Line integrals of 1-forms on the Sierpinski gasket

Size: px
Start display at page:

Download "Line integrals of 1-forms on the Sierpinski gasket"

Transcription

1 Line integrals of 1-forms on the Sierpinski gasket Università di Roma Tor Vergata - in collaboration with F. Cipriani, D. Guido, J-L. Sauvageot Cambridge, 27th July 2010 Line integrals of

2 Outline The Sierpinski gasket 1 The Sierpinski gasket 2 3 Line integrals of

3 Outline The Sierpinski gasket 1 The Sierpinski gasket 2 3 Line integrals of

4 Definition The Sierpinski gasket T R 2 equilateral triangle, side length 1, vertices V 0 := {v 1, v 2, v 3 } w i : x R (x v i) + v i R 2, i = 1, 2, 3 Then there is a unique compact K R 2 s.t. K = W (K ) 3 i=1 w i(k ), also obtained as lim n W n (T ). K is called Sierpinski gasket.... Line integrals of

5 Definitions The Sierpinski gasket K Σ Similarities: w σ = w σ1... w σn, σ = n Cells: K σ = w σ (K ) Then K = σ =n K σ Edges: E = n E n, E 0 = {e 1, e 2, e 3 }, E n = {w σ (e), σ = n, e E 0 }. o(e) = origin of e, t(e) = terminus of e Lacunas: l σ = w σ (l) Line integrals of

6 Definitions The Sierpinski gasket e 1 e 2 e 3 Similarities: w σ = w σ1... w σn, σ = n Cells: K σ = w σ (K ) Then K = σ =n K σ Edges: E = n E n, E 0 = {e 1, e 2, e 3 }, E n = {w σ (e), σ = n, e E 0 }. o(e) = origin of e, t(e) = terminus of e Lacunas: l σ = w σ (l) Line integrals of

7 Definitions The Sierpinski gasket Similarities: w σ = w σ1... w σn, σ = n Cells: K σ = w σ (K ) Then K = σ =n K σ Edges: E = n E n, E 0 = {e 1, e 2, e 3 }, E n = {w σ (e), σ = n, e E 0 }. o(e) = origin of e, t(e) = terminus of e Lacunas: l σ = w σ (l) Line integrals of

8 Topological and metric properties K is connected, locally connected, arcwise connected, but it is not semilocally simply connected [ = no universal cover]. α-dimensional Hausdorff measure of E R n : H α (E) := lim δ 0 Hausdorff dimension of E: inf E i A i diam A i δ (diam A i ) α i=1 d H (E) = inf{α > 0 : H α (E) = 0} = sup{α > 0 : H α (E) = + } Then d H (K ) = log 3 log 2 =: d, Hd (K ) (0, ), and H d (K ) = i=1 Hd (w 1 i (K )). Line integrals of

9 Dirichlet form Different way of approximating K : sequence of graphs (V n, E n )... Dirichlet (or energy) form on (V n, E n ): E n [f ] := x y (f (x) f (y))2. Then ( 5 nen 3) [f ] E[f ]. Set F := {f : E[f ] < }. Then F C(K ). Choose Borel regular prob. measure µ on K. Then (E, F) is local regular Dirichlet form on L 2 (K, µ). Therefore E(f, g) = (f, µ g), µ 0, compact resolvent. Line integrals of

10 Dirichlet form Different way of approximating K : sequence of graphs (V n, E n )... Dirichlet (or energy) form on (V n, E n ): E n [f ] := x y (f (x) f (y))2. Then ( 5 nen 3) [f ] E[f ]. Set F := {f : E[f ] < }. Then F C(K ). Choose Borel regular prob. measure µ on K. Then (E, F) is local regular Dirichlet form on L 2 (K, µ). Therefore E(f, g) = (f, µ g), µ 0, compact resolvent. Line integrals of

11 Laplacian for Bernoulli measure Different construction of µ for µ Bernoulli measure. for f : V n \ V 0 R set n f (x) := y x (f (x) f (y)) for f C(K ) set f (x) := 3 2 lim n 5 n n f (x), if limit dom( ) := {f C(K ) : f C(K )} F Obs. f dom( ) = f 2 dom( ). for f : V n R set ( f ν for f C(K ) set f ν (x) := lim n ( 5 3 Theorem (Gauss-Green) ) n (x) := y x (f (x) f (y)), x V 0 ) n ( f ) ν (x), if limit µ Bernoulli measure, f dom( ), g F. Then E(f, g) = K g f dµ + p V 0 g(p) f ν (p). n Line integrals of

12 Weyl-type asymptotics Classical Weyl asymptotic: Ω R n bdd connected open set. Define eigenvalue counting function: N(x) := λ x dim{f dom( ) : f = λf }. Then N(x) = cx n/2 (1 + o(1)), x. As for the gasket, G, a nonconstant 1 2 log 5-periodic function, s.t. N(x) = {G(log x 2 ) + o(1)}x ds/2, x, where d S := log 9 log 5, is the spectral exponent. Line integrals of

13 Harmonic functions for m N {0}, u : V m R,!f F s.t. f Vm = u, E[f ] = min{e[g] : g F, g Vm = u}. f is said m-harmonic. Theorem (weak maximum principle) f m-harmonic, σ multiindex, σ m, x w σ (K ). Then min wσ(v 0 ) f f (x) max wσ(v 0 ) f. Obs. Harmonic functions are dense in C(K ). Line integrals of

