Stability of boundary measures

Size: px
Start display at page:

Download "Stability of boundary measures"

Transcription

1 Stability of boundary measures F. Chazal D. Cohen-Steiner Q. Mérigot INRIA Saclay - Ile de France LIX, January 2008

2 Point cloud geometry Given a set of points sampled near an unknown shape, can we infer the geometry of that shape?

3 Detecting singularities the volume of a cell is very sensitive to perturbation but if one consider the union of Voronoï cells whose site is contained in a given ball...

4 Detecting singularities the volume of a cell is very sensitive to perturbation but if one consider the union of Voronoï cells whose site is contained in a given ball...

5 Detecting singularities the volume of a cell is very sensitive to perturbation but if one consider the union of Voronoï cells whose site is contained in a given ball...

6 Detecting singularities the volume of a cell is very sensitive to perturbation but if one consider the union of Voronoï cells whose site is contained in a given ball...

7 Projection on a compact set Definition The projection p K : R n K R n maps any point x R n to its closest point in K. It is defined outside of the medial axis of K.

8 Boundary measure Definition For E R n, the boundary measure µ K,E is defined as follows : B K, µ K,E (B) = vol n ({x E p K (x) B}) that is, the n-volume of the part of E that projects on B. measure supported in K contains a lot of geometric information about K

9 Smooth object Let K R n be an n-dimensional object with smooth boundary. The smallest distance between K and its medial axis is called reach(k). Take E = K r {x R n ; d(x, K) r}, assuming r < reach(k).

10 Smooth object Tube formula (Steiner, Weyl, Federer) If r < reach(k) : vol n (K r ) = vol n (K) + n k=1 const(n, k)[ σ k 1 ] r k K

11 Smooth object Tube formula (Steiner, Weyl, Federer) If r < reach(k), for B K : n µ K,K r (B) = vol n (B) }{{} + k=1 const(n, k) [ σ k 1 ] B K }{{} r k Φ n K (B) Φn k K (B) The Φ i K are the (signed) curvature measures of K. If K is d-dimensional, they vanish identically for i > d. Φ 0 K (K) is the Euler characteristic of K. They are intrinsic, i.e. they do not depend on the embedding.

12 Convex polyhedron rda θ r 2 dl Ω r 3 the boundary measure of a convex polyhedron K can be decomposed as a sum : µ K,K r (B) = n k=0 const(n, k) Φ n k(b) r k. the curvature measure Φ i K is the i-dimensional measure supported on the i-skeleton of K whose density is the local external dihedral angle.

13 The boundary measure of a point cloud the boundary measure is a sum of weighted Dirac masses : µ C,C r = i vol n (Vor(x i ) C r )δ xi

14 Stability and computation of boundary measure 1 is it practically feasible to compute the boundary measure of a point cloud C R d? 2 if C is a good approximation of K (ie dense enough and without too much noise), does the boundary measure µ C,C r carry approximately the same geometric information as µ K,K r?

15 The boundary measure of a point cloud Here, the volumes of the Voronoï cells are evaluated using a Monte-Carlo method. Cost scales linearly with ambient dimension. Approximation error does not depend on the ambient dimension.

16 The boundary measure of a point cloud Here, the volumes of the Voronoï cells are evaluated using a Monte-Carlo method. Cost scales linearly with ambient dimension. Approximation error does not depend on the ambient dimension.

17 Stability Assume point cloud C samples compact K well, e.g. d H (K, C) ε. This means that C K ε and K C ε Are µ K,E and µ C,E close? In which sense?

18 Wasserstein distance Assume measures µ and ν are discrete : µ = i c iδ xi, ν = j d jδ yj we suppose that mass(µ) = mass(ν) a transport plan between is a set of nonnegative coefficients p ij specifying the amount of mass which is transported from x i to y j, with p ij = d j and i j the cost of a transport plan is C(p) = ij x i y j p ij W (µ, ν) = inf p C(p) p ij = c i

19 Kantorovich-Rubinstein theorem Definition Let µ and ν be two measures on R d having the same total mass µ(r d ) = ν(r d ). W (µ, ν) = inf E[d(X, Y )] X,Y where the infimum is taken on all pairs of R d -valued random variables X and Y whose law are µ and ν respectively. Theorem For two measures µ and ν with common finite mass and bounded support, W (µ, ν) = sup f f dµ f dν where the sup is taken over all 1-Lipschitz functions R n R.

