustic environmental impact of stadiums Acoustic environmental impact of stadiums C. Rougier 1, J. Defrance 1, N. Noé 2, J. Maillard 1, M. Baulac 1 1 Université Paris Est, Centre Scientifique et Technique du Bâtiment (CSTB), 24 rue Joseph Fourier,

More information

Guided convected acoustic wave coupled with a membrane wall used as noise reduction device

Guided convected acoustic wave coupled with a membrane wall used as noise reduction device Buenos Aires 5 to 9 September, 016 Acoustics for the 1 st Century PROCEEDINGS of the nd International Congress on Acoustics Structural Acoustics and Vibration (others): Paper ICA016-516 Guided convected

More information

BEM Methods for Acoustic and Vibroacoustic Problems in LS-DYNA

BEM Methods for Acoustic and Vibroacoustic Problems in LS-DYNA 12 th International LS-DYNA Users Conference Simulation(2) BEM Methods for Acoustic and Vibroacoustic Problems in LS-DYNA Mhamed Souli, Yun Huang, Rongfeng Liu Livermore Software Technology Corporation

More information

Sonic Response Analysis (SRA) Tool Vibro-Acoustic Capabilities

Sonic Response Analysis (SRA) Tool Vibro-Acoustic Capabilities Sonic Response Analysis (SRA) Tool Vibro-Acoustic Capabilities Mostafa Rassaian, Ph.D., P.E., Technical Fellow Structural Technology Boeing Research & Technology Tom Arakawa, Program Analyst, Structural

More information

Impedance of standard impact sources and their effect on impact sound pressure level of floors

Impedance of standard impact sources and their effect on impact sound pressure level of floors Impedance of standard impact sources and their effect on impact sound pressure level of floors B. Zeitler and T. Nightingale NRC - Institute for Research in Construction, 1 Montreal Road, Building M-7,

More information

ACOUSTIC INTRINSIC PERFORMANCES OF NOISE BARRIERS: ACCURACY OF IN SITU MEASUREMENT TECHNIQUES

ACOUSTIC INTRINSIC PERFORMANCES OF NOISE BARRIERS: ACCURACY OF IN SITU MEASUREMENT TECHNIQUES Twelfth International Congress on Sound and Vibration ACOUSTIC INTRINSIC PERFORMANCES OF NOISE BARRIERS: ACCURACY OF IN SITU MEASUREMENT TECHNIQUES Francesco Asdrubali, Giulio Pispola and Francesco D Alessandro

More information

Simulation of Acoustic and Vibro-Acoustic Problems in LS-DYNA using Boundary Element Method

Simulation of Acoustic and Vibro-Acoustic Problems in LS-DYNA using Boundary Element Method 10 th International LS-DYNA Users Conference Simulation Technolog (2) Simulation of Acoustic and Vibro-Acoustic Problems in LS-DYNA using Boundar Element Method Yun Huang Livermore Software Technolog Corporation

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.0 VIBRATIONS OF FLAT

More information

Design of Partial Enclosures. D. W. Herrin, Ph.D., P.E. University of Kentucky Department of Mechanical Engineering

Design of Partial Enclosures. D. W. Herrin, Ph.D., P.E. University of Kentucky Department of Mechanical Engineering D. W. Herrin, Ph.D., P.E. Department of Mechanical Engineering Reference 1. Ver, I. L., and Beranek, L. L. (2005). Control Engineering: Principles and Applications. John Wiley and Sons. 2. Sharp, B. H.

More information

Reciprocity as an Analysing Technique in Building Acoustics

Reciprocity as an Analysing Technique in Building Acoustics Reciprocity as an Analysing Technique in Building Acoustics Nathalie Geebelen a, Gerrit Vermeir b a,b Laboratory of Acoustics and Thermal Physics & Laboratory of Building Physics, Katholieke Universiteit

More information

A Modal Approach to Lightweight Partitions with Internal Resonators

A Modal Approach to Lightweight Partitions with Internal Resonators A Modal Approach to Lightweight Partitions with Internal Resonators Steffen Hettler, Philip Leistner Fraunhofer-Institute of Building Physics, D-7569 Stuttgart, Nobelstrasse, Germany e-mail: hettler@ibp.fraunhofer.de,

More information

Vibration analysis of free isotropic cracked plates

Vibration analysis of free isotropic cracked plates Computational Methods and Experimental Measurements XII 475 Vibration analysis of free isotropic cracked plates M. Alfano & L. Pagnotta Department of Mechanical Engineering, University of Calabria, Italy

More information

FLINOVIA 2017, State Collage, USA. Dr. Alexander Peiffer, Dr. Uwe Müller 27 th -28 th April 2017