14 Outline The Sierpinski gasket 1 The Sierpinski gasket 2 3 Line integrals of

15 Universal 1-forms Want to construct differential 1-forms on K. d : g F 1 g g 1 F F Ω 1 (F) the F-bimodule generated by {fdg : f, g F}. It s called bimodule of universal 1-forms. Actions of F: { h.(fdg) = (hf )dg, h F (fdg).h = fd(gh) (fg)dh g(e) := g(t(e)) g(o(e)), g F, e E fdg Ω 1 (F). Line integrals of

16 1-forms The Sierpinski gasket Define (fdg, fdg) = lim n ( 5 3 bilinearity, fdg = lim n e e 1 E n,e 1 e ) n e E n f (o(e)) 2 g(e) 2, extended by f (o(e 1 )) g(e 1 ), extended by linearity. Then the limits above are well defined and finite for any ω Ω 1 (F), if e ω = 0 for any e E, then ω = 0. Definition (1-forms) Set Ω = Ω 1 (F)/, where ω 0 if e ω = 0 for any e. Line integrals of

17 n-exact 1-forms There exists a map {{f σ } σ =n, E Kσ [f σ ] < } ω Ω with ω Kσ = df σ. The form ω will be called n-exact. KΣ 0 σ Σ, let dz σ attain the min{ ω : ω Ω, is n + 1-exact, l σ ω = 1}. The form dz σ is zero on Kσ c, and is given by the (harmonic) function z σ on K σ. Then the set {dz σ } σ Σ is an orthogonal system, with dz σ 2 = 5/6(5/3) σ, the dz σ s are co-closed: (df, dz σ ) = 0, f F. Obs. Since K is topologically 1-dimensional, any 1-form is closed, hence we say that dz σ is a harmonic 1-form. Line integrals of

18 Hodge decomposition ω Ω!{k σ } σ Σ s.t., setting ω 0 = σ k σdz σ, we have N(k σ ) = sup n (5/3) n σ =n k σ <. ω 0 Ω, ω 0 2 = 5/6 σ (5/3) σ k σ 2 <, ω ω 0 is exact, i.e. U 1 F s.t. ω = du 1 + ω 0. Therefore ω = 0 = ω 0, i.e. Ω is a pre-hilbert space, Hodge decomposition: any 1-form in Ω can be uniquely decomposed into an exact and a harmonic part. Line integrals of

19 Outline The Sierpinski gasket 1 The Sierpinski gasket 2 3 Line integrals of

20 Coverings with finitely generated homotopy Let T = convex hull(k ), then i n : K T n := σ =n w σ (T ), i n : π 1 (K ) π 1 (T n ) = free group with #{ σ < n} generators. Let T n be the universal covering of T n. Then there exists a covering K n of K such that the diagram K n Tn p n K T n commutes, and deck( K n ) = deck( T n ) = π 1 (T n ). Line integrals of

21 Coverings with finitely generated homotopy The family {( K n, p n )} is projective. Take projective limit ( K, p) := lim ( K n, p n ). Then, any path γ in K has a lifting γ in K, unique up to the starting point. Obs. deck( K ) = lim deck(t n ) = ˇπ 1 (K ), the first Čech homotopy group of K, and ˇπ 1 (K ) π 1 (K ). Line integrals of

22 Abelian coverings A smaller covering. Set L n := K n /[deck( K n ), deck( K n )]. p n K n r n L n q n K Set ( L, q) = lim ( L n, q n ). Then deck( L) = lim deck( L n ), Then deck( L n ) = deck( K n )/[deck( K n ), deck( K n )] is a free abelian group with #{ σ < n} generators, {( L n, q n )} is a projective family. any path γ in K has a lifting γ in L, unique up to the starting point. Line integrals of

23 Affine functions. Potentials of n-exact 1-forms Say f C( K n ) is deck( K n )-affine if ϕ hom(deck( K n ), (C, +)) s.t. f (gx) f (x) = ϕ(g), x K n, g deck( K n ). Then Any n-exact 1-form ω has a unique (up to an additive constant) deck( K n )-affine potential U, for which e ω = U(e) := U(t(ẽ)) ( ) U(o(ẽ)), ẽ a lifting of e to K n 5 n ω 2 = E[U] = lim U(e) 2. n 3 e E n We denote by z σ the potential of dz σ. Line integrals of

24 Potentials of n-exact 1-forms live on abelian coverings Let ω, U, ϕ be as above. Since (C, +) is abelian, ϕ vanishes on commutators. Therefore, the potential U is a deck( L n )-affine function on L n. Obs. the projective limit topology on L is generated by {z σ : σ Σ}, any deck( L)-affine function on L is the lifting of a deck( L n )-affine function on L n, for some n. Line integrals of

25 Restricting the covering, pseudometrics ( ) 3 n sup a σ, so 5 σ =n a σ k σ N (a σ )N(k σ ), Set N (a σ ) = n σ and define d(x, y) = N ( z σ (y) z σ (x) ), x, y L. Then d is a pseudometric on L, namely a metric which is allowed to be infinite. The d-topology is finer than the projective limit topology. For any g deck( L), l(g) = d(x, gx) does not depend on x, and Γ = {g deck( L) : l(g) < } is a subgroup of deck( L). Γ acts on any d-component of L, namely on any subset of L consisting of points having finite mutual distance. Line integrals of

26 Integration on paths Any 1-form ω Ω has a Γ-affine potential U on any d-component of L. If ω = du 1 + σ k σdz σ, then U = U 0 + U 1, with U 0 = σ k σz σ. Such a sum converges uniformly on compact sets to a Γ-affine, d-continuous function on any d-component of L. Indeed, U 0 (x) U 0 (y) N(k σ )d(x, y). For any path γ in K, set l(γ) = d( γ(1), γ(0)). Then, if l(γ) <, and U is the potential of ω Ω, ω = U( γ(1)) U( γ(0)). γ Line integrals of