20 Wasserstein distance between boundary measures dx E K p K (dx) K p K (dx) We consider the following transport plan : the element of mass p K (x)dx coming from an element of mass dx at x E will be transported to p K (x)dx. the total cost of this transport is : p K (x) p K (x) dx = p K p K L 1 (E) E W (µ K,E, µ K,E ) pk p K L 1 (E)

21 A L 1 stability theorem for projections Theorem If E is an open set of R n with rectifiable boundary, and K and K are two close enough compact subsets : p K p K L 1 (E) := p K p K E C(n)[vol n (E) + diam(k)vol n 1 ( E)] R K d H (K, K ) where R K = sup x E d(x, K). 1 close enough means that d H (K, K ) does not exceed min(r K, diam(k), diam(k) 2 /R K ) 2 C(n) = O( n)

22 Ingredients of proof Lemma Function v K : x x 2 d 2 K (x) is convex and v K = 2p K almost everywhere. Lemma If f, g : E R are convex and k = diam( f (E) g(e)) then f g L 1 (E) C(n) [vol n (E) + k vol n 1 ( E)] f g 1/2 + integral geometry arguments. + C(n) vol n 1 ( E) f g

23 Stability of boundary measures Theorem If K is a fixed compact set, and E an open set with smooth boundary, then W(µ K,E, µ K,E ) C(n, E, K) d H (K, K ) 1/2 as soon as K is close enough to K. A similar result holds for µ K,K r and µ K,K r.

24 Estimating curvature measures 1 for any K with positive reach, there exists measures Φ K,i such that for r < reach(k), µ K,r (B) = n (B)r i i=1 Φn i K 2 can be computed knowing only the boundary measures for n + 1 values r 0 <... < r n : denote the result by Φ (r) K,i. Corollary If reach(k) > r n and K is close to K, there is a constant C(K, n, (r)) such that ( ) d bl Φ K,i, Φ (r) K,i C(K, n, (r)) d H (K, K ) 1/2 C 0 (Hausdorff) closeness implies closeness of differential properties at a given scale.

25 Computing boundary measures algorithm Input : a point cloud C, a scalar r, a number N Output : an approximation of µ C,C r in the form 1 N n(pi )δ pi while k N I. Choose a random point X with probability distribution 1 H d (C r ) Hd C r II. Finds its closest point p i in the cloud C, add 1 to n(p i ) end while III. Multiply each n(p i ) by H d (C r ). Hoeffding s inequality : P [d bl (µ N, µ) ε] 2 exp ( ln(16/ε)n (K, ε/16) Nε 2 /2 )

26 Directions Replace volumes of Voronoï cells by their covariance matrices. This gives a tensor-valued measure. small/large eigenvalues tangent/normal space principal curvatures/directions?

27 Discussion 1 The boundary measure and its tensor version encode much of the geometry of a compact set. 2 these measures depend continuously on the compact set for the Hausdorff distance. 3 what can we do when the underlying shape has zero reach? 4 what happens if we replace nearest neighbors by approximate nearest neighbors? 5 how can we deal with outliers?

Geometric Inference for Probability distributions

Geometric Inference for Probability distributions Geometric Inference for Probability distributions F. Chazal 1 D. Cohen-Steiner 2 Q. Mérigot 2 1 Geometrica, INRIA Saclay, 2 Geometrica, INRIA Sophia-Antipolis 2009 June 1 Motivation What is the (relevant)

More information

Geometric Inference for Probability distributions

Geometric Inference for Probability distributions Geometric Inference for Probability distributions F. Chazal 1 D. Cohen-Steiner 2 Q. Mérigot 2 1 Geometrica, INRIA Saclay, 2 Geometrica, INRIA Sophia-Antipolis 2009 July 8 F. Chazal, D. Cohen-Steiner, Q.

More information

Geometric Inference on Kernel Density Estimates

Geometric Inference on Kernel Density Estimates Geometric Inference on Kernel Density Estimates Bei Wang 1 Jeff M. Phillips 2 Yan Zheng 2 1 Scientific Computing and Imaging Institute, University of Utah 2 School of Computing, University of Utah Feb

More information

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis.

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis. Vector spaces DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Vector space Consists of: A set V A scalar

More information

A sampling theory for compact sets

A sampling theory for compact sets ENS Lyon January 2010 A sampling theory for compact sets F. Chazal Geometrica Group INRIA Saclay To download these slides: http://geometrica.saclay.inria.fr/team/fred.chazal/teaching/distancefunctions.pdf

More information

Some Topics in Computational Topology. Yusu Wang. AMS Short Course 2014

Some Topics in Computational Topology. Yusu Wang. AMS Short Course 2014 Some Topics in Computational Topology Yusu Wang AMS Short Course 2014 Introduction Much recent developments in computational topology Both in theory and in their applications E.g, the theory of persistence

