Available at Vol. 1, No. 1 (2006) pp

Size: px
Start display at page:

Download "Available at Vol. 1, No. 1 (2006) pp"

Transcription

1 Avilbl hp://pvmu.du/pgs/398/sp Vol., No. (6) pp Applicions nd Applid Mhmics (AAM): An Inrnionl Journl ANALYSIS OF AN SIRS AGE-STRUCTURED EPIDEMIC MODEL WITH VACCINATION AND VERTICAL TRANSMISSION OF DISEASE Mohmmd El-Dom Cnr for Advncd Mhmicl Scincs (CAMS) Collg Hll, Room 46 Amricn Univrsiy of Biru P. O. Box: -36 Biru-Lbnon E-Mil: biomh4@yhoo.com Tlphon: (96) or x. 439 Fx: (96) Rcivd July, 5; rvisd Fbury 8, 6; ccpd April 8, 6 Absrc An SIRS g-srucurd pidmic modl for vriclly s wll s horizonlly rnsmid diss undr vccinion is invsigd whn h friliy, morliy nd rmovl rs dpnd on g nd h forc of infcion of proporion mixing ssumpion yp, nd vccinion wns ovr im. W prov h xisnc nd uniqunss of soluion o h modl quions, nd show h soluions of h modl quions dpnd coninuously on h iniil g-disribuions. Furhrmor, w drmin h sdy ss nd obin n xplicily compubl hrshold condiion, in rms of h dmogrphic nd pidmiologicl prmrs of h modl; w hn sudy h sbiliy of h sdy ss. W lso compr h bhvior of h modl wih h on wihou vricl rnsmission. Kywords: Vricl rnsmission,horizonl rnsmission,ag-srucur, Epidmic, Sbiliy,Proporion mixing MSC : 45K5; 45M; 35A5; 35B3; 35B35; 35B45; 35L4; 9D3; 9D5. Inroducion In his ppr, w sudy n SIRS g-srucurd pidmic modl, whr g is ssumd o b h chronologicl g i.. h im sinc birh. Th diss cuss so fw fliis h hy cn b nglcd, nd is horizonlly s wll s vriclly rnsmid. Horizonl rnsmission is h pssing of infcion hrough som dirc or indirc conc wih infcd individuls, for xmpl, mlri nd ubrculosis r horizonlly rnsmid disss. Vricl rnsmission is h pssing of infcion from prns o nwborn or unborn offspring, for xmpl, AIDS, Chgs nd Hpiis B r vriclly (s wll s horizonlly) rnsmid disss. Vricl rnsmission plys n imporn rol in minining som disss, for xmpl, s Busnbrg, l. (993), (988, p. 379), (98), (988, p. 8), (99) nd Busnbrg (986). In Fin (975), svrl xmpls of vriclly rnsmid disss r givn, nd in Busnbrg, l. (993), book is dvod for h sudy of h modls nd dynmics of vriclly rnsmid disss. Svrl rcn pprs hv dl wih g-dpndn vccinion modls, for xmpl, Hhco (983), (989), (997), (), Diz, l. (985), Diz (98), Kzmnn, l. (984), Schnzl (984), Andrson, l. (999), El-Dom (), (), (5), (6), M u llr (994), (998), Hdlr, l. (996), Knox (98), McLn (986), Couinho, l. (993), Lopz, l. (), Grnhlgh (988),(99), Csillo-Chvz, l. (998), Li, l. (4), nd Thim (). Much of his prvious work ssumd h h ol populion hs fixd siz. As on migh xpc 36

2 37 M. El-Dom hr r siuions, for xmpl, in dvloping counris, whr i is ncssry o considr ol populion sizs h vry wih im, morliy du o diss nd rducion of birh r du o infcion. Som of h ffcs of such ssumpions r considrd by McLn (986), El-Dom (), (4) nd Hdlr, l. (996). W no h svrl pprs hv dl wih SIR g-srucurd pidmic modls, bu wihou vccinion, for xmpl, Thim (99), Andrsn (995), Chipo, l. (995), Inb (99), Ch, l. (998), Grnhlgh (987) nd Csillo-Chvz, l. (989). Also, w no h som vccins wn ovr im giving ris o SIRS yp modls, for xmpl, s, Li, l. (4). In his ppr, w sudy n SIRS g-srucurd pidmic modl whn h diss is vriclly s wll s horizonlly rnsmid, nd hrfor our rsuls gnrliz hos in Li, l. (4), wr vricl rnsmission is no considrd. W prov h xisnc nd uniqunss of soluion o h modl quions nd show h soluions of h modl quions dpnd coninuously on h iniil g-disribuions. W drmin h sdy ss of h modl by proving hrshold horm nd obining n xplicily compubl hrshold R ν, in rms of h dmogrphic nd pidmiologicl prmrs of h modl, known s h rproducion numbr in h prsnc of vccinion srgy ν ( ), s in Hdlr, l. (996) or h n rplcmn rio, s in Thim (). And hnc, w show h R ν incrss wih q, which is h probbiliy of vriclly rnsmiing h diss (s scion for dfiniions) nd hrfor, incrss h liklihood h n ndmic will occur; lso R ν is usd o drmin criicl vccinion covrg which will rdic h diss wih minimum vccinion covrg. In ddiion, w show h h modl givs ris o coninuum of posiiv ndmic quilibriums in h cs of non-fril infcibls. This siuion dos no occur if hr is no vricl rnsmission, for xmpl, s, Li, l. (4). W lso sudy h sbiliy of h sdy ss. W sudy h sbiliy of h diss-fr quilibrium nd show h h diss-fr quilibrium is loclly sympoiclly sbl if R ν <, nd unsbl if R ν >. Also, w show h h diss-fr quilibrium is globlly sbl if R <, whr R is h bsic rproducion numbr, nd is inrprd s h vrg numbr of scondry infcions h occur whn n infciv is inroducd ino olly suscpibl populion. For ndmic quilibriums, w obin complicd chrcrisic quion, h llows us o prov locl sympoic sbiliy, in som spcil css. In ddiion, w driv gnrl formuls for h chrcrisic quions, in rms of ingrl quions. Alhough w do no obin xplici formuls for h soluions of hs ingrl quions, w will us hs ingrl quions o dduc h if h forc of infcion is sufficinly smll, hn n ndmic quilibrium is lwys loclly sympoiclly sbl. Th orgnizion of his ppr is s follows: in scion w dscrib h modl nd obin h modl quions; in scion 3 w rduc h modl quions o svrl subsysms nd prov h xisnc nd uniqunss of soluion s wll s h coninuous dpndnc on iniil gdisribuions; in scion 4 w drmin h sdy ss; in scion 5 w sudy h sbiliy of h sdy ss; in scion 6 w conclud our rsuls. Th Modl W considr n g-srucurd populion of vribl siz xposd o communicbl diss. Th diss is vriclly s wll s horizonlly rnsmid nd cuss so fw fliis h hy cn b nglcd. W ssum h following. s(,), i(,) nd r(,), rspcivly, dno h g-dnsiy for suscpibl, infciv nd immun individuls of g im. Thn

3 AAM: Inrn. J., Vol. No. (6) 38 sd id (, ) = (, ) = ol numbr of suscpibl individuls im of gs bwn nd, ol numbr of infciv individuls im of gs bwn nd. And similrly for r(,). W ssum h h ol populion consiss nirly of suscpibl, infciv nd immun individuls. L k (, ) dno h probbiliy h suscpibl individul of g is infcd by n infciv of g. W furhr ssum h, k (, )= k( ). k( ), which is know s h ``proporion mixing ssumpion'', s Diz, l. (985). Thrfor, h horizonl rnsmission of h diss for h suscpibl individuls occurs h following r: k ( ) s(, ) k ( ) i(, ) d, whr k ( ) nd k ( ) r boundd, nonngiv, coninuous funcions of. Th rm k ( ) k ( ) i(, ) d, is clld ``forc of infcion'' nd w l λ()= k( id )(,). And immun individuls r infcd du o wning of vccin ovr im h following r: ε k ( ) r(, ) ( ), λ whr ε is posiiv rl numbr [,]. Th friliy r β ( ) is nonngiv, coninuous funcion, wih compc suppor [, A ], ( A >). Th numbr of birhs of suscpibl individuls pr uni im is givn by β s(, )= ( )[ s (, ) ( qi ) (, ) r (, )] dq, [,], whr q is h probbiliy of vriclly rnsmiing h diss. Accordingly ll nwborns from suscpibl nd immun individuls r suscpibl, bu porion q of nwborns from infcd prns r infciv, i.., hy cquir h diss vi birh (vricl rnsmission) nd hrfor, β i(, ) = q ( ) i(, ) d, nd r(, ) =. Th dh r μ ( ) is h sm for suscpibl, infciv nd immun individuls, nd μ ( ) is nonngiv, coninuous funcion nd [, ) such h μ( )> μ > > nd μ( )> μ( ) > >. Th cur r γ ( ) is boundd, nonngiv, coninuous funcion of. Th vccinion r ν ( ) is boundd, nonngiv, coninuous funcion of. Th vccinion wns in immun individuls nd hy bcom suscpibl r δ ( ) which is boundd, nonngiv, coninuous funcion of. Th iniil g disribuions s (,)= s ( ), i (,)= i ( ), nd r (,)= r ( ) r coninuous, nonngiv nd ingrbl funcions of [, ). Ths ssumpions ld o h following sysm of nonlinr ingro-pril diffrnil quions wih non-locl boundry condiions, which dscribs h dynmics of h rnsmission of h diss.