Noncommutative Geometry and Potential Theory on the Sierpinski Gasket

Noncommutative Geometry and Potential Theory on the Sierpinski Gasket Noncommutative Geometry and Potential Theory on the Sierpinski Gasket Fabio Cipriani Dipartimento di Matematica Politecnico di Milano ( Joint works with D. Guido, T. Isola, J.-L. Sauvageot ) Neapolitan

More information

The spectral decimation of the Laplacian on the Sierpinski gasket

The spectral decimation of the Laplacian on the Sierpinski gasket The spectral decimation of the Laplacian on the Sierpinski gasket Nishu Lal University of California, Riverside Fullerton College February 22, 2011 1 Construction of the Laplacian on the Sierpinski gasket

More information

Energy on fractals and related questions: about the use of differential 1-forms on the Sierpinski Gasket and other fractals

Energy on fractals and related questions: about the use of differential 1-forms on the Sierpinski Gasket and other fractals Energy on fractals and related questions: about the use of differential 1-forms on the Sierpinski Gasket and other fractals Part 2 A.Teplyaev University of Connecticut Rome, April May 2015 Main works to

More information

Spectral Triples on the Sierpinski Gasket

Spectral Triples on the Sierpinski Gasket Spectral Triples on the Sierpinski Gasket Fabio Cipriani Dipartimento di Matematica Politecnico di Milano - Italy ( Joint works with D. Guido, T. Isola, J.-L. Sauvageot ) AMS Meeting "Analysis, Probability

More information

BOUNDARY VALUE PROBLEMS ON A HALF SIERPINSKI GASKET

BOUNDARY VALUE PROBLEMS ON A HALF SIERPINSKI GASKET BOUNDARY VALUE PROBLEMS ON A HALF SIERPINSKI GASKET WEILIN LI AND ROBERT S. STRICHARTZ Abstract. We study boundary value problems for the Laplacian on a domain Ω consisting of the left half of the Sierpinski

More information

An Introduction to Self Similar Structures

An Introduction to Self Similar Structures An Introduction to Self Similar Structures Christopher Hayes University of Connecticut April 6th, 2018 Christopher Hayes (University of Connecticut) An Introduction to Self Similar Structures April 6th,

More information

RIEMANNIAN GEOMETRY COMPACT METRIC SPACES. Jean BELLISSARD 1. Collaboration:

RIEMANNIAN GEOMETRY COMPACT METRIC SPACES. Jean BELLISSARD 1. Collaboration: RIEMANNIAN GEOMETRY of COMPACT METRIC SPACES Jean BELLISSARD 1 Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics Collaboration: I. PALMER (Georgia Tech, Atlanta) 1 e-mail:

More information

Function spaces and stochastic processes on fractals I. Takashi Kumagai. (RIMS, Kyoto University, Japan)

Function spaces and stochastic processes on fractals I. Takashi Kumagai. (RIMS, Kyoto University, Japan) Function spaces and stochastic processes on fractals I Takashi Kumagai (RIMS, Kyoto University, Japan) http://www.kurims.kyoto-u.ac.jp/~kumagai/ International workshop on Fractal Analysis September 11-17,

More information

Nontangential limits and Fatou-type theorems on post-critically finite self-similar sets

Nontangential limits and Fatou-type theorems on post-critically finite self-similar sets Nontangential limits and on post-critically finite self-similar sets 4th Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals Universidad de Colima Setting Boundary limits

More information

LAPLACIANS ON THE BASILICA JULIA SET. Luke G. Rogers. Alexander Teplyaev

LAPLACIANS ON THE BASILICA JULIA SET. Luke G. Rogers. Alexander Teplyaev Manuscript submitted to AIMS Journals Volume X, Number 0X, XX 200X Website: http://aimsciences.org pp. X XX LAPLACIANS ON THE BASILICA JULIA SET Luke G. Rogers Department of Mathematics, University of

More information

Overview of normed linear spaces

Overview of normed linear spaces 20 Chapter 2 Overview of normed linear spaces Starting from this chapter, we begin examining linear spaces with at least one extra structure (topology or geometry). We assume linearity; this is a natural

More information

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy Banach Spaces These notes provide an introduction to Banach spaces, which are complete normed vector spaces. For the purposes of these notes, all vector spaces are assumed to be over the real numbers.

More information

Self-similar fractals as boundaries of networks

Self-similar fractals as boundaries of networks Self-similar fractals as boundaries of networks Erin P. J. Pearse ep@ou.edu University of Oklahoma 4th Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals AMS Eastern Sectional

More information

LAPLACIANS COMPACT METRIC SPACES. Sponsoring. Jean BELLISSARD a. Collaboration:

LAPLACIANS COMPACT METRIC SPACES. Sponsoring. Jean BELLISSARD a. Collaboration: LAPLACIANS on Sponsoring COMPACT METRIC SPACES Jean BELLISSARD a Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics Collaboration: I. PALMER (Georgia Tech, Atlanta) a e-mail:

More information

RIEMANN S INEQUALITY AND RIEMANN-ROCH

RIEMANN S INEQUALITY AND RIEMANN-ROCH RIEMANN S INEQUALITY AND RIEMANN-ROCH DONU ARAPURA Fix a compact connected Riemann surface X of genus g. Riemann s inequality gives a sufficient condition to construct meromorphic functions with prescribed