FLINOVIA 2017, State Collage, USA. Dr. Alexander Peiffer, Dr. Uwe Müller 27 th -28 th April 2017 Review of efficient methods for the computation of transmission loss of plates with inhomogeneous material properties and curvature under turbulent boundary layer excitation FLINOVIA 2017, State Collage,

More information

VELOCITY OF SOUND. Apparatus Required: 1. Resonance tube apparatus

VELOCITY OF SOUND. Apparatus Required: 1. Resonance tube apparatus VELOCITY OF SOUND Aim : To determine the velocity of sound in air, with the help of a resonance column and find the velocity of sound in air at 0 C, as well. Apparatus Required: 1. Resonance tube apparatus

More information

Sub-structuring of mechanical systems based on the path concept

Sub-structuring of mechanical systems based on the path concept Sub-structuring of mechanical systems based on the path concept Francesc Xavier MAGRANS 1 ; Jordi POBLET-PUIG 2 ; Antonio RODRÍGUEZ-FERRAN 3 1 Ingeniería para el Control del Ruido S.L., Spain 1,2,3 Universitat

More information

THE DEPENDENCE OF SOUND ABSORPTION BY AN ISOLATED ACOUSTIC RESONATOR ON THE RESONATOR S VOLUME

THE DEPENDENCE OF SOUND ABSORPTION BY AN ISOLATED ACOUSTIC RESONATOR ON THE RESONATOR S VOLUME THE DEPENDENCE OF SOUND ABSORPTION BY AN ISOLATED ACOUSTIC RESONATOR ON THE RESONATOR S VOLUME PACS REFERENCE: 4.55.Ev Stauskis Vytautas J. Vilnius Gediminas Technical University Sauletekio al., LT-4 Vilnius.

More information

EQUIPMENT INTERFACE LOAD CHARACTERIZATION IN ACOUSTICS

EQUIPMENT INTERFACE LOAD CHARACTERIZATION IN ACOUSTICS 1 EQUIPMENT INTERFACE LOAD CHARACTERIZATION IN ACOUSTICS Nicolas Ludovic LARUE (1), Jean Marie LOME (2), Alice PRADINES (3) (1) Mechanical analysis and test engineer, EADS Astrium - 31 avenue des Cosmonautes,

More information

Aircraft Cabin Acoustic Modeling

Aircraft Cabin Acoustic Modeling Penn State 2012 Center for Acoustics and Vibration Workshop Aircraft Cabin Acoustic Modeling 2012 Penn State Center for Acoustics and Vibration Workshop Adam Weston Senior Structural-Acoustics Specialist

More information

ICSV14 Cairns Australia 9-12 July, 2007

ICSV14 Cairns Australia 9-12 July, 2007 ICSV14 Cairns Australia 9-1 July, 7 STUDY ON THE CHARACTERISTICS OF VIBRATION AND ACOUSTIC RADIATION OF DAMAGED STIFFENED PANELS Hong Ming 1, Guo Xin-yi, Liu Lian-hai 3 and Li Gen-tian 4 1 Department of

More information

Dispersion of critical rotational speeds of gearbox: effect of bearings stiffnesses

Dispersion of critical rotational speeds of gearbox: effect of bearings stiffnesses Dispersion of critical rotational speeds of gearbox: effect of bearings stiffnesses F. Mayeux, E. Rigaud, J. Perret-Liaudet Ecole Centrale de Lyon Laboratoire de Tribologie et Dynamique des Systèmes Batiment

More information

Modeling and simulation of windows with noise mitigation and natural ventilation

Modeling and simulation of windows with noise mitigation and natural ventilation Modeling and simulation of windows with noise mitigation and natural ventilation Xiang YU ; Fangsen CUI ; ze-tiong TAN 2 ; Kui YAO 3 Institute of High Performance Computing, A*TAR, ingapore 2 Building

More information

COMPARISON OF THE METHODS TO CALIBRATE THE DIFFUSE FIELD SENSITIVITY OF LABORATORY STAND- ARD MICROPHONE

COMPARISON OF THE METHODS TO CALIBRATE THE DIFFUSE FIELD SENSITIVITY OF LABORATORY STAND- ARD MICROPHONE COMPARISON OF THE METHODS TO CALIBRATE THE DIFFUSE FIELD SENSITIVITY OF LABORATORY STAND- ARD MICROPHONE Wan-Ho Cho, Hyu-Sang Kwon, and Ji-Ho Chang Korea Research Institute of Standards and Science, Center

More information

A 3 D finite element model for sound transmission through a double plate system with isotropic elastic porous materials

A 3 D finite element model for sound transmission through a double plate system with isotropic elastic porous materials Acoustics and Vibrations Group Université de Sherbrooke, QC CANADA Département génie mécanique Université de Sherbrooke Sherbrooke, QC CANADA Tel.: (819) 821-7157 Fax: (819) 821-7163 A 3 D finite element