4 39 M. El-Dom s (, ) s (, ) [ μ( ) ν( )] s(, )= k( ) s(, ) λ( ) δ( ) r(, ), >, >, i (, ) i (, ) [ μ( ) γ( )] i (, )= k( s ) (, ) λ( ) εk( r ) (, ) λ( ), >, >, r (, ) r (, ) [ μ( ) δ( )] r(, ) = ν ( s ) (, ) γ( i ) (, ) εk( r ) (, ) λ( ), >, >, s(, ) = β ( )[ s (, ) ( qi ) (, ) r (, )] d,, i(, ) = q β ( ) i(, ) d,, r(, ) =,, λ()= k ( id )(,),, s (,) = s( ), i (,) = i( ), r (,) = r( ),. () W no h problm (.) is n SIRS pidmic modl, h sm modl bu wih q =, i.., h cs of no vricl rnsmission, is dl wih in Li, l. (4), nd h sdy ss r drmind nd h sbiliy of h diss-fr quilibrium is sudid. In wh follows, w show h problm (.) hs uniqu soluion h xiss for ll im. Furhrmor, w show h soluions of problm (.) dpnd coninuously on h iniil gdisribuions. Also, w drmin h sdy ss nd sudy hir sbiliy. Rducion of h Modl, h Exisnc nd Uniqunss of Soluion nd Coninuous Dpndnc on Iniil Ag-Disribuions In his scion, w dvlop som prliminry forml nlysis of problm (.) nd show h problm (.) hs uniqu soluion h xiss for ll im. Furhrmor, w show h soluions of problm (.) dpnd coniuously on h iniil g-disribuions. W dfin p(, ) by p(, )= s (, ) i (, ) r (, ). Thn from (.), by dding h quions, w find h p(, ) sisfis h following McKndrick-Von Forsr quion: p (, ) p (, ) μ( ) p(, )=, >, >, p(, ) = B( ) = β ( ) p(, ) d,, () p (,)= p( )= s( ) i( ) r( ),. No h problm (3.) hs uniqu soluion h xiss for ll im, s Bllmn, l. (963), Fllr (94) nd Hoppnsd (975). Th uniqu soluion is givn by p ( ) π( )/ π( ), >, p (, )= (3) B( ) π ( ), <, whr π ( ) is givn by π μ( τ) ( )=,

5 AAM: Inrn. J., Vol. No. (6) 4 nd B( ) hs h following sympoic bhvior s : p B()=[ c θ ()], (4) whr p is h uniqu rl numbr which sisfis h following chrcrisic quion: p β( ) π( ) d =, (5) θ () is funcion such h θ ( ) s nd c is consn. Using (3.)-(3.), w obin h B( ) sisfis π ( ) B()= ( ) ( ) B( ) d ( ) p ( ) d. π ( ) β π β (6) Using (3.5) nd Gronwll s inquliy, w obin ( ( ) ) B ( ) ( ) p( ) [, ) β μ β, L (7) whr μ is givn by μ = inf μ( ). [, ) (8) From (3.) nd (3.6), w obin h following priori sim: ( ( ) ) pd (, ) p ( ) [, ) β μ. L (9) Also, from (.), s(,), i(,) nd r(,) sisfy h following sysms of quions: s (, ) s (, ) [ μ( ) ν( )] s(, )= k( ) s(, ) λ( ) δ( ) r(, ), >, >, s(, )= β ( )[ s (, ) ( qi ) (, ) r (, )] d,, () s (,) = s( ),, i (, ) i (, ) [ μ( ) γ( )] i(, )= k( ) s(, ) λ( ) εk( ) r(, ) λ( ), >, >, i(, ) = q β ( ) i(, ) d,, () i (,) = i ( ),, r (, )= p (, ) s (, ) i (, ). () By ingring problm (3.9) long chrcrisic lins = cons., w find h s (, ) sisfis

6 4 M. El-Dom μ( τ) ν( τ) δ( τ) k( τ) λ( τ) s( ) μ( τ) ν( τ) δ( τ) k( τ) λ( τ) δ( ) [ p(, ) i(, ) ] d, >, s (, )= (3) ντ ( ) δτ ( ) k( τλ ) ( [ B ( ) i(, ) ] τ) π ( ) ( ) ( ) ( ) k( ) ( ) d μτ ντ δτ τ λ τ τ δ( ) [ p(, ) i(, ) ] d, <, By ingring problm (3.) long chrcrisic lins = cons., nd using (3.), w find h i (, ) sisfis μ( τ) γ( τ) εk( τ) λ( τ) i ( ) μ( τ) γ( τ) εk( τ) λ( τ) k ( ) λ( ) μ( τ) ν( τ) δ( τ) k( τ) λ( τ) [( ε ){ s( ) μ( τ) b ν( τ) δ( τ) k ( τ) λ( τ) δ ( b) [ p( b, b) i( b, b) ] db} εp(, )] d, >, i (, )= (4) ε k( τ) λ( τ) i(, ) π ( ) μτ ( ) γτ ( ) εk( τ) λ( τ) k ( ) λ( ) μτ ( ) ντ ( ) δτ ( ) k( τ) λ( τ) [( ε ){[ B ( ) i(, ) ] μτ ( ) ντ ( ) δτ ( ) k( τ) λ( τ) b δ ( b) [ p(, b b) ib (, b) ] db} εp(, )] d, <, whr π ( ) is givn by π ( )= π( ). γ ( τ) (5) I is worh noing h if w cn sblish soluion for problm (3.3), hn soluion for problm (3.) is drmind, nd consqunly soluion for problm (.) is drmind by using quion (3.). To sblish h xisnc nd uniqunss of soluion o problm (.), w dfin h following s E o sisfy: E = { i(, ) : i(., ) L([, )); C[, ]), [, ), [, ], i(, ) = sup i(, ) }, L ] [,

7 AAM: Inrn. J., Vol. No. (6) 4 whr C[, ] dnos h Bnch spc of coninuous funcions in [, ] nd L ([, )) dnos h spc of quivln clsss of Lbsgu ingrbl funcions. W no h E is Bnch spc. In ordr o fcili our fuur clculions, w nd h following lmm: Lmm Suppos h xy,, hn y x y x. x Proof: L f ( x) =, hn us h mn vlu horm o sblish h rquird rsul. Also, for h sm purpos w no h by suibl chngs of vribls nd rvrsing of h ordr of ingrion, w obin h ( ) ( ) k( ) ( ) d μ τ γ τ ε τ λ τ τ k ( ) λ( ) δ( b) ( ) ( ) ( ) ( ) ( ) b μ τ ν τ δ τ k τ λ τ p( b, b) dbd d ( ) ( ) k( ) ( ) d μτ γτ ε τ λ τ τ k ( ) λ( ) δ( b) ( ) ( ) ( ) k( ) ( ) d b μτ ντ δτ τ λ τ τ p(, b b) dbd d μτ ( ) γτ ( ) εk( τ) λτ ( ) = k ( b ) λ( ) δ( ) b b ( ) ( ) ( ) ( ) ( ) k b d p(, b) d ddb. μτ ντ δτ τ λτ τ In h nx horm, w prov h xisnc nd uniqunss of soluion o problm (.) vi fixdpoin horm. Thorm Problm (.) hs uniqu soluion h xiss for ll im. Proof: Dfin h s Q by Q { i Ei i M} sisfis h following: (6) = (, ), (, ), (, ), whr M is consn which ( ( ) M > p( ) L β. μ ) (7) W no h Q is closd s in. Now, for fixd iniil g-disribuions s ( ), i ( ), r ( ) nd p ( ), dfin h mpping T : Q E E by E

8 43 M. El-Dom μ( τ) γ( τ) εk( τ) λ( τ) i ( ) μ( τ) γ( τ) εk( τ) λ( τ) k ( ) λ( ) μ( τ) ν( τ) δ( τ) k( τ) λ( τ) [( ε ){ s( ) μ( τ b ) ν( τ) δ( τ) k ( τ) λ( τ) δ ( b) [ p ( bb, ) i ( bb, )] db} εp (, )] d, >, Ti(, )= (8) ε k( τλ ) ( τ) i(, ) π ( ) μτ ( ) γτ ( ) εk( τ) λ( τ) k ( ) λ( ) μτ ( ) ντ ( ) δτ ( ) k( τ) λ( τ) [( ε ){[ B ( ) i(, ) ] μτ ( ) ντ ( ) δτ ( ) k( τ) λ( τ) b δ ( b) [ pb (, b) ib (, b) ] db} εp(, )] d. <, W noic h, by h priori sim (3.8), w obin h following sim for i (, ): ( ( ) ) id (, ) p ( ). L β μ (9) Accordingly, w s h, T mps Q ino Q. Now, w look for fixd poin of his mpping o provid xisnc nd uniqunss of soluion for problm (.). To his nd, w l i (, ) nd i (, ) b lmns of Q, hn using (3.6)-(3.8), (3.5), nd Lmm (3.), w obin h following: Ti(., ) Ti (.,) K( M, ) i(., ) i (., ) d, L L () whr KM (, ) is consn which dpnds on M nd. Thrfor, Ti(., ) Ti (., ) K( M, ) i(., ) i (., ). () And hus, by inducion, for ch posiiv ingr n, w obin [ (, )] n n n KM T i(., ) T i(., ) i(., ) i (., ). () n! N Inquliy (3.) implis h hr xiss posiiv ingr N such T is sric conrcion on Q. Thus T hs uniqu fixd poin in Q. Sinc is rbirry, i follows h problm (.) hs uniqu soluion h xiss for ll im. This compls h proof of h horm. In h nx horm, w show h soluions of problm (.) dpnd coninuously on h iniil gdisribuions, hrfor, problm (.) is wll posd.

9 AAM: Inrn. J., Vol. No. (6) 44 Thorm 3: L p(, ) nd p (, ) b wo soluions of problm (.) corrsponding o iniil gdisribuions p( ), s( ), i( ), r( ) nd p( ), s( ), i( ), r( ), rspcivly. Also, suppos h p(, ) = B( ) nd p(, ) = B( ), nd l i (, ) nd i (, ) b h corrsponding soluions of problm (3.). Thn h following propris hold: ( β ( ) μ ) B ( ) B( ) β ( ) p( ) p ( ), ( β ( ) (., ) (., ) ( ) ( ), L L p p p p i(., ) i (., ) L L μ ) K ( M, ) [ s ( ) s ( ) i ( ) i ( ) C p ( ) p ( ) ], (4) L L L (3) whr C is consn h dpnds on h prmrs of h modl nd. Proof. No h (3.) nd (3.3) follow dircly from (3.6) nd (3.8), rspcivly, by linriy. To obin (3.4), firs w us (3.3) nd (3.5), nd hn (3.9) o obin h following: i(., ) i (., ) [ s ( ) s ( ) i ( ) i ( ) C p ( ) p ( ) ] L L L KM (, ) i(., ) i(., ) d. L Now, h forgoing inquliy yilds (3.4) by h id of Gronwll s inquliy. This compls h proof of h horm. W no h (3.)-(3.4), show h soluions of problm (.) dpnd coninuously on h iniil g-disribuions, nd hrfor, problm (.) is wll posd. L Th Sdy Ss In his scion, w look h sdy s soluion of problm (.), undr h ssumpion h h ol populion hs lrdy rchd is sdy s disribuion p ( ) = cπ ( ), i.., w ssum h (3.4) is sisfid wih p =, s, for xmpl, Busnbrg, l. (988, p. 379). W considr h following rnsformions, clld h g-profils of suscpibl nd infciv, rspcivly: s (, ) i (, ) u (, )=, v (, )=. p ( ) p ( ) Thn wih hs rnsformions, (3.9)-(3.) sisfy h following sysms of ingro-pril diffrnil quions: u (, ) u (, ) ν ( u ) (, ) = k( ) u(, ) λ( ) δ( )[ u(, ) v(, )], >, >, (5) u(,)= v(,),, u (,) = u( ),,