More information

Vector Analysis on Fractals

Vector Analysis on Fractals Vector Analysis on Fractals Daniel J. Kelleher Department of Mathematics Purdue University University Illinois Chicago Summer School Stochastic Analysis and Geometry Labor Day Weekend Introduction: Dirichlet

More information

Self-similar fractals as boundaries of networks

Self-similar fractals as boundaries of networks Self-similar fractals as boundaries of networks Erin P. J. Pearse ep@ou.edu University of Oklahoma 4th Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals AMS Eastern Sectional

More information

DERIVATIONS, DIRICHLET FORMS AND SPECTRAL ANALYSIS

DERIVATIONS, DIRICHLET FORMS AND SPECTRAL ANALYSIS DERIVATIONS, DIRICHLET FORMS AND SPECTRAL ANALYSIS MARIUS IONESCU, LUKE G. ROGERS, AND ALEXANDER TEPLYAEV Abstract. We study derivations and Fredholm modules on metric spaces with a Dirichlet form. In

More information

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability... Functional Analysis Franck Sueur 2018-2019 Contents 1 Metric spaces 1 1.1 Definitions........................................ 1 1.2 Completeness...................................... 3 1.3 Compactness......................................

More information

The uniform metric on product spaces

The uniform metric on product spaces The uniform metric on product spaces Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto April 3, 2014 1 Metric topology If (X, d) is a metric space, a X, and r > 0, then

More information

Densely defined non-closable curl on topologically one-dimensional Dirichlet metric measure spaces

Densely defined non-closable curl on topologically one-dimensional Dirichlet metric measure spaces Densely defined non-closable curl on topologically one-dimensional Dirichlet metric measure spaces Kansai Probability Seminar, Kyoto March 11, 2016 Universität Bielefeld joint with Alexander Teplyaev (University

More information

THEOREMS, ETC., FOR MATH 516

THEOREMS, ETC., FOR MATH 516 THEOREMS, ETC., FOR MATH 516 Results labeled Theorem Ea.b.c (or Proposition Ea.b.c, etc.) refer to Theorem c from section a.b of Evans book (Partial Differential Equations). Proposition 1 (=Proposition

More information

1 Math 241A-B Homework Problem List for F2015 and W2016

1 Math 241A-B Homework Problem List for F2015 and W2016 1 Math 241A-B Homework Problem List for F2015 W2016 1.1 Homework 1. Due Wednesday, October 7, 2015 Notation 1.1 Let U be any set, g be a positive function on U, Y be a normed space. For any f : U Y let

More information

NONCOMMUTATIVE. GEOMETRY of FRACTALS

NONCOMMUTATIVE. GEOMETRY of FRACTALS AMS Memphis Oct 18, 2015 1 NONCOMMUTATIVE Sponsoring GEOMETRY of FRACTALS Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu

More information

Spectral Decimation for Families of Laplacians on the Sierpinski Gasket

Spectral Decimation for Families of Laplacians on the Sierpinski Gasket Spectral Decimation for Families of Laplacians on the Sierpinski Gasket Seraphina Lee November, 7 Seraphina Lee Spectral Decimation November, 7 / 53 Outline Definitions: Sierpinski gasket, self-similarity,

More information

DISTRIBUTION THEORY ON P.C.F. FRACTALS

DISTRIBUTION THEORY ON P.C.F. FRACTALS DISTRIBUTION THEORY ON P.C.F. FRACTALS LUKE G. ROGERS AND ROBERT S. STRICHARTZ Abstract. We construct a theory of distributions in the setting of analysis on post-critically finite self-similar fractals,

More information

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space 1 Professor Carl Cowen Math 54600 Fall 09 PROBLEMS 1. (Geometry in Inner Product Spaces) (a) (Parallelogram Law) Show that in any inner product space x + y 2 + x y 2 = 2( x 2 + y 2 ). (b) (Polarization

More information

CHAPTER I THE RIESZ REPRESENTATION THEOREM

CHAPTER I THE RIESZ REPRESENTATION THEOREM CHAPTER I THE RIESZ REPRESENTATION THEOREM We begin our study by identifying certain special kinds of linear functionals on certain special vector spaces of functions. We describe these linear functionals

More information

Anderson Localization on the Sierpinski Gasket

Anderson Localization on the Sierpinski Gasket Anderson Localization on the Sierpinski Gasket G. Mograby 1 M. Zhang 2 1 Department of Physics Technical University of Berlin, Germany 2 Department of Mathematics Jacobs University, Germany 5th Cornell

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

From self-similar groups to intrinsic metrics on fractals

From self-similar groups to intrinsic metrics on fractals From self-similar groups to intrinsic metrics on fractals *D. J. Kelleher 1 1 Department of Mathematics University of Connecticut Cornell Analysis Seminar Fall 2013 Post-Critically finite fractals In the

More information

Essential Spectra of complete manifolds

Essential Spectra of complete manifolds Essential Spectra of complete manifolds Zhiqin Lu Analysis, Complex Geometry, and Mathematical Physics: A Conference in Honor of Duong H. Phong May 7, 2013 Zhiqin Lu, Dept. Math, UCI Essential Spectra

More information

McGill University Math 354: Honors Analysis 3

McGill University Math 354: Honors Analysis 3 Practice problems McGill University Math 354: Honors Analysis 3 not for credit Problem 1. Determine whether the family of F = {f n } functions f n (x) = x n is uniformly equicontinuous. 1st Solution: The