More information

Geometric inference for measures based on distance functions The DTM-signature for a geometric comparison of metric-measure spaces from samples

Geometric inference for measures based on distance functions The DTM-signature for a geometric comparison of metric-measure spaces from samples Distance to Geometric inference for measures based on distance functions The - for a geometric comparison of metric-measure spaces from samples the Ohio State University wan.252@osu.edu 1/31 Geometric

More information

Inference of curvature using tubular neighborhoods

Inference of curvature using tubular neighborhoods Inference of curvature using tubular neighborhoods Frédéric Chazal, David Cohen-Steiner, André Lieutier Quentin Mérigot, Boris Thibert Introduction Geometric inference deals with the problem of recovering

More information

Some Topics in Computational Topology

Some Topics in Computational Topology Some Topics in Computational Topology Yusu Wang Ohio State University AMS Short Course 2014 Introduction Much recent developments in computational topology Both in theory and in their applications E.g,

More information

WITNESSED K-DISTANCE

WITNESSED K-DISTANCE WITNESSED K-DISTANCE LEONIDAS GUIBAS, DMITRIY MOROZOV, AND QUENTIN MÉRIGOT Abstract. Distance function to a compact set plays a central role in several areas of computational geometry. Methods that rely

More information

Lecture Notes 1: Vector spaces

Lecture Notes 1: Vector spaces Optimization-based data analysis Fall 2017 Lecture Notes 1: Vector spaces In this chapter we review certain basic concepts of linear algebra, highlighting their application to signal processing. 1 Vector

More information

Witnessed k-distance

Witnessed k-distance Witnessed k-distance Leonidas J. Guibas, Quentin Mérigot, Dmitriy Morozov To cite this version: Leonidas J. Guibas, Quentin Mérigot, Dmitriy Morozov. Witnessed k-distance. Discrete and Computational Geometry,

More information

Geometric Inference for Probability Measures

Geometric Inference for Probability Measures Geometric Inference for Probability Measures Frédéric CHAZAL David COHEN-STEINER Quentin MÉRIGOT June 21, 2010 Abstract Data often comes in the form of a point cloud sampled from an unknown compact subset

More information

Information theoretic perspectives on learning algorithms

Information theoretic perspectives on learning algorithms Information theoretic perspectives on learning algorithms Varun Jog University of Wisconsin - Madison Departments of ECE and Mathematics Shannon Channel Hangout! May 8, 2018 Jointly with Adrian Tovar-Lopez

More information

u( x) = g( y) ds y ( 1 ) U solves u = 0 in U; u = 0 on U. ( 3)

u( x) = g( y) ds y ( 1 ) U solves u = 0 in U; u = 0 on U. ( 3) M ath 5 2 7 Fall 2 0 0 9 L ecture 4 ( S ep. 6, 2 0 0 9 ) Properties and Estimates of Laplace s and Poisson s Equations In our last lecture we derived the formulas for the solutions of Poisson s equation

More information

On John type ellipsoids

On John type ellipsoids On John type ellipsoids B. Klartag Tel Aviv University Abstract Given an arbitrary convex symmetric body K R n, we construct a natural and non-trivial continuous map u K which associates ellipsoids to

More information

On the Intrinsic Differentiability Theorem of Gromov-Schoen

On the Intrinsic Differentiability Theorem of Gromov-Schoen On the Intrinsic Differentiability Theorem of Gromov-Schoen Georgios Daskalopoulos Brown University daskal@math.brown.edu Chikako Mese 2 Johns Hopkins University cmese@math.jhu.edu Abstract In this note,

More information

for all subintervals I J. If the same is true for the dyadic subintervals I D J only, we will write ϕ BMO d (J). In fact, the following is true

for all subintervals I J. If the same is true for the dyadic subintervals I D J only, we will write ϕ BMO d (J). In fact, the following is true 3 ohn Nirenberg inequality, Part I A function ϕ L () belongs to the space BMO() if sup ϕ(s) ϕ I I I < for all subintervals I If the same is true for the dyadic subintervals I D only, we will write ϕ BMO

More information

Moment Measures. Bo az Klartag. Tel Aviv University. Talk at the asymptotic geometric analysis seminar. Tel Aviv, May 2013

Moment Measures. Bo az Klartag. Tel Aviv University. Talk at the asymptotic geometric analysis seminar. Tel Aviv, May 2013 Tel Aviv University Talk at the asymptotic geometric analysis seminar Tel Aviv, May 2013 Joint work with Dario Cordero-Erausquin. A bijection We present a correspondence between convex functions and Borel