10 45 M. El-Dom v (, ) v (, ) γ ( v ) (, ) = k( ) u(, ) λ( ) εk( ) λ( )[ u(, ) v(, )], >, >, v(,)= q β() π()(,) v d,, v (,)= v ( ),. (6) A sdy s u ( ), v ( ), nd λ mus sisfy h following quions: du ( ) d u () = v (), [ ν( ) k( ) λ δ( )] u ( )= δ( )[ v ( )], >, (7) dv ( ) [ γ( ) εk( ) λ ] v ( ) = λ k( )[ ε ( ε) u ( )], >, d v ()= q β( ) π( ) v ( ) d, (8) λ = c k ( ) π( ) v ( ) d. (9) Aniciping our fuur nds, w dfin hrshold prmr R ν, nd is givn by whr ( ) f γτ ( ) R = c k ( ) π( ) k ( ) D ( ) dd ν γτ ( ) f cq β( ) π( ) k ( ) D ( ) dd k ( ) π ( ) d, q β( ) π ( ) d D nd π ( ) r dfind s f (3) [ ντ ( ) δτ ( )] d Df ( )= ( ε ) ν ( ) τd, (3) π π ( )= ( ). γ ( τ) (3)(33) Hr, w no h h hrshold prmr R ν, known s h rproducion numbr in h prsnc of h vccinion srgy ν ( ), s in Hdlr, l. (996) or h n rplcmn rio, s in Thim (). And if w s ν ( ) =, in h formul for R ν, hn w obin R, usully clld h bsic rproducion numbr, nd is inrprd s h xpcd numbr of scondry css producd, in lifim, by n infciv, in olly suscpibl populion. Also, from quions (4.6)-(4.7), w cn s h R ν dcrss wih ν ( ), nd hnc Rν < R. In h following rsul, w drmin spcil cs of h sdy s soluion of problm (.), nd, in priculr, w look wh is clld diss-fr quilibrium, nd w show h i is possibl h λ = nd posiiv ndmic quilibrium xiss, in fc, coninuum of posiiv ndmic

11 AAM: Inrn. J., Vol. No. (6) 46 quilibriums. This bhvior is solly crd by vricl rnsmission nd is no prsn whn q =. Thorm 4 Suppos h h following condiions hold: (i) k ( ) is idniclly zro, (ii) q =, nd (iii) h suppor of γ ( ) lis o h righ of h suppor of β ( ). Thn, problm (.) givs ris o coninuum of ndmic quilibriums of h form: [ ντ ( ) δτ ( )] [ ( ) ( )] d ντ δτ τ u ( )=( v ()) δ ( ) v ( ) d, (34) whr h rl numbr v () (,], γ ( τ) v ( )= v (), (35) is rbirry. If ny on of h condiions in () dos no hold hn, if λ =, hn h sdy s of problm (.) is h diss-fr quilibrium: [ ντ ( ) δτ ( )] [ ( ) ( )] d ντ δτ τ v u δ d ( )=, ( )= ( ). (36) Suppos h h following condiions hold: (i) k ( ) is no idniclly zro,(ii) q =, nd (iii) h suppors of γ ( ) nd k ( ) li o h righ of h suppor of β ( ). Thn problm (.) givs ris o coninuum of ndmic quilibriums of h form: [ ντ ( ) δτ ( ) λ k [ ντ ( ) δτ ( ) λk( τ] u ( )=( v ()) δ ( ) v ( ) d, (37) [ γτ ( ) ελk [ γτ ( ) ελk v ( )= v () λ k ( ) F( ) d, (38) whr h rl numbr v () (,], is rbirry, nd F( ) is dfind s F (39) ( )= ε ( ε) u ( ). Proof: To prov (), w no h if w solv h sysm of h ordinry diffrnil quions (4.3)- (4.4), hn w obin (4.)-(4.3). Thn, if w s λ = in (4.3) nd usd h rsuling quion nd quion (4.4) o find v (), w find h v () is undrmind by (ii) nd (iii). Now, using quion (4.5), w obin h following quion for λ nd v () : λ = () ( ) π( ) [ γτ ( ) ελ k cv k d [ γτ ( ) ελk cλ k π k F d ( ) ( ) ( ) ( ) d. Thrfor, if w s λ =, hn w s h v () is undrmind by (i). And ccordingly, for rbirry fixd v () (,], compls h proof of (). (4) w obin n ndmic quilibrium givn by (4.9)-(4.). This To prov (), w no h i is sy o s h v () =, ihr from (4.5) nd λ =, if k ( ) is

12 47 M. El-Dom no idniclly zro or if ny of h ohr condiions in () is no sisfid, hn q β( ) π ( ) d < nd hrfor, using (4.4), w s h v () =. Now, if w us quions (4.)-(4.3), w obin (4.). This compls h proof of (). To prov (3), w no h using (4.4) nd (4.3), i is sy o s h ssumpions (i)-(iii). Thrfor, for rbirry fixd v () (,], v () is undrmind, by w us quion (4.5) o drmin ls on λ >. To his nd, w rwri quion (4.5) in h following form: [ γτ ( ) ελk λ c k ( ) π( ) k( ) F( ) d d π [ γτ ( ) ελ k = cv () k ( ) ( ) d. (4) W cn sily s h h righ-hnd sid of (4.6) is dcrsing funcion of λ, wih vlu grr hn zro whn λ =, sinc k ( ) is no idniclly zro, nd nds o zro if λ. On h ohr hnd, h lf-hnd sid of (4.6) hs vlu qul o zro whn λ = nd pprochs, whn λ. Thrfor, quion (4.6) hs soluion λ >, nd his vlu of λ givs ris o n ndmic quilibrium vi quions (4.)-(43). Hr, w no h h sysm of ODEs (4.3)-(4.4) hs uniqu soluion for fixd λ nd known v (). Also, w cn sily s h u ( ) nd known v () : whr f λ sisfis h following ingrl quion, which hs uniqu soluion for fixd ( ; ; v ()) nd u ( ) = f( ; λ ; v ()) K( s, ; λ ) u ( s) ds, λ (4) Ksλ (, ; ) r funcions h dpnd on h prmrs of h modl only, for fixd λ nd known v (), nd hy r dfind s follows: ( ; ; ()) = ( ()) ( ) ν( ) δ( ) λ k ( τ) [ ν( τ) δ( τ) λ k f λ v v δ d [ ντ ( ) δτ ( ) λk γτ ( ) εk( τ) v () δ ( ) d ελ [ ντ ( ) δτ ( ) λk δ ( ) k ( s) (43) s γτ ( ) εk( τ) ds d, ν( τ) δ( τ) λ k( τ) γ( τ) ελ k( τ) d τ s (, ; λ )= ( ελ ) () δ ( ). s Ks k s d (44) This compls h proof of (3) nd hrfor, h proof of h horm is compl. In h nx rsul, w prov h xisnc of n ndmic quilibrium whn >, R ν howvr, his

13 AAM: Inrn. J., Vol. No. (6) 48 ndmic quilibrium my no b uniqu du o possibl lck of monooniciy, w no h his is lso h cs for svrl g-srucurd pidmic modls, for xmpl, s, Csillo-Chvz, l. (998), Ch, l. (998) nd El-Dom (6). Thorm 5 Suppos h q, nd R ν >, hn λ = nd λ > r possibl sdy ss for problm (.). Proof: No h if q, hn w cn us (4.4) nd (4.3) o obin h following: [ γτ ( ) ελk q ( ) ( ) k ( ) F( ) d ελ k( τ) q β( ) π ( ) d λ β π d v () =. (45) Now, w cn us (4.5) nd (4.) o obin h ihr λ = quion: [ γτ ( ) ελk = c k ( ) π( ) k ( ) F( ) dd or λ sisfis h following [ γτ ( ) ελk ελ k( τ) cq β( ) π( ) k( ) F( ) dd k( ) π( ) d (46), ελ k( τ) q β( ) π ( ) d whr F( ) is dfind by quion (4.4). Noicing h, if q, i.., q < hn from quion (4.4), w s h u () > nd hrfor, v ( )< [, ). Accordingly, from quion (4.5), w s h, λ < c k( ) π( ) d. Now, using his vlu for λ in quion (4.) nd h fc h v ( )< [, ), nd quion (4.3), w cn dduc h h righ-hnd sid of quion (4.) is lss hn on his vlu of λ. Also, i is sy o s h h righ-hnd sid of (4.) is qul o R ν >, whn λ =. Thrfor, quion (4.) hs ls on soluion λ >. This compls h proof of h horm. Hr, w no h from horm (4.), n ndmic quilibrium would xiss if R ν >, nd from quion (4.6) h ffc of vricl rnsmission vi is prmr q which is h probbiliy of vriclly rnsmiing h diss, is sn R ν incrss wih q [,), nd hrfor incrss h liklihood h n ndmic will occur. So, in ordr o prvn n oubrk nd conrol h sprd of h diss, w nd o rduc R ν o vlu lss hn on. If ν ( ) is consn hn hr xiss uniqu vlu for ν ( ) which rducs R ν o on, bu if ν ( ) is g-dpndn nd no consn hn ν ( ) cn b chosn ccording o som consrin h rducs h cos of vccinion or in gnrl o obin wh is clld n opiml vccinion srgy, for xmpl, s M u llr (994), (998), Hdlr, l. (996), Csillo-Chvz, l. (998) nd Li, l. (4).