More information

A new proof of Gromov s theorem on groups of polynomial growth

A new proof of Gromov s theorem on groups of polynomial growth A new proof of Gromov s theorem on groups of polynomial growth Bruce Kleiner Courant Institute NYU Groups as geometric objects Let G a group with a finite generating set S G. Assume that S is symmetric:

More information

Boundary measures, generalized Gauss Green formulas, and mean value property in metric measure spaces

Boundary measures, generalized Gauss Green formulas, and mean value property in metric measure spaces Boundary measures, generalized Gauss Green formulas, and mean value property in metric measure spaces Niko Marola, Michele Miranda Jr, and Nageswari Shanmugalingam Contents 1 Introduction 2 2 Preliminaries

More information

A local time scaling exponent for compact metric spaces

A local time scaling exponent for compact metric spaces A local time scaling exponent for compact metric spaces John Dever School of Mathematics Georgia Institute of Technology Fractals 6 @ Cornell, June 15, 2017 Dever (GaTech) Exit time exponent Fractals 6

More information

Analysis and geometry of the measurable Riemannian structure on the Sierpiński gasket

Analysis and geometry of the measurable Riemannian structure on the Sierpiński gasket Analysis and geometry of the measurable Riemannian structure on the Sierpiński gasket Naotaka Kajino Abstract. This expository article is devoted to a survey of existent results concerning the measurable

More information

THIRD SEMESTER M. Sc. DEGREE (MATHEMATICS) EXAMINATION (CUSS PG 2010) MODEL QUESTION PAPER MT3C11: COMPLEX ANALYSIS

THIRD SEMESTER M. Sc. DEGREE (MATHEMATICS) EXAMINATION (CUSS PG 2010) MODEL QUESTION PAPER MT3C11: COMPLEX ANALYSIS THIRD SEMESTER M. Sc. DEGREE (MATHEMATICS) EXAMINATION (CUSS PG 2010) MODEL QUESTION PAPER MT3C11: COMPLEX ANALYSIS TIME:3 HOURS Maximum weightage:36 PART A (Short Answer Type Question 1-14) Answer All

More information

Inverse Scattering with Partial data on Asymptotically Hyperbolic Manifolds

Inverse Scattering with Partial data on Asymptotically Hyperbolic Manifolds Inverse Scattering with Partial data on Asymptotically Hyperbolic Manifolds Raphael Hora UFSC rhora@mtm.ufsc.br 29/04/2014 Raphael Hora (UFSC) Inverse Scattering with Partial data on AH Manifolds 29/04/2014

More information

Spectral Properties of the Hata Tree

Spectral Properties of the Hata Tree Spectral Properties of the Hata Tree Antoni Brzoska University of Connecticut March 20, 2016 Antoni Brzoska Spectral Properties of the Hata Tree March 20, 2016 1 / 26 Table of Contents 1 A Dynamical System

More information

NATIONAL BOARD FOR HIGHER MATHEMATICS. Research Awards Screening Test. February 25, Time Allowed: 90 Minutes Maximum Marks: 40

NATIONAL BOARD FOR HIGHER MATHEMATICS. Research Awards Screening Test. February 25, Time Allowed: 90 Minutes Maximum Marks: 40 NATIONAL BOARD FOR HIGHER MATHEMATICS Research Awards Screening Test February 25, 2006 Time Allowed: 90 Minutes Maximum Marks: 40 Please read, carefully, the instructions on the following page before you

More information

A C 0 coarse structure for families of pseudometrics and the Higson-Roe functor

A C 0 coarse structure for families of pseudometrics and the Higson-Roe functor A C 0 coarse structure for families of pseudometrics and the Higson-Roe functor Jesús P. Moreno-Damas arxiv:1410.2756v1 [math.gn] 10 Oct 2014 Abstract This paper deepens into the relations between coarse

More information

From now on, we will represent a metric space with (X, d). Here are some examples: i=1 (x i y i ) p ) 1 p, p 1.

From now on, we will represent a metric space with (X, d). Here are some examples: i=1 (x i y i ) p ) 1 p, p 1. Chapter 1 Metric spaces 1.1 Metric and convergence We will begin with some basic concepts. Definition 1.1. (Metric space) Metric space is a set X, with a metric satisfying: 1. d(x, y) 0, d(x, y) = 0 x

More information

MATHS 730 FC Lecture Notes March 5, Introduction

MATHS 730 FC Lecture Notes March 5, Introduction 1 INTRODUCTION MATHS 730 FC Lecture Notes March 5, 2014 1 Introduction Definition. If A, B are sets and there exists a bijection A B, they have the same cardinality, which we write as A, #A. If there exists

More information

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set Analysis Finite and Infinite Sets Definition. An initial segment is {n N n n 0 }. Definition. A finite set can be put into one-to-one correspondence with an initial segment. The empty set is also considered

More information

Euler Characteristic of Two-Dimensional Manifolds

Euler Characteristic of Two-Dimensional Manifolds Euler Characteristic of Two-Dimensional Manifolds M. Hafiz Khusyairi August 2008 In this work we will discuss an important notion from topology, namely Euler Characteristic and we will discuss several

More information

here, this space is in fact infinite-dimensional, so t σ ess. Exercise Let T B(H) be a self-adjoint operator on an infinitedimensional

here, this space is in fact infinite-dimensional, so t σ ess. Exercise Let T B(H) be a self-adjoint operator on an infinitedimensional 15. Perturbations by compact operators In this chapter, we study the stability (or lack thereof) of various spectral properties under small perturbations. Here s the type of situation we have in mind:

More information

Stochastic analysis for Markov processes

Stochastic analysis for Markov processes Colloquium Stochastic Analysis, Leibniz University Hannover Jan. 29, 2015 Universität Bielefeld 1 Markov processes: trivia. 2 Stochastic analysis for additive functionals. 3 Applications to geometry. Markov

More information

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis Real Analysis, 2nd Edition, G.B.Folland Chapter 5 Elements of Functional Analysis Yung-Hsiang Huang 5.1 Normed Vector Spaces 1. Note for any x, y X and a, b K, x+y x + y and by ax b y x + b a x. 2. It

More information

Formality of Kähler manifolds

Formality of Kähler manifolds Formality of Kähler manifolds Aron Heleodoro February 24, 2015 In this talk of the seminar we like to understand the proof of Deligne, Griffiths, Morgan and Sullivan [DGMS75] of the formality of Kähler

More information

Math Theory of Partial Differential Equations Lecture 3-2: Spectral properties of the Laplacian. Bessel functions.

Math Theory of Partial Differential Equations Lecture 3-2: Spectral properties of the Laplacian. Bessel functions. Math 412-501 Theory of Partial ifferential Equations Lecture 3-2: Spectral properties of the Laplacian. Bessel functions. Eigenvalue problem: 2 φ + λφ = 0 in, ( αφ + β φ ) n = 0, where α, β are piecewise

More information

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define Homework, Real Analysis I, Fall, 2010. (1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define ρ(f, g) = 1 0 f(x) g(x) dx. Show that

More information

7 Complete metric spaces and function spaces

7 Complete metric spaces and function spaces 7 Complete metric spaces and function spaces 7.1 Completeness Let (X, d) be a metric space. Definition 7.1. A sequence (x n ) n N in X is a Cauchy sequence if for any ɛ > 0, there is N N such that n, m

More information

Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski Carpet

Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski Carpet Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski Carpet Matthew Begué, Tristan Kalloniatis, & Robert Strichartz October 4, 2011 Norbert Wiener Center Seminar Construction of the Sierpinski

More information

Laplace s Equation. Chapter Mean Value Formulas

Laplace s Equation. Chapter Mean Value Formulas Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic

More information

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond Measure Theory on Topological Spaces Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond May 22, 2011 Contents 1 Introduction 2 1.1 The Riemann Integral........................................ 2 1.2 Measurable..............................................

More information

SPECTRAL PROPERTIES OF THE LAPLACIAN ON BOUNDED DOMAINS

SPECTRAL PROPERTIES OF THE LAPLACIAN ON BOUNDED DOMAINS SPECTRAL PROPERTIES OF THE LAPLACIAN ON BOUNDED DOMAINS TSOGTGEREL GANTUMUR Abstract. After establishing discrete spectra for a large class of elliptic operators, we present some fundamental spectral properties

More information

Selçuk Demir WS 2017 Functional Analysis Homework Sheet

Selçuk Demir WS 2017 Functional Analysis Homework Sheet Selçuk Demir WS 2017 Functional Analysis Homework Sheet 1. Let M be a metric space. If A M is non-empty, we say that A is bounded iff diam(a) = sup{d(x, y) : x.y A} exists. Show that A is bounded iff there

More information

Analysis Preliminary Exam Workshop: Hilbert Spaces

Analysis Preliminary Exam Workshop: Hilbert Spaces Analysis Preliminary Exam Workshop: Hilbert Spaces 1. Hilbert spaces A Hilbert space H is a complete real or complex inner product space. Consider complex Hilbert spaces for definiteness. If (, ) : H H

More information

NATIONAL BOARD FOR HIGHER MATHEMATICS. Research Scholarships Screening Test. Saturday, January 20, Time Allowed: 150 Minutes Maximum Marks: 40

NATIONAL BOARD FOR HIGHER MATHEMATICS. Research Scholarships Screening Test. Saturday, January 20, Time Allowed: 150 Minutes Maximum Marks: 40 NATIONAL BOARD FOR HIGHER MATHEMATICS Research Scholarships Screening Test Saturday, January 2, 218 Time Allowed: 15 Minutes Maximum Marks: 4 Please read, carefully, the instructions that follow. INSTRUCTIONS

More information

Spectral Properties of an Operator-Fractal

Spectral Properties of an Operator-Fractal Spectral Properties of an Operator-Fractal Keri Kornelson University of Oklahoma - Norman NSA Texas A&M University July 18, 2012 K. Kornelson (U. Oklahoma) Operator-Fractal TAMU 07/18/2012 1 / 25 Acknowledgements

More information

Fractal Geometry and Complex Dimensions in Metric Measure Spaces

Fractal Geometry and Complex Dimensions in Metric Measure Spaces Fractal Geometry and Complex Dimensions in Metric Measure Spaces Sean Watson University of California Riverside watson@math.ucr.edu June 14th, 2014 Sean Watson (UCR) Complex Dimensions in MM Spaces 1 /

More information

Math 742: Geometric Analysis

Math 742: Geometric Analysis Math 742: Geometric Analysis Lecture 5 and 6 Notes Jacky Chong jwchong@math.umd.edu The following notes are based upon Professor Yanir ubenstein s lectures with reference to Variational Methods 4 th edition

More information

Analysis III Theorems, Propositions & Lemmas... Oh My!

Analysis III Theorems, Propositions & Lemmas... Oh My! Analysis III Theorems, Propositions & Lemmas... Oh My! Rob Gibson October 25, 2010 Proposition 1. If x = (x 1, x 2,...), y = (y 1, y 2,...), then is a distance. ( d(x, y) = x k y k p Proposition 2. In

More information

3 hours UNIVERSITY OF MANCHESTER. 22nd May and. Electronic calculators may be used, provided that they cannot store text.