More information

Integral Jensen inequality

Integral Jensen inequality Integral Jensen inequality Let us consider a convex set R d, and a convex function f : (, + ]. For any x,..., x n and λ,..., λ n with n λ i =, we have () f( n λ ix i ) n λ if(x i ). For a R d, let δ a

More information

RANDOM FIELDS AND GEOMETRY. Robert Adler and Jonathan Taylor

RANDOM FIELDS AND GEOMETRY. Robert Adler and Jonathan Taylor RANDOM FIELDS AND GEOMETRY from the book of the same name by Robert Adler and Jonathan Taylor IE&M, Technion, Israel, Statistics, Stanford, US. ie.technion.ac.il/adler.phtml www-stat.stanford.edu/ jtaylor

More information

Convex Geometry. Carsten Schütt

Convex Geometry. Carsten Schütt Convex Geometry Carsten Schütt November 25, 2006 2 Contents 0.1 Convex sets... 4 0.2 Separation.... 9 0.3 Extreme points..... 15 0.4 Blaschke selection principle... 18 0.5 Polytopes and polyhedra.... 23

More information

Isodiametric problem in Carnot groups

Isodiametric problem in Carnot groups Conference Geometric Measure Theory Université Paris Diderot, 12th-14th September 2012 Isodiametric inequality in R n Isodiametric inequality: where ω n = L n (B(0, 1)). L n (A) 2 n ω n (diam A) n Isodiametric

More information

ROW PRODUCTS OF RANDOM MATRICES

ROW PRODUCTS OF RANDOM MATRICES ROW PRODUCTS OF RANDOM MATRICES MARK RUDELSON Abstract Let 1,, K be d n matrices We define the row product of these matrices as a d K n matrix, whose rows are entry-wise products of rows of 1,, K This

More information

Metric Thickenings of Euclidean Submanifolds

Metric Thickenings of Euclidean Submanifolds Metric Thickenings of Euclidean Submanifolds Advisor: Dr. Henry Adams Committe: Dr. Chris Peterson, Dr. Daniel Cooley Joshua Mirth Masters Thesis Defense October 3, 2017 Introduction Motivation Can we

More information

Hessian measures of semi-convex functions and applications to support measures of convex bodies

Hessian measures of semi-convex functions and applications to support measures of convex bodies Hessian measures of semi-convex functions and applications to support measures of convex bodies Andrea Colesanti and Daniel Hug Abstract This paper originates from the investigation of support measures

More information

Concentration Inequalities for Random Matrices

Concentration Inequalities for Random Matrices Concentration Inequalities for Random Matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify the asymptotic

More information

Logarithmic Sobolev Inequalities

Logarithmic Sobolev Inequalities Logarithmic Sobolev Inequalities M. Ledoux Institut de Mathématiques de Toulouse, France logarithmic Sobolev inequalities what they are, some history analytic, geometric, optimal transportation proofs

More information

Cones of measures. Tatiana Toro. University of Washington. Quantitative and Computational Aspects of Metric Geometry

Cones of measures. Tatiana Toro. University of Washington. Quantitative and Computational Aspects of Metric Geometry Cones of measures Tatiana Toro University of Washington Quantitative and Computational Aspects of Metric Geometry Based on joint work with C. Kenig and D. Preiss Tatiana Toro (University of Washington)

More information

2a Large deviation principle (LDP) b Contraction principle c Change of measure... 10

2a Large deviation principle (LDP) b Contraction principle c Change of measure... 10 Tel Aviv University, 2007 Large deviations 5 2 Basic notions 2a Large deviation principle LDP......... 5 2b Contraction principle................ 9 2c Change of measure................. 10 The formalism

More information

Introduction to Real Analysis Alternative Chapter 1

Introduction to Real Analysis Alternative Chapter 1 Christopher Heil Introduction to Real Analysis Alternative Chapter 1 A Primer on Norms and Banach Spaces Last Updated: March 10, 2018 c 2018 by Christopher Heil Chapter 1 A Primer on Norms and Banach Spaces

More information

Lecture 2: Isoperimetric methods for the curve-shortening flow and for the Ricci flow on surfaces

Lecture 2: Isoperimetric methods for the curve-shortening flow and for the Ricci flow on surfaces Lecture 2: Isoperimetric methods for the curve-shortening flow and for the Ricci flow on surfaces Ben Andrews Mathematical Sciences Institute, Australian National University Winter School of Geometric

More information

ON A MEASURE THEORETIC AREA FORMULA

ON A MEASURE THEORETIC AREA FORMULA ON A MEASURE THEORETIC AREA FORMULA VALENTINO MAGNANI Abstract. We review some classical differentiation theorems for measures, showing how they can be turned into an integral representation of a Borel