14 49 M. El-Dom If q =, nd ohr condiions hold, for xmpl, s Thorm (4.), hn problm (.) givs ris o coninuum of ndmic sdy ss, nd his siuion dos no occur whn hr is no vricl rnsmission. Also, if q =, nd γ ( ) is idniclly zro, hn problm (.) hs h sdy s s h ol populion consising of infciv only. Also, i is sy o s h his sdy s is cully, by uniqunss, h soluion for problm (.), in his spcil cs. Th ffcs of crin vccinion srgis for h rdicion of imporn communicbl disss such s msls, rubll, prussis nd ubrculosis r dl wih in svrl pprs, for xmpl, s Hhco (983), (), (997), (989), Diz (98), Knox (98), McLn (986), Kzmnn, l. (984), Schnzl (984), Couinho, l. (993), Grnhlgh (99) nd Andrson, l (999). Sbiliy of h Sdy Ss In his scion, w sudy h sbiliy of h sdy ss of problm (.), nd, in priculr, w sudy h sbiliy of h diss-fr quilibrium, nd h ndmic quilibriums. Thorm 6 Th diss-fr quilibrium, givn by quion (4.), is loclly sympoiclly sbl if R ν <, nd unsbl if R ν >. Proof. Srighforwrd linrizion of quions (4.)-(4.) round h diss-fr quilibrium yilds h following chrcrisic quion: [ γτ ( ) ξ] = c k ( ) π( ) k ( ) F( ) dd [ γτ ( ) ξ] β π π (47) ξ cq ( ) ( ) k ( ) F( ) d d k ( ) ( ) d, ξ q β( ) π ( ) d whr F( ) is givn by quion (4.4) nd u ( ) in h dfiniion of F( ) is dfind s in quion (4.), nd ξ is complx numbr. W no h, whn ξ is rl, hn h righ-hnd sid of quion (5.) is dcrsing funcion of ξ, nd pprochs zro s ξ, nd quls R ν whn ξ =. Thrfor, quion (5.) hs soluion ξ > if R ν >. Accordingly, h rivil quilibrium is unsbl if R ν >. And if R ν <, hn i is clr from (4.6) h h only possibl soluions of quion (5.) mus sisfy ξ <. Th locl sympoic sbiliy of h diss-fr quilibrium is compld by obsrving h h rl roo of quion (5.) hs h dominn rl pr, nd his is obind by considring bsolu vlus. This compls h proof of h horm. In h nx rsul, w show h h diss-fr quilibrium is globlly sbl whn h R ν < R. Thorm 7 Th diss-fr quilibrium is globlly sbl whn R <. R <. W no Proof. By using quion (3.3), w find h i (, ) sisfis

15 AAM: Inrn. J., Vol. No. (6) 5 μ( τ) γ( τ) εk( τ) λ( τ) i ( ) cπ( ) k ( ) ( ) k( ) ( ) d γ τ ε τ λ τ τ λ ( ) F (, ) d, >, i (, )= ε k( τ) λ( τ) i(, ) π( ) cπ( ) k ( ) γτ ( ) εk( τ) λ( τ) λ( ) F (, ) d, <, (48) whr F(, ) is dfind s F (, )= ε ( ε ) u (, ). (49) From problm (.), β i(, ) = q ( ) i(, ) d, hn using (5.), w obin h following: ε k( τ) λ( τ) (, )= { β( ) π ( ) (, ). i q i d γτ ( ) εk( τλ ) ( τ) c β( ) π( ) k ( ) λ( ) F(, ) dd γ( τ) εk( τ) λ( τ) c β( ) π( ) k ( ) λ( ) F(, ) d d ( ) ( ) ( ) ( ) μ τ γ τ εk τ λ τ mod.5 cm. β( ) π( ) i ( ) d}. (5) Also, from problm (.), λ()= k( id )(,), hn using (5.), nd chnging h ordr of ingrion svrl ims nd mking ppropri chngs of vribls yilds λ ε k( τλ ) ( τ) () = k ( ) π( )(, i ) d. γτ ( ) εk( τλ ) ( τ) c k ( ) k ( ) π( ) λ( ) F (, ) dd (5) ( ) ( ) k( ) ( ) d μ τ γ τ ε τ λ τ τ cm k i d mod.5. ( )( ) ( ) No h by Assumpions -5 of scion nd h domind convrgnc horm, w obin ( ) ( ) ( ) ( ) μ τ γ τ εk τ λ τ ( ) ( ),. k i d s Also, by similr rsoning s bov, w obin ( ) ( ) ( ) ( ) μ τ γ τ εk τ λ τ β ( i ) ( ) d, s..

16 5 M. El-Dom And γ( τ) εk( τ) λ( τ) c β( ) π( ) k ( ) λ( ) F(, ) dd, s. limsup Now, w l i = i(, ) nd λ = λ( ), hn from quions (5.4)-(5.5) nd Fou s Lmm, w obin h following: limsup i qi β( ) π ( ) d cqλ β( ) π( ) k ( ) dd, γτ ( ) λ i k ( ) π ( ) d cλ k ( ) π( ) k ( ) dd. Thrfor, λ λ R < λ, sinc R <, which givs λ =. Accordingly, h diss-fr quilibrium is globlly sbl, if R <. This compls h proof of h horm. In ordr o sudy h sbiliy of n ndmic quilibrium, w linriz h sysm of quions (4.)- (4.) by considring prurbions w (, ) nd η (, ) dfind by w u u η (, ) = (, ) ( ), (, ) = v (, ) v( ). Accordingly, w obin h following sysms of ingro-pril diffrnil quions: w (, ) w (, ) ( ) ( ) k( ) w(, ) ν δ λ = δ( ) η(, ) k( ) u ( ) ψ, >, >, w(, ) = η (, ),, w (,)= w( )= u( ) u( ),, (5) η(, ) η(, ) ( ) k( ) (, )=( ) k( ) w(, ) γ ελ η ε λ k( ) ( ε) u ( ) ε( v ) ψ, >, >, η(, ) = q β( ) π( ) η(, ) d,, η(,)= η( )= v( ) v ( ),, whr ψ ( ) is givn by ψ ()= c k ( ) π( ) η(,) d. (53) (54) Now, w ssum h w (, ) = ξ f( ), η(, ) = ξ g ( ),

17 AAM: Inrn. J., Vol. No. (6) 5 whr ξ is complx numbr. Accordingly, w obin h following sysms of ODEs: f ( ) ξ ν( ) λ k( ) δ( ) f( )= δ( ) g( ) k( ) u ( ) ψ, f() = g(), (55) g ( ) ξ γ( ) ελ k( ) g( )=( ε) λ k( ) f( ) k( ) ( ε) u ( ) ε( v ) ψ, g()= q β( ) π( ) g( ) d. whr ψ is dfind s ψ = c k( ) π ( gd. ) ( ) (56) Using (5.9)-(5.), w obin h following chrcrisic quion, in h cs ψ : [ ξ γ( τ) ελ k = c k ( ) π( ) k ( ) F ( ) dd [ ξ γ( τ) ελ k ξ ελ k( τ) cq β( ) π( ) k ( ) F( ) dd k ( ) π( ) d, ξ ελ k( τ) q β( ) π( ) d (57) whr F ( ) is dfind s ( ελ ) f( ) F ( )= ( ε) u ( ) ε( v ( ). ψ (58) W no h if w s λ = in (5.), w obin (5.). In h following rsul, w sblish h locl sympoic sbiliy of n ndmic quilibrium, in h spcil cs ε =. Thorm 8: Suppos h sympoiclly sbl. R ν >, q, nd ε =, hn n ndmic quilibrium is loclly Proof: W no h if ψ =, hn g ( )= from quion (5.), sinc g () = bcus ε =. Thrfor, i follows from quion (5.9) h f( )=, nd hnc, sbiliy follows in his cs. If ψ, w k ξ in quion (5.) o b rl, nd hn i is clr from h chrcrisic quion (4.) h ξ <, sinc v ( ) sisfis quion (4.3), nd R ν >, hrfor h locl sympoic sbiliy of n ndmic quilibrium follows from h fc h h rl roo of h chrcrisic quion hs h dominn rl pr. This compls h proof of h horm. In h nx rsul, w will prov h locl sympoic sbiliy of n ndmic quilibrium, whn q = nd δ ( ) is idniclly zro. This rsul will llow us o dduc h sbiliy of h ndmic

18 53 M. El-Dom quilibrium of h SIR g-srucurd pidmic modl, no h h ndmic quilibrium is uniqu in his spcil cs bcus of h monooniciy of h righ-hnd sid of quion (4.). Thorm 9: Suppos h R ν >, q = nd δ ( ) is idniclly zro. Thn h ndmic quilibrium is loclly sympoiclly sbl. Proof: No h if ψ = q =, nd δ ( ), hn i is sy o s h f( ) = from (5.9), sinc f() = g() =. Accordingly, i follows h g ( ) =. chrcrisic quion (5.) ks h following form: [ ξ γ( τ) ελ τ π And hnc, if k d = c k ( ) ( ) k ( ) F ( ) dd, ψ, hn h (59) whr F ( ) is givn by quion (5.). Now, (5.3) cn b rwrin in h following form: = c k ( ) π( ) k ( ) [ ξ γ( τ) ελ k F k s u s ds v d d whr F( ) is givn by (4.4). [ ξ ν( τ) λ k s ( ) λ ( ε) ( ) ( ) ε ( ), (6) Thrfor, if w ssum h ξ is rl in (5.4), hn from quion (4.), w conclud h ξ <, nd ccordingly, h locl sympoic sbiliy follows from h fc h h rl roo of h chrcrisic quion hs h dominn rl pr. This compls h proof of h horm. No h if δ ( )= q = ε =, hn w obin h SIR g-srucurd pidmic modl, nd horm (5.4) shows h h ndmic quilibrium of h SIR g-srucurd pidmic modl is loclly sympoiclly sbl. In h nx rsul, w prov h locl sympoic sbiliy of n ndmic quilibrium in h cs q, nd δ ( ). Thorm : Suppos h h following hold: (i) R ν >, (ii) δ ( ), nd ντ ( ) ( ελ ) k( τ) γτ ( ) (iii) ( ελ ) k ( ) d<. Thn n ndmic quilibrium is loclly sympoiclly sbl. Proof: If ψ =, hn from quions (5.9)-(5.), w obin h following: cg() k ( ) π ( ) ξ ελ k( τ) γ( τ) ντ ( ) ( ελ ) k( τ) γτ ( ) [ ( ελ ) k ( ) d] d =. From quion (5.5) nd ssumpion (iii), w dduc h g() =, f () =, nd from ssumpion (ii) nd quion (5.9), w obin h nd quion (5.), w obin h g ( )=. (6) nd hn i follows h f( )=. From f( )=