3 hours UNIVERSITY OF MANCHESTER. 22nd May and. Electronic calculators may be used, provided that they cannot store text. 3 hours MATH40512 UNIVERSITY OF MANCHESTER DYNAMICAL SYSTEMS AND ERGODIC THEORY 22nd May 2007 9.45 12.45 Answer ALL four questions in SECTION A (40 marks in total) and THREE of the four questions in SECTION

More information

MATH642. COMPLEMENTS TO INTRODUCTION TO DYNAMICAL SYSTEMS BY M. BRIN AND G. STUCK

MATH642. COMPLEMENTS TO INTRODUCTION TO DYNAMICAL SYSTEMS BY M. BRIN AND G. STUCK MATH642 COMPLEMENTS TO INTRODUCTION TO DYNAMICAL SYSTEMS BY M BRIN AND G STUCK DMITRY DOLGOPYAT 13 Expanding Endomorphisms of the circle Let E 10 : S 1 S 1 be given by E 10 (x) = 10x mod 1 Exercise 1 Show

More information

Reminder Notes for the Course on Measures on Topological Spaces

Reminder Notes for the Course on Measures on Topological Spaces Reminder Notes for the Course on Measures on Topological Spaces T. C. Dorlas Dublin Institute for Advanced Studies School of Theoretical Physics 10 Burlington Road, Dublin 4, Ireland. Email: dorlas@stp.dias.ie

More information

arxiv: v2 [math.oa] 5 May 2017

arxiv: v2 [math.oa] 5 May 2017 SPECTRAL TRIPLES FOR NESTED FRACTALS DANIELE GUIDO, TOMMASO ISOLA Abstract. It is shown that, for nested fractals [31], the main structural data, such as the Hausdorff dimension and measure, the geodesic

More information

NATIONAL BOARD FOR HIGHER MATHEMATICS. Research Scholarships Screening Test. Saturday, February 2, Time Allowed: Two Hours Maximum Marks: 40

NATIONAL BOARD FOR HIGHER MATHEMATICS. Research Scholarships Screening Test. Saturday, February 2, Time Allowed: Two Hours Maximum Marks: 40 NATIONAL BOARD FOR HIGHER MATHEMATICS Research Scholarships Screening Test Saturday, February 2, 2008 Time Allowed: Two Hours Maximum Marks: 40 Please read, carefully, the instructions on the following

More information

Mathematical Analysis Outline. William G. Faris

Mathematical Analysis Outline. William G. Faris Mathematical Analysis Outline William G. Faris January 8, 2007 2 Chapter 1 Metric spaces and continuous maps 1.1 Metric spaces A metric space is a set X together with a real distance function (x, x ) d(x,

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

L p Spaces and Convexity

L p Spaces and Convexity L p Spaces and Convexity These notes largely follow the treatments in Royden, Real Analysis, and Rudin, Real & Complex Analysis. 1. Convex functions Let I R be an interval. For I open, we say a function

More information

Problem Set 5. 2 n k. Then a nk (x) = 1+( 1)k

Problem Set 5. 2 n k. Then a nk (x) = 1+( 1)k Problem Set 5 1. (Folland 2.43) For x [, 1), let 1 a n (x)2 n (a n (x) = or 1) be the base-2 expansion of x. (If x is a dyadic rational, choose the expansion such that a n (x) = for large n.) Then the

More information

The following definition is fundamental.

The following definition is fundamental. 1. Some Basics from Linear Algebra With these notes, I will try and clarify certain topics that I only quickly mention in class. First and foremost, I will assume that you are familiar with many basic

More information

Large Deviations, Linear Statistics, and Scaling Limits for Mahler Ensemble of Complex Random Polynomials

Large Deviations, Linear Statistics, and Scaling Limits for Mahler Ensemble of Complex Random Polynomials Large Deviations, Linear Statistics, and Scaling Limits for Mahler Ensemble of Complex Random Polynomials Maxim L. Yattselev joint work with Christopher D. Sinclair International Conference on Approximation

More information

Continuity. Matt Rosenzweig

Continuity. Matt Rosenzweig Continuity Matt Rosenzweig Contents 1 Continuity 1 1.1 Rudin Chapter 4 Exercises........................................ 1 1.1.1 Exercise 1............................................. 1 1.1.2 Exercise

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

B. Appendix B. Topological vector spaces

B. Appendix B. Topological vector spaces B.1 B. Appendix B. Topological vector spaces B.1. Fréchet spaces. In this appendix we go through the definition of Fréchet spaces and their inductive limits, such as they are used for definitions of function

More information

Definition and basic properties of heat kernels I, An introduction

Definition and basic properties of heat kernels I, An introduction Definition and basic properties of heat kernels I, An introduction Zhiqin Lu, Department of Mathematics, UC Irvine, Irvine CA 92697 April 23, 2010 In this lecture, we will answer the following questions:

More information

Econ Lecture 3. Outline. 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n

Econ Lecture 3. Outline. 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n Econ 204 2011 Lecture 3 Outline 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n 1 Metric Spaces and Metrics Generalize distance and length notions

More information

MAT 578 FUNCTIONAL ANALYSIS EXERCISES

MAT 578 FUNCTIONAL ANALYSIS EXERCISES MAT 578 FUNCTIONAL ANALYSIS EXERCISES JOHN QUIGG Exercise 1. Prove that if A is bounded in a topological vector space, then for every neighborhood V of 0 there exists c > 0 such that tv A for all t > c.