More information

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM Contents 1. The Atiyah-Guillemin-Sternberg Convexity Theorem 1 2. Proof of the Atiyah-Guillemin-Sternberg Convexity theorem 3 3. Morse theory

More information

Exponential tail inequalities for eigenvalues of random matrices

Exponential tail inequalities for eigenvalues of random matrices Exponential tail inequalities for eigenvalues of random matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify

More information

Overview of normed linear spaces

Overview of normed linear spaces 20 Chapter 2 Overview of normed linear spaces Starting from this chapter, we begin examining linear spaces with at least one extra structure (topology or geometry). We assume linearity; this is a natural

More information

On the cells in a stationary Poisson hyperplane mosaic

On the cells in a stationary Poisson hyperplane mosaic On the cells in a stationary Poisson hyperplane mosaic Matthias Reitzner and Rolf Schneider Abstract Let X be the mosaic generated by a stationary Poisson hyperplane process X in R d. Under some mild conditions

More information

Bayesian inverse problems with Laplacian noise

Bayesian inverse problems with Laplacian noise Bayesian inverse problems with Laplacian noise Remo Kretschmann Faculty of Mathematics, University of Duisburg-Essen Applied Inverse Problems 2017, M27 Hangzhou, 1 June 2017 1 / 33 Outline 1 Inverse heat

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 3 August, 2012 Einstein equations (vacuum) The spacetime is a four dimensional manifold M with

More information

MATH Final Project Mean Curvature Flows

MATH Final Project Mean Curvature Flows MATH 581 - Final Project Mean Curvature Flows Olivier Mercier April 30, 2012 1 Introduction The mean curvature flow is part of the bigger family of geometric flows, which are flows on a manifold associated

More information

Lecture 6: September 19

Lecture 6: September 19 36-755: Advanced Statistical Theory I Fall 2016 Lecture 6: September 19 Lecturer: Alessandro Rinaldo Scribe: YJ Choe Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

Geometry of Ricci Solitons

Geometry of Ricci Solitons Geometry of Ricci Solitons H.-D. Cao, Lehigh University LMU, Munich November 25, 2008 1 Ricci Solitons A complete Riemannian (M n, g ij ) is a Ricci soliton if there exists a smooth function f on M such

More information

Laplace s Equation. Chapter Mean Value Formulas

Laplace s Equation. Chapter Mean Value Formulas Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic

More information

Optimal transport paths and their applications

Optimal transport paths and their applications Optimal transport paths and their applications Qinglan Xia University of California at Davis March 4, 2009 Outline Monge-Kantorovich optimal transportation (Classical) Ramified optimal transportation Motivation

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Week 9 November 13 November Deadline to hand in the homeworks: your exercise class on week 16 November 20 November Exercises (1) Show that if T B(X, Y ) and S B(Y, Z)

More information

A generic property of families of Lagrangian systems

A generic property of families of Lagrangian systems Annals of Mathematics, 167 (2008), 1099 1108 A generic property of families of Lagrangian systems By Patrick Bernard and Gonzalo Contreras * Abstract We prove that a generic Lagrangian has finitely many

More information

MORREY SPACES AND GENERALIZED CHEEGER SETS

MORREY SPACES AND GENERALIZED CHEEGER SETS MORREY SPACES AND GENERALIZED CHEEGER SETS QINFENG LI AND MONICA TORRES Abstract. We maximize the functional E h(x)dx, where E Ω is a set of finite perimeter, Ω is an open bounded set with Lipschitz boundary

More information

Optimal Transport: A Crash Course

Optimal Transport: A Crash Course Optimal Transport: A Crash Course Soheil Kolouri and Gustavo K. Rohde HRL Laboratories, University of Virginia Introduction What is Optimal Transport? The optimal transport problem seeks the most efficient

More information

Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian

Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian Amit Singer Princeton University Department of Mathematics and Program in Applied and Computational Mathematics

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

+ 2x sin x. f(b i ) f(a i ) < ɛ. i=1. i=1

+ 2x sin x. f(b i ) f(a i ) < ɛ. i=1. i=1 Appendix To understand weak derivatives and distributional derivatives in the simplest context of functions of a single variable, we describe without proof some results from real analysis (see [7] and

More information

Representing regions in 2 ways:

Representing regions in 2 ways: Representing regions in 2 ways: Based on their external characteristics (its boundary): Shape characteristics Based on their internal characteristics (its region): Both Regional properties: color, texture,

More information

DEVELOPMENT OF MORSE THEORY

DEVELOPMENT OF MORSE THEORY DEVELOPMENT OF MORSE THEORY MATTHEW STEED Abstract. In this paper, we develop Morse theory, which allows us to determine topological information about manifolds using certain real-valued functions defined