19 AAM: Inrn. J., Vol. No. (6) 54 g() Now, if ψ, hn using quions (5.9)-(5.) nd solving for, w obin h following ψ chrcrisic quion: ξ ελ k( τ) q β( ) π ( ) d [ ξ γ( τ) ελ k π { c k ( ) ( ) k ( ) F( ) d d [ ξ γ( τ) ελ k ξ ελ k( τ) cq β( ) π( ) k( ) F( ) dd k( ) π( ) d } ξ ελ k( τ) q β( ) π( ) d ξ ελ k( τ) c q β( ) π ( ) d [ ξ γ( τ) ελ k k k v d d { ε ( ) π( ) ( ) ( ) λ ( ε) s [ ξ γ( τ) ελ k [ ξ ν( τ) λ k k () π() k ( ) k () s u () s dsdd} [ ξ γ( τ) ελ k [ ξ ν( τ) λ k qλ ( ε) β( ) π( ) k ( ) dd{ [ ξ γ( τ) ελ k k ( ) π( ) k( ) F( ) εv ( ) dd cλ ( ε) s [ ξ γ( τ) ελ k [ ξ ν( τ) λ k k () π() k ( ) k () s u () s dsdd}= εqc [ ( ) ( )] ( ) β π π ( ) ( ) ( ) ( ) c ξ γ τ ελ k τ ξ ελ k τ ( ) ( ) k ( ) v ( ) d d( k ( ) ( ) d) [ ξ γ( τ) ελ k [ ξ ν( τ) λ k qcλ ε k π k dd ( [ ξ γ( τ) ελ k β ( ) π ( ) k ( )[ F( ) ε v ( )] d d) qc λ ( ε ) [ ξ γ( τ) ελ k [ ( ) k( )] d ξ ν τ λ τ τ s β( ) π( ) k ( )( k ( s) u ( s) d ) ( s d d

20 55 M. El-Dom [ ξ γ( τ) ελ k [ ν( τ) ( ε) λ k ( τ) γ k( ) π( )[ λ ( ε) k( ) d] d). (6) Now, suppos h ξ is rl, hn from h chrcrisic quion (5.6) nd quion (4.), nd h fc h R ν >, w obin h ξ <, sinc for ξ, h righ-hnd sid of (5.6) is nonposiiv whil h lf-hnd sid is posiiv. Thrfor, n ndmic quilibrium is loclly sympoiclly sbl, sinc h rl roo hs h dominn rl pr. This compls h proof of h horm. W no h if, in ddiion o h ssumpions of Thorm (5.5), w ssum h ε = in h modl, hn w obin h SIR g-srucurd pidmic modl sudid in Ch, l. (998) nd hrfor, Thorm (5.5) sblishs h locl sympoic sbiliy for h ndmic quilibrium of h modl. Also, w no h if δ ( ), nd ε =, hn condiion (iii) of Thorm (5.5) gurns h uniqunss of h ndmic quilibrium, nd his follows from h monooniciy of h righ-hnd sid of quion (4.). Now, w look h cs in which δ ( ) is no idniclly zro bu q =, for xmpl, s Li, l. (4). In his cs, w firs us h sysm of ODEs (5.9)-(5.) o obin h if ψ =, hn f( )= g( )=, nd h is bcus f() = g() = nd h uniqunss of soluion of h sysm of ODEs. Also, if w ssum h ψ, hn using h sm sysm of quions, w cn dduc ( ) h G ( )= g sisfis h following Volrr ingrl quion: ψ whr Ks (, ) nd d ( ) r givn by G ( )= KsGsds (, ) ( ) d ( ), (63) Ks (, ) = ( ) ( ) ( ) s s [ ξ γ( τ) ελ k [ ξ ν( τ) δ( τ) ( ε) λ k( τ) γ s λ εδs k d, (64) d ( )= [ ξ γ( τ) ελ k [ ( ) ( ) k( )] d ξ ν τ δ τ λ τ τ s λ ( ε) k( )( ( k( su ) ( sdsd ) ) (65) [ ξ γ( τ) ελ k k ( )[ F( ) εv ( )] d. Also, in his cs h chrcrisic quion is givn by h following quion: = c G( ) k ( ) π ( ) d. (66) W no h h Volrr ingrl quion (5.7) hs uniqu soluion, nd his fc cn lso b sn from h sysm of ODEs (5.9)-(5.).

21 AAM: Inrn. J., Vol. No. (6) 56 In h nx rsul, w show h if h forc of infcion is sufficinly smll, hn n ndmic quilibrium is lwys loclly sympoiclly sbl. Thorm : Suppos h R ν >, nd q=. If λ is sufficinly smll, hn n ndmic quilibrium is loclly sympoiclly sbl. g ( ) [ v (, ) v( )] Proof: W no h G ( )= = ξ, nd so for R ξ nd ψ, G ( ) is ψ ψ boundd nd is ingrl from o is lso boundd, bcus w r ssuming h h ol populion hs lrdy rchd is sdy s. Now, sinc ε >, w cn us quion (4.) o show h h following ingrl is boundd: [ γτ ( ) ελk π c k ( ) ( ) k ( ) d d. Using quions (5.7) nd (5.), w obin h = c Ksk (, ) ( ) π( Gsdsd ) ( ) c k( ) π( dd ) ( ). Thrfor, from quions (5.8)-(5.9), w obin h h righ-hnd sid of quion (5.) pprochs [ γτ ( ) ελk c k ( ) π( ) k ( )[ F( ) εv ( )] dd s. λ And hrfor, in viw of quions (4.) nd (4.3), h righ-hnd sid of quion (5.) is sricly lss hn on for ny ξ wih R ξ, nd λ sufficinly smll. Accordingly, n ndmic quilibrium is loclly sympoiclly sbl if λ is sufficinly smll. This compls h proof of h horm. Similrly, w obin h following ingrl quion in h cs δ ( ) is no idniclly zro, q, nd R ξ : (67) (68) (69) G ( )= K(, s) G ( s) ds d( ) q q [ ξ γ( τ) ελ k β π ε H( ) q { ( ) ( ) k ( ) F ( ) v ( ) d d Δ (7) [ ξ γτ ( ) ελk [ ξντ ( ) δτ ( ) λk s λ ( ε) β( ) π( ) k( ) δ sgq() s k() su() s dsd d}, whr Ks (, ) nd d ( ) r s bfor, r givn by quions (5.8)-(5.9), nd H ( ) nd Δ r dfind s follows H ( )= [ ξ γ( τ) ελ k k [ ξ γ( τ) ελ k [ ξ ν( τ) δ( τ) λ k λ ( ε) ( ) d, (7)

22 57 M. El-Dom [ ξ γ( τ) ελ k β π Δ = q ( ) ( ) d (7) [ ξ γ( τ) ελ k [ ξ ν( τ) δ( τ) λ k qλ ( ε) β( ) π( ) k ( ) dd. Also, in his cs, h chrcrisic quion is givn by = c G ( ) k ( ) π ( ) d. q (73) W no h if w pu q = in quion (5.4), hn w obin h Volrr ingrl quion (5.7). Also, w no h in h cs q, δ ( ) no idniclly zro, nd R ξ, hn if w ssum h ψ =, hn from quions (5.9)-(5.), w obin h following wo formuls for g(): [ ξ γ( τ) ελ k λ ( ε) ( ) π( ) ( ) ( ) [ ξ ελ k k ( ) π ( ) d k k f d d g() =, (74) q ( ) ( ) ( ) k( ) f( ) β( ) π ( ) [ ξ γ( τ) ελ k λ ε β π dd g() =. [ ξ ελ k q d (75) And hrfor, if w ssum h β ( ) nd k ( ) r consns in quions (5.8)-(5.9), w find h g() =, nd ccordingly, f() =, nd hnc, f() = g() =, by h uniqunss of soluion for h sysm of ODEs (5.9)-(5.). In h nx rsul, w show h n ndmic quilibrium of problm (.), is loclly sympoiclly sbl, if h forc of infcion is sufficinly smll. Thorm Suppos h R ν >, nd k ( ) nd β ( ) r consns indpndn of g. If λ is sufficinly smll, hn n ndmic quilibrium is loclly sympoiclly sbl. Proof: Th proof of his horm is similr o h proof of Thorm (5.6), nd hrfor, w omi h proof. Conclusion W sudid n g-srucurd SIRS pidmic modl, whn h diss is vriclly s wll s horizonlly rnsmid nd h forc of infcion of proporion mixing ssumpion yp, suscpibl individuls r vccind wih vccin h wns ovr im, nd hrfor immun individuls r suscpibl wih som rsisnc o h diss. Th morliy nd friliy rs r g-dpndn. W provd h xisnc nd uniqunss of soluion o h modl quions nd showd h soluions of h modl quions dpnd coninuously on h iniil g-disribuions, nd hrfor,

23 AAM: Inrn. J., Vol. No. (6) 58 h wll posdnss of h problm is provd. Furhrmor, w drmind h sdy ss of h modl nd xmind hir sbiliy, whn q, by drmining n xplicily compubl hrshold prmr R ν, in rms of h dmogrphic nd pidmiologicl prmrs of h modl, known s h rproducion numbr in h prsnc of vccinion srgy ν ( ), s in Hdlr, l. (996) or h n rplcmn rio, s in Thim (). And hnc, w showd h R ν incrss wih q, which is h probbiliy of vriclly rnsmiing h diss, nd hrfor, incrss h liklihood h n ndmic will occur; lso R ν dcrss wih ν ( ), nd is usd o drmin criicl vccinion covrg which will rdic h diss wih minimum vccinion covrg. If R ν, hn h only sdy s of problm (.) is h diss-fr quilibrium, nd is loclly sympoiclly sbl if R ν <, nd globlly sbl if R <. If R ν >, hn diss-fr quilibrium nd n ndmic quilibrium r possibl sdy ss, h diss-fr quilibrium is unsbl. Th qusion of uniqunss of n ndmic quilibrium is n opn problm, nd his is lso h cs for svrl g-srucurd pidmic modls, for xmpl, s Csillo-Chvz, l. (998), Ch, l. (998), nd El-Dom (6). Concrning h sbiliy of n ndmic quilibrium, w obind complicd chrcrisic quion h llowd o prov locl sympoic sbiliy, in som spcil css, which r: (i) h cs ε =, (ii) h cs q =, nd δ, (iii) h cs δ, nd ντ ( ) ( ελ ) k( τ) γτ ( ) ( ελ ) k ( ) d<. And w drivd gnrl formuls for h chrcrisic quions, in rms of ingrl quions. Alhough xplici formuls for h soluions of hs ingrl quions r no obind, w r bl o us hm o dduc h if h forc of infcion is sufficinly smll, hn n ndmic quilibrium is lwys loclly sympoiclly sbl. If q =, nd ohr condiions hold, for xmpl, s Thorm (4.), hn problm (.) givs ris o coninuum of ndmic sdy ss, nd his siuion dos no occur whn hr is no vricl rnsmission. Also, if q =, nd γ ( ) is idniclly zro, hn problm (.) hs h ol populion consising of infciv individuls only s h sdy s. Acknowldgmns Th uhor wro his ppr whil h ws visiing h Insiu of Mhmics of h Univrsiy of Posdm, Posdm, Grmny, nd h would lik o hnk h Grmn Acdmic Exchng Srvic, DAAD: Duschr Akdmischr Aususch Dins.V., for suppor nd Prof. Dr. N. Trkhnov nd Prof. Dr. B.-W. Schulz for n inviion nd hosbiliy during his sy in h Insiu of Mhmics. This work is compld whil h uhor is n Arb Rgionl Fllow h Cnr for Advncd Mhmicl Scincs (CAMS), Amricn Univrsiy of Biru, Biru, Lbnon, h is suppord by grn from h Arb Fund for Economic nd Socil Dvlopmn, nd h would lik o hnk h Dircor of CAMS, Prof. Dr. Wfic Sbr, for n inviion nd hospiliy during his sy in CAMS. H would lso lik o hnk Profssor Mimmo Innlli nd Dr. Xu-Zhi Li for snding rfrncs, nd wo nonymous rfrs for hlpful commns nd vlubl suggsions on h mnuscrip.