More information

FIFTH INTERNATIONAL CONGRESS ON SOUND AND VIBRATION DECEMBER 15-18, 1997 ADELAIDE, SOUTH AUSTRALIA

FIFTH INTERNATIONAL CONGRESS ON SOUND AND VIBRATION DECEMBER 15-18, 1997 ADELAIDE, SOUTH AUSTRALIA FFTH NTERNATONAL CONGRESS ON SOUND AND VBRATON DECEMBER 5-8, 997 ADELADE, SOUTH AUSTRALA VBRATON NSULATON OF TEST BENCHES FOR COMFORT AND FATGUE ASSESSMENT OF CARS Pietro Croce ), Pietro Orsini ),Walter

More information

The Influence of Boundary Conditions and Constraints on the Performance of Noise Control Treatments: Foams to Metamaterials

The Influence of Boundary Conditions and Constraints on the Performance of Noise Control Treatments: Foams to Metamaterials Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 7-2013 The Influence of Boundary Conditions and Constraints on the Performance of Noise

More information

VIBRATION RESPONSE OF AN ELECTRIC GENERATOR

VIBRATION RESPONSE OF AN ELECTRIC GENERATOR Research Report BVAL35-001083 Customer: TEKES/SMART VIBRATION RESPONSE OF AN ELECTRIC GENERATOR Paul Klinge, Antti Hynninen Espoo, Finland 27 December, 2001 1 (12) Title A B Work report Public research

More information

THE RADIATION EFFICIENCY OF FINITE SIZE FLAT PANELS

THE RADIATION EFFICIENCY OF FINITE SIZE FLAT PANELS THE RADIATION EFFICIENCY OF FINITE SIZE FLAT PANELS John L. Davy () () () Manufacturing and Infrastructure Technology, CSIRO, Melbourne, Australia () Applied Physics, RMIT University, Melbourne, Australia

More information

Nonlinear parabolic equation model for finite-amplitude sound propagation in an inhomogeneous medium over a non-flat, finite-impedance ground surface

Nonlinear parabolic equation model for finite-amplitude sound propagation in an inhomogeneous medium over a non-flat, finite-impedance ground surface Nonlinear parabolic equation model for finite-amplitude sound propagation in an inhomogeneous medium over a non-flat, finite-impedance ground surface T. Leissing a, P. A H Jean a, J. Defrance a and C.

More information

Laser scanning vibrometry measurements on a light weight building element

Laser scanning vibrometry measurements on a light weight building element Laser scanning vibrometry measurements on a light weight building element N.B. Roozen, M. Rychtáriková, Katholieke Universiteit Leuven, Laboratory for Acoustics and Thermal Physics (ATF), Department of

More information

Program System for Machine Dynamics. Abstract. Version 5.0 November 2017

Program System for Machine Dynamics. Abstract. Version 5.0 November 2017 Program System for Machine Dynamics Abstract Version 5.0 November 2017 Ingenieur-Büro Klement Lerchenweg 2 D 65428 Rüsselsheim Phone +49/6142/55951 hd.klement@t-online.de What is MADYN? The program system

More information

RÉFÉRENCES BIBLIOGRAPHIQUES

RÉFÉRENCES BIBLIOGRAPHIQUES RÉFÉRENCES BIBLIOGRAPHIQUES Belov, V. D., Rybak, S. A., Tartakovskii, B. D. (1977). Propagation of vibrational energy in absorbing structures. Soviet Physics Acoustics, 23(2), 115-119. Bobrovnitskii, Yu.

More information

Sound intensity as a function of sound insulation partition

Sound intensity as a function of sound insulation partition Sound intensity as a function of sound insulation partition S. Cvetkovic, R. Prascevic To cite this version: S. Cvetkovic, R. Prascevic. Sound intensity as a function of sound insulation partition. Journal

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 FREQUENCY DEPENDENCY AND ANISOTROPY OF THE ELASTIC CONSTANTS OF (NON-)POROUS MATERIALS AND THEIR INFLUENCE ON THE USAGE IN BUILDING

More information

ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS

ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS Transactions, SMiRT-24 ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS 1 Principal Engineer, MTR & Associates, USA INTRODUCTION Mansour Tabatabaie 1 Dynamic response

More information

Benefits of Reduced-size Reverberation Room Testing

Benefits of Reduced-size Reverberation Room Testing Benefits of Reduced-size Reverberation Room Testing Dr. Marek Kierzkowski (1), Dr. Harvey Law (2) and Jonathon Cotterill (3) (1) Acoustic Engineer, Megasorber Pty Ltd, Melbourne, Australia (2) Technical