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

Local semiconvexity of Kantorovich potentials on non-compact manifolds

Local semiconvexity of Kantorovich potentials on non-compact manifolds Local semiconvexity of Kantorovich potentials on non-compact manifolds Alessio Figalli, Nicola Gigli Abstract We prove that any Kantorovich potential for the cost function c = d / on a Riemannian manifold

More information

Existence and Uniqueness

Existence and Uniqueness Chapter 3 Existence and Uniqueness An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect

More information

Constrained optimization

Constrained optimization Constrained optimization DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Compressed sensing Convex constrained

More information

Regularity of local minimizers of the interaction energy via obstacle problems

Regularity of local minimizers of the interaction energy via obstacle problems Regularity of local minimizers of the interaction energy via obstacle problems J. A. Carrillo, M. G. Delgadino, A. Mellet September 22, 2014 Abstract The repulsion strength at the origin for repulsive/attractive

More information

DS-GA 1002 Lecture notes 10 November 23, Linear models

DS-GA 1002 Lecture notes 10 November 23, Linear models DS-GA 2 Lecture notes November 23, 2 Linear functions Linear models A linear model encodes the assumption that two quantities are linearly related. Mathematically, this is characterized using linear functions.

More information

LECTURE 24: THE BISHOP-GROMOV VOLUME COMPARISON THEOREM AND ITS APPLICATIONS

LECTURE 24: THE BISHOP-GROMOV VOLUME COMPARISON THEOREM AND ITS APPLICATIONS LECTURE 24: THE BISHOP-GROMOV VOLUME COMPARISON THEOREM AND ITS APPLICATIONS 1. The Bishop-Gromov Volume Comparison Theorem Recall that the Riemannian volume density is defined, in an open chart, to be

More information

arxiv: v1 [math.mg] 27 Jun 2016

arxiv: v1 [math.mg] 27 Jun 2016 Reconstruction of n-dimensional convex bodies from surface tensors Astrid Kousholt arxiv:1606.0840v1 [math.mg] 7 Jun 016 Department of Mathematics, Aarhus University, Denmark Abstract In this paper, we

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 23, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 47 High dimensional

More information

Parameter Dependent Quasi-Linear Parabolic Equations

Parameter Dependent Quasi-Linear Parabolic Equations CADERNOS DE MATEMÁTICA 4, 39 33 October (23) ARTIGO NÚMERO SMA#79 Parameter Dependent Quasi-Linear Parabolic Equations Cláudia Buttarello Gentile Departamento de Matemática, Universidade Federal de São

More information

A note on scenario reduction for two-stage stochastic programs

A note on scenario reduction for two-stage stochastic programs A note on scenario reduction for two-stage stochastic programs Holger Heitsch a and Werner Römisch a a Humboldt-University Berlin, Institute of Mathematics, 199 Berlin, Germany We extend earlier work on

More information

Geometric and isoperimetric properties of sets of positive reach in E d

Geometric and isoperimetric properties of sets of positive reach in E d Geometric and isoperimetric properties of sets of positive reach in E d Andrea Colesanti and Paolo Manselli Abstract Some geometric facts concerning sets of reach R > 0 in the n dimensional Euclidean space

More information

Class 2 & 3 Overfitting & Regularization

Class 2 & 3 Overfitting & Regularization Class 2 & 3 Overfitting & Regularization Carlo Ciliberto Department of Computer Science, UCL October 18, 2017 Last Class The goal of Statistical Learning Theory is to find a good estimator f n : X Y, approximating

More information

THE STEINER FORMULA FOR EROSIONS. then one shows in integral geometry that the volume of A ρk (ρ 0) is a polynomial of degree n:

THE STEINER FORMULA FOR EROSIONS. then one shows in integral geometry that the volume of A ρk (ρ 0) is a polynomial of degree n: THE STEINER FORMULA FOR EROSIONS. G. MATHERON Abstract. If A and K are compact convex sets in R n, a Steiner-type formula is valid for the erosion of A by K if and only if A is open with respect to K.