24 59 M. El-Dom Rfrncs Andrson, R. M. nd R. M. My, Infcious disss of humns, Dynmic nd conrol, Oxford Univrsiy Prss, (999). Andrsn, V., Insbiliy in n SIR-modl wih g-dpndn suscpibiliy. In: Arino, O. nd D. Axlrod nd M. Kimml & M. Lnglis, (Eds), Mhmicl populion dynmics, Vol. On: Thory of pidmics, Winnipg: Wurz Publ., pp. 3-4, (995). Bllmn, R. nd K. L. Cook, Diffrnil-Diffrnc Equions, Acdmic Prss, Nw York, (963). Busnbrg, S.N. nd K. L. Cook, Vriclly rnsmid disss. Modls nd dynmics. Biomhmics, Vol. 3, Springr-Vrlg, Brlin, (993). Busnbrg, S. N., K. L. Cook nd M. Innlli. Endmic hrsholds nd sbiliy in clss of gsrucurd pidmics. SIAM J. Appl. Mh. Vol. 48, No. 6, pp , (988). Busnbrg, S. N., Ag dpndnc nd vricl rnsmission of disss. J. Modlling of Biomdicl Sysms. 39-4, (986). Busnbrg, S. N., nd K. L. Cook. Modls of Vriclly rnsmid disss wih squnilconinuous dynmics. In: Lkshmiknhm, V., (Eds), Nonlinr Phnomn in Mhmicl Scincs, Acdmic Prss, Nw York, pp , (98). Busnbrg, S. N., nd K. L. Cook. Th populion dynmics of wo vriclly rnsmid infcions. Thoricl Populion Biology. Vol. 33, No., pp. 8-98, (988). Busnbrg, S. N., nd K. P. Hdlr. Dmogrphy nd pidmics. J. Mh. Biosci. Vol., pp , (99). Csillo-Chvz C., H. W. Hhco V. Andrsn S. A. Lvin nd W. M. Liu. Epidmiologicl modls wih g srucur, proporion mixing, nd cross-immuniy. J. Mh. Biol. Vol. 7, pp , (989). Csillo-Chvz, C., nd Z. Fng. Globl sbiliy of n g-srucurd modl for TB nd is pplicions o opiml vccinion srgis. Mh. Biosci. Vol. 5, pp , (998). Ch, Y., M. Innlli nd F. A. Milnr. Exisnc nd uniqunss of ndmic ss for h gsrucurd S-I-R pidmic modl. Mh. Biosci. Vol. 5, pp. 77-9, (998). Chipo, M., M. Innlli nd A. Puglis. Ag srucurd SIR pidmic modl wih inr-color rnsmission. In: Mhmicl populion dynmics, Procdings of h hird inrnionl confrnc on mhmicl populion dynmics, Pu, Frnc, (99), Wurz Winnipg, Cnd, pp. 5-65, (995). Couinho, F. A. B., E. Mssd M. N. Burini H. M. Yng nd R. S. N. Azvdo. Effcs of vccinion Progrmms on rnsmission rs of infcions nd rld hrshold condiions for conrol. IMA J. Mh. Appl. Md. Biol. Vol., pp. 87-6, (993). Diz, K., Th vluion of rubll vccinion srgis. In: Hirons, R.W. nd K. Cook, (Eds.), Th mhmicl hory of h dynmics of biologicl populions II, Acdmic Prss, Nw York, pp. 8-98, (98). Diz, K., nd D. Schnzl. Proporion mixing for g dpndn infcion rnsmissions. J. Mh. Biol. Vol., pp. 7-, (985). El-Dom, M., Sbiliy nlysis of gnrl g-dpndn vccinion modl for vriclly rnsmid diss undr h proporion mixing ssumpion. IMA J. Mh. Appl. Md. Biol. Vol. 7, pp. 9-36, (). El-Dom, M., Anlysis of gnrl g-dpndn vccinion modl for n SIR pidmic. Inrnionl Journl of Applid Mhmics. Vol. 5, No., pp. -6, (). El-Dom, M., Anlysis of n g-dpndn SI pidmic modl wih diss-inducd morliy nd proporion mixing ssumpion: Th cs of vriclly rnsmid disss. Journl of Applid Mhmics. Vol. 3, pp , (4). El-Dom, M., Sbiliy nlysis for n SIR g-srucurd pidmic modl wih vricl rnsmission nd vccinion. Inrnionl Journl of Ecology & Dvlopmn. Vol. 3, No.

25 AAM: Inrn. J., Vol. No. (6) 6 MA5, pp. -38, (5). El-Dom, M., Sbiliy nlysis for n MSEIR g-srucurd pidmic modl. Dynmics of coninuous, discr, nd impulsiv sysms, Sris A: Mhmicl Anlysis. Vol. 3, No., pp. 85, (6). Fllr, W., On h ingrl quion of rnwl hory. Ann. Mh. S. Vol., pp , (94). Fin, P. E. M., Vcors nd vricl rnsmissions: n pidmiologic prspciv. Annls N. Y. Acdmic Sci. Vol. 66, pp , (975). Grnhlgh, D., Vccinion cmpigns for common childhood disss. Mh. Biosci. Vol., pp. -4, (99). Grnhlgh, D., Anlyicl rsuls on h sbiliy of g-srucurd rcurrn pidmic modls. IMA J. Mh. Appl. Md. Biol. Vol. 4, pp. 9-44, (987). Grnhlgh, D., Anlyicl hrshold nd sbiliy rsuls on g-srucurd pidmic modls wih vccinion. Thor. Pop. Biol. Vol. 33, pp. 66-9, (988). Hdlr, K. P., nd J. M u llr. Vccinion in g srucurd populions I: Th rproducion numbr. In: Ishm, V. nd G. Mdly, (Eds.), Modls for infcious humn disss hir srucur nd rlion o d, Cmbridg Univrsiy Prss, pp. 9-, (996). Hhco, H. W., Rviw nd commnry: msls nd rubll in h Unid Ss. Amr. J. of Epidmiology. Vol. 7, No., pp. -3, (983). Hhco, H. W., Th mhmics of infcious disss. SIAM Rviw. Vol. 4, No. 4, pp , (). [] Hhco, H. W., An g srucurd modl for prussis rnsmission. Mh. Biosci. Vol. 45, pp , (997). Hhco, H. W., Rubll. In: Lvin, S. A. nd T. G. Hllm nd L. J. Gross, (Eds.), Applid mhmicl cology, Springr-Vrlg, Nw York, pp. -34, (989). Hoppnsd, F. Mhmicl hory of populion dmogrphics, gnics nd pidmics, CBMS-NSF Rgionl Confrnc in Applid Mhmics, Phildlphi, (975). Inb, H., Thrshold nd sbiliy rsuls for n g-srucurd pidmic modl. J. Mh. Biol. Vol. 8, pp , (99). Kzmnn, W., nd K. Diz. Evluion of g-spcific vccinion srgis. Thor. Pop. Biol. Vol. 5, pp. 5-37, (984). Knox, E. G., Srgy for rubll vccinion. In. J. Epidmiology. Vol. 9, pp. 3-3, (98). Li, X., nd G. Gupur. Globl sbiliy of n g-srucurd SIRS pidmic modl wih vccinion. Discr nd coninuous dynmicl sysms-sris B. Vol. 4, pp , (4). Lopz, L. F., nd F. A. B. Couinho. On h uniqunss of posiiv soluion of n ingrl quion which pprs in pidmiologicl modls. J. Mh. Biol. Vol. 4, pp. 99-8, (). McLn, A., Dynmics of childhood infcions in high birhr counris. In: Lcur Nos in Biomhmics, Vol. 65, pp. 7-97, (986). Millr, R. K. Nonlinr Volrr Ingrl Equions, W. A. Bnjmin, Inc., Mnlo Prk, Cliforni, (97). M u llr, J. Opiml Vccinion prns in g srucurd populions, Dissrion, Fkul f u r Mhmik, T u bingn, (994). M u llr, J., Opiml vccinion prns in g-srucurd populions. SIAM., J. Appl. Mh. Vol. 59, pp. -4, (998). Schnzl, D., An g-srucurd modl of pr-nd pos-vccinion msls rnsmission. IMA J. Mh. Appl. Md. & Biol. Vol., pp. 69-9, (984). Thim, H. R., Sbiliy chng of h ndmic quilibrium in g-srucurd modls for h sprd of S-I-R yp infcious disss. In: Lcur Nos in Biomhmics, Vol. 9, pp , (99). Thim, H. R., Diss xincion nd diss prsisnc in g-srucurd pidmic modls. Nonlinr Anlysis. Vol. 47, pp , ().