More information

CONTENTS. 4 Hausdorff Measure Introduction The Cantor Set Rectifiable Curves Cantor Set-Like Objects...

CONTENTS. 4 Hausdorff Measure Introduction The Cantor Set Rectifiable Curves Cantor Set-Like Objects... Contents 1 Functional Analysis 1 1.1 Hilbert Spaces................................... 1 1.1.1 Spectral Theorem............................. 4 1.2 Normed Vector Spaces.............................. 7 1.2.1

More information

Functional Analysis I

Functional Analysis I Functional Analysis I Course Notes by Stefan Richter Transcribed and Annotated by Gregory Zitelli Polar Decomposition Definition. An operator W B(H) is called a partial isometry if W x = X for all x (ker

More information

Strong Consistency of Set-Valued Frechet Sample Mean in Metric Spaces

Strong Consistency of Set-Valued Frechet Sample Mean in Metric Spaces Strong Consistency of Set-Valued Frechet Sample Mean in Metric Spaces Cedric E. Ginestet Department of Mathematics and Statistics Boston University JSM 2013 The Frechet Mean Barycentre as Average Given

More information

Noncommutative Potential Theory 3

Noncommutative Potential Theory 3 Noncommutative Potential Theory 3 Fabio Cipriani Dipartimento di Matematica Politecnico di Milano ( joint works with U. Franz, D. Guido, T. Isola, A. Kula, J.-L. Sauvageot ) Villa Mondragone Frascati,

More information

Stability of boundary measures

Stability of boundary measures Stability of boundary measures F. Chazal D. Cohen-Steiner Q. Mérigot INRIA Saclay - Ile de France LIX, January 2008 Point cloud geometry Given a set of points sampled near an unknown shape, can we infer

More information

Topics in Geometry and Dynamics

Topics in Geometry and Dynamics Topics in Geometry and Dynamics Problems C. McMullen 1. Consider the powers of 2, x n = 2 n for n = 0, 1, 2,..., written in base 10. What proportion of these numbers begin with the digit 1? 2. Let x [0,

More information

Part II Probability and Measure

Part II Probability and Measure Part II Probability and Measure Theorems Based on lectures by J. Miller Notes taken by Dexter Chua Michaelmas 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski Carpet

Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski Carpet Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski Carpet Matthew Begué, Tristan Kalloniatis, & Robert Strichartz October 3, 2010 Construction of SC The Sierpinski Carpet, SC, is constructed

More information

Compact symetric bilinear forms

Compact symetric bilinear forms Compact symetric bilinear forms Mihai Mathematics Department UC Santa Barbara IWOTA 2006 IWOTA 2006 Compact forms [1] joint work with: J. Danciger (Stanford) S. Garcia (Pomona

More information

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define HILBERT SPACES AND THE RADON-NIKODYM THEOREM STEVEN P. LALLEY 1. DEFINITIONS Definition 1. A real inner product space is a real vector space V together with a symmetric, bilinear, positive-definite mapping,

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

Asymptotic distribution of eigenvalues of Laplace operator

Asymptotic distribution of eigenvalues of Laplace operator Asymptotic distribution of eigenvalues of Laplace operator 23.8.2013 Topics We will talk about: the number of eigenvalues of Laplace operator smaller than some λ as a function of λ asymptotic behaviour

More information

THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES

THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES PHILIP GADDY Abstract. Throughout the course of this paper, we will first prove the Stone- Weierstrass Theroem, after providing some initial

More information

Multivariable Calculus

Multivariable Calculus 2 Multivariable Calculus 2.1 Limits and Continuity Problem 2.1.1 (Fa94) Let the function f : R n R n satisfy the following two conditions: (i) f (K ) is compact whenever K is a compact subset of R n. (ii)

More information

A Brief Introduction to Functional Analysis

A Brief Introduction to Functional Analysis A Brief Introduction to Functional Analysis Sungwook Lee Department of Mathematics University of Southern Mississippi sunglee@usm.edu July 5, 2007 Definition 1. An algebra A is a vector space over C with

More information

A VERY BRIEF REVIEW OF MEASURE THEORY

A VERY BRIEF REVIEW OF MEASURE THEORY A VERY BRIEF REVIEW OF MEASURE THEORY A brief philosophical discussion. Measure theory, as much as any branch of mathematics, is an area where it is important to be acquainted with the basic notions and

More information

Heat Kernel and Analysis on Manifolds Excerpt with Exercises. Alexander Grigor yan

Heat Kernel and Analysis on Manifolds Excerpt with Exercises. Alexander Grigor yan Heat Kernel and Analysis on Manifolds Excerpt with Exercises Alexander Grigor yan Department of Mathematics, University of Bielefeld, 33501 Bielefeld, Germany 2000 Mathematics Subject Classification. Primary

More information

arxiv: v1 [math.fa] 3 Sep 2017

arxiv: v1 [math.fa] 3 Sep 2017 Spectral Triples for the Variants of the Sierpinski Gasket arxiv:1709.00755v1 [math.fa] 3 Sep 017 Andrea Arauza Rivera arauza@math.ucr.edu September 5, 017 Abstract Fractal geometry is the study of sets

More information

The Gaussian free field, Gibbs measures and NLS on planar domains

The Gaussian free field, Gibbs measures and NLS on planar domains The Gaussian free field, Gibbs measures and on planar domains N. Burq, joint with L. Thomann (Nantes) and N. Tzvetkov (Cergy) Université Paris Sud, Laboratoire de Mathématiques d Orsay, CNRS UMR 8628 LAGA,

More information