More information

Penalized Barycenters in the Wasserstein space

Penalized Barycenters in the Wasserstein space Penalized Barycenters in the Wasserstein space Elsa Cazelles, joint work with Jérémie Bigot & Nicolas Papadakis Université de Bordeaux & CNRS Journées IOP - Du 5 au 8 Juillet 2017 Bordeaux Elsa Cazelles

More information

Supplement to: Subsampling Methods for Persistent Homology

Supplement to: Subsampling Methods for Persistent Homology Suppleent to: Subsapling Methods for Persistent Hoology A. Technical results In this section, we present soe technical results that will be used to prove the ain theores. First, we expand the notation

More information

Stochastic Proximal Gradient Algorithm

Stochastic Proximal Gradient Algorithm Stochastic Institut Mines-Télécom / Telecom ParisTech / Laboratoire Traitement et Communication de l Information Joint work with: Y. Atchade, Ann Arbor, USA, G. Fort LTCI/Télécom Paristech and the kind

More information

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that 1 Stokes s Theorem Let D R 2 be a connected compact smooth domain, so that D is a smooth embedded circle. Given a smooth function f : D R, define fdx dy fdxdy, D where the left-hand side is the integral

More information

Steiner s formula and large deviations theory

Steiner s formula and large deviations theory Steiner s formula and large deviations theory Venkat Anantharam EECS Department University of California, Berkeley May 19, 2015 Simons Conference on Networks and Stochastic Geometry Blanton Museum of Art

More information

Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon Measures

Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon Measures 2 1 Borel Regular Measures We now state and prove an important regularity property of Borel regular outer measures: Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon

More information

PCA with random noise. Van Ha Vu. Department of Mathematics Yale University

PCA with random noise. Van Ha Vu. Department of Mathematics Yale University PCA with random noise Van Ha Vu Department of Mathematics Yale University An important problem that appears in various areas of applied mathematics (in particular statistics, computer science and numerical

More information

Sobolev Mappings between Manifolds and Metric Spaces

Sobolev Mappings between Manifolds and Metric Spaces Sobolev Mappings between Manifolds and Metric Spaces Piotr Haj lasz Abstract In connection with the theory of p-harmonic mappings, Eells and Lemaire raised a question about density of smooth mappings in

More information

Master of Arts In Mathematics

Master of Arts In Mathematics ESTIMATING THE FRACTAL DIMENSION OF SETS DETERMINED BY NONERGODIC PARAMETERS A thesis submitted to the faculty of San Francisco State University In partial fulllment of The Requirements for The Degree

More information

3. (a) What is a simple function? What is an integrable function? How is f dµ defined? Define it first

3. (a) What is a simple function? What is an integrable function? How is f dµ defined? Define it first Math 632/6321: Theory of Functions of a Real Variable Sample Preinary Exam Questions 1. Let (, M, µ) be a measure space. (a) Prove that if µ() < and if 1 p < q

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 13: Entropy Calculations

Introduction to Empirical Processes and Semiparametric Inference Lecture 13: Entropy Calculations Introduction to Empirical Processes and Semiparametric Inference Lecture 13: Entropy Calculations Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and Operations Research

More information

Elements of Convex Optimization Theory

Elements of Convex Optimization Theory Elements of Convex Optimization Theory Costis Skiadas August 2015 This is a revised and extended version of Appendix A of Skiadas (2009), providing a self-contained overview of elements of convex optimization

More information

Topological vectorspaces

Topological vectorspaces (July 25, 2011) Topological vectorspaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ Natural non-fréchet spaces Topological vector spaces Quotients and linear maps More topological

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

Controllability of linear PDEs (I): The wave equation

Controllability of linear PDEs (I): The wave equation Controllability of linear PDEs (I): The wave equation M. González-Burgos IMUS, Universidad de Sevilla Doc Course, Course 2, Sevilla, 2018 Contents 1 Introduction. Statement of the problem 2 Distributed

More information

MATH 31BH Homework 1 Solutions

MATH 31BH Homework 1 Solutions MATH 3BH Homework Solutions January 0, 04 Problem.5. (a) (x, y)-plane in R 3 is closed and not open. To see that this plane is not open, notice that any ball around the origin (0, 0, 0) will contain points

More information

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space 1 Professor Carl Cowen Math 54600 Fall 09 PROBLEMS 1. (Geometry in Inner Product Spaces) (a) (Parallelogram Law) Show that in any inner product space x + y 2 + x y 2 = 2( x 2 + y 2 ). (b) (Polarization

More information

NONLINEAR ELLIPTIC EQUATIONS WITH MEASURES REVISITED

NONLINEAR ELLIPTIC EQUATIONS WITH MEASURES REVISITED NONLINEAR ELLIPTIC EQUATIONS WITH MEASURES REVISITED Haïm Brezis (1),(2), Moshe Marcus (3) and Augusto C. Ponce (4) Abstract. We study the existence of solutions of the nonlinear problem (P) ( u + g(u)

More information

1 Cheeger differentiation

1 Cheeger differentiation 1 Cheeger differentiation after J. Cheeger [1] and S. Keith [3] A summary written by John Mackay Abstract We construct a measurable differentiable structure on any metric measure space that is doubling