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate A Condiion for abiliy in an I Ag rucurd Disas Modl wih Dcrasing urvival a A.K. upriana, Edy owono Dparmn of Mahmaics, Univrsias Padjadjaran, km Bandung-umng 45363, Indonsia fax: 6--7794696, mail: asupria@yahoo.com.au;

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

3.4 Repeated Roots; Reduction of Order

3.4 Repeated Roots; Reduction of Order 3.4 Rpd Roos; Rducion of Ordr Rcll our nd ordr linr homognous ODE b c 0 whr, b nd c r consns. Assuming n xponnil soluion lds o chrcrisic quion: r r br c 0 Qudric formul or fcoring ilds wo soluions, r &

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

Chahrazed L Journal of Scientific and Engineering Research, 2018, 5(4): and

Chahrazed L Journal of Scientific and Engineering Research, 2018, 5(4): and vilbl onlin www.jsr.com Journl of cinific n nginring srch 8 54:- srch ricl N: 94-6 CODNU: JB Mhmicl nlysis of wo pimic mols wih mporry immuniy Li Chhrz Dprmn of Mhmics Fculy of xc scincs Univrsiy frrs

More information

A modified hyperbolic secant distribution

A modified hyperbolic secant distribution Songklnkrin J Sci Tchnol 39 (1 11-18 Jn - Fb 2017 hp://wwwsjspsuch Originl Aricl A modifid hyprbolic scn disribuion Pnu Thongchn nd Wini Bodhisuwn * Dprmn of Sisics Fculy of Scinc Kssr Univrsiy Chuchk

More information

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/ Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr

More information

Stability of time-varying linear system

Stability of time-varying linear system KNWS 39 Sbiliy of im-vrying linr sysm An Szyd Absrc: In his ppr w considr sufficin condiions for h ponnil sbiliy of linr im-vrying sysms wih coninuous nd discr im Sbiliy gurning uppr bounds for diffrn

More information

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT [Typ x] [Typ x] [Typ x] ISSN : 974-7435 Volum 1 Issu 24 BioTchnology 214 An Indian Journal FULL PAPE BTAIJ, 1(24), 214 [15197-1521] A sag-srucurd modl of a singl-spcis wih dnsiy-dpndn and birh pulss LI

More information

Relation between Fourier Series and Transform

Relation between Fourier Series and Transform EE 37-3 8 Ch. II: Inro. o Sinls Lcur 5 Dr. Wih Abu-Al-Su Rlion bwn ourir Sris n Trnsform Th ourir Trnsform T is riv from h finiion of h ourir Sris S. Consir, for xmpl, h prioic complx sinl To wih prio

More information

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic h Vsick modl h modl roosd by Vsick in 977 is yild-bsd on-fcor quilibrium modl givn by h dynmic dr = b r d + dw his modl ssums h h shor r is norml nd hs so-clld "mn rvring rocss" (undr Q. If w u r = b/,

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

Section 2: The Z-Transform

Section 2: The Z-Transform Scion : h -rnsform Digil Conrol Scion : h -rnsform In linr discr-im conrol sysm linr diffrnc quion chrcriss h dynmics of h sysm. In ordr o drmin h sysm s rspons o givn inpu, such diffrnc quion mus b solvd.

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

Bicomplex Version of Laplace Transform

Bicomplex Version of Laplace Transform Annd Kumr l. / Inrnionl Journl of Enginring nd Tchnology Vol.,, 5- Bicomplx Vrsion of Lplc Trnsform * Mr. Annd Kumr, Mr. Prvindr Kumr *Dprmn of Applid Scinc, Roork Enginring Mngmn Tchnology Insiu, Shmli

More information

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t Coninuous im ourir rnsform Rviw. or coninuous-im priodic signl x h ourir sris rprsnion is x x j, j 2 d wih priod, ourir rnsform Wh bou priodic signls? W willl considr n priodic signl s priodic signl wih

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289. Convrgnc of ourir Trnsform Rding Assignmn Oppnhim Sc 42 pp289 Propris of Coninuous im ourir Trnsform Rviw Rviw or coninuous-im priodic signl x, j x j d Invrs ourir Trnsform 2 j j x d ourir Trnsform Linriy

More information

The Laplace Transform

The Laplace Transform Th Lplc Trnform Dfiniion nd propri of Lplc Trnform, picwi coninuou funcion, h Lplc Trnform mhod of olving iniil vlu problm Th mhod of Lplc rnform i ym h rli on lgbr rhr hn clculu-bd mhod o olv linr diffrnil

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

K x,y f x dx is called the integral transform of f(x). The function

K x,y f x dx is called the integral transform of f(x). The function APACE TRANSFORMS Ingrl rnform i priculr kind of mhmicl opror which ri in h nlyi of om boundry vlu nd iniil vlu problm of clicl Phyic. A funcion g dfind by b rlion of h form gy) = K x,y f x dx i clld h

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique Inrnionl hmil orum no. 667-67 Sud of h Soluions of h o Volrr r rdor Ssm Using rurion Thniqu D.Vnu ol Ro * D. of lid hmis IT Collg of Sin IT Univrsi Vishnm.. Indi Y... Thorni D. of lid hmis IT Collg of

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser Mr n FT Lcur 4CT.5 3CT.3-5,7,8 BME 333 Bimdicl Signls nd Sysms - J.Schssr 43 Highr Ordr Diffrniin d y d x, m b Y b X N n M m N M n n n m m n m n d m d n m Y n d f n [ n ] F d M m bm m X N n n n n n m p

More information

Smoking Tobacco Experiencing with Induced Death

Smoking Tobacco Experiencing with Induced Death Europan Journal of Biological Scincs 9 (1): 52-57, 2017 ISSN 2079-2085 IDOSI Publicaions, 2017 DOI: 10.5829/idosi.jbs.2017.52.57 Smoking Tobacco Exprincing wih Inducd Dah Gachw Abiy Salilw Dparmn of Mahmaics,

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

UNSTEADY HEAT TRANSFER

UNSTEADY HEAT TRANSFER UNSADY HA RANSFR Mny h rnsfr problms rquir h undrsnding of h ompl im hisory of h mprur vriion. For mpl, in mllurgy, h h ring pross n b onrolld o dirly ff h hrrisis of h prossd mrils. Annling (slo ool)

More information

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013 Lcur #5 Conrol Sy Modlling Phyicl Sy Gr DC Moor Aoc.Prof. Hluk Görgün 0 Mrch 03 Conrol Sy Aoc. Prof. Hluk Görgün rnfr Funcion for Sy wih Gr Gr provid chnicl dvng o roionl y. Anyon who h riddn 0-pd bicycl

More information

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8 STAT W 6 Discussion Fll 7..-.- If h momn-gnring funcion of X is M X ( ), Find h mn, vrinc, nd pmf of X.. Suppos discr rndom vribl X hs h following probbiliy disribuion: f ( ) 8 7, f ( ),,, 6, 8,. ( possibl

More information

Lecture 21 : Graphene Bandstructure

Lecture 21 : Graphene Bandstructure Fundmnls of Nnolcronics Prof. Suprio D C 45 Purdu Univrsi Lcur : Grpn Bndsrucur Rf. Cpr 6. Nwor for Compuionl Nnocnolog Rviw of Rciprocl Lic :5 In ls clss w lrnd ow o consruc rciprocl lic. For D w v: Rl-Spc:

More information

PHA Final Exam Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment.

PHA Final Exam Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment. Nm: UFI#: PHA 527 Finl Exm Fll 2008 On my honor, I hv nihr givn nor rcivd unuhorizd id in doing his ssignmn. Nm Pls rnsfr h nswrs ono h bubbl sh. Pls fill in ll h informion ncssry o idnify yourslf. h procors

More information

An Optimal Ordering Policy for Inventory Model with. Non-Instantaneous Deteriorating Items and. Stock-Dependent Demand

An Optimal Ordering Policy for Inventory Model with. Non-Instantaneous Deteriorating Items and. Stock-Dependent Demand Applid Mhmicl Scincs, Vol. 7, 0, no. 8, 407-4080 KA Ld, www.m-hikri.com hp://dx.doi.org/0.988/ms.0.56 An piml rdring Policy for nvnory Modl wih Non-nsnnous rioring ms nd Sock-pndn mnd Jsvindr Kur, jndr

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics 6.5, Rok ropulsion rof. nul rinz-snhz Lur 3: Idl Nozzl luid hnis Idl Nozzl low wih No Sprion (-D) - Qusi -D (slndr) pproximion - Idl gs ssumd ( ) mu + Opimum xpnsion: - or lss, >, ould driv mor forwrd

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

ELECTRIC VELOCITY SERVO REGULATION

ELECTRIC VELOCITY SERVO REGULATION ELECIC VELOCIY SEVO EGULAION Gorg W. Younkin, P.E. Lif FELLOW IEEE Indusril Conrols Consuling, Di. Bulls Ey Mrking, Inc. Fond du Lc, Wisconsin h prformnc of n lcricl lociy sro is msur of how wll h sro

More information

Midterm. Answer Key. 1. Give a short explanation of the following terms.

Midterm. Answer Key. 1. Give a short explanation of the following terms. ECO 33-00: on nd Bnking Souhrn hodis Univrsi Spring 008 Tol Poins 00 0 poins for h pr idrm Answr K. Giv shor xplnion of h following rms. Fi mon Fi mon is nrl oslssl produd ommodi h n oslssl sord, oslssl

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

Engine Thrust. From momentum conservation

Engine Thrust. From momentum conservation Airbrhing Propulsion -1 Airbrhing School o Arospc Enginring Propulsion Ovrviw w will b xmining numbr o irbrhing propulsion sysms rmjs, urbojs, urbons, urboprops Prormnc prmrs o compr hm, usul o din som

More information

Charging of capacitor through inductor and resistor

Charging of capacitor through inductor and resistor cur 4&: R circui harging of capacior hrough inducor and rsisor us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R, an inducor of inducanc and a y K in sris.

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

Logistic equation of Human population growth (generalization to the case of reactive environment).

Logistic equation of Human population growth (generalization to the case of reactive environment). Logisic quaion of Human populaion growh gnralizaion o h cas of raciv nvironmn. Srg V. Ershkov Insiu for Tim aur Exploraions M.V. Lomonosov's Moscow Sa Univrsi Lninski gor - Moscow 999 ussia -mail: srgj-rshkov@andx.ru

More information

I) Title: Rational Expectations and Adaptive Learning. II) Contents: Introduction to Adaptive Learning

I) Title: Rational Expectations and Adaptive Learning. II) Contents: Introduction to Adaptive Learning I) Til: Raional Expcaions and Adapiv Larning II) Conns: Inroducion o Adapiv Larning III) Documnaion: - Basdvan, Olivir. (2003). Larning procss and raional xpcaions: an analysis using a small macroconomic

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

The Procedure Abstraction Part II: Symbol Tables and Activation Records

The Procedure Abstraction Part II: Symbol Tables and Activation Records Th Produr Absrion Pr II: Symbol Tbls nd Aivion Rords Th Produr s Nm Sp Why inrodu lxil soping? Provids ompil-im mhnism for binding vribls Ls h progrmmr inrodu lol nms How n h ompilr kp rk of ll hos nms?

More information

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees CPSC 211 Daa Srucurs & Implmnaions (c) Txas A&M Univrsiy [ 259] B-Trs Th AVL r and rd-black r allowd som variaion in h lnghs of h diffrn roo-o-laf pahs. An alrnaiv ida is o mak sur ha all roo-o-laf pahs

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

PHA Second Exam. Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment.