More information

ADVANCED SCANNING TECHNIQUES APPLIED TO VI- BRATIONS AND OPERATIONAL DEFLECTION SHAPES IN REAL MEASUREMENT SCENARIOS

ADVANCED SCANNING TECHNIQUES APPLIED TO VI- BRATIONS AND OPERATIONAL DEFLECTION SHAPES IN REAL MEASUREMENT SCENARIOS ADVANCED SCANNING TECHNIQUES APPLIED TO VI- BRATIONS AND OPERATIONAL DEFLECTION SHAPES IN REAL MEASUREMENT SCENARIOS Andrea Grosso Microflown Technologies, Arnhem - The Netherlands Lola García Microflown

More information

An Analytical Study of the Weak Radiating Cell as a Passive Low Frequency Noise Control Device

An Analytical Study of the Weak Radiating Cell as a Passive Low Frequency Noise Control Device An Analytical Study of the Weak Radiating Cell as a Passive Low Frequency Noise Control Device by Zachary T. Kitts Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University

More information

Side branch resonators modelling with Green s function methods

Side branch resonators modelling with Green s function methods Side branch resonators modelling with Green s function methods E. Perrey-Debain, R. Maréchal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe Acoustique, Université de Technologie de Compiègne, France

More information

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD INTERNATIONAL STANDARD ISO 10848-3 First edition 2006-04-01 Acoustics Laboratory measurement of the flanking transmission of airborne and impact sound between adjoining rooms Part 3: Application to light

More information

ASSESMENT OF THE EFFECT OF BOUNDARY CONDITIONS ON CYLINDRICAL SHELL MODAL RESPONSES

ASSESMENT OF THE EFFECT OF BOUNDARY CONDITIONS ON CYLINDRICAL SHELL MODAL RESPONSES ASSESMENT OF THE EFFECT OF BOUNDARY CONDITIONS ON CYLINDRICAL SHELL MODAL RESPONSES ABSTRACT Eduards Skukis, Kaspars Kalnins, Olgerts Ozolinsh Riga Technical University Institute of Materials and Structures

More information

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil Fang Ming Scholl of Civil Engineering, Harbin Institute of Technology, China Wang Tao Institute of

More information

Available online at ScienceDirect. Energy Procedia 78 (2015 ) th International Building Physics Conference, IBPC 2015

Available online at  ScienceDirect. Energy Procedia 78 (2015 ) th International Building Physics Conference, IBPC 2015 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 78 (2015 ) 146 151 6th International Building Physics Conference, IBPC 2015 A combined experimental and analytical approach for the

More information

ISO 354 INTERNATIONAL STANDARD. Acoustics Measurement of sound absorption in a reverberation room

ISO 354 INTERNATIONAL STANDARD. Acoustics Measurement of sound absorption in a reverberation room INTERNATIONAL STANDARD ISO 354 Second edition 2003-05-15 Acoustics Measurement of sound absorption in a reverberation room Acoustique Mesurage de l'absorption acoustique en salle réverbérante Reference

More information

COUPLED USE OF FEA AND EMA FOR THE INVESTIGATION OF DYNAMIC BEHAVIOUR OF AN INJECTION PUMP

COUPLED USE OF FEA AND EMA FOR THE INVESTIGATION OF DYNAMIC BEHAVIOUR OF AN INJECTION PUMP COUPLED USE OF FEA AND EMA FOR THE INVESTIGATION OF DYNAMIC BEHAVIOUR OF AN INJECTION PUMP Yasar Deger Wolfram Lienau Peter Sandford Sulzer Markets & Sulzer Pumps Ltd Sulzer Pumps (UK) Ltd Technology Ltd

More information

TFI Report Sound Absorption Impact Sound Insulation

TFI Report Sound Absorption Impact Sound Insulation TFI Report 462257-01 Sound Absorption Impact Sound Insulation Customer Desso B.V. Taxandriaweg 15 5142 PA Waalwijk NETHERLANDS Product textile floor covering This report includes 2 pages and 2 annex(es)

More information

Design of ParaMPA: a micro-perforated absorber

Design of ParaMPA: a micro-perforated absorber Design of ParaMPA: a micro-perforated absorber Onursal Onen and Mehmet Caliskan Department of Mechanical Engineering Middle East Technical University 06531 Ankara, Turkey ABSTRACT Perforated absorbers

More information

NUMERICAL MODELLING OF RUBBER VIBRATION ISOLATORS

NUMERICAL MODELLING OF RUBBER VIBRATION ISOLATORS NUMERICAL MODELLING OF RUBBER VIBRATION ISOLATORS Clemens A.J. Beijers and André de Boer University of Twente P.O. Box 7, 75 AE Enschede, The Netherlands email: c.a.j.beijers@utwente.nl Abstract An important

More information