More information

for all x,y [a,b]. The Lipschitz constant of f is the infimum of constants C with this property.

for all x,y [a,b]. The Lipschitz constant of f is the infimum of constants C with this property. viii 3.A. FUNCTIONS 77 Appendix In this appendix, we describe without proof some results from real analysis which help to understand weak and distributional derivatives in the simplest context of functions

More information

The optimal partial transport problem

The optimal partial transport problem The optimal partial transport problem Alessio Figalli Abstract Given two densities f and g, we consider the problem of transporting a fraction m [0, min{ f L 1, g L 1}] of the mass of f onto g minimizing

More information

Structure theorems for Radon measures

Structure theorems for Radon measures Structure theorems for Radon measures Matthew Badger Department of Mathematics University of Connecticut Analysis on Metric Spaces University of Pittsburgh March 10 11, 2017 Research Partially Supported

More information

Extreme points of compact convex sets

Extreme points of compact convex sets Extreme points of compact convex sets In this chapter, we are going to show that compact convex sets are determined by a proper subset, the set of its extreme points. Let us start with the main definition.

More information

THESIS METRIC THICKENINGS OF EUCLIDEAN SUBMANIFOLDS. Submitted by. Joshua R. Mirth. Department of Mathematics

THESIS METRIC THICKENINGS OF EUCLIDEAN SUBMANIFOLDS. Submitted by. Joshua R. Mirth. Department of Mathematics THESIS METRIC THICKENINGS OF EUCLIDEAN SUBMANIFOLDS Submitted by Joshua R. Mirth Department of Mathematics In partial fulfillment of the requirements For the Degree of Master of Science Colorado State

More information

In English, this means that if we travel on a straight line between any two points in C, then we never leave C.

In English, this means that if we travel on a straight line between any two points in C, then we never leave C. Convex sets In this section, we will be introduced to some of the mathematical fundamentals of convex sets. In order to motivate some of the definitions, we will look at the closest point problem from

More information

Non commutative Khintchine inequalities and Grothendieck s theo

Non commutative Khintchine inequalities and Grothendieck s theo Non commutative Khintchine inequalities and Grothendieck s theorem Nankai, 2007 Plan Non-commutative Khintchine inequalities 1 Non-commutative Khintchine inequalities 2 µ = Uniform probability on the set

More information

Introduction. Hausdorff Measure on O-Minimal Structures. Outline

Introduction. Hausdorff Measure on O-Minimal Structures. Outline Introduction and Motivation Introduction Hausdorff Measure on O-Minimal Structures Integral geometry on o-minimal structures Antongiulio Fornasiero fornasiero@mail.dm.unipi.it Università di Pisa Conference

More information

Hamburger Beiträge zur Angewandten Mathematik

Hamburger Beiträge zur Angewandten Mathematik Hamburger Beiträge zur Angewandten Mathematik Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations Klaus Deckelnick and Michael

More information

PATH FUNCTIONALS OVER WASSERSTEIN SPACES. Giuseppe Buttazzo. Dipartimento di Matematica Università di Pisa.

PATH FUNCTIONALS OVER WASSERSTEIN SPACES. Giuseppe Buttazzo. Dipartimento di Matematica Università di Pisa. PATH FUNCTIONALS OVER WASSERSTEIN SPACES Giuseppe Buttazzo Dipartimento di Matematica Università di Pisa buttazzo@dm.unipi.it http://cvgmt.sns.it ENS Ker-Lann October 21-23, 2004 Several natural structures

More information

Advances in Manifold Learning Presented by: Naku Nak l Verm r a June 10, 2008

Advances in Manifold Learning Presented by: Naku Nak l Verm r a June 10, 2008 Advances in Manifold Learning Presented by: Nakul Verma June 10, 008 Outline Motivation Manifolds Manifold Learning Random projection of manifolds for dimension reduction Introduction to random projections

More information

1 Convexity explains SVMs

1 Convexity explains SVMs 1 Convexity explains SVMs The convex hull of a set is the collection of linear combinations of points in the set where the coefficients are nonnegative and sum to one. Two sets are linearly separable if

More information

Measurable functions are approximately nice, even if look terrible.

Measurable functions are approximately nice, even if look terrible. Tel Aviv University, 2015 Functions of real variables 74 7 Approximation 7a A terrible integrable function........... 74 7b Approximation of sets................ 76 7c Approximation of functions............

More information

Lebesgue Measure on R n

Lebesgue Measure on R n 8 CHAPTER 2 Lebesgue Measure on R n Our goal is to construct a notion of the volume, or Lebesgue measure, of rather general subsets of R n that reduces to the usual volume of elementary geometrical sets

More information