PHA Second Exam. Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment. Nm: UFI #: PHA 527 Scond Exm Fll 20 On my honor, I hv nihr givn nor rcivd unuhorizd id in doing his ssignmn. Nm Pu ll nswrs on h bubbl sh OAL /200 ps Nm: UFI #: Qusion S I (ru or Fls) (5 poins) ru (A)

More information

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp Jourl o Al-Qus Op Uvrsy or Rsrch Sus - No.4 - Ocobr 8 Rrcs: - I. M. ALGHROUZ: A Nw Approch To Frcol Drvvs, J. AOU, V., 7, pp. 4-47 - K.S. Mllr: Drvvs o or orr: Mh M., V 68, 995 pp. 83-9. 3- I. PODLUBNY:

More information

Stability Analysis of a delayed HIV/AIDS Epidemic Model with Saturated Incidence

Stability Analysis of a delayed HIV/AIDS Epidemic Model with Saturated Incidence nrnaional Journal of Mahmaics Trnds Tchnology JMTT Volum 4 Numbr - March 7 abiliy nalysis of a dlayd HV/D Epidmic Modl wih aurad ncidnc Dbashis iswas, amars Pal Calcua Girls Collg, Kolkaa-, ndia. Dparmn

More information

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS Diol Bgyoko (0) I.INTRODUCTION LINEAR d ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS I. Dfiiio All suh diffril quios s i h sdrd or oil form: y + y + y Q( x) dy d y wih y d y d dx dx whr,, d

More information

A Production Inventory Model for Different Classes of Demands with Constant Production Rate Considering the Product s Shelf-Life Finite

A Production Inventory Model for Different Classes of Demands with Constant Production Rate Considering the Product s Shelf-Life Finite nrnionl Confrnc on Mchnicl nusril n Mrils Enginring 5 CMME5 - Dcmbr 5 RUE Rjshhi Bnglsh. Ppr D: E-6 A Proucion nvnory Mol for Diffrn Clsss of Dmns wih Consn Proucion R Consiring h Prouc s Shlf-Lif Fini

More information

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz STAT UIUC Pracic Problms #7 SOLUTIONS Spanov Dalpiaz Th following ar a numbr of pracic problms ha ma b hlpful for compling h homwor, and will lil b vr usful for suding for ams.. Considr wo coninuous random

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series I Jorl of Mh Alysis, Vol 4, 2, o 2, 4-47 Approximio of Fcios Blogig o Lipschiz Clss by Triglr Mrix Mhod of Forir Sris Shym Ll Dprm of Mhmics Brs Hid Uivrsiy, Brs, Idi shym _ll@rdiffmilcom Biod Prsd Dhl

More information

PHA Second Exam. Fall 2007

PHA Second Exam. Fall 2007 PHA 527 Scond Exm Fll 2007 On my honor, I hv nihr givn nor rcivd unuhorizd id in doing his ssignmn. Nm Pu ll nswrs on h bubbl sh OAL /30 ps Qusion S I (ru or Fls) (5 poins) ru (A) or Fls (B). On h bubbl

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

On Ψ-Conditional Asymptotic Stability of First Order Non-Linear Matrix Lyapunov Systems

On Ψ-Conditional Asymptotic Stability of First Order Non-Linear Matrix Lyapunov Systems In. J. Nonlinar Anal. Appl. 4 (213) No. 1, 7-2 ISSN: 28-6822 (lcronic) hp://www.ijnaa.smnan.ac.ir On Ψ-Condiional Asympoic Sabiliy of Firs Ordr Non-Linar Marix Lyapunov Sysms G. Sursh Kumar a, B. V. Appa

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM Elecronic Journl of Differenil Equions, Vol. 208 (208), No. 50, pp. 6. ISSN: 072-669. URL: hp://ejde.mh.xse.edu or hp://ejde.mh.un.edu EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016 Applid Saisics and robabiliy for Enginrs, 6 h diion Ocobr 7, 6 CHATER Scion - -. a d. 679.. b. d. 88 c d d d. 987 d. 98 f d.. Thn, = ln. =. g d.. Thn, = ln.9 =.. -7. a., by symmry. b.. d...6. 7.. c...

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

A Study on the Nature of an Additive Outlier in ARMA(1,1) Models

A Study on the Nature of an Additive Outlier in ARMA(1,1) Models Europn Journl of Scinific Rsrch SSN 45-6X Vol3 No3 9, pp36-368 EuroJournls Publishing, nc 9 hp://wwwuroournlscom/srhm A Sudy on h Nur of n Addiiv Oulir in ARMA, Modls Azmi Zhrim Cnr for Enginring Rsrch

More information

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control MEM 355 Prformanc Enhancmn of Dynamical Sysms A Firs Conrol Problm - Cruis Conrol Harry G. Kwany Darmn of Mchanical Enginring & Mchanics Drxl Univrsiy Cruis Conrol ( ) mv = F mg sinθ cv v +.2v= u 9.8θ

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas Third In-Class Exam Soluions Mah 6, Profssor David Lvrmor Tusday, 5 April 07 [0] Th vrical displacmn of an unforcd mass on a spring is givn by h 5 3 cos 3 sin a [] Is his sysm undampd, undr dampd, criically

More information

Lecture 2: Current in RC circuit D.K.Pandey

Lecture 2: Current in RC circuit D.K.Pandey Lcur 2: urrn in circui harging of apacior hrough Rsisr L us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R and a ky K in sris. Whn h ky K is swichd on, h charging

More information

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu Chapr 3: Fourir Rprsnaion of Signals and LTI Sysms Chih-Wi Liu Oulin Inroducion Complx Sinusoids and Frquncy Rspons Fourir Rprsnaions for Four Classs of Signals Discr-im Priodic Signals Fourir Sris Coninuous-im

More information

THE ECONOMETRIC MODELING OF A SYSTEM OF THREE RANDOM VARIABLES WITH THE β DEPENDENCE

THE ECONOMETRIC MODELING OF A SYSTEM OF THREE RANDOM VARIABLES WITH THE β DEPENDENCE Tin Corin DOSESCU hd Dimiri Cnmir Chrisin Univrsiy Buchrs Consnin RAISCHI hd Dprmn o Mhmics Th Buchrs Acdmy o Economic Sudis THE ECONOMETRIC MODELING OF A SYSTEM OF THREE RANDOM VARIABLES WITH THE β DEENDENCE

More information

PHA First Exam Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment.

PHA First Exam Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment. PHA 527 Firs Exm Fll 20 On my honor, I hv nihr givn nor rcivd unuhorizd id in doing his ssignmn. Nm Qusion S/Poins I. 30 ps II. III. IV 20 ps 5 ps 5 ps V. 25 ps VI. VII. VIII. IX. 0 ps 0 ps 0 ps 35 ps

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

3. Renewal Limit Theorems

3. Renewal Limit Theorems Virul Lborories > 14. Renewl Processes > 1 2 3 3. Renewl Limi Theorems In he inroducion o renewl processes, we noed h he rrivl ime process nd he couning process re inverses, in sens The rrivl ime process

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Impulsive Differential Equations. by using the Euler Method

Impulsive Differential Equations. by using the Euler Method Applid Mahmaical Scincs Vol. 4 1 no. 65 19 - Impulsiv Diffrnial Equaions by using h Eulr Mhod Nor Shamsidah B Amir Hamzah 1 Musafa bin Mama J. Kaviumar L Siaw Chong 4 and Noor ani B Ahmad 5 1 5 Dparmn

More information

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series DSP Firs, Lcur 7C Fourir Sris Empls: Common Priodic Signls READIG ASSIGMES his Lcur: Appndi C, Scion C- Vrious Fourir Sris Puls Wvs ringulr Wv Rcifid Sinusoids lso in Ch. 3, Sc. 3-5 Aug 6 3-6, JH McCllln

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

LAPLACE TRANSFORMS AND THEIR APPLICATIONS

LAPLACE TRANSFORMS AND THEIR APPLICATIONS APACE TRANSFORMS AND THEIR APPICATIONS. INTRODUCTION Thi ubjc w nuncid fir by Englih Enginr Olivr Hviid (85 95) from oprionl mhod whil udying om lcricl nginring problm. Howvr, Hviid` rmn w no vry ymic

More information

Microscopic Flow Characteristics Time Headway - Distribution

Microscopic Flow Characteristics Time Headway - Distribution CE57: Traffic Flow Thory Spring 20 Wk 2 Modling Hadway Disribuion Microscopic Flow Characrisics Tim Hadway - Disribuion Tim Hadway Dfiniion Tim Hadway vrsus Gap Ahmd Abdl-Rahim Civil Enginring Dparmn,

More information

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions 4.0 rincipl of Macroconomic Fall 005 Quiz 3 Soluion Shor Quion (30/00 poin la a whhr h following amn ar TRUE or FALSE wih a hor xplanaion (3 or 4 lin. Each quion coun 5/00 poin.. An incra in ax oday alway

More information

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Inroducion and Linar Sysms David Lvrmor Dparmn of Mahmaics Univrsiy of Maryland 9 Dcmbr 0 Bcaus h prsnaion of his marial in lcur will diffr from

More information

H is equal to the surface current J S

H is equal to the surface current J S Chapr 6 Rflcion and Transmission of Wavs 6.1 Boundary Condiions A h boundary of wo diffrn mdium, lcromagnic fild hav o saisfy physical condiion, which is drmind by Maxwll s quaion. This is h boundary condiion

More information

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q). INTEGRALS JOHN QUIGG Eercise. Le f : [, b] R be bounded, nd le P nd Q be priions of [, b]. Prove h if P Q hen U(P ) U(Q) nd L(P ) L(Q). Soluion: Le P = {,..., n }. Since Q is obined from P by dding finiely

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

VIBRATION ANALYSIS OF CURVED SINGLE-WALLED CARBON NANOTUBES EMBEDDED IN AN ELASTIC MEDIUM BASED ON NONLOCAL ELASTICITY

VIBRATION ANALYSIS OF CURVED SINGLE-WALLED CARBON NANOTUBES EMBEDDED IN AN ELASTIC MEDIUM BASED ON NONLOCAL ELASTICITY VIBRATION ANASIS OF CURVED SINGE-AED CARBON NANOTUBES EMBEDDED IN AN EASTIC MEDIUM BASED ON NONOCA EASTICIT Pym Solni Amir Kssi Dprmn of Mchnicl Enginring Islmic Azd Univrsiy-Smnn Brnch Smnm Irn -mil:

More information